欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

电力电子技术应用大全11篇

时间:2024-03-22 14:43:11

电力电子技术应用

篇(1)

1电力电子技术发展及特点分析

电力电子技术是把电子技术应用于电力系统中,保证电力系统的稳定运行,提高电力系统供电质量。随着科技水平的不断提高,许多新的材料被应用与电力系统中,为电力系统中电力电子技术的应用提供了支持,电力电子技术的在电力系统中的应用,实现对电力的有效控制,用户可以更方便的使用电能。在现代化电力系统中电力电子技术的应用时必不可少的,电力电子技术包括材料期间的制造技术和电子电路的变流技术。电力电子技术的发展经历了第一代半控型电力电子技术,第二代全控型电力电子技术和第三代复合型电力电子技术,目前电力电子技术的主要发展方向是小功率的集成电路,小功率的集成电路技术把驱动、控制和功率器件技术综合在一起,最大的优点是降低功率。电力电子技术中整流电路的应用比较广泛,并在电力电子技术的应用中占有重要的地位。随着自关断器件的应用,高频化成为电力电子技术的发展方向,电力电子的控制技术在新阶段的应用还包括无功率功率控制和神经元控制等方面,目前在电力电子控制技术中传统的模拟控制已经不能满足电力电子技术发展的需要,取而代之的是微处理器的数字控制技术。

2电力电子技术在电力系统中的应用研究

2.1电力电子技术中有源滤波器在电力系统中的应用研究

有源滤波器电力电子装置是基于动态抑制谐波的电力电子设备,以谐波的大小变化为依据进行无功补偿,有源电力滤波器通过电源装备来提供运行的动力,对传统的滤波器进行了功能的补充,提高了电力控制的效率,从根本上实现了电力系统的动态补偿。有源电力滤波器通过电源来提供动力,对电力系统谐波进行补偿,取代了传统的固定补偿的方式,实现了真正的动态补偿。有源电力滤波器通过保证电力系统谐波的稳定性,进而保证了电力系统运作的稳定,电力电子技术的有源电力滤波器在电力系统的无功补偿方面得到了广泛的应用。有源电力滤波器系统构成原理图如图1所示。

2.2电力电子技术中高压直流输电技术在电力系统中的应用研究

电力电子技术中的高压直流输电技术是通过换流器对发电厂的交流电进行整流变为直流电,直流电通过输电线路发送到受电端,然后在受电端把直流电变为交流电发送给用户进行使用。高压直流输电技术的应用可以提高电能的传输功率,对电能的控制性强,降低整个电网线路的线路架设成本,高压直流输电技术的应用可以有效的解决高电压大容量和长距离传输的问题。高压直流输电技术对额定频率不同的电网可以实现互联,保证了交流输电的稳定性,在海底和地下电网的输电中可以提供重要的技术支持。高压直流输电工程中的双级HVDC系统如图2所示。换流器的基本组成单元是换流阀,换流器负责完成交流电到直流电的转换和直流电到交流电的转换,由阀桥和整流变化器构成。滤波器的作用是过滤掉换流器中的谐波,平波电抗器降低直流线路中的谐波电压,对直流线路在短路期间产生的峰值电流可以进行有效的限制,保证负荷电流的连续性。

3总结

电力电子技术在电网中的应用可以保证电力系统的稳定运行,提高了电力系统的运行效率。随着智能电网的发展,电力电子技术在电力系统中的应用越来越重要。电力电子技术在电力系统中的应用研究为电力系统的发展和智能电网的建设提供了理论和应用价值。

参考文献:

[1]张文亮,汤广福,查鲲鹏,贺之渊.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010(04).

篇(2)

在我国发电厂中,发电多是静止励磁系统。使用过程中,励磁机繁重且耗能巨大,电力电子技术的发展便可大大缓解这个问题,可以代替励磁机中的励磁环节,使发电过程变得更便捷且耗能少,易操作,方便控制。同时,电力电子技术在变频控制上同样起到很大作用。发电厂中发出的电能频率多为波动的,而民用的交流电频率要在220V为峰值进行使用,传统的变压方式多为变电站的中转,而电力电子技术可以简化这个环节,使电流更适合民用电的使用。电力电子技术在发电过程中的优势对一些新能源发电同样适用,如广泛使用的风力发电、水利发电等,都离不开电力电子技术来正常运行。

1.2电力电子技术在电力传输过程中的应用

电力电子技术在传输线路上的应用有很多,其中主要以柔流电技术、高压直流电技术以及静止无功补偿器技术上,以线路传输过程中的高压直流电技术为例,说明在电力传输过程中电力电子技术的重要作用。在没有这种技术的时候,对于高压直流电的传送,在传送过程中需加有若干变压器来完成,这不仅增加了传送电过程中的成本,还使工作的程序变得复杂,而电力电子技术的广泛使用,尤其是晶管换流阀在高压直流电传送过程中的使用,使电压变得可以自动化控制,节约成本,减少了传送过程中的工序,而且准确性、安全性和可控性都比传统的传送方法高得多。

1.3电力电子技术在电力使用过程中的应用

电力电子技术不仅能在电力产生、传送过程中有广泛的应用,还能保证在使用过程中带给使用者的便捷。回想我们家中的电力配备,保证安全的是一个全自动的电表,其实在这其中便应用到电力电子技术,它可以增强对电流、电压的可控性,自动感应到电力的强度,进行调控,保证了家庭用电的安全性。同时,在一些大型工厂、单位等,用电量较大,对电力的稳定性要求很高,配有电力电子技术可以使在配电过程中,电流变得更加稳定,避免各种不稳定的波动带来的不良影响。

2电力电子技术对于电力系统的其他应用

2.1节约能源

通过电力电子技术的应用,可以对电能进行综合处理,使电能能够最大限度的发挥出来,并且能够应用得更加合理、高效,真正做到节约能源。例如,在一些造纸厂、冶炼厂等,可以根据工厂的性质和对电能的具体需求,利用电力电子技术,能够将电能自动化的进行合理的分配,使耗电量大、功率大的场所能够达到要求,而对于一些对电量要求不大的地方可以适当的进行节省。据调查显示,2000年的大型工厂的节电量相当于1990年发电的15%,截止到今年,全国又将14个项目列入节电推广项目中,可见,电力电子技术在资源的节约中起到了很大的作用。

篇(3)

一、前言

电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。最成功地应用于电力系统的大功率电力电子技术是直流输电(HVDC)。自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

二、电力电子技术的应用

自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。已有不少文献介绍和总结了相关设备的基本原理和应用现状。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

(一)在发电环节中的应用

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

1 大型发电机的静止励磁控制

静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

2 水力、风力发电机的变速恒频励磁

水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。

3 发电厂风机水泵的变频调速

发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。

(二)在输电环节中的应用

电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改善了电力网的稳定运行特性。

1 直流输电(HVDC)和轻型直流输电(HVDC Light)技术

直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。1970年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。

2 柔性交流输电(FACTS)技术

FACTS技术的概念问世干20世纪80年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。

20世纪90年代以来,国外在研究开发的基础上开始将FA CTS技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。

(三)在配电环节中的应用

配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力(custom Power)技术或称DFACTS技术,是在FACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以将DFACTS设备理解为FACTS设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着电力电子器件价格的不断降低,可以预期DFACTS设备产品将进入快速发展期。

(四)在节能环节的运用

1 变负荷电动机调速运行

电动机本身挖掘节电潜力只是节电的一个方面,通过变负荷电动机的调速技术节电又是另一个方面,只有将二者结合起来,电动机节电方较完善。目前,交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。首先是风机、泵类等变负荷机械中采用调速控制代替挡风板或节流阀控制风流量和水流量具有显著的效果。国外变负荷的风机、水泵大多采用了交流调速,我国正在推广应用中。

变频调速的优点是调速范围广,精度高,效率高,能实现连续无级调速。在调速过程中转差损耗小,定子、转子的铜耗也不大,节电率一般可达30%左右。其缺点主要为:成本高,产生高次谐波污染电网。

2 减少无功损耗,提高功率因数

篇(4)

2电力电子技术的发展

电力电子技术智能化的飞速发展,主要是可以将电子信息和器具的处理功能的整合,将电力电子技术的发展与电力系统的发展走向一体化。很多人指出:新型的微电子技术将是人类学科发展的主战场,将会带领人类走向新的智能时代。

3主要的应用

在电力系统中,包括发电环节在内的多种设备,是将来应用该的主要载体,使用该技术可以优化设备的工作状态。(1)使用先进的静止励磁技术的发电设备具有安全性高、结构简单和成本廉价等优点,其控制静止励磁是采用的闸管整流并自励方式,此方式在各行业的大电力系统得到广泛采用。因为励磁机的中间惯性部分被去掉了,所以具备快速性调节性能,可以产生良好控制效果和充分发挥其性能。(2)水力发电主要依靠的是水流的流量和流速,使用电力电子设备,使得发电机的运转速度随着水流的变换而不断的变换,提高发电效率。而风力发电是依靠的风的风速,还与发电机的发电效率有关,运用电力电子设备可以提高风机转子的风能捕捉效率,提高风力发电的效率。风力和水力发电都是一种变速的恒频励磁发电。通过电力电子设备的调节使得设备的最优转速达到最优的发电状态,获得最优的有效功率,改变转子的转速获得不同的电流频率,获得恒定频率的电流。

4电力系统中的应用

4.1在节电方面的应用

4.1.1变负荷电动机调速运行

电动机节电主要是表现在两个方面:一个是不断的发掘设备的节电余地;二是使用最新的变负荷电动机的变速调节技术来实现。这两方面的单一实现都不能达到最优的节电措施,只有将它们有机的结合起来,使得设备在节电的同时有实现节能的变速的多重节电目标,获得较好的经济指标。现在在矿产开采和加工等行业的电力系统中应用较为广泛。

4.1.2减少输送过程中的损耗和使用大功率输电

电力设备消耗的功率有有用功率和无用功率的消耗,无功功率是确保电力的质量的重要环节,所以我们在使用的设备的无用功率较低时应该使用必要的无用功率补充设备,确保电力质量,还可以实现设备的功率因素的提高。

4.2在输电环节中的应用

4.2.1通信高频电源开关

现在科学的迅速发展要求信息的传播速度快而且还要稳定可靠,所以极大的促进通信行业的电源产业的发展。通信之中使用的电源开关主要是一次和二次电源开关,前者主要设备是整流器,后者为电流变换器。不同设备使用的电压不同,集成电路的种类也多;因此,在通信供电系统中,从中间母线电压,根据设备的工作电压进行变换乘所需要的电压,这样可以使设备的工作效率提高,减少中间环节带来的损耗等问题。

4.2.2电流变换器

它可以将恒定的电流转变乘所需要的可变直流电,在地铁列车和无轨电车无级变速的控制上该技术已经成功的应用了,同时使上述控制获得加速平稳、快速响应的性能。使用新型的电力电子设备更换原有的效率低的变阻器,可以大幅度的降低能耗约三成以上,而且设备的工作效率很高,电压调节平稳,降低了电流变换时引起的巨大噪声和波动等,不利因素都进行有效地控制和抑制,使调节和控制效果取得了明显的进步。

4.2.3直流输电技术

直流输电、轻型直流输电技术具有很多优点:有较大的输电容量,能灵活的进行调节和控制,并且稳定性能极好等。同时,电压直流输电所具有的的独特优势是:可以利用海底电缆输电;并能进行远距离输电;还可以将不同频率系统进行联网。在上个世纪七十年代,电力电子技术正式应用在直流输电上,起源于世界上第一个晶闸管换流器的诞生。从那往后,在生产实践中所用到的直流输电工程基本上都是用的晶闸管换流阀。

5在配电环节中的应用

目前,能否进行可靠性供电,到底如何进行加强和提高电能质量,是现在配电系统中所需要迫切解决的问题,要抑制各种瞬态的波动和干扰才可以使电能质量得到控制,同时还要满足频率和谐波以及电压的不对称度的要求。现代控制技术和电子电力技术发展的主要领域是用户电力配送。而且DFACTS的设备和原理及功能与FACTS比较相似,根据市场的需求,其使用范围会逐渐广泛,再加上电力电子器件价格越来越廉价,可以预计DFACTS设备产品将快速进入一个高速发展的阶段。

6结论

通过以上介绍可以知道,电力系统是电力电子技术主要应用的一个方向。在已有研究成果的基础上,使得该技术应用和运行投入逐渐加大。只有在不断改善该技术应用经济性的情况下,才有可能在电力系统中大规模推广这项技术,将会极大的推动我国电力事业的科学还管理,减少不稳定事件的发生。

作者:王再利 单位:西安财经学院后勤集团动力中心

参考文献

篇(5)

【 abstract 】 the power electronic technology development the door quickly, and now I can directly to the electric power and control, to the electric power to transform, still can adjust for power system model. The emergence of the power electronic technology makes people can more effectively using the limited power resources to gain greater economic benefits, the electric power system in the application is the need of the development of modern power system and the inevitable trend.

【 key words 】 power electronic technology; Electric power system; control

中图分类号:F407.61文献标识码:A 文章编号:

1 前言

当代在电力系统中,电力半导体器件和组合装置运用很多,大到在高低压直流输电中用到的换流器,小到家用电器产品电视机中的开关电源、手机电池充电器,当然还有在工业中应用广泛的调压调速变频器、大功率整流器、调压和调功器等,其应用广泛到了电力系统各个器件和各个不同的电压等级中。该技术的特点较多,包括控制灵活、反应快速、控制准确、运行可靠等。将电力电子技术运用到电力系统中不仅可以改善电能控制质量、提高输电运行能力、改善和提高电网运行的可靠性、稳定性和控制的灵活性还可以降低输电线路电能损耗。

2 电力电子结束的应用状况

目前,对超大容量超远距离的电能输送来说,高压直流输电技术显得是更加经济,而且还有交流输送电能所没有的优越性。在新一代超高压直流输电技术中,大量使用了GTO、IGBT等电力电子可关断器件,还广泛的使用了电力电子技术中最具代表性的脉宽调制技术。

在我国的输电系统中,虽然已有一些变电站使用了SVC,而且容量都比较大,但是所用的均为进口,型式为TCR与TSC的组合器件或单独的开关投切电容器组。在国内工业中应用 的TCR装置有很多,其中绝大部分容量都在10MVAR,然而让人想不到的是这其中国产的还不到一半。低压的380V供电系统中,有不少各类国产的TCR无功补偿装置在投入运行。但是至今仍然没有一套我国自主研发的SVC投入到我国的高压输电和变电系统中运行。考虑到SVC在电力系统中的重要性,预计在最近几年时间里,国内的SVC研制并将其投入到输电领域、配电领域以及工业的运用都将会遇到前所未有的发展。

现如今,我国国内的一些与之相关的规划局、科研院所、设备生产单位以及高校都已陆续开始对FACTS技术进行研发和生产。最引人瞩目的是国家电力科学研究院等电力研究单位和东北电力管理局合作开发和研究的500kv高压出线上安装的TCSC等技术

如今,变频调速SFC技术已经到了和传统的直流调速技术相媲美的阶段,在二者的竞争中,SFC技术大有取而代之的趋势。变频调速技术在电力系统中应用比较广泛,主要有两个方面:首先是将过去发电厂的风机、水泵的控制改为变频调速控制,节电效益明显增强;其次是将传统的抽水蓄能机组改用SFC技术控制,大幅减小机组启动过程中电压对电网的冲击。除此之外,当机组运行在低水头时,还可提高机组的发电效益。目前,我国的SFC技术发展缓慢,国内已经投入使用的高压变频器,几乎都是引进的国外的变频器设备和技术。

3电力电子技术在电力系统中应用的发展趋势

按照当前的形势来看,最具有可靠性的电子技术是电力电子技术在未来的发展中的新热点。电力电子技术采用了技术先进的表面贴装,将存流器件、触发器、主要电源等几种器件集成在一起,具有多重功能,大大的缩小了电力电子装置的重量和体积,同时也降低了损耗和成本,提高了工作的效率。而新型材料又是电力电子器件发展的基础,所以新型材料的发展也是电力电子技术发展的一个瓶颈。近些年来,出现了碳化硅等新型半导体材料。其中,用SIC制作的器件和理想元器件特别接近。还有,随着大、小功率集成电路等新型器件的大量涌现,智能的功率、高压等集成电路的制作工艺和制作技术必定是未来几年乃至几十年电力电子半导体技术的研究的热点。若是集成技术的突破和新型半导体材料的突破相互融合,必然会诞生更多性能更好的、功能更加强大的新器件,功率集成电路SMANPOWER HVIC就是一个明显的例子,他的出现极大地满足了现代工农业大力发展的需要。除了这两者之外,自动控制用的芯片的发展也很是神速。为了让社会更好的运用新器件的优良性能,为了满足诸如波形产生、驱动电路控制、电路实时保护等方面的要求,只有通过研制新材料,改进新工业技术,不断创造出快速性能更加完善、人工智能化程度更高、工业使用更加方便的新型高速控制芯片。

4 总结

电力电子技术的发展肯定是当前一段时间和未来重点研究的热点。电力电子器件的发展直接影响着电力电子技术的发展,电力电子技术的供电电源、电机调速、电力配电等几个方面获得了相当广泛的应用。无论是对于传统的工业,如电力、船舶、矿冶、机械、汽车等,还是一些高技术的技术产业比如通信、激光、航空航天等的发展都至关重要,电力电子技术是提高这些相关行业的水平技术的重要手段,同时也是经济发展迅速的前提。电力电子技术的快速增长、高速度的发展,使其成为了新时代最重要的高端技术之一。

【参考文献】

[1] 曾岳南, 邓则名, 章云, 陈林康. 电力电子与电力传动实验教学[J]. 实验室研究与探索, 2005, (S1)

篇(6)

一、前言

电力电子技术是一个以功率半导体器件、电路技术、 计算 机技术、 现代 控制技术为支撑的技术平台。经过50年的 发展 历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。最成功地应用于电力系统的大功率电力电子技术是直流输电(hvdc)。自20世纪80年代,柔性交流输电(facts)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

二、电力电子技术的应用

自20世纪80年代,柔性交流输电(facts)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。已有不少 文献 介绍和 总结 了相关设备的基本原理和应用现状。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

(一)在发电环节中的应用

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

1 大型发电机的静止励磁控制

静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制 规律 提供了充分发挥作用并产生良好控制效果的有利条件。

2 水力、风力发电机的变速恒频励磁

水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。

3 发电厂风机水泵的变频调速

发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的 企业 不多,国内有不少院校和企业正抓紧联合开发。

(二)在输电环节中的应用

电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改善了电力网的稳定运行特性。

1 直流输电(hvdc)和轻型直流输电(hvdc light)技术

直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。1970年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。

2 柔性交流输电(facts)技术

facts技术的概念问世干20世纪80年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。

20世纪90年代以来,国外在研究开发的基础上开始将fa cts技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。

(三)在配电环节中的应用

配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力 电子 技术和 现代 控制技术在配电系统中的应用,即用户电力(custom power)技术或称dfacts技术,是在facts各项成熟技术的基础上 发展 起来的电能质量控制新技术。可以将dfacts设备理解为facts设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着电力电子器件价格的不断降低,可以预期dfacts设备产品将进入快速发展期。

(四)在节能环节的运用

1 变负荷电动机调速运行

电动机本身挖掘节电潜力只是节电的一个方面,通过变负荷电动机的调速技术节电又是另一个方面,只有将二者结合起来,电动机节电方较完善。目前,交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。首先是风机、泵类等变负荷机械中采用调速控制代替挡风板或节流阀控制风流量和水流量具有显著的效果。国外变负荷的风机、水泵大多采用了交流调速,我国正在推广应用中。

变频调速的优点是调速范围广,精度高,效率高,能实现连续无级调速。在调速过程中转差损耗小,定子、转子的铜耗也不大,节电率一般可达30%左右。其缺点主要为:成本高,产生高次谐波污染电网。

2 减少无功损耗,提高功率因数

篇(7)

中图分类号:B819文献标识码: A

一、前言

随着全球范围内的能源短缺问题日益严重,风力发电越来越受到重视,本文就电力电子技术在风力发电中的应用进行了探讨。

二、风力发电机系统

当定速风力发电机系统的缺点被描述出来后,开始倾向于使用变速恒频风力发电机系统,它的优点在于:

1.变速运行放宽对桨距调节响应速度的要求,降低桨距调节系统的复杂性。变速恒频风力发电机系统可以和当时风速相协调控制,即:低风速时桨距角固定,高风速时调节桨距角限制最大输出功率。

2.变速恒频风力发电机可以减小低风速下的空气动力干扰,使噪声降低。

3.变速恒频风力发电机以最佳的叶尖速比、最大的功率点运行,提高了风力机的运行效率。

4.变速恒频风力发电机系统可以减少转矩脉动,从而减少了输出功率的波动。

5.变速恒频风力发电机可以减少叶片和驱动轴上机械应力。

目前,拥有双馈感应电机的变速恒频变桨距调节系统(DFIG)非常流行,在风力发电机系统中将占有重要的地位。它与定速风力发电机系统相比,节省了静止无功补偿器,可以获取更多的电能和提高电网电能质量。由多个电力电子变换器和一个多极同步电机的变速变桨距调节系统在目前也很普遍,由于其能够忽略变速箱,因此,它的结构很有吸引力。除此之外,也存在一些使用单个变速器和多个电力电子变换器的感应电机系统,但是其使用范围不广

三、常见风力发电机系统

1.横速恒频风力发电系统

恒速恒频发电系统通常采用普通异步发电机,在国外,普通异步发电机一般被称为丹麦概念风电阻,正常运用在超同步状态。而在风速变化时,这种发电机的转速基本不发生改变,所以才被称之为恒速恒频风电机组,在具体的使用过程中,采用电力电子变换装置器的机会很少。主要特点为:恒速恒频风电机组系统结构较为简单,特别适合在那些缺少维护的环境中工作,如野外;由于恒速恒频风电机组的转速是不变的,所以无法进行跟踪及控制最大功率点跟踪,造成发电效率不高;由于恒速恒频风电机组的转速是不变的,所以等风速在短时间内迅速提高时,强大的风能将通过桨叶传递给发电机、主轴、齿轮箱等部件,进而产生较大的机械应力,容易使这些部件疲劳,甚至损坏,所以恒速恒频风电机组的发电机、主轴、齿轮箱等部件一般比较坚固;恒速恒频风电机组在正常工作时,不能对电压进行控制,也不能提供电压支撑能力,所以在电网发生故障时,不利于保持系统的稳定和系统电压的恢复;随着风速的不断变化和波动,恒速恒频风电机组发出的电能也跟着波动,而且相当敏感。

2.变速恒频风力发电系统

变速恒频风力发电系统是当前风力发电发展的重要趋势,主要是指通过变桨距控制风轮,这样即使在极大的转速范围内,也难实现整个系统的最佳运行效率。变速恒频风力发电组的主要特点有:变速恒频多电风电机组的结构相对于恒速恒频来说比较复杂,采用的是电力电子变频器;由于转速是变化的,所以能够实现对最大功率的跟踪,使得只要达到可发电风速时,就能实现最佳的功率输出,极大提高了风力发电效率;风轮机可以跟着风速的变化而自行改变转速,从而大大减小了力矩的脉冲幅度,对风力机的机械应力减小;针对风能的不断变化,风轮机可以进行加速、减速进行缓冲,减小输出功率的波动;通过采取SVPWM等控制策略,对风电机组无功输出和有功输出进行解藕控制,进而实现对无功输出和有功输出的单独控制,具备控制电压的能力。

四、电力电子技术在风力发电中的优势

风力发电之所以获得快速发展,除了能源需求增加,环保压力加大外,还因为风力发电本身具有独特的优点。

1.除水力发电之外,风力发电是当今世界上可再生能源开发利用中技术最成熟、最具规模开发和商业化发展前景的发电技术。

2.全球风能资源丰富。全球风能潜力约为目前全球用电量的5倍。中国也有十分丰富的陆地和近海风能资源,根据初步估算,中国陆地风能可开发量约253GW,海上风能资源更大,估计可开发量在750GW左右,两者总计约1000GW。

3.风能是可再生能源。常规化石能源终将耗尽,而风能取之不尽,用之不竭。

4.清洁无污染。据欧洲风能协会估计,到2020年风力发电可提供世界电力需求的12%,降低全球二氧化碳排放量超过12万亿吨。

5.施工周期短。风电场安装施工周期很短。单台风电机组的安装时间不超过三个月,风电场建设期不到一年,而且安装一台可投产一台、

6.实际占地少,对土地要求低。风电场内设备建筑占地仅约占风电场l%,其余场地仍可供农、牧、渔使用。

在风力发电发展的初期,风力发电机组经历了从定桨距到变桨距再到变速变桨距的发展过程。目前大都采用变速变桨距风力发电机组。在初期,电机都是采用普通异步发电机发电。普通异步发电机无法控制,并网的风力发电机组对电网来说相当于随机的扰动源(由于风速的随机变化),所以无论对电网的电能质量还是对电网运行的稳定性都有一定的消极影响。

五、电力电子技术在风力发电应用中的展望

1.采用永磁多极同步发电机的风电机组发出频率变化的交流电, 首先通过整流器整流成为直流电再通过逆变器变换为频率恒定的交流电送入电网。所有的电力都要通过变频器送入电网。这种系统在并网时没有电流冲击, 可以调节发电机的无功功率, 但是需要的变频器容量和风力发电系统的容量相同,设备成本较高, 并且有高频电流谐波注入电网。与固定速度风力发电机相比, 变速恒频风电机组节省了静止无功补偿器, 可以更多的捕获风能和提高风电机组发出电力的电能质量, 虽然增加了投资, 但是有利于整个风电场和系统的稳定运行。

2.变速恒频风电机组优点的实现, 取决于变速恒频风电机组控制系统的设计。在变速恒频风力发电系统中, 主要的变频器控制环节部分的组成及作用如下:

发电机侧变流器, 自关断器件(GTO、IGBT等)构成AC/DC变流器, 采用一定的控制方法将发电机发出的交流电转换为直流电。

直流环节, 一般直流环节的电压控制为恒定。

电网侧变流器, 由自关断器件构成的DC/AC变流器, 采用某种控制方法使直流电转变为三相正弦交流电(50Hz), 并能有效补偿电网功率因数。

上述变频器为交- 直- 交变频器, 也有采用交-交变频器的。永磁多极同步发电机的全部功率通过变频器进行转换, 而双馈异步发电机只有部分功率(转差功率)通过变频器进行转换。

3.双馈风力发电机组的控制

当发电机的转速n小于定子旋转磁场的转速n1时, 发电机处于亚同步状态, 此时变频器向发电机转子提供交流励磁, 发电机由定子发出电能给电网;当发电机的转速n大于定子旋转磁场的转速n1时, 此时发电机处于超同步状态, 由定子和转子发出电能给电网, 变频器的能量流向逆向。当n=n1时, 处于同步状态, 此时发电机作为同步电机运行, f2=0, 变频器向转子提供直流励磁。双馈电机的变速恒频方案是在转子电路实现的, 流过转子电路的功率是由交流励磁发电机的转速运行范围所决定的转差功率, 该转差功率仅为定子额定功率的一小部分, 变频器的成本即控制难度大大降低。采用交流励磁双馈发电机的控制方案除了可实现变速恒频控制, 还可以实现有功、无功功率的单独解耦控制, 对电网而言可起到补偿无功控制电压的作用。

六、结束语

加强对电力电子技术的研究,可以更好的使其应用在风力发电中,所以对该部分研究必须加强重视,研究该部分内容非常具有现实意义。

参考文献:

篇(8)

电子电工技术是根据传统的电工技术发展而成的,它是以计算机技术的发展为基础,电子电工技术是将电子与电工技术全方位、多角度的融合在一起,在电力系统中,伴随着电力的发展也起着举足轻重的作用。本文从电子电工技术在电力系统中的应用来分析,从中发现它的特点和作用。

1 电子电工技术的特点

随着电子科技的发展进步,新型的电子器件的使用和研发也与传统电工技术不同。并且,传统电工发展能力也有广泛的提升。随着电子电工技术在计算机基础上的应用,现代的电子电工技术也进入到时展的新阶段,以下可以从四个方面来分析电子电工技术的特点。

1.1 电子电工技术的集成化特点

电子电工技术的集成化特点就是全控形器件,是依靠多种单元器件的并联而形成的。在电子电工技术方面,它全部的基片为一个集成,这与传统的器件有着完全不同的分配方式。

1.2 全控化特点

电子电工技术的全控化,表现在其各类有自关断功能的器件中,它取代了传统电子电工技术的半控型普通晶闸管的应用,这就使得电子体检的功能层面有很大的突破。电子器件全控化的实施使得电子电工技术的自关断器件能够代替复杂的换相电路的传统器件,从而也在很大的程度上简化了电子电工技术的电路设计。

1.3 电子电工技术的高频化特点

高频化特点就是指器件在实现集成化的同时,不仅要提高它的能力,还要提高它的速度。例如:电子电工技术中所应用的电力晶体管,它的工作在十千赫兹频率下。电子电工技术的绝缘潘极性晶体管,它的工作在数十千赫兹以上。而电子电工技术中所应用的金氧半场效晶体管,它的工作可达到几百千赫兹以上。

1.4 电子电工技术的高频率化特点

提高频率化特点主要表现在变换技术和变换器件两方面。它能够通过不断减少器件的导通压力来降低导通管儿的损耗。并且,加快器件开关的升降,也可以将低开关的损耗,从而采用软件开发的技术,合理地将电子电工技术运用在器件运行的状态下,使其运行效果能够大幅度的提高。

2 电子电工技术的作用

在发展过程中,电子电路技术也继承了传统电工技术的优点。并且,它的制作也根据现代经济和技术的发展做了相应的调整和改变。因此,电子电工技术在发展的过程中,也为电力系统作出了重要的作用。可以在以下四个方面进行分析。

2.1 电子电工技术能够优化电能使用

在确保电力系统的正常运行状态下,对电子电工技术在电能资源的使用方面进行整合,并对其计数器件进行合理的配置,电子电工技术的实施过程中,也能够对电能进行大幅度的优化。并且,逐渐的广泛使用在电力系统的各个环节中。

2.2 电子电工技术的发展过程中,实现了机电一体化技术

随着我国高端的电子科技的研究和发展,电子技术的研发也对电力系统有着举足轻重的作用。并且,通过对传统的电子企业进行电子电工技术的改造、加工、整合和处理,也能够保障电力系统在与机算机进行网络连接时,能够稳定安全的运行。从而实现其新型机电一体化产业的大力发展。

2.3 通过对电子电工技术的研发,也能够促进电子技术智能化

因为,要想使电力企业中,电子电工技术的使用更加的智能化,就要保障信息功率的相继发展。并且,在这个基础上来促进电子电工技术与微电子技术一体化的发展,从而着力推动起第二次电力系统的发展革新。

2.4 工电力技术还能够指出电力系统工频的发展方向

因为,在电子技术发展的前提下,机电设备也在像小巧化的方向发展,从而也能够加快它系统的响应速度。因此,在发展过程中也要突破传统的运作方式,并以电脑技术为基础,对电子电工技术中的系统变化频率和高频变化率进行研究发展,从而确保电力系统能够在工作中正常运行。

3 电子电工技术在电力系统中的应用研究

3.1 电子电工技术的电力系统中的发电应用研究

电子电工技术在电力系统的发电过程中,主要体现在静止励磁、太阳能系统、机泵变频调速、变速恒频励磁,静止励磁是一种非线性的控制理论,由于它的理念先进,在全数字化的电脑控制技术方面也比较稳定。并且,对企业效益有很大的改善作用。目前,大型电厂发电机组都应用静止励磁技术。并且,它也取代了传统的励磁功能,从整体上提高了发电厂发电机组的运行效率。太阳能系统是21世纪的核心清洁能源,它也对发电具有战略性的意义。太阳能发电核心是大功率的电流转换器。所以,这里转换器也是以电子电工技术为基础来制造的。它是通过对大的规模的集成电路进行转化,将太阳能转化为电能,并保存起来。在电厂使用机泵变频调节也是电器发电环节中的一个不可缺少的部分,它能够在系统中对电气电工压力进行转化。并且,有效提高电压转换能力。因此,就能够节省运行的成本,提高电厂系统的运行经济效益。变速恒频励磁是多应用在水力发电中,它是由水头的压力和流量共同决定的效率。在水流量和压力变换的情况下,也会对发电机的工作效率产生影响。在风速发电过程中,也会取决于风速的快慢。它会随着风速的变化而变化。通过使用变速恒频励磁能够提高发电系统的整体运行效率,提高发电系统的经济效益。

3.2 电子电工技术在电力系统的输电环节中应用研究

在电力系统的输电环节中,电子电工技术主要体现在柔流电的输电技术和高压直流输电技术,以及静止无功补偿器的应用方面。柔性的电流输出可以通过机械控制技术与电脑相互结合,从而始电力输出能够稳定,减少电量的不必要损失。因此,它具有很强的稳定性与安全性。高压直流电的输出是对晶阀管和交流阀以及变换器进行使用,它的使用不仅增强了输电转化设备本身的移动能力,也加强了相关设备市场的竞争力。它也能够有效降低电厂的运用成本。静止无补偿器的应用也是电工电子技术的使用关键,它取代了传统的电器开关,已成为我国电器发展的必备产品。

4 结论

在电力系统发展过程中,电子电工技术起着不可估量的作用。它是电力系统现展的目标。所以,针对我国当前电力系统发展的现象,对电力系统发电环节,输电环节两方面进行研究论述,从而对电子电工技术在电力系统中的应用进行探讨,这也有利于促进我国电力企业健康可持续发展。

参考文献

[1]林雪山.电力电子技术在电力系统中的应用[J].黑龙江科技信息,2011(17).

[2]路红娟.电力电子技术在电力系统中的应用[J].电子世界,2014(12).

篇(9)

1前言

电子电工技术作为一种新技术形式,能够将电力技术与电子技术有效的结合在一起,提高对电力的处理效果,具有一定的智能性、全面性。特别是近年来,电子电工技术的不断发展及完善,将先进的信息技术与智能控制技术有机的结合,使电子电工技术更加适合在电力系统中应用,提高电子电工技术的利用价值及未来的发挥。

2电子电工技术在电力系统中的利用价值

在电力系统中良好的应用电子电工技术,可以提高电力能源的生产速度,保证电力能源符合人们生活需求,本文将具体阐述电子电工技术在电力系统中的应用价值。

2.1电子电工技术的应用可以促进机电一体化的发展

近年来,电力电工技术的不断发展,使更多的先进技术被融入到电子电工技术中,保证电子电工技术在电力系统中的应用效果,在电力生产过程中有效的利用电子电工技术,可以实现电力系统与先进信息技术及网络的结合,从而完善电力系统的管理方式及生产安全,促进机电一体化的发展。

2.2提高电能的利用率

电子电工技术作为电力系统的重要组成部分,其利用程度与企业电能的生产效率关系密切,在电力系统中应用电子电工技术不仅可以保证电力能源的整合和合理配置,还能在一定程度上优化企业电能,提高电能的利用率。

2.3保证电力系统的全面化、智能化发展

结合电力技术与电子技术两张新型技术的优点,保证在电力系统中应用更加全面化、智能化,另一方面,电子电工技术与微电子技术的结合,将会促进电力系统的进一步发展,保证电力生产过程中更加智能,提高电力企业的发展速度。

3电子电工技术在电力系统的具体应用方式

3.1电子电工技术在发电过程中的应用

3.1.1太阳能发电控制

太阳能这种取之不尽和用之不竭的新型能源是以后能源结构得以调整的一种战略性策略,功率比较大的太阳能发电,不论是并网系统,还是独立系统,通常情况下都要求转化太阳能电池阵列发出的直流电为交流点,因此电力系统的核心是发挥最大功率跟踪作用的逆变器。我们国家的主导是10kW-15kW的独立系统,美国西门子发电厂有7.2MW的大型化系统。

3.1.2发电厂风机水泵的变频调速

发电厂的用电率大致是8%,而火电装置总耗电量当中的风机水泵的耗电量占到65%,并且具有比较低的工作效率。运用高压或者是低压变频器并通过风机水泵的变频调节速度,可以有效地节约能源。低压变频技术已经十分成熟,完整的系列产品在国内外不少的生产企业中具备,然而,设计与生产高压大容量变频器的企业比较少,国内的一系列高效与生产企业正在逐步地研发。

3.2电子电工技术在电力运输过程中的应用

要保证电力系统的合理工作,就要增加电力运输过程中的工作效率,减少电力运输过程中的电力损失,电力运输主要包括直流输电和交流输电两个方面,可以通过电子电工技术对这两种电力运输进行控制,提高输电安全性及电力运输效率。

3.2.1直流电力运输

主要采用晶闸变流设备完成直流输电工作,这种设备的应用即可以保证输电的安全性,还能减少输电过程中的电力损失,增加电力企业电能的生产,同时这种输电设备可以适应恶劣的自然环境、适合与远距离输送的特点,更提高了电子电工技术在电力系统的应用程度。

3.2.2交流电力运输

交流电力运输主要采用柔流电输电技术,通过电子电工技术与机械控制技术的有机结合,运用弹性技术的理论,使电力运输过程当中的电力损失降低,提升对输电器材的保护作用和输电安全性。最后,电子电工技术在电力系统中的应用还有很多,例如在节能方面合理应用电子电工技术的调节速度控制代替挡风器材,能够节省能源,同时使共作效率得到提高,但是造价较高,不适合小型电厂的使用;在电力系统的配电过程中,就需要电子电工技术的加入,保证对电力的控制,促进电力企业的和谐发展。

3.3超级宽带网中的微型光芯片技术

在当今的生活中,已经有50%的美国家庭通过宽带连接互联网。然而,这种连接在最后一段的基础设备通常是已经落后的同轴电缆及电话线。光缆入户的成本太高,是不能的,每个家庭的本钱大概1300美元。微型光芯片能够使这种状况发生变化,采用微型光芯片能够很大程度的使光缆成本下降,让家庭使用者真实的享受超级宽带。微型光设备把光路和通常是分离的光学元素合成在一个光芯片上,这又是一个让电信业经济学发生改变的重大技术方面的创新,电信业采用光芯片能够很大程度降低传输数据的成本。光学元器件卖出的价值高达数万乃至数十万美元,很可能因为光芯片的采取而大大使体积缩小,成本下降90%以上。“微型光器件将会把自己的计算机业的经济学带到电信业来。”Parama网络公司的CEOHemantBheda十分确定地说。该公司生产的价值5000美元的光器件可以代替之前价值5万美元用于多路传到的光学器材。Infonetics研究公司的霍华德先生也说过:这是项技术是具有破坏性的。因为它的产生打破了电信业的近况。第一种光芯片已经开始在Infinera公司创造的高端传输程序中运转;同时Parama公司正在把自己研究的光芯片发售给一家坐落于亚特兰大的设备开发商———Movaz网络公司。一直到2010年,光芯片的市场规模估计会达到数十亿美元。如今,消费者对这一项技术估计不会过于关注,然而10年后,在家里下载一部高清晰度电影就如同是今天看娱乐频道一样平常,就基本不会对这一技能置若罔闻。

4结语

电子电工技术作为提高电力系统发展的重要手段,在电力系统中合理应用电子电工技术,可以促进电力系统各个方面的发展,因此电子电工技术的发展具有重要意义,希望有关单位可以重视,提升对电子电工技术的探究,增加电子电工技术在电力系统中的应用程度,为我国电力行业的发展奠定基础。

参考文献:

[1]郑锦彪.浅谈电力电子技术在电力系统中的应用与研究[J].黑龙江科技信息,2007(5).

篇(10)

中图分类号:G712 文献标识码:B 文章编号:1002-7661(2015)16-029-01

电子电工技术是在传统电工技术基础上更新发展的一个新兴门类,它是以计算机技术的发展和普及为前提的。电子电工技术可以说是电工技术与电子技术多维度结合,其在电力系统中的建设发展当中起着非常重要的作用。本文就此对电子电工技术在电力系统中的应用进行探讨阐述。

一、电子电工技术的特点

随着电子科技的快速发展,电子器件的研发、创新和使用有效提升了传统的电工技术,使其从传统技术阶段步入电子电工技术阶段。目前的电子电工技术主要具有如下几个特点:

1、电子电工技术的集成化特点

电子电工技术的集成化,指的是全控型器件依靠多种单元器件的并联,全部集成到一个基片上,这与传统器件有着完全不同的分立方式。

2、电子电工技术的高频化特点

高频化,指的是电子器件在实现集成化的同时提升工作效率。就以电力晶体管(GTR)来说其可以在十千赫兹频率以下工作,而绝缘栅双极型晶体管(IGBT)则可以在数十千赫兹以上工作,金氧半场效晶体管(MOSFET)则比这两种的工作速度更快,其频率最高可达几百千赫兹。

3、电子电工技术的全控化特点

电子电工技术的全控化特点表现在电力系统的应中当中为各种有自关断功能的器件用来取代半控型的普通晶闸管,这可以说是电子器件功能上的重大改革提升。电子器件的全控化特点,使电力系统应中的自关断器件取代了有着复杂换相电路的普通元件,其有效简化了电路的设计。

4、电子电工技术的高效率特点

电子电工技术的高效率化,主要表在变换技术以及器件两个方面。通过持续减少器件的导通压降,从而使导通损耗得以降低;提升器件开关的升降过程,与此同时还能减少开关损耗;而且软开关技术的应用,大力促进了其运行效率的提升。

二、电子电工技术的作用

电子电工技术较之传统电工技术,其既具有传统电工技术的模式优点,同时又在传统技术的基础上做了一些技术调整和革新。因此,其在电力系统的应用当中,起着举足轻重的作用,具体表现如下:

1、电子电工技术的应用可以优化电能.在保障电力系统安全平稳运行的同时,其可以有效整合和优化配置电能资源,在力提升电能,并可以日益应用于电力系统的各个环节部位。

2、电子电工技术的应用可有效实现机电一体化.随着高端电子科技的发展和新型产业对电子技术的研发应用,通过对传统产业进行全面的电子电工技术的处理和改造加工,在保障电力系统在计算机互联网络下的稳定和运行安全的同时,实现了其在新型机电一体化产业上的发展。

3、电子电工技术的应用可以促进电子技术智能化.电子电工技术的应用可以促进电子电工技术更趋自动化、智能化,其可以有效促进信息和功率的协调运行,由此更加促进电子电工技术和微电子技术的一体化,有效推动电力系统的再次改革更新。

4、电子电工技术的应用可以指出系统工频的发展方向

在电子电工技术的背景下,要想使机电设备既向精巧化又想提升系统的响应效率,则需要改变传统模式,并在其基础之上加强系统变频化与高频化的技术提升,以有效保障提高电力系统的正常有序运行。

三、电子电工技术在电力系统中的应用

电子电工技术目前已经普遍应用于电力系统当,主要表现在如下几个方面:

1、电子电工技术应用于发电环节当中

电子电工技术应用于在发电环节,可以有效推动和改善发电系统的发电机组功效。

第一,静止励磁。静止励磁目前已经普遍运用在大型电力系统的发电机组当中。这种技术的应用有效替代并促进提升了电力系统发电机组的运行能效。第二,变速恒频励磁。水力发电系统当中,水有流量和水压的大小可以制约并影响发电的效率,而在风力发电当中,风的速度同样可以影响发电量的多寡。因此,在电子电工技术应用于电力系统之后,可以使机组的自转速度与电流的频率达到协调一致,从而可以达到最大功效。第三,机泵的变频调速。在电力系统中的高压电和低压电相互转换时,应用变频机来取代风机水泵变频器,从而使效率最大最优,所以电子电工技术还有待于强化这方面的应用。第四,太阳能系统。太阳能是当下具为清洁环保的能源,共应用意义非凡。而在太阳能发电的应用当中,大功率电流转换器则是其运行的技术核心。

2、电子电工技术应用于输电环节当中

当下时期,电子电工技术已经应用在输电环节的高压直流电、柔流电输电技术和静止无功补偿器的应用当中。从而可以节约电力系统运行成本,使电流在输送过程中更加稳定安全,更加快速精准的控制电器。

3电子电工技术应用于配电环节和节能环节

电子电工技术应用于配电和节能环节,可以有效控制电能质量,可以在电压、频率、谐波及非对称条件上都达到更高的标准。另外,其可以提升电动机运转速度,以调速控制代替传统挡风设备,提高效率,节约能源,达到节能的效果。

四、结语

总而言之,电子电工技术在电力系统的应用发展当中有着至关重要的作用,是电力系统改革发展的方向。因此,我们要积极推行其在电力系统的应用,加大研究和实践应用,推进提升电子电了技术水平,保障电力系统的稳定高效发展。

参考文献:

篇(11)

在社会科技的发展进步下,电子科技为人们生活提供了更多的便利。其中,电力电子技术作为一种广泛应用在电力系统中的电子技术形式,能够加强对电力系统中各个电子元件的转换和控制,进而提升电力系统工作发展效率。电力电子技术由电子学、电工原理和自动化控制技术共同组成,三者相互配合,进一步加强了对电气设备的控制和对电路的数据检测,促进了人们对电力系统的稳定应用。

1 电力电子技术在电气控制中应用的意义

1.1 能够促进相关工作人员工作的顺利开展

伴随人们用电需求的提升,传统电力系统应用问题日渐凸显出来,加重了电力系统故障,带来了电力应用安全隐患。为了减少这些安全隐患,促进电力系统安全发展,需要相关人员加强电力系统技术管理。电力电子技术的应用能够简化电力工作人员管理操作,提升电力系统技术管理效率。

1.2 电力电子技术自身性能良好

电力电子技术在技术构造、应用方向显示出了自身良好的性能,得到了人们的广泛应用,将其应用到电气工程中能够促进社会生产发展,带动电气工程进步。

1.3 能够提升电子技术系统适应力

电力电子技术显示出了良好的适应力,方便工作人员操作。将其应用在电气控制中能够提升工作效率,降低人们的工作压力,提升电力企业的发展空间。

2 电力电子技术在电气控制中的应用分析

2.1 电力电子技术在电气控制系统中软开关控制装置中的应用

在电子技术和电力系统的不断发展下,电力系统本身对电磁的兼容性和工作效率要求提升,为此,需要电力装置系统进行改进,提升装置本身的轻便型和小型化。在传统的电力系统中,一般是通过开关控制来节省变压器和电容器元件空间。但是这种开关控制的方式会带来巨大的损耗,影响了电路发展效率,严重的还会产生一种额外的电磁干扰。电力电子技术支持下的软开关控制装置在某种程度上解决了噪音和过多损耗的问题,被相关人员广泛的应用在电力系统中。电力电子技术支持下的软开关控制装置在开关频率大于1Mhz的情况下,也能够保证自身性能达到最好的状态,有效将各个简单的电路并联形成一种新的组合电路,有效提升了电力系统性能,被广泛的应用到各个领域中。

2.2 电气控制系统中的过电流保护

电力电子电路在出现运行故障之后会出现过电流的现象。针对这种问题的解决以往采用的是尽快切断熔断器、直流快速断路器以及电流继电器的方式来保护电力电子主要电路。但是现阶段的电力电子器件变得越来越小,功率性能越来越大,传统的保护系统装置无法再起到作用。因而,为了减少过电流的现象,人们开始关注自动去除驱动控制信号方式。具体是指通过设置专门的过电流保护电子电路,对检测过电流之后及时发出、调节或者驱动电路。

以桥臂互锁保护法应用为例,具体分析在过电流故障下快速自动切除驱动信号的过程。桥式逆变电路在受到信号重叠或者开关器件延时时间长的时候会出现桥臂短路的问题。为此,需要应用联锁的方式,通过联通桥臂上两个以上的元件来降低短路现象的发生。

2.3 电力电子技术支持下的静止无功补偿装置

随着社会的发展进步,人们的用电需求提升,加大了对电网功率的需求。电网功率在发生频繁的变化和冲击之后会在很大程度上影响电网运作的稳定性,也制约了对电网电路中低频震荡的合理控制。电力电子技术支持下的静止无功补偿装置可以增大电力系统和负载的相关因数,同时有效降低电力系统中功率损耗值,提升电力系统的稳定性能,促进人们合理使用电量。

2.4 电力电子技术支持下的有源电力滤波器

电力电子技术支持下的有源电力滤波器工作原理是通过对电路系统补偿元件的检测分析,从中获得相应的等分量的谐波电流。之后借助补偿装置产生和谐波电流分量相反的电流分量,实现电流分量和被检测谐波分量的互相抵消。通过这种的检测,电网中的运行电流不再存在谐波电流,代替的是基波电流的存在。电网中的有源力滤波器具有反映快速、抗干扰能力强的特点,主要由补偿电路装置和指令性的电流运算电路共同组成。在应用电力电子技术的情况下能够实现对电路系统中补偿电流的检测分析,进而有效获得电力系统中的电路无功电流和谐波数量。

2.5 电力电子技术支持下的高压直流输电技术

我国现阶段大多数发电厂输出的一般都是交流电压,在交流电压输出的时候会产生大量的能源消耗,且这些能源应用不方便工作人员的控制,且能源消耗管控的资金费用较高。为此,很多发电输出厂开始应用直流电进行输电,经过高压直流输电技术能够实现交流电和直流电之间的相互转换。直流输电一般应用在高电压容量以及距离较远的输电系统设施中。交流电压到直流电压的转变可以借助高压直流输电技术实现,之后再直流电逆变的时候变成直流电,方便用户的使用。

2.6 PWM控制技术

PWM控制技术是指通过对待脉冲宽度的调节来获得相应波形的控制技术。PWM技术应用原理是面积等效原理,即面积相等、不同形状的窄脉冲加在具有惯性的环节上的时候,所能够输出的响应波一致。PWM技术能够被广泛的应用在各种变流电路中,其中发展最为成熟的是直-直斩波电路。除了特殊的超大功率逆变装置之外,基本上逆电电路都会应用到PWM控制技术。

3 结束语

综上所述,随着社会科学技术的发展进步,电力电子技术被广泛应用在各个领域中,其在电气控制领域发挥了重要的作用和意义。为了更好的发挥出科技支持下电力电子技术在电气控制中的作用,需要相关人员在对现有技术的研究分析上不断发展适应社会发展的新技术和新产品,促进电力事业的发展进步。

参考文献

[1]万志豪.论电力电子技术在电气控制中的应用[J].电子技术与软件工程,2016(24):243.

[2]胡欣然,张海涛,刘洋.电力电子技术在电气工程中的应用[J].山东工业技术,2016(13):178.

[3]周凯,那日沙,王旭东.Saber在电力电子技术仿真中的应用[J].实验技术与管理,2015(03):126-128+140.

作者简介