绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇电力电子技术应用范文,希望它们能为您的写作提供参考和启发。
电力电子技术是职业教育中电气类专业的一门重要课程,研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域――电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。
1、一般工业
工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。
2、交通运输
电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。
3、电力系统
电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。 在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。
4、电子装置用电源
各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。
5、家用电器
照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为"节能灯",它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。
2电力电子技术的实际应用
现阶段,很多的行业与领域都涉及到了电力电子技术的应用。全球范围内的经济模式都逐渐走向信息化发展方向,这就需要对传统的产业模式进行改革,转变为依靠高新技术的经济发展模式,而电力电子技术在经济模式转变过程中是重要的技术保障。电力电子技术在不断的应用的过程中,也在不断的得到完善与发展,很多高性能、多功能的元件被不断的开发并使用到电力变流设备运行中来。高性能元件的发展与使用,很大程度上推动了电力电子技术的进步,同时也推进了半导体器件、集成电路、自动化技术以及信息技术等领域的发展。所以,电力电子技术在实际应用中展示出了越来越多的优势,并逐渐的被广泛推广。
1)电力电子技术在交通设施中的应用。电力电子技术随着自身不断的改革与进步,其应用范围也越来越广,而电力电子技术在交通运输中的应用尤为广泛。例如铁道运输中的电气机车,其分为直流机车与交流机车两种,这两种机车就是分别对整流以及变频装置的实际使用。此外,最新开发的磁悬浮列车,电力电子技术在其中起着重要的作用,很多的设备以及元件都需要借助电力电子技术才可以进行正常运转。例如,在磁悬浮列车的牵引机传动过程中以及辅助电源运行过程中,都需要利用到电力电子技术。目前所研发的绿色节能汽车,就是依靠电力作为汽车运行的动力。而电力在通过电机转化为动力的过程中,也需要电子装置将电力转换处理,才可以达到有效控制驱动的效果。船舶以及飞机等交通工具其电源在使用过程中差异也非常大,也需要采用电力电子技术进行控制与改进。
2)电力电子技术在家电中的应用。越来越多的家用电器开始应用电力电子技术,以更加方便的为人们的生活服务,提高人们生活的质量。例如,日常中经常用到的洗衣机,通过应用电力电子技术就能够实现洗衣过程的自动化控制,减少了人力工作,我们仅仅把衣服放置到洗衣机中,通过给定制定的操作,就可以借助电力电子技术的功能实现我们想要的目的。才出现时间不长的洗碗机,其工作原理与洗衣机相似,都是通过电力电子技术来完成的。空调也逐渐的向变频节能的功能转变,利用电力电子技术的变频功能,可以为我们降低近1/3的电能消耗,不仅节省了日常开销,也在很大程度上节约了资源与能源的消耗。电频荧光照明灯泡同样要比白炽灯泡拥有更好的节能性能,其中也是电力电子技术所应用的效果。
3)电力电子技术在工业节能中的应用。随着我国的社会经济不断发展,工业对于能源以及资源的消耗也在逐渐的增加,特别是对于电力能源的消耗数量尤为高。由于电力能源具有性能稳定、利用率相对较高的特点,工业生产中大多都采用电力作为能源的主要来源,使得电力的消耗随着经济的不断发展而大幅增加。就目前工业发展的大体状况上来说,其用电过程中依然出现较多不科学现象,特别是工业用电效率普遍偏低,使得电力能源大量的浪费。随着我国可持续发展战略的不断深化与改革,电力能源的节约使用已成为一个重大的社会问题,而电力电子技术可以在很大程度上降低对于电力能源的消耗。很多的企业开始逐渐使用电力电子节能设备,使得设备的运行更加优化,极大提升了电力能源的使用效率。
4)电力电子技术在发电站的应用。世界能源的短缺促使了人们加快开发新能源的步伐,我国也逐渐的重视风力发电以及水力发电的工程建设,在这些电力设施建设与运行的过程中,发电机电流频率的转换是非常关键与重要的技术。对于水力发电来说,发电的功率大小跟水压头的大小以及水流量的大小有直接关系,也在很大程度上影响着发电机组的转速改变,为了获得发电机组的最佳运转功率,就要借助电力电子技术来改变电流的频率,以达到改变发电机组转速的目的。
中图分类号: F407.6文献标识码: A
引言
电力电子技术自上个世纪中期诞生以来得到了迅速的发展,在国民经济中已经具有十分重要的地位,目前约75%以上的电能须经电力电子处理以后才能投入使用,面临的环境和能源问题也需要高效的发电、电力变换和控制技术来解决,因此电力电子技术作为一项基础技术越来越重要。
1.电力电子器件的发展
一代器件造就一代电力电子装置与应用,新的装置与应用又促进着电力电子器件的发展,让我们来简要回顾一下常用的几类电力电子器件:
1.1功率二极管
大功率的工业用电由工频(50 Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解、牵引和直流传动等领域。功率二极管是上世纪六十年代开始发展起来的;今天,在现代电力电子装置中仍然扮演着重要的角色,除了大功率工频整流的基本功能之外,功率二极管还日益肩负着高频整流、续流、隔离、箝位、吸收等越来越多的功能。
1.2晶闸管
在大功率和特大功率的工业应用中,晶闸管以其耐压高、电流大、通态压降小、通态功耗低等优势被广泛应用,是这一领域的主力器件,英杰电气在高压大功率晶闸管的应用方面有十几年的应用案例与经验积累。
1.3绝缘栅双极晶体管(IGBT)与功率场效应管(MOSFET)
上世纪八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础,将集成电路的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率MOSFET的问世,导致了中小功率电源向高频化发展,而后绝缘栅双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。
电气紧随时代潮流,一直致力于IGBT和MOSFET的工业应用,依靠该类器件开发出一大批绿色高效的电力电子装置。
2.太阳能发电
太阳能是取之不尽,用之不竭的能源。太阳能作为清洁的可再生能源,越来越受到人们的重视,应用领域也越来越广泛。中国的太阳能资源至少是风能资源的100倍,每年接收的太阳能是总消耗一次能源的600倍,据统计,我国2/3以上国土面积的年日照时间在2200h以上,年辐射总量在502万kJ/m2以上,为太阳能的利用创造了丰富的资源和有利条件。
目前太阳能在利用中,主要采用了三种技术:太阳能光电技术、太阳能光热技术和太阳能光伏发电技术。
太阳能光电技术是指利用太阳能电池将白天的太阳能转化为电能由蓄电池储存上在放电控制器的控制下释放出来,供室内照明和其他需要。目前占主流的太阳电池是硅太阳电池,它又分单晶硅太阳电池、多晶硅太阳电池(总称晶体硅太阳电池)和非晶硅太阳电池。整个光伏系统由太阳能电池、蓄电池、负载和控制器组成。
太阳能热发电技术就是利用光学系统聚集太阳辐射能,用以加热工质,生产高温蒸汽。驱动汽轮机组发电,简称光热发电技术。他与光伏发电相比,具有效率高、结构紧凑、运行成本低等优点。目前技术比较成熟且应用比较广泛的是蔬菜温室大棚、中药材和果脯干燥及太阳能热水器等。
将光能直接转换成电能的过程确切地说应叫光伏效应。不需要借助其它任何机械部件,光线中的能量被半导体器件的电子获得,于是就产生了电能。这种把光能转换成为电能的能量转换器,就是太阳能电池。太阳能电池也同晶体管一样,是由半导体组成的。它的主要材料是硅,也有一些其他合金。光伏发电系统分为独立光伏发电系统和并网光伏发电系统。完全依靠太阳电池供电的光伏系统,系统中太阳电池方阵受光照时发出的电力是唯一的能量来源。首先最简单的独立光伏系统是直联系统,发出的直流电力直接供给负载使用,中间没有储能设备,负载只在有光照时才能工作。这种系统有太阳能水泵、太阳能风帽、太阳能路灯等。并网光伏发电系统:太阳电池方阵发出的直流电力经过逆变器变换成交流电,且与电网并联并向电网输送电力的光伏发电系统。这类光伏系统发展很快,在20世纪末,并网光伏系统的用量就超过了独立光伏系统。并网光伏发电系统可分为两大类:光伏电站和户用并网光伏系统。
在光伏系统中太阳能电池、蓄电池、控制器,都离不开电力电子技术,在太阳能到电能的转换中,电力电子技术发挥着重要的作用。
开发新能源,电力电子器件的应用和先进的控制技术是关键。将最新的电力电子技术、控制技术应用于新能源系统中,提高新能源的效率和电力变换质量、降低新能源成本,使得清洁可再生能源逐步替代传统的化石燃料,以改善人类生存的环境,提高人们的生活水平,具有重大的经济效益和社会价值。
正因为我国在电力电子高端器件上的不足,以及我国要真正建立实现自主创新,我国要真正实现构建自主创新、资源节约型、环境友好型社会主义和谐社会这一目标,迫切需要建立一个自主创新的、强大的、达到世界先进水平的电力电子产业。因此,我国政府相关职能部门已经采取了一系列有力措施,将发展电力电子技术作为在相当长的一段时间里的重点发展的关键技术。在国家政策强有力的推动下,电力电子技术正迎来其发展的大好时机。
3.智能电网
智能电网,就是电网的智能化,它是建立在集成的高速双向通信网络的基础上,通过先进的传感和测量技术、控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、经济、高效、环境友好和使用安全的目标。从更高的层面来讲,现今的电网变得比以往更大、更安全及更高能效,但其智能化程度仍然偏低,故智能电网是当今的重要发展趋势。而智能电网的核心就是智能电表,借助智能电表,电力事业机构能够知道用户在任意时间所使用的电能,便于他们提供差异化的定价,帮助用户优化其总体电能消费和电费支出。如今智能电网技术正蓬勃发展,太阳能和风能发电是智能电网的分布式发电组成部分。
智能电网的主要特征有:(1)智能电网是自愈电网。实时掌控电网运行状态,及时发现、快速诊断和消除故障隐患;在尽量少的人工干预下,快速隔离故障、自我恢复,避免大面积停电的发生。(2)智能电网激励和包括用户。在智能电网中,用户将是电力系统不可分割的一部分。鼓励和促进用户参与电力系统的运行和管理是智能电网的一个重要特征。(3)智能电网能抵御攻击。智能电网将展示被攻击后快速恢复的能力。智能电网要通过加强电力企业与政府之间重大威胁信息的密切沟通,在电网规划中强调安全风险,提高智能电网抵御风险的能力。(4)智能电网提供满足21世纪用户需求的电能质量;(5)智能电网能减少来自输电和配电系统中的电能质量事件;(6)智能电网容许各种不同类型发电和储能系统的接入。
4.结束语
能源是人类生存和社会发展不可或缺的物质基础,电力的利用,使人类从原始走向文明。总之,电力电子技术在全球能源危机以及环境问题上具有独特的特点,发挥着其重要的作用,并且其潜力是非常大的。
参考文献:
1.2为课程群建设、产学研相结合的进一步探索研究奠定基础电力电子技术已逐步发展成为一门由现代控制理论、材料科学、电机工程、微电子技术多学科相互渗透的综合性技术学科。通过课程改革,为电力电子技术精品课程建设、课程群建设奠定良好基础。此外,通过课程改革,探索适用于我校的电类专业卓越工程师特色培养模式,并促进教科研和企业项目合作与承接等工作的深入开展。
2教学改革方案的实施与主要特色
为努力改变该课程原有的难教难学的状况,教学改革方案从以下几个方面实施:
2.1重新编排教学内容,突出课程实用性和趣味性改变传统教学中对四大变流电路孤立、单一的学习模式,引入生活中常见电路以及电子小制作的实例,通过一系列具体电路系统设计过程的演示,将《模拟电路》、《电机与电气》等前期专业课程的知识与《电力电子技术》所学理论知识相联系,展现课程强弱电结合、多学科融合的特点。并且,在保证理论基础扎实前提下,增加日常电路分析和设计实践环节在整个教学过程中所占比重,以实例激发学生自主学习兴趣,以兴趣带动能力培养,在这一过程中培养学生的读图、分析、画图、简单电源电路设计等能力,实现理论与应用相辅相成、有机结合,最终提升学生工程应用方面的综合素质。
2.2采用引导型教学方式,注重教学过程中的互动性和学生分析解决问题能力的培养授课过程中注意开展互动,通过采用提出启发性问题—共同讨论—获得结论—实验验证的方法,在教师“教”与学生“学”的过程中不断发现问题和新的突破点,将学生被动接受知识的过程转化为其不断解决问题的过程,使学生主动学习、开放思维,并在此过程中加深相关理论的理解,训练其分析和解决问题的能力。
2.3充分发挥多媒体教学优势,改变理论教学抽象、刻板的现状电力电子技术重视对电路波形的分析。课程原有的单一的板书或简单PPT课件加板书的传统授课形式课堂信息量较少,不够直观,不能解决学生缺乏学习兴趣,接收效果较差等问题。利用PowerPoint、Flash、视频等多媒体手段,不仅能使波形分析更为直观,还能方便地展示电路在不同条件下的工作状态,以及课程内容在实际生产中的应用。既可使教学内容更加丰富,还使分析过程不再枯燥抽象,分析结果生动醒目,便于学生理解。
2.4以实际系统分析为手段,提高学生知识融会贯通的能力改变对变流技术中各典型电路孤立的讲解,通过带领学生进行典型的电力电子系统分析,结合系统供电、控制等模块电路结构、原理的介绍,体现该门课程电力、电子和控制学科间的交叉性,使学生学会将与课程相关的专业课内容灵活运用于电路分析和设计应用中,提高他们对所学知识的融会贯通能力。
2.5引入专业常用仿真软件,激发学生学习兴趣,培养基本专业技能专业仿真软件在现代工业设计及应用中的作用越来越显著,掌握一至两种仿真软件工具将成为工科学生应具备的基本素质之一。同时,在教学过程中,利用仿真软件对电路工作情况进行仿真,可以使分析过程更为直观,有利于激发学生学习兴趣。目前,电力电子仿真软件主要有Matlab、Pspice、SIMetrix/SIMPLIS和Saber等,其中Pspice和Matlab在开关电源开发应用中具有重要作用,被相关企业广泛运用[4]。在教学改革中,通过在课堂教学和实验环节中引入建模的基本原理与过程,既能使课堂教学和实验更加生动直观与安全,还能引导学生学习软件的应用,使他们具备基础建模能力,有助于满足企业对于学生基本专业技能的要求。
2.6开发一批设计性、综合性研究实验,培养学生的应用、创新能力利用学校电力电子实验室和软件仿真的资源,结合当前热门课题和企业需求,开发一些设计性、综合性较强的实验,或通过课程设计、毕业设计的方式指导带领学生进行研究设计。实验的开发以培养学生应用创新能力为主要目的,既有助于学生巩固所学知识,提高知识综合运用能力,又可为电子设计大赛等专业比赛人才选拔奠定基础。
2.7以课程改革为契机,积极拓展校企合作途径,开发产学研项目,提升教师科研水平在课程改革中,积极寻求校企合作的新途径,深化校企合作的内容,将企业实际项目作为教学的实践、提升环节,依托学校的实验实训中心,以教师为主导,学生进行设计、验证配合,不仅可以极大地激发学生学习和实践的兴趣,同时也有利于教师自身科研水平的提高。
前言
电力电子技术是应用于电力领域的相关技术,它以电力变换为主要研究内容。为了实现更高效,更方便的使用能源,人们不断将其进行变换和控制,并取得了一定的应用成果。
1 应用现状
1.1 输电系统
在电力系统中,有一种技术应用叫做柔流输电技术,他的应用,是将电力电子技术与控制技术进行有效融合,从而使其生成一种较为新型的技术,这样的技术应用,能够有效将二者的特性进行相应发挥。并且,这项技术的应用有效发挥了其电能消耗量小的特点,并不断促进了电能的平稳输出,在一定的程度上促进了电力技术的发展,使得电力应用得以高效运行,而且,在相应电流稳定输出的基础上,它还在相关技术的基础上有所突破和进展,使得资源被充分利用,并有效服务于人们的生产和生活。但是在这样类似的输电系统中,电力电子的应用拘束已经进入了更搞得发展水平,并持续改进其中不足。在电力输出方面,我国近几年的发展更着重集中于高雅的直流方式。
1.2 控制静止励磁
在对静电励磁控制方面,因为除了大型的发电设备以外,他还能被应用于风力发电方面,针对电力电子技术中的变速恒频励磁,它的相关控制在风力发电机中具有重要的作用。并且,在相应的控制技术下,晶闸管整流技术也得以开发,得以广泛应用,它不仅结构性能简单,在成本年开发上的资金投入极少,而且,它的优势还有可靠性低等多方面,这是使得它能够被长久使用的重要支撑,从而能够从经济上得以节省,在一定意义上实现了可持续发展。它已经被人们大力应用于较为大型的发电机组等方面的运行,提高了工作速度,加大了工作效率,使其拥有了较好的发展前景。
1.3 变速恒频励磁
在风力发电的运转过程中,其转子励磁的应用,使得发生的电流跳转频率的选择,可以通过变频电源来运作,从而使其功率的发挥得以最大化,从而避免一些因为风速问题而产生的频率差,以免风力发电的稳定差不能够被有效实现和发挥。在正常运行的情况下,他的应用有着较好的耗电率,在火电厂中,它是用电大户,但是,即使它的效率并不高,却可以应用相关的变频调速的技术来改善他的工作效率,但是从目前的情况来看,这样的生产并不多见,因此,在相关的技术应用上,企业可以在日后的发展中根据自身条件适当向其进行延伸探索。在之前的技术应用中,其主要被应用于水利和风力的相关发电过程中,在水力发电机中,水力的大小是由发电机的功率大小所决定的,并且它对于水流量的多少,也起到了决定性的作用,也就是说,在水力发电的过程当中,发电机的功率对生产电量的大小是相关联的,并且起着决定性的作用。然而在风力发电的运用中,对其电量高低起着至关重要作用的则是风速大小,因此,风力发电的应用会受到相应环境因素的影响,从而使其工作效率极大降低。为此,要想在没有风的天气也能促进发电机的运作效率,就需要加入变速运行的相关技术,将励磁电流进行调整频率,促进输出功率的增大,使其运转速度得以增加,不断提高工作效率。
1.4 配电环节的应用
电力电子在配电系统中的应用已经具有一定的实践,在这个过程中,他的具体应用并不能尽如人意,针对相应的损耗电力方面的问题,首先,要想他的应用被有效实施,应该在电压控制方面给予足够的支持基础,其次,要在满足了电压控制的情况下,对各方面因素有可能影响其运作质量的原因进行有效评估,以备能够尽量掌握和控制突发问题的影响,并保证一定程度的资源损失。然而,这个问题的有效解决,是用户电力技术在DFACTS设备中的研发所产生的,这种设备的产生,能够加强供电方面的可靠性,并且还能有效提高它的效率和质量。
2 未来发展方向
电力系统在未来的发展中,必将融入更多的新兴技术,在人们的日常生产和生活中起到积极的作用,给予电力电子技术的发展前景,其在日后的发展中,定将走向更高的领域。但是,其发展过程中,必须要能够持续发展技术支持。在过去的几十年里,在传统的电力行业的发展过程中,电力电子技术渐渐地在新兴产业中崭露头角,并持续发展进步,在传统的设备运用中有很多旧的不合理的应用技术,也都逐渐被电力电子技术所取代。并且随着新能源开发的d起,电子产品消费量的逐渐增加,使得电力电子技术越来越多的受到大众的好评与喜爱,从而得到了广泛的应用。而电力电子技术的基础原理更需要被电力行业所吸收,并且其成功的应用于此,比如在二十世纪八十年代左右,相对于较大的功率电子相关技术就已经开始得到了应用实践。但是为了使其更好的服务于大众,它的脚步会不断前进发展,得到良好的应用。
3 结束语
电力电子技术的应用和发展,为人们的生活和生产带来了极大的方便,它使电力系统在运行方面更加的安全、高效、优质,使得其在电力系统中得以被广泛应用,从而为电力系统在百年发展的历史上具有了一个革命性的变革,也必将推动电力电子技术在更高水平上的技术发展。
参考文献
1 电力电子技术的发展
随着20世纪50年代末第一只晶闸管的问世,电力电子技术便登上了历史舞台,在这以后的几年里,电能的控制经历了从旋转交流机组到电力电子器件构成的交流器机组的转变,这一过程的转变标志着电力电子技术的真正诞生。在随后的几十年里,电力电子技术依次经历了第一代电力电子器件、第二代电力电子器件以及第三代电子器件的过渡。在第一代电力电子器件中,电力二极管和晶闸管作为典型的代表器件,这些器件的小体积、低功耗等优点使得他们有了极其广泛的运用,第一代电力电子器件的普及为电力系统的发展起到了巨大的推动作用。随着可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT)、电力晶体管(GTR)、静电感应晶体管(SIT)、MOS控制晶闸管(MCT)、电力场控晶体管(MOSFET)等通断两态双可控器件的问世,标志着电力电子器件已经实现了从第一代到第二代的过渡,之后,由于电力电子技术发展的要求,又进入到了第三代电力电子器件的时代,相比第一、二代电力电子器件,第三代电力电子器件有着明显的优势,因为它更注重电力电子技术的环保性、节能性、自动性以及智能型。
2 电力电子技术在电力系统中的应用
上个世纪80 年代,由于相关技术的不断发展及更新,提出了柔流输电理念,因为这个概念的提出,使得很多的研究人员开始将注意力转向电力电子技术在电力系统中的应用上来,也正因为如此,在以后很短的一段时间里,相继出现了多种电力设备,这为电力系统的发展提供了契机。根据自身多年的工作经验以及其他研究人员的研究成果,笔者将从电力系统中的“发电环节”、输电环节、“配电环节”以及“节能环节”四个环节分别阐述电力电子技术的应用。
2.1 电力电子技术在发电环节中的应用
电力系统的发电环节是一个比较复杂的环节,因为它的运行涉及到发电机组的很多种设备,在发电环节容易出现问题,正因为如此,将电力电子技术应用到发电环节就显得很有必要,在此环节中,电力电子技术的主要目的是为了改善这些设备的运行特性。在静止励磁的环节中,通常都会采用晶闸管整流自并励连接方式,因为这样做除了具有设备结构简单、工作运行时可靠性高的优点外,还能降低该过程的的造价,因此晶闸管整流自并励方式已经被世界很多大型电力系统所采用。电力电子技术的介入,省去了励磁机环节,使其大大的加快了自身的调节性能,不仅如此,还为其提供了充分发挥作用并产生良好控制效果的有利条件。水头压力和流量是决定水力发电有效功率的因素,当水头压出现较大的变化幅度时,机组的最佳转速变将会受到较大影响。虽然与水力发电不完全一致,但是风力发电有着相似的变化特点,因为在风力发电系统中,风力发电的有效功率和当时的风速的三次方成正比关系,风速的变化将直接影响到风车能捕捉到的最大风能。通过以上水力和风力发电系统中的一些特点的分析,我们知道,如果想获得最大的有效功率,可以通过将机组变速来实。变频电源是这项应用的技术核心。另外,在电力系统的发电环节,可以通过使用一些较低电压或高压的变频器来使水泵实现变频调速,这样做可以达到一定的节能目的。正因为低压变频技术的这些优点,使得它一度成为一个研究的热点,如今,该技术已经非常的成熟,国内外已经有了很多的生产厂家。但是同时具备高压大容量变频器设计很生产的企业却很少,这方面的技术还有待我们的深入研究。
2.2 电力电子技术在输电环节中的应用
在高压输电系统中,通过将电力电子技术运用进去,引发了一次电力系统中的革命,这次革命被称之为“硅片引起的第”,因为电力电子器件的应用,极大地改善了电力网的稳定性。相比交流输电,直流输电具有很明显的三个优点:①输电容量大;②稳定性好;③容易控制。正因为如此,在电力输送的环节,通常都是采用直流输电。对于一些距离较远的电力输送以及一些特殊的电力输送,高压直流输电拥有其自身独特的优势。1970 年第一项晶闸管换流器的问世,标志着电力电子技术正式应用到直流输电环节,从那以后,世界上所有的新建直流输电系统基本上都是采用晶闸管换流阀。从此,电力电子技术正式迎来了它在电力输送环节中的应用巅峰期。FACTS 技术是在电力电子技术的基础上发展出来的一项输电技术,FACTS 技术是在 20 世纪80 年代后期发展出来的。它除了可以灵活的对交流输电功率进行控制外,还可以极大地提高电力系统的稳定性。
2.3 电力电子技术在配电环节中的应用
在目前的配电系统中,供电可靠性和电能质量是两个重要的环节,但是目前世界上还没有几个发电系统能将这两者存在的问题处理的很好,所以,如何保证供电的可靠性以及提高电能的质量是配电系统中迫切需要解决的问题。在这两个环节中,电能质量的保证显得更为棘手,因为要实现对电能质量的控制,除了要满足对电压、频率、谐波和不对称度的要求外,更要抑制各种瞬态的波动和干扰的影响。电力电子技术在一定程度上能够满足这些要求,DFACTS 技术就是电力电子技术配电系统中应用的一个体现,它结合了现代控制技术,在某种意义上,可以把 DFACTS 技术认为是 FACTS 技术的缩小版本,因为他们的原理以及结构都是相同的,最主要的是他们的功能大体相似。
2.4 电力电子技术在节能环节中的应用
(1)变负荷电动机调速运行:电力电子技术能够在节能环节中起到变负荷电动机调速运行的作用,变频调速具有以下几个方面的优点:①调速范围广;②精确度和效率高;③能实现连续无级调速。正是因为以上的优点,使得在调速过程中降低了转差损耗,节电率通常都可以达到35%左右。
(2)减少无用功损耗,提高功率因数:在电气设备中,对于一些感性负载,例如变压器和交流异步电动机,他们在工作的时候,不像其他的电气设备一样,他们不仅要消耗有功功率,还要消耗一部分的无功功率,对于无功功率这一部分能量,它的消耗对实际的电能生产是没有任何帮助的,但是在电力系统中却要保持无功功率的平衡,因为这样能够阻止系统中的电压降低,对电气设备起到了保护作用。所以,电力网或者电气设备一旦出现无功功率容量不足时,应该及时的增加相关的无功功率补偿设备,以便提高设备的功率因数。
3 结语
本文主要从电力系统的四个环节(“发电环节”、输电环节、“配电环节”以及“节能环节”四个环节)分别阐述了电力电子技术的应用,虽然这几个环节已经较全面的概括了电力电子技术在电力系统中的应用情况,但是希望相关的研究者继续深化这方面的研究,为世界电力系统的快速稳定发展提供一点可靠的依据。
参考文献
DOI:10.16640/ki.37-1222/t.2017.07.167
0 引言
电力电子技术是一种新技术,这种技术包含了电力和电子两方面的技术,它在新能源发电中具有重要作用,并逐渐在人们的生活中扮演着重要的角色,逐渐成为人们生活中的重要组成部分。随着经济的不断发展,这些器件、技术逐渐应用于各个领域,这为促进电力电子技术的发展起到了积极作用,也为其在电力系统中的应用开拓了空间。
1 电力电子技术的发展
电力电子技术是一门综合性的技术,它主要包括两方面技术,分别是制造器件技术和应用电路技术,这两种技术对于促进电力电子技术的发展具有重要作用。首先器件技术的发展过程中比较曲折,它经历了半控型-全控型-复合型的发展过程,并将功率、控制驱动器等器件关联起来,对一些功能进行了集中,这种改进不仅促进了器件结构上的发展,同时还对其功能进行了优化。整流电路系统应用比较频繁的时代是改革开放以前,而改革开放以后应用最为频繁的是逆变电路,但是整流电路系统仍然具有较为广泛的影响。随着科学技术的发展,脉冲宽度控制技术(PWM)在一定程度上促进了电力电子技术的发展,同时自动开关器件的应用和发展,也使电力电子技术逐渐走向低频化发展。其中脉冲宽度控制技术(PWM)的控制方式主要包括以下几个方面:分别是无功率控制、观测器控制、神经元控制等,这些控制方式在实际中的应用,在很大程度上促进了电力电子技术的发展,并使其进入了一个新的阶段。现在电力电子技术有了新的发展方向,数字控制技术的应用,逐渐在电力系统中替代了模拟控制,它也将成为电力电子技术未来的发展方向,并能够快速促进电力电子技术的发展。
2 电力电子技术在电力系统中的应用
2.1 发电环节
电力电子技术在电力系统中的应用,在一定程度上改变了发电环节涉及以及发电机组中多种设备的运行特性,具体表现在以下几方面:一是大型发电机的静止励磁控制。静止励磁主要是采用晶闸管整流自并励方式,这种方式使其具有较为简单的结构,性能也比较稳定,造价也低,从而极大地促进了静止励磁在电力系统中的应用。并且静止励磁的应用,省去了励磁机这个中间惯性环节,提高了电力系统的工作效率。二是水力、风力发电机的变速恒频励磁。水头压力和流量对于水力发电的有效功率起到了关键性的作用,水头的变化将会直接影响机组最佳转速的大小。在实际的应用中发电机的有效功率与风速成三次方正比例,风车捕捉最大风能的转速与风速有直接关系。为了能够获得最大功率,这时可以使机组变速运行,只有这样才能够有效提高机组的应用效率。第三,发电厂风机水泵的变频调速。在传统的发电过程中,风机水泵消耗的电量比较大,并且其功率较低,这样损耗了大量的电能,不利于发电厂的发展,低压或高压变频器能够有效地实现水泵的变频调速,这样就能够达到节能的目的。低压变频器技术已经是一种比较成熟的技术,它在国外已经在众多企业中广泛应用,并取得了较好的成效,所以为了促进我国发电厂的发展,必须在实际的发电过程中应用该种技术。
2.2 输电环节
第一,轻型直流输电和直流输电技术。在实际的应用中,直流输电具有输电容量大、控制调节灵活以及稳定性好等特点,这些特点极大地促进了直流输电技术的应用,并逐渐在输电作业中发挥重要作用。随着科学技术的不断发展和应用,直流输电技术有了新的突破性的发展,轻型直流输电技术的问世和应用,在很大程度上解决了现阶段发电过程中遇到的难题。这是一种创新性的技术,并在传统的直流输技术上进行了改进,提高了发电效率,促进了输电工作的有效进行。第二,FACTS 技术。FACTS 技术是一种柔流输电技术,这种技术出现在八十年代后期,它的主要优势能够实现交流输电功率潮流的控制,提高电力系统的稳定性。
2.3 配电环节
配电环节中比较重要的问题就是要提高电能质量,并保证供电的可靠性,这也是现阶段发电厂急需解决的问题,也是阻碍我国发电厂发展的重要问题,这也是电力电子技术在电力系统应用中的重要任务。在对电能质量的控制过程中,应当注意满足两方面的要求,分别是抑制各种瞬态的干扰和波动及满足对频率、电压、谐波,只有这样才能够保证电力电子技术在电力系统中的应用,才能够提高电力系统的运行效率。DFACTS 技术是一种新技术,这种技术能够有效地解决当前配电环节所遇到的问题,它也是在FACTS 技术基础上发展起来的一门技术。
2.4 节能环节
第一,减少无功损耗,提高功率因素。在电力系统中,各种电力设备都会在一定程度上消耗相应的功率,既包括有功功率也包括无功功率,这都是发电过程中消耗的能量。这两种功率对于确保电能质量具有重要作用。在电力系统中,保持无功平衡具有重要的作用,如果不能做到无功平衡,那么会造成电压降低,对于电力系统中的设备具有损害作用,严重时甚至会造成巨大的安全事故,所以在发电过程中,应当引起足够重视。第二,变负荷电动机调速运行。电力电子技术在电力系统中的应用,能够有效节省能源,主要体现在两方面,分别是电动机本身技术和变负荷电动机的调速技术,这两种技术的应用能够有效节省能源,对于提高电力电子技术在电力系统中的应用具有重要作用。目前,在国内,发电厂发电过程中的节能环节已经成为发电过程中的重要问题,传统的发电过程成本较高,并且会产生污染,这在一定程度上限制了发电厂的发展,所以应当重视节能环节,降低能耗。
3 结语
综上所述,随着社会经济的不断发展,电力电子技术子啊电力系统中的应用越来越广泛,并逐渐成为电力系统中不可获取的一部分,在电力系统的供电中起到了重要作用,极大地促进了电力系统的发展。
参考文献:
当今社会正在处在一个信息技术不断更新发展的时期,电子科技技术的飞速发展给人们的日常生活带来了很大的便利,同时广泛应用于电气控制中,电气自动化控制系统是电气控制的一个主要系统,其对电气设备的正常运行可以进行有效的控制。随着科学技术的发展,各种新型的控制元件和应用软件不断应用于电气控制系统中,提升了整个系统的可靠性,精简了作业流程,提高了企业的生产效益。
1 电力电子技术概念和发展现状
1.1 电力电子技术概念
电力电子技术是一门广泛应用于电力系统的电子技术,其目的就是对电力系统中的电子元件进行有效的转换和控制,从而达到提高电力系统工作效率的目的。电力电子技术主要分为电力电子器件制造技术和变流技术两部分,在电气控制的过程中电力电子技术充当重要的角色。电力电子技术依靠电子学、电工原理和自动化控制技术三个领域的相互合作,在工业生产中对电气设备进行有效的控制,电力电子技术对电气系统中的电路进行数据检测、信息记录和故障预警等功能,对不同生产工艺的电力设备的运行情况进行监控。
1.2 电力电子技术的发展现状
电力电子技术的发展主要分为两个方面,分别为电子器件制造和电力电子电路应用,随着科学技术的不断发展,电力电子技术在这两方面有了很大的发展,电子器件的发展过程经过了不可控制性、半控制型和全控制型三个阶段,时至今日电力电子技术在电气控制中已实现了自动化控制,这不仅体现了电力电子技术的快速发展,还能在一定程度上促进电力电子技术的发展。现在出现一种智能化技术,其在电气控制中已逐渐得到应用,智能化技术的运用可以实现电气系统自动化控制,智能化技术通过对下降时间、鲁性棒变化和响应时间系统的控制,维持电气系统的顺利进行,智能化技术还可以对电气自动化系统进行数据监测和调节,在电气自动化系统中设立反馈机制,在故障发生时,电力设备可以进行自我调节,实现自我控制、自我调节,同时还减少了人力资源的消耗。目前电力电子技术已经形成了先进的功率集成电力,虽然以当前的技术水平使功率还处于一个较小值,但是随着电力电子技术的不断发展,提高电力功率只是一个时间问题。
2 电力电子技术在电气控制中的应用分析
电力电子技术在电气控制中的应用主要有软开关控制装置、电路保护装置、静止无功补偿装置、有源电力滤波器和高压直流输电技术等方面的应用,可以运用电力电子技术对电路进行有效控制并对电子元件的运行进行监控,提高电力系统的可靠度。
2.1 软开关控制装置
随着电子技术和电力系统的发展,电力系统对电磁兼容和效率的需求越来越大,这就要求电力装置满足轻便和小型的要求,传统的电力系统中通过开关控制来节省变压器和电容等元件的占用空间,但是这样高频率的开关转换会使其损耗过大,并会对电路的效率产生不利的影响,同时也会产生一些额外的电磁干扰。软开关控制装置很好地解决了这一缺陷,特别是在减少噪音和降低开关损耗上有很大的帮助,目前软开关控制装置用于很多电力系统中,研究表明在开关频率大于1Mhz的情况下,其性能也会达到理想的状态。将多个简单的电路通过串并联成一个组合电路的方法在很多情况下会提高电力系统的性能,软开关装置的应用越来越广泛。
2.2 电路保护装置
电气控制系统中电路保护装置占有重要的比例,当电力电子电路中的元件方式故障时可以对电路作出保o措施,常有的电路保护装置有电流继电器、快速熔断器等,但是随着电子技术的发展,电力电子元件趋向小型化和高功率化,传统的电路保护装置已经不能满足电力电子电路保护的需求。电力电子技术可以在电路中加入过电流保护电路,结合电路检测装置反馈的信息,在检测到电路中存在过电流时可以自动对电子元件进行断电处理,达到保护电路和电子元件的作用。
2.3 静止无功补偿装置
随着用电需求的增加,对电网功率变化的需求也不断增加,电网中功率的频繁变化和一些冲击性负荷的增加对电网的稳定性产生了很大的影响,不利于电网电路中低频振荡的有效控制,而通过静止无功补偿装置可以增大电力系统和负载的相关因数,降低电力系统中功率损耗值,同时还可以控制电路中电压的稳定性,提升电力使用质量。
2.4 有源电力滤波器
有源电力滤波器的工作原理是对电路中的补偿元件进行检测,从而得到一些等分量的谐波电流,然后再利用补偿装置产生一个与谐波电流分量相等极性相反的电流分量,使其与检测的谐波分量相抵消,使电网中的电流没有谐波电流只存在基波电流。有源电力滤波器以其响应速度快和补偿功能多样性的特点,可以有效地减少电网阻抗的影响。有源电力滤波器由两部分组成,分别为补偿电路发生装置和指令电流运算电路,通过电力电子技术对电路中的补偿电流进行检测,然后得出电路中无功电流和谐波的分量。
2.5 高压直流输电技术
现电厂输出的都是交流电压,但是交流输电过程会产生大量的电量损耗,并且不易控制,造价也很高,因此现在选用的都是直流输电,在高电压大容量和远距离的输电的情况下要选用直流输电,直流输电技术通过高压直流输电技术可以将交流电压转变为直流电压,然后直流电输送到各地的变电站内,再通过直流电逆变过程,转变为交流电,最后再供用户使用。
3 结束语
电力电子技术随着科学技术的进步不断发展变化,其在电气控制中的应用越来越广泛,并占有重要的作用,我们要深入研究电力电子技术在电气控制中的应用情况,查找电力电子技术应用的不足之处,充分发挥电力电子技术的优势,促进电气控制行业的发展。
参考文献
[1]浦仕琳.电力电子技术在电气控制领域中的应用[J].科技创新导报,2012(05):78.
[2]李敏.电力电子技术在电气工程中的应用[J].通讯世界,2015(23):124-125.
[3]胡欣然,张海涛,刘洋.电力电子技术在电气工程中的应用[J].山东工业技术,2016(13):178.
[4]樊清山.电力电子技术在电气工程中的应用[J].电子技术与软件工程,2014(12):197.
随着社会经济快速发展,社会的进步,我国科技和信息化水平在逐渐的提高,电网在发展过程中也面临着全新的挑战。依靠着现代信息、网络、通讯技术的发展,电力电子技术在配电网中得到了广泛的应用,同时这也是未来发展的主要趋势。但是配电网在发展过程中还面临着一些问题,因此如何加强电力电子技术在配电网的使用已经成为了人们在研究过程中的主要一部分。
1 电力电子技术的发展
随着社会不断的发展,电力电子技术在电力发展过程中得到了广泛的应用,同时还也加大了功率开关器件的使用效率。现阶段,在市场上已经有6kv/6ka的门级可关断元件,在元件使用过程中,其主要的效率达到了10MW,这对电力电子装置技术在配电网的应用起到了重要的作用[1]。随着电力电子技术在电力电子芯片中的使用,使电力集成技术得到了快速发展,同时,这在一定程度上还能减少配电网功率的开关,将电力信号信息更好检测出来,从而形成一种自动诊断、保护功能合为一体的主要智能模版,使电力电子技术更好的在配电网中得应用。现阶段,电力电子装置在运行中具有一定的稳定性、可靠性与先进性,为人们的用电生活得到了保障。
电力电子在装置应用过程中为电力系统提供较高了现实性。电力电子的开关元件本身还具有一定的高速开端和触电点性能的主要特点,其使用寿命较长,方便人们使用,同时它还在一定程度上了取代了传统的继电保护装置,从而提高电力电子技术的稳定性与可靠性。电力电子技术主要内容就是在不改变现代网络的情况下,将电力电自己技术与配电网进行结合,从而有效的控制住现代信息技术,并对电力系统中的电压、线路、功率等进行准确的调控,从而降低输电的损耗,这在一定程度上保证了电力系统在使用过程中的稳定性。
2 电力电子技术在配电网系统中的应用
随着时代快速发展,人们的生活质量也在逐渐的提高,电力用户对电能质量的要求也越来越高。人们在用电过程中要求供电不断、电压波动较小,还有一些用户在用电中要求电压波形近与正弦形,不会受到任何撒布的干扰,如果出现电压不稳现象,需要不受故障波动的而影响用户的生活[2]。针对这些问题,我国供电部门一直在不断的研究。
2.1 用户用电
美国早在90年代就提出了专业的“用户电力”概念。用户用电的主义含义是指电力电子技术在设计计算和现代通信仪器时的主要成就,按照制定的标准来满足配电系统的可靠性与电力质量的要求。同时“用户用电”还被人们称作为“制定的电力”,要想将电力电子技术在配电网更好的应用需要将电力电子技术落实到配电自动化系统中,从而提高用电质量。要想更好的提高用电质量还需要注意喷点系统用电源投入,发生故障需要及时解决,在故障解决之后需要将普通的开关切换到备用的电源中,在这个过程中只需要0.2~0.5秒之间。如果电子为静态,只需要5毫秒就可以,从而保证电力可以正常运行。但是,配电网系统发生故障时,不管是两相短路还是三相短路,都会使整个的系统电压下降,这对用户的用电安全造成了一定的影响。如果出现问题,只有使用电力电子装置称才能保证电力正常运行。
2.2 电力电子技术在配电网的应用特点
电力电子技术在配电网中的装置的主要原因有:(1)提高用户用电的可靠性,我国相关的电业部门在流输电应用都广泛使用电力电子技术;(2)电力电子装置自动化程度更高,方便人们使用。同时电力电子在装置过程中其速度极快,同时还非常的智能化,相关技术人员可以在使用过程中按照一些列的专业设备完成各种自动化系统;(3)随着社会不断的发展,电力电子技术安装的容量已经不断的扩大,已经完全的接近配电系统在应用时所需的规模。通过人们不断的研究,电力电子装置也被人们充分保护,其在工作过程中更高发挥出更好的作用,同时还能承受了足够的短路与电路电流中的所有电压;(4)电力电子装置技术的主要趋势是在常规项目安装中,在安装过程中除了可以保证其技术的主要特点之外,同时电力电子技术还可以根据一些可防效线性元件。比如说一些在生产时不稳定的电压、电流以及各种调制系统等等;(5)电力电子技术在装置过程中使用成本较低,满足人们的需求。成本主要下降的原因的电力电子技术中的一些元件价格随着市场的调动而产生变化。这些电力电子技术在配网中主要的应用特点[3]。
3 结语
电力电子技术在配电网中也得到了广泛的应用,电力电子技术会随着社会不断的发展而改变。电力电子技术在配电网的应用会有效的提高其本身元件的使用寿命,提高人们用电的可靠性与稳定性。本文对电力电子技术在配电网中的应用进行了简单的分析,文中还存在着一定的不足,希望专业人员加强对电力电子技术在配电网中的应用,从而使我国的配电元件开断功率得到快速的提升。同时,这也的预示着电力电子技术在配电网中未来的发展趋势,实现了配电系统电子开关的灵活调控模式。
参考文献:
关键词:
电力电子技术;配电网;应用;输电能力;灵活交流输电技术
在电力市场竞争愈加激烈的背景下,电力企业提升输电质量和稳定性显得十分关键,直接关乎企业的长远生存和发展。尤其是在当前信息时代背景下,越来越多先进信息技术、网络技术、通信技术和自动化技术应用其中,在此基础上,电力电子技术以其独特的优势被广泛应用在配电网中,在提升电网输电能力和系统稳定性的同时,可以为用户提供更加优质的供电服务,创造更大的经济效益和社会效益。由此看来,加强电力电子技术在配电网中的应用研究十分关键,有助于推动我国电网朝着智能化、自动化和信息化方向发展,为国民经济持续增长打下坚实的基础和保障。
1电力电子技术的发展分析
在社会进步和发展下,城市现代化建设进程逐渐加快,对于新时期的电网建设提出了更高的要求。电能作为社会生产生活有序开展的基础保障,电力电子技术以其独特的优势被广泛应用在配电网中,可以有效提升电网运行稳定性和输电性能。尤其是在当前市场发展中,6kV/6kA的门级可关断元件进入到人们视野,元件在具体施工中,功率可以高达10MW,在一定程度上促进了电力电子技术在配电网中的广泛应用和推广,意义十分深远[1]。电力电子技术在电子芯片中的应用,可以有效提升电力集成技术水平,同时还可以有效减少配电网功率开关,提升电力信号信息检测准确度和效率,促使系统具备自我诊断和保护功能,更为充分地发挥电力电子技术优势,提升配电网输电能力。现阶段,电力电子技术在实际运行中,具有可靠性、稳定性的特点,在满足电网建设和发展需要的同时,为社会生产生活提供更为坚实的保障和支持。电力电子技术在电力系统中应用。现实性较强,电力电子的开关元件自身具有触电点性能和高速开端特点,可以有效延长设备使用寿命,为人们带来更加便捷和优质的服务[2]。同时,可以代替传统机电保护装置,有效提升系统的可靠性和稳定性,改善电力系统运行中存在的问题。更为关键的是,电力电子技术在实际应用中,可以在不影响现代网络的基础上,进一步和配电网整合在一起,加强对现代信息技术的控制,根据实际情况动态调整电力系统线路、功率和电压,在提升配电网输电能力的同时,尽可能降低电能的损耗,促使电力系统可以安全、稳定运行,为国民经济持续增长做出更大的贡献,意义十分深远。
2电力电子技术在配电网系统中应用
电力电子技术在配电网中应用,主要是为了应对用户不断增长的电能需求,在用电过程中可以实现连续供电,降低电压波动,促使用户在用电过程中可以有效避免干扰,如果电压不稳定,可能会对用户生活带来十分深远的影响。
2.1补偿器
2.1.1串联补偿器
串联装置在实际应用中,可以有效降低系统运行负荷,是一种面向负荷的补偿方式,可以有效改善电压波动和不平衡高次谐波等问题对系统带来的运行负荷。串联装置更多的是应用在特定负荷方面提供补偿,负荷容量直接决定串联装置容量。配电系统中串联同步补偿器在实际应用中,最为典型的就是动态电压恢复器。核心装置为同步电压源逆变器,通过对逆变器的控制可以产生同电网同步的三相交流电压[3]。如果线路测电压出现异常变化,逆变器输出电压可能出现不同程度上的变化,用于补偿电压差异,确保电压敏感设备的电压变化在可接受范围内,设备可以安全稳定运行。与此同时,如果供电中断,储能装置可以为补偿器提供能量支持,持续为负荷输送电力。Siemens公司将此种产品投入到实践运作中,可以有效消除电压突降对于工厂生产带来的影响,短期内即可回收投资成本。所以说,DVR技术在实际应用中效果较为可观,值得广泛推广和应用。
2.1.2并联补偿器
在并联补偿器中,作为一种面向系统的补偿方式,并联装置容量除了由系统运行负荷决定以外,系统的容量同样对其产生影响。在实践中,更多的是用于降低负荷。其中最为典型的即是DSVC装置,具体可以分为TCR和TSC两种,其中TCR通过控制晶闸管开通可以有效改善流过电抗器电流性能,改变无功功率大小。TSC则是通过晶闸管开通和关断来动态控制系统无功功率大小。DSVC反应能力和自适应能力较为突出,配电网中应用DSVC可以有效降低用户冲击性负荷,实现无功快速补偿,尽可能降低电网电压突降影响到设备的安全稳定运行。与此同时,在电气化铁路中运用,主要是为了解决不对称负载带来的问题,降低负序电流对系统正常运行带来的影响,还可以控制电压波动问题,切实提升配电网输电能力和输电质量[4]。
2.1.3串并联补偿器
为了能够充分发挥串联补偿器和并联补偿器的优势,可以将两种补偿器混合使用,充分发挥各自优势,在面向系统的同时,面向负荷,确保系统的稳定运行。
2.2有源滤波器
在配电网系统中,一般情况下,电力系统的电压总谐波畸变率大概在2%~3%,在特殊情况下方会达到16%。有源滤波器则是借助电力电子技术抑制谐波的设备,经过不断完善和创新,为APF在工业生产证广泛应用提供了良好的条件。通过对电路将非线性负载电流进一步划分为两个部分,即谐波分量和基波分量两种。输入和负载谐波分量大小一致的补偿电流,以此来有效改善非线性负载对于配电网正常运行带来的影响[5]。较之无源滤波器而言,APF技术优势十分突出,但是由于成本较高,所以尚未能在实践中全面推广和应用。当前较为常见的方法就是将有源滤波器与低次谐波的无源滤波器混合搭配使用,这样不仅可以满足降低非线性负载对于配电网稳定运行带来的影响,还可以获得更加可观的性价比。伴随着电力电子技术的不断创新和发展,器件价格逐渐降低,相信在未来电力系统中必然可以广泛应用APF,为电网建设和发展做出更大的贡献。
2.3固态开关技术
固态开关技术主要是借助晶闸管自身切换速度快和无触点优势,实现快速开关切换的无电弧投切。同时还可以降低器件发热和操作过电压,避免系统出现故障。
3结语
综上所述,在配电网建设和发展中,应用电力电子技术,可以有效提升电力系统运行效率和输电能力,降低系统故障概率,推动电网信息化、自动化和智能化发展。
[参考文献]
[1]吴俊勇.“智能电网综述”技术讲座—第四讲:电力电子技术在智能电网中的应用[J].电力电子,2014(4):67-70.
[2]逯志刚.浅谈网络化技术在配电网电力电子装备互联中的应用[J].中外企业家,2016(30):95.
[3]张祥龙,周晖,肖智宏,等.电力电子变压器在有源配电网无功优化中的应用[J].电力系统保护与控制,2017(4):80-85.
电力系统中,无功功率不足将导致电网电压下降,无法满足电能使用质量。而且,无功功率得不到合理分配,也会导致线损增加,从而增加电力系统运行过程中的经济成本。伴随电力电子技术的极速发展,大量非线性负载(如各种相控装置)投入使用,这些装置在工作时由于装置内网侧电压超前于电流的基波分量,造成巨大无功功率的耗费,使系统电流产生非线性的畸变,非线性负荷产生的谐波电流不仅会消耗部分无功功率,还会在系统中产生谐波电压,引起电网电压的畸变,导致电力系统中严重的谐波污染。目前,电力系统中的无功损耗和谐波污染问题越来越严重,不但降低了电能的使用质量,还威胁到整个电力系统安全有效地运行。
1.2无功和谐波污染问题解决途径
早期的无功功率补偿的手段主要是并联电容器、同步调相机以及饱和电抗器(SR-SaturatedReactor)。随后,能够极好的调节无功功率输出性能的静止无功补偿器(SVC)问世,SVC不仅能够跟踪负荷并且快速变动,而且还能够连续平滑地改变无功功率的大小及方向。80年代至今,静止同步无补偿器STATCOM的出现引起各国的普遍关注,它不仅能够进行连续快速的调节,而且具有谐波较小、损耗较低、更广的运行范围以及高可靠性等优点。早期的谐波抑制手段主要是LC无源滤波器,然而由于无源滤波器设计困难、造价高等缺陷,其必将被效率高、动态补偿特性好的新型有源滤波器所取代。由此可见,电力电子装置产生的无功和谐波问题的解决依赖于先进的电力电子技术的应用,电力电子技术与无功功率补偿和谐波抑制紧密联系密不可分。
2电力电子技术在电力系统中的应用
2.1发电环节的电力电子技术应用
电力电子技术在发电环节已在世界各大电力系统中广泛应用,主要体现在发电机组的励磁控制和变频调速上。大型发电机的静止励磁控制技术结构简单、可靠性高、造价低。水力、风力发电机的变速恒频励磁能有效改善电能转换过程中耗能大效率低的问题。
2.2输电环节的电力电子技术应用
(1)柔流输电技术(FACTS)。FACTS当前广泛应用于各种输电线路中,其表现方式主要是柔性的交流输电设备。通过在输电线路的各个重要部位加装电力电子控制技术装置,适时控制输电线路中的各项重要参数,以达到合理分配输电过程中电能功率的目的,减少输送成本和电能的无功消耗,大幅度地提高电力系统的安全性、可靠性、经济性及稳定性。(2)高压直流输电技术(HVDC)。HVDC在电力输送系统中的应用以晶闸管使用为代表。从第一次在直流电的电力输送系统中应用开始,直流电电力输送系统中就一直有晶闸管的应用。具有可操作性能的电力输送控制器(如GTO、IGBT)的出现标志着可操作电力系统输送设备问世,该电力输送设备替代了交直转换变压器在电流转换过程的使用,降低电力产生成本,极大提高电力系统中电流交换设备的竞争力。(3)静止无功补偿器(SVC)。SVC在电力系统中应用范围主要是负荷补偿和输电线路补偿,静止无功补偿器在大功率的电力输送网络中,主要作用是控制电网电压,也能够有效提高电网的稳定性、阻尼等。
2.3配电环节的电力电子技术应用
电力电子技术在电力配送系统中的应用是以用户电力技术(CP)的使用为代表,CP技术和FACTS技术是电力电子技术快速发展的典型,二者又极为相似,各自的控制器在结构和功能上均相同,所不同之处仅是额定电气值的差别。目前,随着科技的发展,二者已逐渐结合成一体,即DFACTS技术。