绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数字通信技术范文,希望它们能为您的写作提供参考和启发。
通信产业是国民经济结构的重要组成部分,渗透在各行各业中,没有通信技术的服务,各行业的正常运行和发展都会受到严重制约,可以说,不管是人们的日常生活还是工作生产都已经离不开通信技术,一旦出现特殊的社会环境,迫使人们不得不减少外出而需要在室内完成工作或者学习,这时候就需要强大的通信网络来支撑,所以通信技术的发展显得至关重要,随着社会的进步,对通信技术也不断提出更高的要求,只有满足这些需求,通信产业才能更好的生存和发展。当前,我们早已迈进了数字通信时代,所以对数字通信技术进行分析,展望其未来的发展具有重要的现实意义。
1数字通信技术的原理
数字通信系统模型如图1,数字通信就是利用数字信号进行信息的传递,所谓数字信号,在电子电路中是采用二值逻辑中的1和0来进行信息的表示,用多位二值数码的组合表示不同的信息。而在现实中,大多数信息都是模拟信号的形式,可以通过模数转换将其转换为数字信号,然后就可以在数字信道中进行信息的传递。为了保证信息传输的可靠性和保密性,以及为了提高信道的利用率,在传输之前通过对数字信号采用不同的编码方式,能够大大提高抗干扰能力,降低外界或者系统自身噪声的干扰。再利用调制器对信号进行调制,调制之后的信号频谱得到扩展,更适合在信道中传输,充分利用信道,提高传输性能。同时,在数字信号系统中,同步也是非常重要的环节,如果时钟同步或者帧同步不准确,也会直接导致信息出错。信号通过有线或者无线信道传输到接收端后,再经过解调、译码后可恢复信息。在数字通信系统中极其重要的技术还包括程控交换,在最初的电话交换机的基础上逐步发展为数字程控交换机,利用存储着交换控制程序的计算机来控制信息的接驳,信息的类型从最初单一的语音发展为多种形式的数据信息,程控交换机的使用使得通信系统的维护管理更加便捷可靠,增强了灵活性,功能更全面,在一定程度上,通过对软件的控制来增强硬件的功能扩展,从而更好的提供通信服务。
2数字通信技术的优点和缺点
2.1数字通信技术的优点
(1)数字通信技术具有很好的抗干扰性能。信息在通过信道传输的过程中,不可避免的会受到来自外界或者自身的噪声干扰,但是数字信号不同于模拟信号,数字信号本身是离散的信号,通常采用二值逻辑来表示,实际应用中可以用脉冲的两种不同状态代表1和0,只要能控制噪声信号不严重破坏脉冲的两种状态,就可以在接收端被识别,在这一点上,模拟信号是不能够相比的,噪声对模拟信号的影响是很明显的,很容易使信号失真,所以相对来说数字通信技术的抗干扰能力强于模拟通信技术。(2)数字通信技术有较好的保密性能。用数字信号进行信息的表示、存储和传输,更便于对信息加密,可以将数字信息进行各种运算处理,对其进行伪装,常用的方法就是采用密钥技术,一般密钥很难被外界破解,从而保证了通信信息的保密性。(3)数字通信技术能实现远距离的高质量信号传输。信号在传输过程中,距离越长,损耗越大,那么就必须对信号进行放大,但是同时也会放大噪声,甚至噪声可能会覆盖有用信号。在采用数字通信后,由于数字信号的波形在失真后可以通过整形电路恢复原有的信息,利用再生中继器可以大大增加传输距离,同时又保证了信号的不失真性。(4)数字通信技术支持多种形式信息传输。随着计算机、多媒体技术的发展,人们对信息的需求呈现多样性,但是不论何种形式的信息,都可以转换成数字信号,所以数字通信技术的普及也促进了综合业务数字网的形成。(5)数字通信系统普遍采用大规模集成电路,具有体积小、重量轻、耗电低、后期维护方便等等优势。另外随着光纤技术的发展,现代通信大量使用光纤作为传输媒介,大大节省了成本,提高了传输速度,加强了信息的保密性。
2.2数字通信技术的缺点
对现在社会上的通信技术来说,广播传输的运用在很大的程度上是需要通信技术的参与,尤其是现在社会上广泛应用的微波传输技术。在很大的程度上来说,现在我国社会上存在的两种微波传输技术主要包括数字微波通信和卫星数字通信这两个方面,而且这两个方面在广播运输中都有非常广泛的应用。而且在我国现在使用的广播电视的传播途径主要有三个方面,这三个方面主要包括光缆、地面微波和卫星传输。对这三个方面来说可以说各有的优点和缺失,因此在进行广播传输的过程中需要选择缺失最小的方法进行合理的方法进行使用,只有这样才能在很大的程度上实现广播的传输。
1 数字微波通信
1.1 数字微波通信的基本功能及特点
数字微波通信的重点在于微波技术的运用,这就要求对微波的含义和相应的特征有一个全面的了解。在很多情况下可以了解到微波是属于无线电波的一种,而且还具有一定的高频率性,对微波的长度在相关的物理研究中可以清楚的了解微波是一种波长比较短的无线电波,所以可用的微波的频带比较宽,而且性能也比一些低频率的电波的性能更加良好。另外由于微波在社会上的数字化方面得到广泛的应用,这也从侧面表示了微波是具备信息存储量较大的特点。在微波使用的现阶段中,主要使微波的技术包括数字微波通信,这种数字微波通信在相应的社会实践中可以发现数字微波通信技术是具有投资较低,便捷可靠,而且抗干扰的能力良好的特点,这些特点的存在使得数字微波通信在广传输中得到广泛的应用。
1.2 数字微波通信系统的基本原理
很多无线电波的传输方式在相关的物理研究中都可以发现其传输方式与光波的传输方式有很大的相似,都是属于只能直线射进,在遇到障碍时会发生阻断或者反射的情况。这种与光波、相似的特点从一定的程度上决定了数字微波通信的主要特点。通信的主要特点。切在进行地球与相应空间之间的传输过程中,由于传输的空间比较广泛,距离也比较远,这就会导致在进行传输的过程中需要设立相关的中转站机构,也就是说在进行传输的过程中是在一种接力的过程中进行的,这种做法能够减少相应传输信息的损害,使得信息的传输达到全面完善的传输。
而且在进行数字微波通信的传输过程中,由于设立了相应的空间中转站,这就在很大的程度上决定了数字微波通信两个终端之间对信息传输的根本要求,而且对设立的中转站的要求在于设立的中转站的数量,由于距离过远,所设置的中转站的数量在几个到几十个范围,数量的多少也通常由距离的长短决定。中转站的存在是为了将终端所发送的信号进行一个接受,并将其放大,之后在转入其他的中转站的过程。这种中转站的存在的根本目的是对进行传输的信息的质量有一定的保证。
1.3 数字微波通信在广播电台中的运用
在进行微波传输时数字化微波将采用相关数字化技术进行处理,其传输的质量具有高可靠性、具有较强的抗干扰力、能够远程传输等诸多优点。广播电视大多使用多条路经终端传输设备,相关设备具有收、发端机两部分。该设备有光端口和数字化微波端口,与光端和微波端都能够方便连接。发端机能够把数字化节目源样点节目信号、相关数据及通道情况转换为数字式序列,再通过编码纠错、交结、信号通道编码与复接,然后分别传送至光端调制机与微波端调制机进行传输,送至微波端调制机的相关信号经由天线与功放在进行发射。收端机解码其所收编码流,所解出信号通过交结、编码纠错电路得出相关数据与各类样点信号,而后经由各相应接口电路将其恢复至数字化模拟信号。
2 卫星数字通信
2.1 卫星数字通信的基本功能及特点
广播节目信号最主要的传输手段就是卫星数字通信,伴随现代数字化技术快速的发展,其优势尤为明显。相比于微波数字通信等现代化传输手段,其具有低投资、覆盖范围较广、设便捷、传输过程质量有保证、维护简单、操作成本低等诸多优点。
2.2 卫星数字通信系统的基本原理
卫星电视体系包括四个重要部分,即卫星发射站、卫星转发器、监测站、接收站。转发器主要接收由地面上行站所传送过来的上行信号(C或Ku波段),且对其进行放大、变频、然后再放大操作后,将其发射至地面接受范围内,所以,转发器实质上所起到的作用完全可以代替一个中继站,它能够在传输过程中将附加的噪声降至最低且失真对广播信号进行传送。
2.3 卫星数字通信在广播电台的运用
广播电视卫星相对于地面必须静止,这样可以方便观众使用便捷,不追踪卫星与具有较强定向性的天线进行接收,所以需要运用同步赤道卫星,还需要确保卫星在其轨道中位置与状态保持精确;广播电视卫星务必具有足够辐射的功率,广播电视卫星同时需要具备高可信度与长寿命,从而减少停播故障,且规避了频繁更换卫星和停播所需费用及损失。
2.3.1 卫星数字广播
通过卫星来传送广播电视信号是卫星现代化技术飞跃性的发展,在广播电视数字化传输体系中,卫星数字传输相当必要。
2.3.2 卫星转播车和现场直播车
直播车与转播车节目输送方式更加丰富,使活动直播安全得到有力保障。相关车载体系统不但能够高质量传输无线数字化信号,执行高质量转播任务和相关直播操作,还能够在非正常情况下,独立应对紧急制作及相关传输任务。
结束语
多媒体广播技术的发展带动着相应数字化通信的进一步发展,使得相应的无线通信技术也有了新的发展方向。而且在现在社会上存在的微波传输技术中主要有两项技术手段可以应用在相应的广播通信技术上面,这两项技术的特点都会使得广播信息的传输能够更加顺利的进行,使其更加符合社会发展的需求。而且在现在社会上广播信息的数字化也处在一个高速发展的过程,为了响应这种发展就需要对相关的技术做到更好的改善,使得广播传输的质量和传播道路都有相应的提高,从而使得广播传输行业的发展更加符合社会的需求。
参考文献
(1)首先,在数字移相器进行滞后信号
迁移处理以及相位均衡的过程当中,由阻容网络以及运算放大器装置所构成的整个超前移相很明显,模拟移相器连续传递函数的取值同图1中所示的电阻值R以及C均存在密切关系。基于以上分析,通过对拉普拉斯变换复变量参数的引入与替代处理能够获取与系统连续信号对应模拟角频率以及拉普拉斯变换复变量虚部参数相关的移相器频率特性传递函数。在针对相拼特性进行深入分析的过程当中不难发现,图1中整个模拟移相器在进行数据同步处理过程当中所表现出的移相读数始终维持在0°~180°范围之内。进而通过对校正系数的调节与计算,能够在均方差最小原则的处理作用之下获取频域方差函数作用之下个点的min参数,最终能够获取数字同步处理中所需要的全通滤波器最优化解。
(2)其次,借助于插值重采样作业方式
实现整个电子式互感器中传输数据的同步处理是现阶段应用比较普遍的一种处理方式。MU能够兼容接受PPS或是B格式码。与此同时,FPGA支持下的数据同步模块能够将间隔时间在1s范围之内的同步脉冲头进行均匀分割处理,并形成均匀性的4000个时间片。以上每个时间片的开始位置均与一个独立的同步采样脉冲信号相对应。在此基础之上,能够将此过程中所获取的同步采样脉冲信号作为基准参数并进行插值处理,借助于此种方式实现良好的采样同步。特别值得注意的一点在于:为确保信号带宽能够在数字同步处理过程当中得到有效拓展,并实现对混叠误差的有效控制,需要在高压采集板运行过程当中引入采样技术,同时在MU当中设计有抽取滤波器装置,实现对采样频率的有效恢复。从某种程度上来说,建立在动态化二次拉格朗日差值运算基础之上的差值分析能够实现4抽1模式的滤波抽取与差值计算。
2电子式互感器数字通信技术分析
结合信息模型分层分类思想方式,建立在IECE标准配置基础之上的MU服务器基本模型结构示意图。从该MU服务器基本模型结构示意图当中不难发现:MU服务器模型在应用过程当中将所涉及到的12路采集信号进行了两路数据集的分配,与之相对应的是差异性的采样值控制块绑定。在当前技术条件支持下,考虑到IEC标准配置对于测量值的发送以及保护值的发送要求存在一定的差异性,因此要求采样值控制块能够实现对与之相对应电流信号以及电压信号的集中式发送。实践研究结果表明:在基于这一MU服务器模型应用之下所表现出的数据信号集中式发送速率基本可以达到平均每秒4kbit单位。基于以上分析,在数字通信技术应用过程特别需要关注的是对分布式采样值控制块的构建。在当前技术条件支持下,采样值控制块读写操作以及报文传输操作这两者之间存在着本质性的差异性。报文传输操作能够直接实现与以太网的连接,在简化了操作步骤的同时使得报文传输的实时性要求较高。而对于采样值控制块而言,其从本质上来说属于全部A协议集与T协议集的映射,在MMS当中属于复杂度最高的模块。但在远程控制功能以及在线监测功能的作用之下,采样值控制块的应用对于数字通信的实时性要求角度。在此基础之上应当构建的IED对象与MMS对象之间的所表现出映射关系为。
对于IPv6技术而言,属于新兴的技术类型之一,可以将其运用到广电网络通信的优化当中,用以将IPv4进行替代。然而,从当前广电平台、网络以及终端等采用的技术来看,依然以IPv4技术为主。为了做到与时俱进,满足市场发展的需要,应该引入全新的IPv6技术,实现对网络通信功能的优化与提高。面对此种状况,广电网络应该逐步加快由IPv4向IPv6的过渡速度,确保广电网络的通信业务能够符合市场的需要。比如:某些平台会利用双栈协议,构建网络和平台间的链接,达到互通彼此通信业务的目的。实际上,广电网络通信的目标与功能以传播有关信息为主,提高信息的利用率。通过借助IPv6网络层当中的汇聚层和交换层,能够实现对聚合链路的有效优化,达到使带宽传输效率提高的目的。并且依靠IPv6拥有的高安全性功能,可以确保网络运行的稳定性,满足安全方面的需求。凭借这种性能优势,使得IPv6技术得到了众多企业的关注和重视,IPv6技术也被逐渐应用到广电网络通信当中的不同业务、机构间的信息传输当中,实现了信息的交换与共享[1]。如此,不仅规避了受到外界病毒带给广电网络通信内容的侵害情况发生,而且提高了广电网络运行的安全性,让信息的传输变得更加高效。
2凸显IPv6技术在促进广电网络参与“三网融合”中的作用
自从我国的“三网融合”发展策略被首次提出之后,广电网络便予以极大的重视,从不同的方面积极推进和电信网、互联网之间业务与功能方面的融合进程,充分凸显出自身的重要作用。对于广电网络而言,在其发展的过程当中,IPv6技术具有重要的地位,充分发挥出技术支撑的作用,有利于促进三网融合。比如:通过利用IPv6技术,可以满足“三网融合”过程当中的IP地址需求,形成一定的技术支撑作用,使得广电网络通信的功能更加丰富,体现出便捷性的优势,与当前的网络融合发展相匹配。除此之外,利用IPv6技术,还可以提供给IPTV等视频业务的发展一定的支持与帮助,其重要性不容忽视。
3合理利用5G技术,加快无线网络的建设布局速度
中图分类号:TM45
在数字同步技术中,将数字信号波形向前移,并保持线性群延,这种前移是通过数字移相和相位均衡技术实现的。进行小范围的相位调整时,要依靠二次插值技术。在数字通信方面,提出了“分布式采样值控制块”的思想,来弥补电子式互感器标准互操作性比较弱的不足之处,并定制了分布式采样值控制块之间的通信协议。
1 电子式互感器
1.1 电子式互感器的概念。在电子式互感器的结构设计中,要通过采集器来实现模拟电信号的高精度采集任务,并将电信号下传。电子式互感器的两大核心是传感原理新型化和外部接口数字化。光学无源电子式互感器以光学器件作为传输介质来实现信号的采集和传输;它具有优良的信号传变性能。另一种非光学有源电子式互感器,也称罗氏有源电子式互感器,在它的整体结构中,高压侧的电子回路负责采集高精度的电信号,运用罗氏线圈等其他数据采集电路和传感器,将采集到的信号传输到低压地电位。这种传感技术相对来讲比较成熟,但是供电环境比较复杂。
电子式互感器的基本结构,见图1。
图1 电子式互感器的基本结构
1.2 电子式互感器的输出信号。电子式互感器的输出信号包括数字信号输出和模拟信号输出。其中数字信号输出中的电流测量值为2D41H,电流保护数值确定在01CFH,电压保持在2D41H;模拟信号输出电流互感器为150mV、225mV、4V。
1.3 电子式互感器的特点。电子式互感器满足了电力系统智能化和数字化的发展要求,测量精度非常高,且它的精度不受载荷变化的影响;有很好的绝缘性,因此,安全性比较高;不存在电流互感器开路或是电压互感器短路的风险,电子式互感器动态范围比较大;它不含铁芯,避免了铁磁谐振现象的发生;轻便、易携,有良好的暂态特性。
1.4 电子式互感器的配置原则。110KV及以上电压条件下,要综合考虑经济性和技术先进性,一般选用电子式互感器时,要全面把握其技术性和成本投入,可以选用电子式互感器或常规互感器;若电压在66KV及以下,用户外敞开配电装置保护测控集中布置的情况下,可以采用电子式传感器或者常规传感器,若果保护测控下放布置,选用常规传感器不较好。
2 数字通信技术和同步技术在电子式互感器中的应用
2.1 IED服务器模型。在电子式互感器的数字通信技术中,通过IEC61850-9-2LE标准配置思想搭建了IED服务器,在该服务器模型中,采集到的信号被绑定在两个采样值控制块上,即MSVCB01和MSVCB02,前者负责8路电流和电压的打包发送任务,后者将4路保护电流数据打包,并发送。两个采样值控制块还需要分析相关的信息状态。
2.2 分布式采样值控制块的可行性。IEC61850-9-2LE标准配置的采样值控制块包括采样值报文传输和采样值控制块读写,前者传输的报文直接到达以太网,要求具有很强的实时性;采样值控制块读写通过特定的通信服务映射,主要负责远程控制和在线监测,对实时性要求不是很高,但是具有很大的难度和复杂性。采样值报文传输和采样值控制块读写这两项服务的性质完全不同,就现阶段的单核心系统而言,要想实现两者同时进行是比较困难的。在实际通信中,MU服务器和客户端之间的联系通过MMS来实现连接。
2.3 分布式采样值控制块之间的通信协议的定制。分布式采样值控制块之间的通信协议包括FPGA和ARM通信协议,客户端要实现对SMV包发送的控制,就需要通过改变ARM中的对象的属性,通过建立通信联系,可以达到控制SMV包发送的目的。
ARM系统通过S-requests向FPGA系统发出请求,FPGA系统接受请求信息,然后经过调整和修改,把S-requests原语反馈给ARM系统。其中,ARM系统同时扮演着客户端和服务器的双重角色是分布式采样值控制块的核心部分。伴随着数字通信技术和数字同步技术的发展,电子式互感器中的各项信息数据的传输过程会得到进一步的完善,客户端与服务端之间的沟通和反馈质量也会不断得以提升。
3 结语
数字通信技术和数字同步技术在电子式互感器中的应用,使电子互感器的优势凸现出来,改良了常规互感器在绝缘、精度、谐振、饱和等方面的问题,也满足了电力系统智能化和数字化的发展要求。电子式互感器测量精度非常高,有很好的绝缘性,安全性比较高;不存在电流互感器开路或是电压互感器短路的风险,电子式互感器动态范围比较大;它不含铁芯,避免了铁磁谐振现象的发生;轻便、易携,有良好的暂态特性。在配置电子式互感器时,要综合考虑其技术的科学性、先进性以及经济性。对电子式互感器的研究要进一步深入,不断提高其稳定性和可靠性,将罗氏线圈型电子互感器的高压侧改装到低压侧,这是需要重点完善的技术,这样可以有效减短停电的检修时间。要进一步推广电子式互感器与断路器、变电器的集成组合应用,更好地实现客户端与服务端的连接。伴随着数字通信技术和数字同步技术的不断成熟和发展,电子式互感器厂家的产品质量也会逐步得到提升。
参考文献:
[1]罗彦,段雄英,邹积岩等.电子式互感器中数字同步和数字通信技术[J].电力系统自动化,2012,36(9):77-81,91.
[2]王化冰,翟子楠.组合式电子互感器的研究与设计[J].仪表技术与传感器,2007,(5):47-49.
[3]赵应兵,周水斌,马朝阳等.基于IEC61850-9-2的电子式互感器合并单元的研制[J].电力系统保护与控制,2010,38(6).
[4]吴崇昊,陆于平,侯.基于时域连续有限冲激响应滤波器的电子互感器采样数据站间同步算法[J].中国电机工程学报,2006,26(12):50-54.
2.GMDSS复审与现代化进展
随着近些年来通信和信息网络技术的迅猛发展,国际海事组织(IMO)和国际电信联盟(ITU)积极推进水上遇险及安全通信领域新技术、政策和频谱需求研究,以满足航运界的日益增长的通信信息服务需求。
2. 1IMO相关工作进展
2008年IMO的无线电通信与搜救(COMSAR)分委会第12次会议首次提出审议GMDSS需求,2009年IMO的海安会(MSC)第86次会议批准了COMSAR第13次会议关于“开展对 GMDSS要素和程序复审问题范围研究”的提案,并于次年的COMSAR第14次会议上成立特别工作组。按照该工作组计划,已于2012年2月COMSAR第16次会议确定GMDSS复审和现代化研究范围和任务;海安会第90次会议正式批准并启动GMDSS复审和现代化项目。
该项目分为高级复审和详细复审两个阶段,其中2012至2014年开展高级复审,高级复审包括:(1)对GMDSS已有九项功能进行复审;(2)对正在使用无线电通信优先等级顺序进行复审;(3)对海区划分及设备配备需求进行复审;(4)对船舶类别差异性要求的审查;(5)对遇险通信和其他类型的通信分离审查等5个方面内容。目前GMDSS高级复审已基本完成,高级复审报告在2015年导航、通信与搜救(NCSR)分委会第1次会议上已获得通过。
在高级复审基础上,2015至2017年计划进行详细复审,详细复审包括:(1)GMDSS功能要求变化而带来的要求及解决建议;(2)GMDSS遇险报警传输途径与岸-岸通信;(3)用甚高频(VHF)+卫星替代中频(MF)/高频(HF)和数字选择性呼叫(DSC)设备;(4)窄带印制电报(NBDP)在GMDSS中的作用;(5)中高频误报警跟踪调查机制;(6)结合IMO对e航海研究,以及ITU对无线电频谱的研究,考虑未来水上甚高频数据交换系统(VDES)的引入等15个方面内容。
2.2 ITU相关工作进展
由于国际水上无线电通信技术主要由ITU无线电通信组(ITU-R)主导,NCSR分委会就GMDSS复审和现代化工作与ITU-R保持了密切联系。ITU在2012年世界无线电通信大会上通过了与GMDSS复审与现代化工作密切相关的两项重要议题
(1)359号决议审议频谱划分规则以支持IMO的GMDSS现代化和e航海战略;
(2)360号决议审议有助于引入可能的新的通信技术应用和新应用方面的规则条款并考虑调整相应的频谱划分,以改善水上无线电通信质量。该决议建议在ITU-R研究结果基础上修订了国际《无线电规则》以引入更多水上无线电通信应用。
3.GMDSS现代化背景下水上数字无线电通信技术
通过对IMO和ITU最新会议文件研究,笔者认为为满足船舶从泊位到泊位间航行的通信信息服务需求,GMDSS复审及现代化必然将推动传统水上无线电通信向着数字化,高带宽,全覆盖等方向不断发展,进而形成新一代的水上无线电数字通信网。下面对ITU-R推荐的GMDSS现代化部分关键通信技术进行简要探讨。
3.1水上中频安全信息数字广播系统(NAVDAT)
根据ITU-R M.2010技术建议方案,中频水上安全信息数字广播系统(NAVDAT)是ITU-R推荐的基于中频500kHz建立岸到船的(NAVDAT)数字通信技术方案。
NAVDAT采用10kHz带宽发射,通过正交频分复用数字调制技术,在16-QAM调制模式下,NAVDAT理论数据传输速率可达25kbps。考虑纠错编码率后实际传输速率约为18kbps,是现有航行警告电传系统(NAVTEX)5 0 b p s的3 6 0倍,可有效解决当前NAVTEX系统因速率低导致的业务过载和及时性等不足。NAVDAT可播发包括文本、图像、音频、数据集等多种数据格式。实现对航行警告、气象警告、搜救信息、海盗警告、遇险等优先信息,气象预报、波浪潮流信息、VTS交通信息、引航信息、航标信息、AIS报告等航行信息及电子海图更新、港口信息和交通状态图等来自安全和可控的信息源的所有相关信息的广泛播发,有效播发范围约300海里,可实现对A1,A2海区覆盖。
技术上,由于集成了船舶位置和水上移动识别码(MMSI),NAVDAT支持一般性广播、区域性广播和选择性广播等多种播发方式,并在需要时可实现对授权用户的加密广播。此外,NAVDAT采用与NAVTEX类似的时隙分配方式,可重用现有的NAVTEX系统基础设施,并支持通过数字接口扩展,对GMDSS现代化的新通信应用及信息服务提供了良好的开放性。
东海航海保障中心于2013年起开展NAVDAT试验系统研究工作,并完成了电子海图远程更新传输试验。东海航海保障中心已于2016年1月1日起在上海提供NAVDAT试运行服务;目前系统数据传输速率约18kbps,并基本实现对A1,A2海区覆盖。
3.2水上高频数字化数据交换及电子邮件系统
根据ITU-R M.1798-1技术建议方案,水上高频数字通信采用自适应通信技术,能自动评价各信道通信质量并根据信道通信质量来选择最佳工作信道,经由高频海岸电台可实现与互联网互通。它共推荐了三套技术方案。
(1)使用数字信号处理(DSP)技术和正交频分多路传输的调制解调协议,可有效解决频率选择,频谱使用等问题。该类高频数字通信设备使用32个载波,4相位波形,中心频率1700Hz。因为单一分载波带宽小,能容忍中等衰减;故多载波方法可评估到衰退信道而不需要补偿器,使得多载波的通信能够简单进行,设备缺点主要是是对频偏和振荡器相位噪声较敏感。目前物理层原码基本速率为1684bps。
(2)电子邮件系统(Global Link Network)基于Pactor-Ⅲ协议,使用18个子载波,物理层原码基本速率为3600bps,频道带宽为3kHz双工信道。
(3)宽带高频数字传输系统基于船舶通信互联网协议系统(Internet Protocol for Boat Communications),采用OFDM+xQAM或OFDM+QPSK调制方式,最佳传输速率为22kbps,频道带宽为10-20kHz的双工通道。
高频通信主要以天波方式靠电离层反射传播,可实现数千公里远程通信,故在通信领域得到了广泛应用,是海岸电台远距离通信保障的有效手段。南海航海保障中心2014进行了长达2000公里的高频组网通信测试,完成了与移动电话的数字化语音、文本短信的高频数字通信。
3.3VDES
根据ITU-R M.1842-1技术建议方案,VDES系统集成了自动识别系统(AIS)、特殊应用报文(ASM)和宽带甚高频数据交换(VDE)三项功能,不仅能实现船-船、船-岸间的数据交换,还为未来实现卫星与船舶的远程双向数字通信预留了空间。
该系统的优点是在保障AIS已有功能应用基础上,通过ASM和VDE全面强化船舶通信的数据传输能力。具体来说VDES为不同内容及格式的信息划分了专用频谱:与航行安全密切相关的船舶位置和航行状态信息仍保留在AIS专用信道下,以减轻该信道负担,并保证其不被占用;与导航无关的水文气象等非安全信息由ASM承载,并为其配置两个25kHz信道;而对于其他内容更丰富、格式更灵活的信息则依托100kHz的双频信道由VDE完成传输,大大提高船-船及船-岸的数字通信速度。
对航海者来说,VDES系统对船舶位置报告和安全性相关信息给予最高优先级,开辟专用频段保障信息传输,其次是使用更灵活,航海者可根据需要主动向其他船舶、港口推送或定制信息,最后是依托信道调整使得信息传输速度极大提升,VDES系统的理论传输速率可达到307kbps。
计算机网络技术使用了通信线路和设备,用于连接不同地区的计算机网络,形成计算机网络系统,从而满足人们对语音、图像、数据等信息的共享需求。计算机网络中的组成设备主要有网关、交换器、网桥等,进行数据传递的过程就是计算机网络通信技术,计算机网络通信的基础是网络协议,只要计算机的网络协议相同,就可以实现信息数据的通信和共享。
1数字数据通信技术的概述
1.1数字数据通信技术的优势
数字数据通信技术与传统的模拟数据通信技术相比有着极大的优势:第一,数字数据通信技术中,数据传输的单位是数据帧,在传输时,一旦出现传输错误,就可以及时通过检错编码和重新发送数据帧进行检测,大大提升了通信的可靠性能。第二,数字数据通信可以将视频、声音、图像等非数据信息转换为数字信息,并在计算机网络中进行传输。第三,数字数据通信技术有效加强了信息加密技术,使得信息的隐私性得到保障,避免外界的非法获取,保障了信息的安全性。第四,数字数据通信技术采用了继电器设备,并对信息和数据进行适当的放大和整形,避免了噪音的累积和影响,保证了数据在通信传输过程中遇到长距离传输时的完整性。第五,数字数据通信技术发展的速度不断加快,并利用了集成电路,大大减少了电路设备的数量,降低了设备的成本和体积,使通信设备便携方便。第六,数字数据通信技术中应用了多路光纤技术,使得数据的通信路径更多,传输速度加快,可以在同一时间传输更多的数据,满足了快速发展的生活需求。
1.2数字数据通信中的指标
1.2.1速率
通信技术中的速率指的是每秒能够传送的代码位数,其计算公式是:S=1/T*log2n公式中的T是指脉冲的重复周期(脉冲的宽度),n是指调制的点平数。由此可见,T的重复周期(脉冲的宽度)的倒数就是每一秒的单位脉冲数,如果n=1/T,那么单位脉冲的重复频率就是每一秒的位数。在调制器中,每一个调制转换时间都与一个代码对应。由此可见,调制速率与信息传输速率是相同的。
1.2.2误码率
误码率是衡量数据通信系统信息传输可靠性的关键指标,误码率主要指在数据进行通信传输的过程中,二进制码出错的概率,它的计算公式是:P=Ne/N公式中,Ne指的是传输错误的码数,N指的是传输过程中二进制码的总数。
1.2.3信道容量
信道容量决定了数据的通信速率,是检测信息通信能力的重要因素,在计算机网络中,比特是最常用的一个二进制单位,每秒能够传送的比特数量是信道容量的单位。
2计算机网络通信的现状分析
计算机技术的普及加快了经济的发展,也提高了人们的生活质量,传统的通信技术已无法满足新时代的要求,因此,通信技术也不断更新。近年来,通信技术经历了模拟技术、二代GSM技术、CDMA技术、3G通信时代,目前,通信技术已进入4G通信时代,较以往的通信技术而言,4G通信传输速度更快,完整性更高,安全性更稳定,方便了人们生活和工作的交流与沟通。另外,多媒体技术也在快速发展的通信技术时代背景下得到了提高,数字数据通信技术中可以将图像、音频、影视等数据转变为数字信息,方便了传输和共享,同时,数字数据通信技术还增加了存储容量,可以无限制存储,多媒体技术与计算机网络数字数据通信技术的高度融合,将更好地满足社会和人们的需求。
3数字数据通信技术的编码
3.1基带传输
基带传输是指通过传输线路直接传送包含数字信号的电脉冲,是通信技术中最常见的传输方式,广泛应用在距离较近的局域网信息数据传输中,在传输中,常使用不同的电压电平来替代二进制数字进行表示。
3.2编码方案
数字信号脉冲编码方案多种多样,主要包括:单极性不归零码、双极性不归零码、单极性归零码、双极性归零码4种。其中归零码与不归零码的区别主要是脉冲时间与码数的关系,如果在一个全部时间内是用电流来进行传输的就称为不归零码,如果发出的电流少于一个码数的全部时间就称为归零码。简而言之,归零码发出的是较窄的脉冲,而不归零码发出的是较宽的脉冲。除此之外,单极性码与双极性码的区别则是单极性码可以将直流分量进行累计,而双极性码则不可以累计直流分量,更有利于通信传输。
3.3同步过程
同步过程是指接收端按照发送端的每个码数的重复频率以及起始时间来接收和传输数据的,在计算机网络数字数据通信技术中,主要应用的是位同步法和群同步法。位同步法是指接收端对于传输的每一个数据都和发送端保持一致,并在时间上保持同步,为了实现位同步法,我国目前常用的有外同步法和自同步法2种。外同步法是指接收端的数据信息直接由发送端预先发送过来,并保持同步;自同步法则是指接收端从发送端传输的各种波形中提取数据信息,并保证提取的数据信号不论时间上还是内容上都与发送端保持一致,例如:曼彻斯特编码。群同步法是指在发送端传输信息后,将传输的信息分成若干群,这里的群是一种序列,序列有起始数据,也有终止数据,而所有数据都是有着固定的传输频率的,这样也就保证了发送端和接收端的信息一致。
4数字数据通信传输方式
4.1数字通信方式
一般来说,数字通信传输方式主要包括2种,即并行传输方式和串行传输方式。其中,并行传输方式一般适用于近距离数据通信传输,在发送端和接收端2个设备传输时,数据可以在并行的多条通信线路上达到传输多个数据位的效果。而串行传输方式则多用于远距离数据通信,在进行传输时,数据是一位一位地在通信线路上进行传输,并主要有3种传输方向,即单工结构、半双工结构、全双工结构。其中的单工结构只支持1个方向上的数据通信传输,而半双工结构就可以支持数据在2个方向上进行数据通信,而遇到特殊情况时,会在1个方向上进行数据通信传输,全双工结构指的是只可以在2个方向进行数据通信。
4.2多路复用方式
多路复用方式主要分为频分多路复用和时分多路复用2种传输方式。频分多路复用方式是指将信道的总容量分解成为多个子信道,而且每一个子信道的带宽完全相同,每一个子信道都可以单独负责传输信号,使得信号可以同时传输,加快传输速度。时分多路复用方式是指按照时间的先后顺序,将每一个信道分解成多个时间段,在同时传输多个信号时,每一个传输的数据信号就会占用一个时间段,从而达到实现多个数据同时传输的目的。
4.3同步传输和异步传输方式
在数字数据通信的过程中,为了保障发送端和接收端的数据信息完整性和同步性,各个码数也必须保持同步,数据模块和各个字符在传输的起始时间和终止时间也需要相同,目前,我们多采用同步传输和异步传输2种方式来达到这个目的。其中的同步传输是指在数据进行传输时,加入一些同步字符,从时间进行判断,只有保证了数据的传输起始时间和终止时间相同,就可以判断数据传输的同步性。而异步传输则常用于低速的传输设备,在数据中只能1位1位地加入起始字符和终止字符,导致传输效率低,结构也相对简单。
5结语
随着计算机网络技术的应用和普及,数字数据通信技术越来越完善,满足了社会的发展要求,也方便了人们的生活和工作,在我国军事、工业、航空航天技术、卫星通信技术等领域也得到了广泛应用。本文首先对数字数据通信技术进行简述,并分析发展现状,对计算机网络数字数据通信技术的传输进行阐述,以期对我国计算机通信技术提供参考。
[参考文献]
[1]刘忠.探讨计算机通信与网络发展的应用技术[J].电子技术与软件工程,2014(16):44.
[2]宋舒豪.探讨计算机通信与网络发展的应用技术[J].信息通信,2014(3):172.
[3]赵洪涛.浅议计算机通信与网络发展的应用技术[J].交通科技与经济,2004(2):37-38.
[4]张雪艳,刘春霞.计算机通信与网络发展的应用技术[J].煤炭技术,2012(10):174-175.
中图分类号:TP393 文献标识码:A 文章编号:1674-3520(2014)-12-00-01
微波属于通信的一种传输方式,对于数字微波通信技术来说,便是以微波为途径,然后完成对数字信息的传输。同时,通过对电波空间的利用,可以对各类不具关联性的信息实现传送。发展至今,数字微波通信技术成为了一项应用广泛的技术。该技术具备多方面的作用,比如完成电话信号、数据信号及图像信号的传输等。鉴于此,本课题对“数字微波通信技术的发展及应用”进行分析与探究具有较为深远的意义。
一、数字微波通信技术的发展
微波通信技术问世已半个多世纪,它是在微波频段通过地面视距进行信息传播的一种无线通信手段。最初的微波通信系统都是模拟制式的,它与当时的同轴电缆载波传输系统同为通信网长途传输干线的重要传输手段,随着技术的不断发展,除了在传统的传输领域外,数字微波技术在固定宽带接入领域也越来越引起人们的重视。工作在28GHz频段的LMDS已在发达国家大量应用,预示数字微波技术仍将拥有良好的市场前景。
二、数字微波通信技术的特点分析
数字微波通信技术具备多方面的特点,具体表现如下:
1、抗干扰。数字微波通信技术具备强烈的抗干扰能力,不会有线路噪声累积。数字信号所具备的再生功能,可以使数字微波当中继通信的线路噪声避免逐站累积。如果由于干扰让数字信号发生误码,则在以后传输中要想使误码问题得到有效解决,则非常困难。因此,误码便会呈现逐站积累的趋势。2、保密性。数字信号极易进行加密,数字微波通信设备有扰码电路的应用,同时可以结合具体情况完成加密电路的设置。并且,基于数字微波通信当中,所应用的天线具备非常强烈的方向性。因此在与数字微波射线方向发生偏离的情况下,是无法获取微波信号的。3、节能降耗。由于数字微波通信设备不会占用很多空间,因此具备节能降耗的特点。4、易构建数字通信网。基于数字微波通信技术系统当中,能够进行数字信息的传递;并且,还能够通过对计算机的应用,对不同种类的信息进行控制及传递。
三、数字微波通信技术的发展分析
(一)数字微波通信技术的发展现状
初始阶段,微波通信系统均为模拟制式,与同轴电缆载波传输系统具有相似性,均为通信网长途传输干线的主要传输模式。大致上分析,在我国,城市之间电视节目的传输便是借助微波传输的。到了20世纪80年代末,在传输系统过程中,同步数字系列的应用越来越广泛,同时数字微波通信系统的容量也越来越大。随着科学技术的突飞猛进,在固定宽带接入领域当中,数字微波通信技术得到了广泛的应用。由此表明,数字微波通信技术具备优良的发展前景。
(二)数字微波通信技术的发展方向
由于数字微波通信技术本身具备的不同特点,其发展方向也呈现了多样化的特点,具体表现如下:
1、实现QAM调制级数的提高。对于目前的数字微波通信技术来说,要想使其频谱利用率得到有效提高,一般需要利用多电平QAM,即为正交幅度调制。现状下,主要使用的为512QAM,未来可能会使用1024QAM或2048QAM。以此作为基础,在信道滤波器的设计方面也有了更高的要求,要求其余弦滚降系数可以维持在一定的程度。2、网格编码调制技术与维特比检测技术的应用。要想使系统误码率实现有效降低,便需要使用具有复杂特点的纠错编码技术。但是,利用该技术会降低频带的利用效率。因此,网格编码调制技术便在其中起到了实质性的处理作用。在使用网格编码调制技术的基础上,还需要使用维特比算法完成解码。就目前而言,在高速数字信号传输过程中,使用该类解码算法具有一定的难度。3、自适应时域均衡技术的应用。要想使码间干扰率得到有效降低,便需要使用自适应时域均衡技术,该技术具备高性能及全数字化等多方面的优势。同时,使用该技术还能够使正交干扰与多径衰落等问题在一定程度上实现有效避免。4、多载波并联传输技术的应用。要想使发信码元的速率实现有效降低,同时使传播色散造成的影响实现有效避免,应用多载波并联传输技术便有着实质性的作用。同时,该技术还可以使瞬断率实现有效降低,一般降低至改变前的1/10。另外,随着数字微波通信技术的发展,发信功放非线性预校正等也能够得到极为广泛的应用。
四、数字微波通信技术的应用探究
数字微波通信具备多方面的特征,包括组网便利、建设周期短及耗费成本较低等。现状下,数字微波通信技术应用广泛,并且具备多方面的作用,具体表现如下:
1、可当作干线光纤传输的备份及补充。一般情况下,当干线光纤传输系统遭遇自然灾害时,点对点的SDH微波及PDH微波可以完成及时有效的修复。2、能够为用户提供基本的业务信息。在农村、海岛一些偏远地区中,数字微波通信技术能够得到有效应用,进一步为用户提供基本的业务信息。3、可在城市内的短距离支线连接中应用。包括了通信节点间的连接、基站控制器和基站间的联通等。4、能够实现宽带无线接入。宽带无线接入技术作为一种优良的通信技术,具备快捷且方便的特点,在高速数据业务竞争中,该技术也具备一定的应用价值。比如LMDS技术,即为本地多点分配业务技术,该技术具备快速启动的优势,只需耗费较低的建设费用,便能够在很短的时间内使组网实现有效完成。
五、结语
通过本课题的探究,认识到在数字微波通信技术突飞猛进的发展势态之下,不但能够应用在传统的传输领域当中,而且还能够应用在固定宽带接入领域中,并起到极为有效的应用效果,比如能够当作干线光纤传输的备份及补充、能够实现宽带无线接入等。相信充分利用数字微波通信技术,将能够为人们带来极大的便利,进一步为数字微波通信技术的完善推波助澜。
参考文献:
[1]郑联.数字微波通信技术在电视直播中的使用地位分析[J].中国高新技术企业,2013,04:60-62.
对于同步数字体系可以缩写为SDH,该网络通信体系具有实时通信的基本特征,能够精准传输数字微波信号,有效杜绝了数字微波通信中的延迟传输信息情况。在目前的数字微波通信体系全面建成实践中,SDH的技术手段属于数字通信网络的核心传输技术,上述的数字微波通信体系包含传输系统分路站、系统中继站与通信网络枢纽,因而具有完整性与体系化的显著特征。
一、SDH数字微波通信技术的基本内涵
SDH的数字微波通信技术旨在运用数字通信系统来传输微波,然后运用系统解码等处理措施来分析电磁波的传输数据内容,进而实现数字化的通信网络传输信息目标[1]。作为电磁波的主要构成部分来讲,数字微波体现为传输频率较高以及系统波长较短的特征,而数字通信系统本身具备较大系统容量、较强的直线传播特征以及微波穿透特征。在此前提下,数字微波系统已经被推广于现阶段的网络数字通信技术领域。从技术本质的角度来讲,对于同步数字体系(SDH)可以表述为同步传输性的光网络,该传输网络在转换原始的数字传输信号时,主要选择同步复用与同步传送的做法予以实现。在块状的系统帧结构作用下,对于完整的SDH系统主要划分为净负荷区域、段开销区域、管理单元区域等。在目前的同步数字系统构成中,单元指针区具有管理整个网络传输系统的作用,并且设计为兆比特的系统传输速率计算单位。在传输数字信息速率最快的情况下,同步数字体系一般来讲能够确保达到每秒钟9950 兆比特的信号传输速率[2]。图1 为SDH的数字微波通信系统。
二、SDH数字微波通信系统的构成要素
2.1 系统中继站
数字微波通信的完整网络系统必须包含信息传输的中继站、信息换算与处理的枢纽站,以及系统分路站等。在上述的SDH系统模块中,系统中继站设有转发、中转与接收通信数据的功能,因此可以做到实时传输各种不同类型的网络通信数据。在微波帧的辅助下,系统中继站可以通过连接各个终端模块的方法来完成转换信号与数据的全过程,并且具有传输功率放大、旁路运输业务提取、信号频率调制以及混频发送的重要功能。
2.2 系统枢纽站
系统枢纽站主要连接于接收端与发送端的两个关键系统模块,因此具有信息传输枢纽的关键模块地位[3]。通常情况下,通信系统中的枢纽站具有微波传输的基本功能,通过连接各个系统站点的方法来完成传递波形信号的目标。在系统枢纽站的范围内,不同站点的通信数据都能够被全面汇总,进而对于实时性的系统干线与系统支线信息传输展开全面的监控。此外,系统传输的枢纽站还能连接数字信号的接收端以及发送端,对于上述两个系统运行端口进行必要的倒换处理,在转发数字信息以及双向接收数字信号的过程中实现传输信号的协调分配。由此可见,系统枢纽站以及系统中继站二者具有紧密配合的联系,对于实时性的微波数据完成相应的传输操作[4]。
2.3 系统分路站
系统分路站被穿插于两个不同的系统数据传输模块间,其中包含支干线与主干线的数据通信连接网络。在分路站的作用下,公共联络站点可以得到合理的筛选与分配,进而对于完整的网络传输数据与信号展开全面的汇总处理。从数字微波通信的目前运行状况角度来讲,系统分路站可以通过分集各个空间区域数据与信息的方法来传输实时性的数字微波信号,并且还能达到消除码间干扰的系统传输处理效果。
三、SDH数字微波通信的技术运用要点
近些年以来,数字微波通信领域的SDH网络通信手段已经获得推广,技术人员将其运用于主干性的数字微波通信网络中。数字微波通信的网络传输系统在SDH信息处理技术手段的支撑下,可以确保完成实时性的数字微波信息交互,体现为较高的系统信息安全传输级别[5]。例如对于光纤链路在进行信息汇总与处理时,如果选择SDH的手段来进行信号筛选与处理,那么将会实现数字微波通信的良好信息处理效果,有效防止出现通信主干网络或者光纤数据链路中断运行的风险。具体来讲,现阶段的SDH微波通信数字化技术应当包含如下的技术实现要点:
3.1XPIC的交叉极化技术
对于XPIC的系统处理手段可以称为交叉极化的抵消干扰信号技术,该技术手段旨在确保经过交叉极化运行处理后的干扰信号被全面消除,进而达到抵消数字传输运行干扰的目标。在目前的现状下,技术人员对于多状态的系统运行调制处理技术以及双极化的系统频率复用技术手段能够将其运用于SDH系统,充分满足了较高的频谱资源利用效率标准,有效扩大了传输数字微波的系统总体容量。由此可见,交叉极化的数字微波通信处理手段可以保证达到较好的系统信号处理以及信号传输效果。例如对于多经衰落的常见数字信号传输衰减现象而言,运用上述的XPIC处理技术将会达到明显消除多径衰减现象的效果,提高了极化鉴别率。这是由于,正交信号能够被交叉极化处理后的正价传输数据抵消,进而达到明显缩减系统运行干扰数据强度的目标。在此过程中,技术人员首先应当取出特定频率的传输干扰数据信号,然后对其实施必要的数据合并操作,对于极化的系统传输数据予以全面的抵消。
3.2 系统编码调制的技术
在数据网络系统的不同传输频带影响下,运用编码调制处理手段得到的系统信号与数据处理结论也会表现为明显的差异性。从当前的现状来看,技术人员对于SDH专用的网络传输信道应当将其设计为特定的传输波道距离,对此可以称为传输波道的间隔。例如对于每秒钟传输160 兆比特的SDH网络系统来讲,应当将其设计为256 或者128QAM的系统调制参数。随着网络传输兆比特数据的改变,相应的系统调制运行参数也会表现为显著变化的趋向。
3.3 网管技术与分集技术
系统网管技术也就是系统运行中的自动监控技术,重点针对于各个传输数据的链路。在产生传输数据故障的情形下,运用网管技术手段可以确保完整提取故障产生的原因数据、声光报警数据以及故障所在区域位置的数据,便于技术人员针对现有的数据传输故障给予适当处理。除此以外,分集处理的技术手段旨在实现传输信号质量提升的目标,尤其适用于广泛收集各类系统空间运行信息、角度处理信息以及路由信息数据的过程中。3.4 时域与频域的自适应均衡处理技术系统时域与系统频域数据在自适应技术手段的辅助下,将会达到较好的均衡运行效果,对于上述技术可以称为时域与频域的自适应均衡处理技术手段。然而在很多的情况下,系统数据的传输处理环节将会遇到码间干扰,因此技术人员必须致力于消除潜在的码间干扰风险,进而达到降低选择性传输数据衰减的目标。在对抗多经衰落现象的过程中,技术人员对于现有的系统运行信号调制与处理方式有必要进行更改,充分运用自适应均衡的数据传输处理手段予以实现。下表1 为SDH数字微波通信系统的基本运行参数。
四、结束语:
经过分析可见,数字微波通信的SDH技术目前可以被划分为交叉极化技术、编码调制的技术、网管与分集处理技术、时域频域的自适应处理技术等。与原有的通信网络运行模式相比,建立在SDH前提下的数字微波通信系统可以确保更好的数字信息传输效率,在节约数字微波网络通信运行时间成本的同时,充分保证了数字微波通信的信息延时达到最低程度,合理设置系统波道间隔。
参考文献
[1]张磊,刘庆华,张长聪.基于SDH的机动雷达情报传输系统研究[J].电子技术与软件工程,2019(18):113-114.
[2]汪海,王羽中,汪源.分析数字微波视频监控通信系统的设计与运用[J].电子测试,2018(20):54-55.
关键词: 数字通信系统;数字信号;应用
Key words: digital communication system;digital signal;application
中图分类号:TN919文献标识码:A文章编号:1006-4311(2012)09-0145-01
1数字通信与模拟通讯的介绍及比较
1.1 数字通信数字通信是指用数字信号作为载体来传输信息,或者用数字信号对载波进行数字调制后在传输的通信方式。通俗说来,即是利用数字信号来传递消息。“0”和“1”是数字通信中运用的两种符号,数字通信系统按着一定的规律,在编码器中先将消息信号进行采样,对样本进行0,1编码的数字化处理,使其形成呈一定排列形状的组合代码,再进入通信线路将此代码送到对方。对方收到电码后,由解码器还原为原来的电话信号,由此实现通信传递的目的。数字通信的主要技术设备包括发射器、接收器以及传输介质,具体传递流程则为信源-调制器-编码器-加密器-信道-解密器-解码器-解调器-信宿 。
数字通信的信息源和接受者可以是人,也可以是机器,因此数字通信可以实现人与人之问、人与机器之间、机器与机器之间的通信。此外数字通信具有抗干扰能力强、易于调制、可加密,还可与计算机连接的特点。
1.2 模拟通信模拟通信是一种以模拟信号传输信息的通信方式,将声音、光等非电的信号输入到变换器,使其输出连续的电信号,电信源码的不同,其振动频率或振幅会随之变化。人们则利用波形图相位的变化来还原信号信息。模拟通信系统主要由用户设备、终端设备和传输设备等部分组成。模拟通信系统可用来传递话音、电报、传真等低速数据。
1.3 数字通信与模拟通信的比较模拟通信技术成熟,其信号形成简单、直观,系统设备简单,占用频带也较窄。模拟信号是通过直接调制的形式形成的,其信号传播过程中易发生畸形,一旦受到干扰,随系统的冲击是不可修复的。因此,模拟信号通信质量、抗干扰能力较差。电话、无线通讯中运用的则是模拟信号。
1.4 数字通信的优点数字通信与模拟通信相比具有明显的优点。它抗干扰能力强,通信质量不受距离的影响,信号易于调制、保密性高,能自动发现和控制差错,可与计算机相连,能支持多种通信业务,具体介绍如下:
其一,数字通信比模拟通信抗干扰能力强。一方面,数字信号传播的形式简单,只有“0”、“1”两种区别鲜明的形式,即是传播过程中经由信号放大器,信号在到达终端接收器时,仍然可重新再生复原。另一方面,数字信号是以离散性的形式进行传播,虽然也不可避免的会受到系统外部以及系统内部的噪声干扰,但是只要噪声绝对值在一定的范围内就可以消除噪声干扰,不会出现信号噪声叠加在一起,并随着信号被传输、被放大,进而将影响通信质量的现象。
其二,远距离传输仍能保证通信质量。数字信号远距离传播时,采取的形式为再生中继,此方式能够消除长距离传输噪音对数字信号的影响,而且再生的数字信号和原来的数字信号一样,可以继续进行传输,通信质量便不受距离的影响。
其三,数字信号易于调制。虽然数字信号较模拟信号更加方便快捷,但是在实际生活中,模拟电路占有的通信比例仍然不小。那么,数字信号能否利用已经建立起来的四通八达的模拟电路进行传输呢?答案是肯定的,只需在数字终端设备和模拟电路之间加装以调制、解调为主体的接口设备,便可实现。由于数字信号只存在“0”和“1”两种状态,其信号调制则相当简单,具有波形变换速度快、调整测试方便、体积小、设备可靠性高等特点。一般而言,数字调幅、数字调频、数字调相十数字调制最常用的三种方式。
其四,数字信号比模拟信号保密性强。由于无线电波是朝着四面八方的方向传播的,只要终端接收器对口,每个人都可以接收到传播内容。数字通信可以将其信号在编码器与密码相捆绑,在进入信道传播,接收方则通过解码器解除密码限制,取得信号传播内容,由此避免了传播信息外漏的现象。数字信号加密只需通过简单的“加”、“减”等逻辑运算,按照一定规律将密码“加”到语音电码中去,将包含着语音信息的电码进行传播。
此外,数字通信对其设备中所用电路的要求较简单,有着轻巧、故障少、耗电低、成本低的集成电路即可满足通信需求。数字信号还便于和电子计算机结合,由计算机来处理信号,使得数字通信系统更加灵活通用,也为各类如电话、电报、图像以及数据传输业务的开展提供了更加便利的条件。
2数字通信系统的应用
编码、调制、解调、解码以及过滤等都是数字通信系统的关键性技术,其中数字信号的调制以及解调更是被广泛各个行业广泛应用。当前,调幅、调相以及调频是最为常见的三种调制方式,数字调制可将信号源转换成符合信道传输数据的格式,通俗说来即是在保证信号传播安全、信息完整的前提下,通过数字调制,将基带信号转变为带通信号。
此外,数字通信息系统还可为全球数字化的实现贡献一份力量。用户可通过网络接口,在一地方、任一时间与现有的综合业务数字网络连接,从中获取互联网、多媒体、通话等服务。我们日常生活中的电脑、手机上网、视频电话、网络会议以及数字电视等都是通过数字通信系统来进行信号传输。
3结束语
数字通信是通信行业发展的必然趋势,也是万千用户的愿望所归。数字通信可以大大改善通信质量、提高通信传播速率、丰富通信内容。数字通信也促进了经济的发展进步,不仅为整个通信连跳带来了无限商机,其更加快捷、有保障的通信方式也为商业增添了新的活力。
参考文献:
【关键词】虚拟仪器;数字通信;LABVIEW RIO
随着科学技术的发展,计算机技术、数字存贮技术、数字交换技术以及数字处理技术等现代技术飞速发展,许多设备、终端接口均是数字信号,便捷有效灵活的数字通信系统往往是大多数电子设备或系统的不可或缺的一部分[1-2]。在数字通信中,传输信号是离散的,相比模拟通信中的连续信号具有良好的抗噪性。并可通过纠错编码技术来控制,以提高传输的可靠性。数字通信系统主要功能是与外设之间实现数据的收发。本文根据某科研项目中,通信系统维护困难、更新速度快、时间要求紧等特点,提出一种基于NI7831 FPGA的DIO与LABVIEW软件设计相结合的方法,替代传统的基于单片机或 FPGA 等自行设计的硬件电路所组成的数字通信系统, 提高了系统传输的可靠性。
1.数字通信系统硬件设计
数字通信系统主要由通信终端、8位数字通信系统、工控机及PXI总线构成。根据8位数字通信系统实验功能,欲实现8路并行数据的收发。因此,实验中需要选取另一个通信终端。两块板卡间并行收发数据,最终通过PXI总线与工控机NI1042实现通信。硬件示意图如图1所示。实验平台搭建如图2所示。
图1 8位数字通信系统硬件示意图
图2 8位数字通信平台硬件连接图
NI板卡的选择:
NI Compact RIO是可重新配置的嵌入式控制系统,包括一系列NI推出的RIO FPGA板卡(主要包括NI783X、NI781X、NI785X系列FPGA板卡)和RIO计算机等产品。
NI Compact RIO系统硬件架构中包含:I/O模块、可重新配置现场可编程门阵列(FPGA)机箱、嵌入式控制器。本测试系统采用的是NI7831FPGA采集卡,具有不低于32条数可重构DIO(数字信号输入/输出)字线,可配置为速率不低于40MHz的输入、输出、计时器或自定义逻辑[3]。
本文8位数字通信系统主要依托NI7831的DIO实现。在实验中,以HH-S2 FPGA板卡做另一通信终端,以验证数字通信系统数据。选定NI7831 FPGA 的Connector0/DIO0~DIO7 为8位数据发送端口,DIO8为发送写时钟发送端口,DIO9~DIO16为8位数据接收端口,DIO17为接收读时钟端口。选定另一通信终端HH-S2FPGA板卡的DIO0~DIO7 为数据接收端口,DIO8 为读取数据写时钟端口,DIO9~DIO16为数据发送端口,DIO17为发送写时钟端口。内部通信如图3所示。
图3 8位数字通信系统内部通信示意图
2.8位数字通信系统软件设计
本系统的核心部分是软件部分,针对选定板卡,软件开发平台选用NI公司针对NI Compact RIO推出的LabVIEW RIO[4-5]。其继承了LabVIEW图形化编程的特点。其软件本身基于FPGA的原理构架,包含对IO的配置、时钟管理、计数器设置、存储块设置、常用FIFO设置等功能[6]。根据8位数字通信系统功能,分别设计数据输入与数据输出两个工作流程。如图4所示为8位数据输出工作流程。第一步系统初始化,各个DO复位。第二步设置欲发送的8位数据和发送时钟脉宽。第三步判断如果发送通道使能则发送数据。第四步,判断是否发送完毕,如果发送完毕进入第五步判断是否终止输出,如果终止则退出。
图4 8位数字通信发送数据工作流程
如图5所示为数据接收工作流程。首先系统初始化,各个DI复位。第二步判断写信号时钟。第三步判断写时钟有效则写入数据。第四步,判断是否终止程序,如果终止则退出。
依据8位数字通信数据输出/接收工作流程图,8位数字通信系统发送数据FPGA程序如图6所示。如图7为8位数据通信系统实验数据接收FPGA程序。图8为8位数据通信系统实验上位机界面程序图。
图5 数据接收工作流程图
图6 8位数字通信系统发送数据FPGA程序
图7 8位数据通信系统实验数据接收FPGA程序
图8 8位数字通信系统上位机界面程序
3.数字通信系统实验数据分析
检测8为数字通信系统时,选用NI7854做另一通信终端。
表1 8位数字信号系统测试数据
发送数据
发送数据 循环发送次数 发送频率Hz 误码率
0~255 100万 100K 0
0~255 100万 200K 0
0~255 100万 500K 0
0~255 100万 1M 0
接收数据
发送数据 循环接收次数 接收频率Hz 误码率
0~255 100万 100K 0
0~255 100万 200K 0
0~255 100万 500K 0
0~255 100万 1M 0
当数字通信系统作为发送端时,发送n位数据时采用循环发送方式,每次循环发送数据从0开始发送,依次加1,直至发送至。当数字通信系统作为接收端时,数字通信系统做数据接收端,NI7854板卡做发送数据端,以同样的方式向数字通信系统循环发送数据。测试数据如表1所示。
可以看出8位数字通信系统各路DI口发送接收数据正确稳定,在发送/接收时钟速率增加至1MHz时仍然能够将误码率控制为0,性能可靠。
4.结语
提出并设计实现了一种具有应用价值的8位数字通信系统。实验结果表明,该设计误码率低、稳定性好,确保了硬件与软件设计的可行性。该系统还具有良好的通用性,由于NI Compact RIO的结构性,可以对本系统做一些修改,用来测试其他项目。本设计没有涉及数字信息的加密,有关通信加密技术的研究将在以后开展。
参考文献
[1]赵媛,侯晓.一种基于软件无线电的无交换式数字通信系统[J].电声技术,2002(03).
[2]张朝霞,禹思敏.基于数字信号处理器的语音无线混沌通信――系统设计与硬件实现[J].物理学报,2010(05).
[3](美)RichardG.Lyons著.朱光明,程建远,刘保童等译.数字信号处理[M].机械工业出版社,2006.
[4]蔡国英,张宏群.基于LabVIEW的信号产生与分析系统[J].国外电子测量技术,2007(07).