欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

人工智能在教育领域的价值大全11篇

时间:2024-03-01 15:49:54

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇人工智能在教育领域的价值范文,希望它们能为您的写作提供参考和启发。

人工智能在教育领域的价值

篇(1)

[DOI]10.13939/ki.zgsc.2016.36.197

1 中学教育现状

教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。

目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。

1.1 学生得到的公共教育资源不足

学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。

1.2 学生获取的社会教育资源不公

学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。

本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。

2 智能辅助学习

2.1 人工智能简介

人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。

在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。

2.2 智能辅助学习系统

智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。

该智能辅助学习系统,具备以下几个特征。

2.2.1 虚拟教师跨学科能力

与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。

2.2.2 虚拟教师深度自学习

虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。

2.2.3 接近自然语义的沟通

学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。

2.3 优势分析

智能辅助学习系统,有三大核心优势。

一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。

二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。

三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。

2.4 前景预测

笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。

第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。

第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。

3 结 论

本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。

参考文献:

[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).

篇(2)

引言

科学技术的飞速发展,使计算机网络成为人们生活和工作的重要组成部分。在计算机应用领域,将人工智能与大数据进行融合,可有效解决计算机网络管理中安全性的问题。然而,在大数据时代背景下,由于人工智能技术的发展仍处在探索阶段,在计算机网络技术中的应用还存在许多问题。基于此,深度探讨人工智能应用优势,并针对人工智能在计算机网络技术中的应用提出几点建议,具有十分重要的意义。

1大数据时代人工智能技术的含义及应用优势

1.1大数据下的人工智能技术

人工智能作为计算机技术体系下的分支,是一门融合开发和研究为一体,主要作用于开发人类智慧所应用的科学技术。在人工智能不断发展的历程中,对于人工智能的探索逐渐延伸至管理学、语言学、社会学等学科,使人工智能能够更好地接近人类大脑,完成对社会中存在各类要素和信息的采集,并模拟出人脑对图像和声音出现的反应。在大数据时代背景下,人工智能可借助大数据内容多和规模大的特征,替代人们完成部分工作,为人们生活和生产提供便利,以进一步增强人们的幸福感。人工智能与大数据的配合,可将人类思考习惯进行数字化处理,并完成对数据的储存。在未来发展中,人工智能可实现对人类日常生活的复制,实现机械化的自动操作和控制。通过大数据和人工智能的相互配合,可为人类和技术的发展提供更广阔的空间。1.2大数据时代下人工智能在计算机网络技术中的应用优势在大数据时代背景下,人工智能在计算机网络技术中应用所体现的优势,主要体现在以下几方面:①完成对信息的预测,在计算机网络运行中,要想提升运转速度就要及时处理系统中存在的模糊数据,但对于这部分信息价值的辨别存在一定的难度。如依照传统处理方法会增加系统运行成本,对系统造成影响。在大数据时代人工智能的干预,可依据模糊分析理论更有效辨别信息价值,完成对信息的预见,进而实现计算机网络运行效率的提高。②增加网络监管能力,计算机系统的快速发展使得计算机网络结构日趋复杂,为网络监管带来难度。而人工智能的参与可实现对网络的分类管理,不但提升管理的效果和能力,还为网络营造更加安全的环境。③人工智能强化数据整合,在人工智能和大数据相互协作下,对于计算机网络空间中存在的信息进行快速整合,完成对各类资源的有效配置。还可加快资源整合的速度,减少资源的消耗,降低计算机网络的运行成本。

2大数据时代下人工智能在计算机网络技术中的应用对策

2.1计算机网络安全管理中人工智能的参与

①在计算机网络网络安全入侵检测中应用人工智能。在大数据时代下,计算机网络环境日趋复杂,各类病毒和木马的入侵可对网络造成不可逆的影响。而在计算机网络管理中应用人工智能,可通过对以往入侵情况的分析,建立数据集成的系统,通过数据编码将入侵特征进行编码转换,在系统中储存完整的信息。一旦计算机网络出现入侵系统的情况,对网络安全造成威胁,系统就可依据设定对入侵类型进行辨别,并完成安全处理,保障计算机系统和网络的安全。②数据挖掘技术在计算机网络安全管理中的应用。数据挖掘主要是指将网络从主机会话中分离出来,并通过对网络控制实现计算的规范化,并将其产生的数据储存到数据库中,在遇到网络风险时就能完成数据的辨别。③人工神经模拟。人工智能的模拟技术可模仿人类大脑的思考和处理逻辑,在网络运行中,可对噪声等要素进行识别,并通过检测,完成对网络的安全性检查,提升网络运行安全性,提升检测的质量。④危险信息拦截和垃圾处理。在计算机网络安全管理中,人工智能可在网络系统中建立智能防火墙,对部分危险信息进行识别,并完成拦截。还可在系统设置访问权限,提升安全防控的效果。同时,在垃圾处理方面,人工智能和大数据的相互配合,可实现对网络遗留数据痕迹和垃圾的检测,快速找到包含病毒的文件,并在人工智能处理模式下完成病毒的处理,消除网络中存在的安全隐患。另外,人工智能可完成对系统资源的扫描,通过对信息的分析和处理,将数字化数据反馈给用户,使用户更加直接地了解计算机网络的运行状况,为进一步保障计算机网络安全提供帮助。

2.2计算机网络管理系统中人工智能的导入

①系统数据库技术。在计算机网络系统中,利用人工智能技术将计算机系统运行的内容转化为数据,将简单内容在变为复杂的程序,在运行中对其进行不断的优化,找到有效的运行方式,实现对系统对有效的管理。这种人工智能和大数据的相互配合,可有效弥补传统数据加工在内容逻辑性方面的缺陷,并通过数据库的建立,使得计算机网络系统在运行速度和储存空间方面都得到提升。②智能问答技术。在计算机网络搜索功能中,人工智能技术的参与可使得用户利用部分有效信息就能获得海量的资源,提升网络资源的使用效率。这种智能问答方式主要以简单指令为核心,通过对关键词的识别在海量数据中快速筛选到相关的资料,获取到用户需要的内容。这种工作方式可减少搜索的时间,完成对资源的合理应用。比如,用户在搜索栏中输入“流行乐”,当下在音乐市场中流行的乐曲都能显示出来,并带出“流行乐”相关的搜索标签,找到更多相关的信息和数据,减少搜索的时间,并提升搜索的整体质量。③智能技术。计算机网络系统可完整记录用户的搜索数据,并从海量资源中挑选出相关内容,完成对用户的精准推送,这种服务的机制,可减低用户大量搜索的时间,并在短时间内找到更有效的相关信息,提升计算机网络系统的应用效果,带给人们更多的便利和帮助。

2.3计算机网络运营系统中人工智能的支持

篇(3)

人工智能概论课程是我校智能科学与技术专业开设的一门重要的专业基础课,它在整个专业教学体系中起到奠基的作用,如何针对其特点制定合理的教学目标与授课内容,并有效地组织课堂教学,取得良好的教学效果是非常重要的,本文将从多个角度对其进行全方位的思考与探索,为相关课程教学的改革提供新的思路。

1教学目标的精确定位

首先,人工智能概论课程在智能科学与技术专业整个教学体系中起到引导和奠基的作用,但不同于其他相关的专业基础课,其总的特点可归纳为“少而精”,即在较少的教学授课学时中起到画龙点睛的作用,为学生进一步的深入学习打好基础,并激发他们对智能专业的学习兴趣和爱好。基于以上特点,通常选择一学期共32学时课程的安排计划,并且在大三上学期开始进行授课。

其次,要研究解决同学们所反映的“虚与实”问题。人工智能是一门涉及到多个学科的课程,具有相当复杂的背景,其与哲学、数学、经济学、神经科学、心理学、计算机工程、控制论和语言学都有着密切的联系,并且随着这些学科的发展而深化,不断产生新的思路和新的问题。以上特点决定了该课程内容较为抽象,且难以把握全局,学习起来不易消化理解,从而造成了学生学习的困难,容易产生畏惧感,并且学生常常对其在实际环境中的具体应用产生疑问。

如何在这么短的授课学时里使学生产生学习兴趣并且能取得良好的教学效果是一个具有挑战性的课题,这需要对该课程的授课内容、教材选择、讲授方法和考核形式进行全方位的思考与探索,并在教学过程中落在实处。一方面让学生了解和掌握人工智能的发展历史和思想渊源,并指出各个分支的本质特点和整个领域的发展趋势;另一方面有意识地穿插介绍人工智能在实际中具体应用的例子,开阔学生的眼界,打消他们的疑虑。这些将在本文的后面部分进行深入的介绍。

最后人工智能概论这门课程还要兼顾研究型和应用型这两种特点的共同发展。在以前,由于人工智能授课内容的特点,常常讲授时偏向研究型,往往涉及到复杂的数学推导和逻辑运算,增加了老师讲授的难度和学生学习的困难。因此,针对上述问题,在教学过程中可以引入多种形式的事例说明和多媒体演示环节,以讲授思想为主,具体技术为辅,这将直接反映到授课内容的选择上。

2授课内容的选择

人工智能概论授课内容的选择至关重要,本着该课程“少而精”的特点,既需要让学生在较短时间内掌握基本的思想与概念要点,又要对该课程进行全方位的介绍,并点出其发展趋势,因而对授课教师有着非常高的要求。由于授课课时的限制,我们无法做到既面面俱到,又对每个具体方向进行详细的讲解;而且这样也容易陷入复杂的数学推导和逻辑运算的误区。因而,整个课程的讲授内容应该以传授思想和概念要点为主,并在讲授的过程中加入有趣的事例,通过这些形象的事例说明和多媒体演示环节折射出人工智能思想的精髓和应用的广阔前景。

人工智能概论主要涉及到知识表示、搜索推理、计算智能、专家系统、机器学习、自动规划、Agent和自然语言理解等内容,其中以知识表示、搜索推理和计算智能为授课内容的重点,在讲授的过程中需要对这些内容加以整理精简,分清主次,合理地安排授课内容在总学时内。除了这些基本的授课知识外,还应该在教学环节引入多媒体演示,通过形象生动的视频演示让学生们了解人工智能的科学价值和实际应用所在。视频可以选用世界一流大学实验室的开放多媒体内容,例如:MIT计算机科学与人工智能实验室的相关科研项目中间过程及结果的视频演示,以此来开阔学生的眼界,增长他们的见识,使之了解其应用前景和未来的发展空间。

人工智能领域的发展受到多个学科的影响,这些学科在不同历史时期都对人工智能领域起到了各种推进作用,也产生了许多不同层面的争论,至今也是如此。如何在授课过程中形象地对人工智能历史进行回顾,阐述这些学科对人工智能领域的影响,尤其是思想方面的影响特别重要。“回顾历史,立足当今,展望未来”――给学生形象地描绘出人工智能发展的思想史,并以画龙点睛之笔指出人工智能领域发展的广阔未来,是授课教师艰巨而光荣的任务,只有这样才能使学生把握住人工智能领域的整个发展脉络,激发出他们的学习兴趣和爱好。

以哲学家对强人工智能方向的争论为例,向学生们介绍这些收集整理的资料对于他们思想的启迪是非常有益的。这里值得说明的是这种思想的阐述事实上是非常不容易的,其难度甚至高于复杂的数学推导,因为它常常要求授课教师掌握思想的精髓所在,并用非常形象生动的语言对其进行说明,而这些常常是现在书本中所没有的。例如:知识的表示、获取、存储和推理是人工智能领域中重要的组成部分,虽然目前已经有很多书籍详细地介绍了这些方面,但学生仍然反映听起来比较抽象。为什么会这样?其原因是一些基本的问题并没有得到圆满的说明和阐述,如“什么是知识”,“知识能够表示吗”,“有统一表示各种各样抽象、复杂知识的工具吗”,“抽象的美学与复杂的人类情感,知识能够表示吗”……其中有些问题看似容易回答,却往往涉及到一些复杂的哲学问题,目前在各种人工智能的教科书和专著里常常对这些问题避而不谈,只在数学的层面上针对具体的问题来进行说明和讲授。如果想在这方面有所突破的话,就需要阅读大量的哲学书籍,如认知学、知识论和心智哲学等领域的著作,还需要大量时间的理解和参悟,这些有价值的资料也是对授课内容的极大丰富和补充。近年来,认知神经科学、心理学、生物学、语言学甚至社会学对人工智能领域有着较大的推进作用,也是将来融合发展的总体趋势,如何在课堂上结合具体的事例对其加以说明也是授课内容的一个重要环节。

3相关教材的选择

众所周知,关于人工智能的国内外优秀教材有很多,例如:S.J. Russell和P. Norvig所著的《Artificial Intelligence――A Modern Approach》被全世界89个国家的900多所大学用作教材[1],国内可以考虑使用其影印版或中文翻译版本,大大的降低了购买国外原版教材所需的费用,并可以在此基础上考虑实现双语教学。此外还有蔡自兴教授等编著的人工智能及其应用,详细而恰当地介绍了人工智能领域中的各个研究方向(分别适合于本科生[2]和研究生[3])等。我们从整个教学时间安排上看,因其所占学时较少,所以人工智能概论课程的教材选择不适用于大部头的书籍,宜选用篇幅较小但内容较全的适合于本科生的教材。除了选择合适的教材外,对于任课教师还要拥有大量的参考书,包括上述提到的其他领域的书籍和资料,只有这样才能拓展所掌握的知识,为实现良好的教学效果而服务。

4讲授方法和考试形式的选择

课程讲授时注意主线的选择,着重以思想介绍为主,详细地介绍人工智能发展的历史以及各种学派和学说,如符号主义、连接主义和行为主义等,要重点介绍他们的特点和本质,指出它们形成的原因以及其中的不足之处,并向学生介绍新的学说,例如机制主义[4]等。整个教学过程并不涉及较为复杂的数学,要注重各个分支的思想源流,主要从其机制上做定性介绍。同时可在讲授过程中穿插相关历史问题的争论,例如:中国屋问题[5]等,引发学生学习的兴趣和爱好,开展交互式教学,使学生和老师产生互动。授课方式采用板书和多媒体交互使用方式,力争在每节课的空闲时间里穿插加入人工智能领域的实际应用介绍,放映相关的视频录像,开阔学生们的眼界。在最终考试形式的选择方面不是要学生死记硬背知识点,而是要注重学生思想的发挥,鼓励学生提出新想法和新思路,并丰富其掌握的相关知识,为将来的进一步学习打好基础和做准备。

5结语

我们认为在教学方式上力争采用“启发式”教学,能真正做到启迪学生思想的作用,尤其要鼓励思想创新,在高等教育阶段培养学生具有独立思考、勇于探索的能力,使之成为社会的有用之才。希望这些在人工智能概论课程教学中的思考和探索能在日常教学活动起到有益的作用,并与同行们共同交流和探索。

参考文献:

[1] S.J. Russell, P. Norvig. Artificial Intelligence:A Modern Approach[M]. 2nd Ed. 北京:清华大学出版社,2006.

[2] 蔡自兴,徐光佑. 人工智能及其应用本科生用书[M]. 3版. 北京:清华大学出版社,2003.

[3] 蔡自兴,徐光佑. 人工智能及其应用研究生用书[M]. 3版. 北京:清华大学出版社,2004.

[4] 钟义信. 机制主义方法与人工智能统一理论:人工智能的新方法与新进展[J]. 计算机教育,2010(19):7-10.

[5]J. Preston, M. Bishop. Views into the Chinese Room: New Essays on Searle and Artificial Intelligence[M]. Oxford: Oxford University Press,2002.

Teaching Reflection on Introduction to Artificial Intelligence

YANG Dedong, SUN Hexu, YANG Peng, ZHANG Lei

篇(4)

一、计算机网络技术对人们生活的影响

(一)变革工作方式

计算机网络等相关新兴技术的出现,为社会上的各行各业都带来了很大的变化。首先对于工商业来说,也是最早应用计算机网络技术的行业,在当前各行各业处于快速发展的过程中,对于计算机等新兴技术也有了更强的依赖性,企业借助计算机网络技术可以提升工作效率,同时也可以改变传统工作中存在的缺陷。在银行中主要就是利用互联网等技术来为客户提供服务,同时现在的网络购物技术以及互联网金融的快速发展,也使得越来越多的行业都面临着新的变革,并且人们也享受着网络技术所带来的便利,借助计算机网络技术可以查询企业的资源利用状况,也可以为企业的发展提供一些指导性的意见[1]。计算机网络技术等也被广泛的应用于教育领域,在教育中借助现代化技术可以显著提升教育质量,也可以摒弃传统教育存在的缺陷。如果仅仅通过枯燥乏味的教学模式是无法提升学生的学习兴趣的,在其中引入现代化的教育手段,可以培养学生的学习兴趣,同时也可以将一些枯燥乏味的内容以更加形象的方式呈现在课堂上,这样可以丰富课堂教学手段。比如借助PPT等形式可以将书本上的知识以图片视频方式呈现出来,这样可以使得教材内容更为直观,也可以使得学习过程更为高效。在教育界有效的引入现代化教育技术,可以显著提升教育质量,同时也催生了远程教育的产生,学生在家中也可以借助互联网与老师进行沟通交流,这极大的促进了教育得推广,也为我国所推行的素质教育奠定了基础[2]。

(二)革新消费方式

计算机网络技术的快速应用以及新技术的快速应用现,也在很大程度上改变了人们的生活消费与交流方式。当前相关技术的快速发展,也使得人们的购物方式发生了很大的变化,我们在生活中最为显著的一个购物行为变化就是网购行为越来越多。尤其是很多网络店铺的兴起,其凭借着京东、阿里巴巴等大平台为当下用户提供了非常便捷的购物服务,人们足不出户便能购买到自己心仪的商品,同时在网上也可以获取自己想要的资源。结合自己的需求立即购买产品,这种消费方式省时省力,不用出门也可以达到自己的需求。在该过程中人们的支付方式也发生了很大的变化,人们越来越多的使用网络支付,也不会被传统消费过程中现金支付所带来的困扰所影响[3]。

二、计算机网络技术革新

(一)大数据技术

当下越来越多的新兴技术不断涌现,最为显著的便是大数据技术。大数据技术依托于计算机网络技术能够从当前爆炸式增长的资源中来迅速挖掘到自己需要的信息,并且借助相应的分析系统来对数据进行分类整合,这样可以大大提升对于信息资源的获取、处理和利用效率。普通民众对于大数据的应用不是很多,但是对于一些互联网企业都会借助大数据技术来为自己的业务开展提供信息,比如淘宝之类的购物网站会借助大数据技术来收集用户的习惯喜好,并且针对性的推送一些用户可能会购买的产品。今日头条之类的新闻网站也会结合用户的浏览规律、浏览喜好来向其推送一些可能被喜欢的内容,这也可以做到精准化推送,以及更加周到的服务,并且获得更多的受众。

(二)人工智能

人工智能技术也被广泛的应用,虽然从整体角度来说,人工智能技术仍然不够成熟,但是其也被广泛的应用到科技领域以及家居领域,比如智能语音智能驾驶、智能家居服务都已经成为当下智能技术所研究的方向。人们一回到家就可以通过声控的方式,来对家中的电器进行控制。同时在驾驶中也可以借助智能辅助系统来获取更加舒适的体验,也有一些厂商正在研发智能驾驶系统和AI技术,这可以为人们的生活提供更加优质的服务[4]。人工智能在计算机网络安全管理工作中,可以更好的呈现自身的价值,首先借助人工智能等技术可以构建智能防火墙技术,这在很大程度上可以保护计算机系统免受外界的侵害。借助该技术可以防止黑客,以及更高级别的病毒入侵等活动。同时借助人工智能技术等衍生出来的智能防火墙,可以有效提高安检效率,并且对于一些高级病毒进行筛选防护,借助人工智能技术可以提高计算机入侵检测技术,该技术可以作为防火墙技术的核心工作,其能够为维护网络安全提供重要的技术支持,最大程度上确保计算机系统能够处于安全稳定的状态。人工智能技术也被广泛的应用到专家知识库的构建中。其主要就是结合其积累的相关资源,并且借助大数据技术的对其中的内涵价值等进行挖掘,对知识门类进行分类,这样可以借助现有的计算机网络管理经验,并且辅以数据库编码等操作来为后期各项工作的开展提供基础

(三)云技术

篇(5)

1引言

随着人工智能技术的不断进步,重新塑造音乐使得音乐教育的学科素养培育、审美感知、艺术表现和文化理解变得更有支持和创意。探索应用人工智能技术推进音乐教学的改革与发展有具有十分重要的意义。本文通过研究与实践,引导学生学会用科学的方法培育计算思维创作音乐,用科学的意境欣赏音乐陶冶学生的音乐审美感,用科学的评价提升音乐课堂教学效率。通过这些措施,可以使学校音乐教育精准地开展因材施教差异化教学,彰显音乐教育的特色。

2人工智能与音乐

人工智能技术与音乐教育有机融合,丰富了课堂教学资源,拓展了智能乐器的功能,提升了音乐教育技术手段。它支持个性化学习,可以观察音乐课堂学习,分析音乐的旋律与节拍,有效评价教学效果,激发音乐教师运用人工智能技术创新音乐教学的热情,发挥教师在课堂教学中的主导作用。

2.1乐器的智能化

乐器是学习音乐的重要工具。乐器植入人工智能技术,形成了智能化乐器。它能够大量储存多种乐器的音乐数据。尤其是在音乐键盘中运用,功能的提升特别突出,应用于音乐教学中引发了多种形式的教学模式。例如,图1显示了融合多媒体计算机、主控系统、音乐课堂教学智能评价系统将多部电子钢琴连接起来的智能乐器实验室。通过语音室方式授课,可以实现多种乐器的分组教学。这在传统的音乐课堂上是无法完成的。

2.2智能化乐曲创作

智能乐器不仅能够储存乐器音色,而且还能用指令对各种音色播放进行控制,各种音色按照指令进行演奏。这种创作功能是以往其他乐器都无法比拟的[1]。例如,能唱出《月亮代表我的心》十七声部的合唱团,很好听,但很难。运用智能乐器按指令合成该十七声部音乐则轻而易举。2.2.1机器学习生成乐曲人工智能技术赋能智能乐器,使得机器学习的功能日趋进步。机器学习在音乐领域所做的事情,就是提取音乐作品的“数据”,输入给定模型学习音乐的“特征”,再对音乐数据进行分析和编排。例如,如果输入的是《梨园金曲》民族音乐,则机器就能学会民族音乐的曲调特征,生成掌握特征模型的民族音乐作品。2.2.2用软件生成乐谱使用MuseScore3forMac软件可以制作乐谱,在工具栏选择对应时值的音符输入音符。例如,在MuseScore3窗口输入如图2所示的“我和我的祖国”乐谱,再导出MP3文件进行播放。2.2.3代码生成乐曲用Python代码生成曲子,要借助音乐标准格式MIDI—乐器数字接口,运用Python-midi库编写程序,编译MIDI文件生成音乐。例如,生成一个简单乐谱的MIDI文件需要使用Python-midi,其中:Pattern对象表示乐谱;Track对象表示音轨,通常乐谱都有多条轨道组成,每种乐器是一个轨道;midi.NoteOnEvent表示每个音符的开端,在参数表中可以定义每个音符的音长和音高;midi.NoteOffEvent表示每个音符的结束。参考代码如下:importmidi#定义patternpattern=midi.Pattern()#定义轨道track=midi.Track()#添加轨道到patternpattern.append(track)#音符开始,并定义位置、音量、音高on=midi.NoteOnEvent(tick=0,velocity=50,pitch=midiG_3)track.append(on)#音符结束off=midi.NoteOffEvent(tick-100,pitch=midi.G_3)track.append(off)#轨道结束eot=midi.EndOfTrackEvent(tick=1)track.append(eot)#存储midi.write_midifile("example.mid",pattern)程序运行结果生成了如图3所示的简单音符:这样如图2的“我和我的祖国”乐谱,也可以通过Python代码生成MIDI文件。

3AI赋能音乐课堂

在AI赋能的音乐教育环境,促使音乐教学实践变革以及学生学习音乐方式。例如,图4所示的集音乐创作教学及教学评价于一体的“智能化音乐课堂教学评价系统”,在教学设计的优化、教学方法的高效、教学手段的更新、教学评价的智能、教学策略的调整方面都具有借鉴意义[2]。

3.1大数据学习

大数据云计算可以将所有音乐家们音乐数据存储在云中,运用人工智能技术为学生提供更多有价值的音乐数据。学生通过音乐云学习音乐知识,欣赏音乐魅力、体验音乐节奏、理解音乐韵律。它使得优质音乐教学资源跨越校园,开放延伸音乐教学,远程辐射共享资源。这样就扩展了学生的视野,音乐知识的来源无限扩大,整个音乐云皆有学生的学习教材。特别是大数据音乐云不仅可以推送给学生更多的即兴音乐和更多的音乐信息,还能指导音乐爱好者创作出雅正、健康的音乐作品。

3.2个性化学习

人工智能技术从音乐学习行为数据搜集、数据分析与运用、个性化学习评价多方位帮助学生定制个性化的学习成长路径。推送在线音乐教育资源,指导表演建议乐器学习技巧。搭建音乐教育虚拟课堂,匹配音乐教学资源,实现因材施教的个性化学习,支持一对一的教学辅导和群组式讨论。通过这些措施提高教学质量和效率。

3.3教学评价智能化

运用人工智能技术将多个音乐辅助教学设备连接的音乐创作教学系统,基于音乐课堂教学的学生学习特质分析与教学效果分析的音乐课堂教学管理系统,来实现音乐教学的全程智慧管理,使音乐学习更有效率。例如,在虚拟音乐课堂乐器教学可以变成一对多的自选教学模式,使课堂变得轻松、愉快。教师可以开启课堂教学观察模块,捕捉每位学生同步练习的音准、节奏、力度数据,分析判断将评价信息同步反馈,给出学习指导建议。3.3.1创作教学模块“智能化音乐课堂教学评价系统”中的音乐创作教学模块,集视、听、练和反馈评价为一体,适时演示教师教学作品和评价学生练习作品。例如,在进行《我和我的祖国》授课时导入电影片段,欣赏“我和我的祖国”音乐的表现形式、演唱形式以及歌曲风格,可以使学生更好地体验作品的创作意境,激发创作意识。使用MuseScore创作“我和我的祖国”三声部习作音乐,并能储存、刻录,编辑等二度创作。3.3.2课堂教学评价模块音乐课堂教学评价有着传统音乐教学评价无法比拟的灵活性、客观性和实用性。从大数据分析角度获取音乐课堂教与学相关数据,对学生的音乐基本素养与学习态度进行科学分析判断。例如,以创作《红河谷》中的和声与音乐作品风格内容的“编配伴奏音乐”教学过程为例。课前在“课堂教学评价模块”上安排学生根据作品风格完成伴奏的音乐;播放制作好的《红河谷》MIDI音乐(在第二和第六个小节缺失编配和弦);使学生感受、探讨大小三和弦的表现力,形成对大小三和弦的感知。然后要求学生试着用MuseScore为《红河谷》缺失的两小节选配和弦,以适合歌曲的伴奏风格。学生需要边哼唱歌曲边试着套用不同的伴奏风格,找到他们认为最恰当的和弦伴奏风格,说出理由并提交[3]。评价系统将学生提交的作业比照音乐要素进行评价。及时反馈学习评价的信息,并对学生的学习进程制定一个个性化的学习方案[4]。同时通过教学反馈深度优化决策模型,促进教师实时改进教学策略,提高教学效率和效果,提升教学质量。

4结语

人工智能技术在音乐教育领域中的广泛应用,为传统的音乐教育模式注入了活力,为音乐教师创新音乐教学理念开辟了新思路[5],为因材施教提供了新的适合学生学习的音乐教学模式。人工智能在音乐教育模式方面的探索,不仅给音乐教育教学的发展带来了物质技术层面的进步,还从音乐教学层面促进计算思维培育开辟新途径。这对音乐教育理念、教学手段、教学方式和方法以及拓展学生音乐视野、学习音乐、享受音乐、创造音乐等都带来深刻的变化和积极的影响。

参考文献

[1]邹孟雨.人工智能及其在音乐教育中的应用.北方音乐,2018(15):254-255

[2]郭文进.“互联网+教育”运行模式探究.决策与信息(下旬刊),2015(9):63

[3]段晓军.电脑音乐系统与中小学音乐教学实践.中国音乐教育,2006(6):26-28

篇(6)

人工智能是融合信息科学和数学、哲学、心理学等知识的一种新型科学技术,能通过感知环境做出主动反应,并且该反应能够实现目标、获得最大收益(蔡彬彬.人工智能在计算机网络技术方面的应用[J].科技风,2019(13):60)。如今人工智能已经渗透到日常生活之中,例如手机里的智能助理、新闻浏览中的新闻推荐和机器翻译、机器人、自动驾驶等。人工智能是全新的智能系统,其优势主要包括:第一,模糊信息处理和协作的能力。大数据时代的计算机网络技术发展中出现大量模糊信息,增大处理难度,而人工智能大多使用模糊逻辑的数据处理方式,无需准确描述数据模型,运用人工智能就能增强计算机网络技术的信息处理能力。与此同时,计算机网络技术的规模、结构等均在发生变化,增大网络管理难度,运用人工智能的协作分布思维就能显著提高计算机网络协作能力。第二,非线性处理和学习的能力。计算机网络技术催生大量数据和信息,其中有很多都处于较低的概念层次,但其背后隐藏着价值巨大的信息,需要运用人工智能进行挖掘,学习低层次信息,进行解释和推理。人工智能还可以及时进行非线性处理,由机器人模仿人的智能。第三,运算速度快、成本低。迅速发展的计算机网络技术使得人们对其的依赖程度越来越大,但效率和成本问题不容忽视,运用人工智能可以加强算法控制,在计算时速度较快、资源消耗较少,极大地节省计算成本。

2大数据时代人工智能在计算机网络技术中运用的途径

进入大数据时代以后,计算机网络技术的发展速度越来越快,全球越来越关注网络安全问题,计算机网络系统的运用中最重要、人们最关注的则是网络控制、网络监控。由于网络数据存在不规则、不连续的特征,计算机判断数据真实性的难度较大,因而有必要促进计算机网络技术的智能化发展。

2.1运用于管理

人工智能一般又被称为人工智能Agent技术,这是一种实体软件,其组成部分主要是各Agent之间的数据库、知识库、解释推理器、通讯部分,其依据就是Agent的知识库,通过及时分析、处理数据信息完成相关任务。人工智能的管理一般可以基于用户自定义搜索信息,并可以向指定位置传输,让用户享受更智能化的、人性化的服务(王佳美.人工智能技术在计算机网络领域中的应用研究[J].通讯世界,2019(04):136-137)。例如用户利用计算机网络技术查找所需信息时,运用人工智能就能进行管理,对信息加以分析和处理,获得有效的信息,节省大量查找时间。同时,人工智能在人们的日常生活与工作中也有广泛运用,包括收发邮件、安排形成、网上购物等,享受十分优质的智能化管理服务。并且人工智能技术拥有一定的学习性、自主性,对于用户分配的任务可以自动完成,借助自主学习方式更好地推动计算机网络技术的发展。

2.2运用于数据处理

在计算机网络技术中运用人工智能可以极大地提升数据处理能力,即从人工智能切入,实现计算机动态模拟、科学预测,为开展计算机网络管理工作提供可靠的技术支持,特别是开展预设性管理活动,方便对人员的行为进行管理,减少额外成本投入,夯实后续开展数据处理活动和管理活动的基础。为更充分地体现人工智能运用于计算机网络技术的数据处理优势,操作人员要从实际着眼,从人工神经网络切入,通过构建人工神经网络机制,实行必要的网络数据信息预测和处理。具体而言,运用人工神经网络,基于计算机网络技术的操作状态,快速获得主要的运行参数,并把所获参数和计算机网络标准做对比,从而输出对比结果,直观呈现数据处理结果。借助神经元的连接权和阈值,还可衔接输入值、输出值,形成最佳的拟合函数,基于人工神经网络框架高效处理计算机网络技术运用中的各类核心数据,特别是对计算机网络技术所涉及设备的运行状态、技术参数等进行阅读,预测短时间里人工智能在管理环节暴露的问题,高速设置应对问题的方案。该操作需要大数据的支持,数据运算量也很大,所以在运用人工智能时要适当前移数据信息的加工和处理工作,组建计算机网络技术的动态模拟和预测网络。

2.3运用于网络安全

人们对于计算机网络技术的使用安全始终给予高度重视,运用人工智能有助于强化其安全防护。例如运用人工智能可以构建智能防火墙,智能防火墙和其他防御系统比起来能借助智能化的识别技术采集数据、分析数据、处理数据,对有害信息访问进行限制、拦截,减少计算量,提升数据信息安全等级。智能防火墙也有助于防范病毒攻击、黑客攻击,既能阻止病毒传播,又能有效监控并管理内部局域网,确保计算机网络技术使用的平稳性、安全性(罗雅丽.大数据时代人工智能在计算机网络技术中的应用[J].电脑编程技巧与维护,2019(06):120-122)。此外,智能防火墙的安全检测效率比传统防御软件高很多,可以妥善解决外部攻击问题,稳步提升计算机网络安全工作的有效性。人工智能还可运用于计算机网络技术的入侵检测实践,其主要涉及两个模块:一个是训练模块,即在计算机网络技术的使用中通过人工智能实行网络入侵检测,实现正常审计已知数据、检测异常数据的向量训练。人工智能检测主要借助编码的方式对已知入侵特征向量和审计记录做分析、比较,进而把入侵特征的向量变化识别出来。如果已知入侵向量有符合其特征的审计事件,那么计算机网络系统就会自动报警;如果入侵向量和审计事件不符,运用人工智能就能自动实行网络入侵检测,形成新的审计事件。还可以调整模式长度、匹配时间,确保有效分析入侵检测信息的特点。另一个是检测模块,借助预处理器实行入侵检测,即通过数学向量的形式,以审计未知为前提实施数字处理,之后基于支持向量机、判决函数,分类数字向量,再经过决策系统分类汇总数字向量。在检测预测模块中也可按照现有模型的运行规律判定计算机网络系统在今后可能会遭受的攻击,促进模型装置的及时更新,确保系统安全、稳定。

2.4运用于其他方面

大数据、互联网和人工智能等技术有力推动各行各业的变革、发展,使得计算机网络技术水平越来越高,对人们的生活与生产发挥更大的作用。第一,人工智能在教学领域的运用。教师可以在计算机网络技术的学习中运用人工智能,提高教学准确度,并调动学生的热情和积极性。人工智能在早教领域的运用也十分广泛,智能机器人使早教进入新的层面,教育不再受到书本的限制,成功把互联网带进课堂,教师针对自己无法即刻解决的问题,可以借助计算机网络技术搜索准确答案。第二,人工智能在企业管理领域的运用。如今很多企业的计算机网络技术都融入了人工智能,例如自动监控系统、自动报警系统等,促使企业实现智能化管理目标,在安全的环境里降低管理成本(高塔,田雨鑫.计算机网络技术中大数据时代的人工智能应用研究[J].中小企业管理与科技(上旬刊),2018(06):137-138)。企业在未来必然能依托人工智能实现真正的现代化和信息化、智能化管理。第三,人工智能在家居领域的运用。经济稳步发展使智能家居进入大众的生活,为人们的居住提供更大的便利。在计算机网络技术中运用人工智能能很好地满足人们的居住需求,例如自主控制灯光的明暗、窗帘的开合等,或者远程控制家居系统,包括电饭锅开关的远程控制,回到家里能有更多休息时间。因此,智能家居的应用将会日益普及,让人们享受优质的家居生活服务。

篇(7)

中图分类号:TP18 文献标识码:A 文章编号:1007-3973(2013)001-085-03

1引言

人工智能(Artificial Intelligence,AI)自从20世纪50年代产生,经过长期发展,已经有了长足的进步,并且已经深入到社会生活的诸多领域,如语言处理、智能数据检索系统、视觉系统、自动定理证明、智能计算、问题求解、人工智能程序语言以及自动程序设计等。随着科学技术的不断发展,现在的人工智能已经不再是仅仅具有简单的模仿与逻辑思维能力,人们也越来越期待人工智能能够帮助或者替代人类从事各种复杂的工作,加强人的思维功能、行为功能或是感知功能。这就要求人工智能具有更强的情感识别、情感表达以及情感理解能力。通俗的说,为了使得人工智能对外界的变化适应性更强,需要给它们赋予相应的情感从而能够应对这个难以预测的世界。

在赋予人工智能“情感”的过程中,面临着许多的问题,有科技层面上的,也有社会学层面的。本文在这里只讨论其中一个比较基本的社会学问题:“人工智能情感约束问题”,即关注于如何约束赋予给人工智能的情感,不至于使其“情感泛滥”。情感指的是一种特殊的思维方式,人工智能具有了情感后的问题是:人工智能的情感是人类赋予的,人工智能自身并不会创造或者控制自己的情感。如果赋予人工智能的情感种类不合理,或者是赋予的情感程度不恰当,都有可能造成“情感泛滥”并导致一些灾难性的后果。例如,当人工智能具有了情感之后,如果人类自身管理不恰当,有可能导致人工智能反过来伤害人类。尽管目前我们只能在一些科幻作品中看到这种情况发生,但谁也不能保证未来有一天会不会真的出现这种悲剧。

本文第二章对人工智能情感研究进行了概要性回顾,第三章对如何约束人工智能情感进行了尝试性探讨,最后一章对全文进行了总结。

2人工情感发展情况概述

随着科学家对人类大脑及精神系统深入的研究,已经愈来愈肯定情感是智能的一部分。人工情感是以人类自然情感理论为基础,结合人工智能、机器人学等学科,对人类情感过程进行建模,以期获得用单纯理性思维难以达到的智能水平和自主性的一种研究方向。目前,研究者的研究方向主要是人工情感建模、自然情感机器识别与表达、人工情感机理等四个方面的内容。其中,尤以人工情感机理的研究困难最大,研究者也最少。

目前人工情感在很多领域得到了应用和发展,比较典型的是在教育教学、保健护理、家庭助理、服务等行业领域。在教育教学方面比较典型的例子是德国人工智能研究中心发展的三个方案:在虚拟剧场、虚拟市场和对话Agent中引入情感模型和个性特征来帮助开发儿童的想象力及创造力。在保健护理方面比较典型的是家庭保健与护理方向,如Lisetti等人研制的一个用于远程家庭保健的智能情感界面,用多模态情感识别手段来识别病人的情感状态,并输入不同媒体和编码模型进行处理,从而为医生提供关于病人简明而有价值的情感信息以便于进行有效的护理。服务型机器人的典型例子是卡内基梅隆大学发明的一个机器人接待员Valerie。Valerie的面孔形象的出现在一个能够转动方向的移动屏幕上时可以向访问者提供一些天气和方位方面的信息,还可以接电话、解答一些问题;并且Valerie有自己的性格和爱好,情感表达较为丰富。当然这些只是人工情感应用领域中的几个典型的例子,人工智能情感的潜力仍然是巨大的。

尽管关于人工情感的研究已经取得了一定的成果,给我们带来了很多惊喜和利益,但由于情绪表现出的无限纷繁以及它与行为之间的复杂联系,人们对它的运行机理了解的还不成熟,以致使得目前人工情感的研究仍面临着诸如评价标准、情感道德约束等多方面问题。所以必须清楚的认识到我们目前对于人工情感的计算乃至控制机制并没有一个成熟的体系。

3对人工智能的情感约束

正如上文所述,如果放任人工智能“情感泛滥”,很有可能会造成严重的后果。为了使人工智能技术更好的发展,使智能与情感恰到好处的结合起来,我们有必要思考如何对赋予人工智能情感进行引导或者约束。

3.1根据级别赋予情感

可以根据人工智能级别来赋予其情感,如低级别人工智能不赋予情感、高级别人工智能赋予其适当的情感。众所周知,人工智能是一门交叉科学科,要正确认识和掌握人工智能的相关技术的人至少必须同时懂得计算机学、心理学和哲学。首先需要树立这样的一个观点:人工智能的起点不是计算机学而是人的智能本身,也就是说技术不是最重要的,在这之前必须得先解决思想问题。而人工智能由于这方面没有一个严格的或是量度上的控制而容易出现问题。从哲学的角度来说,量变最终会导致质变。现在是科学技术飞速发展的时代,不能排除这个量变导致质变时代的人工智能机器人的到来,而到那个时候后果则不堪设想。因此,在现阶段我们就应该对人工智能的情感赋予程度进行一个约束。

根据维纳的反馈理论,人工智能可以被分成高低两个层次。低层次的是智能型的人工智能,主要具备适应环境和自我优化的能力。高层次的是情感型的人工智能,它的输入过程主要是模仿人的感觉方式,输出过程则是模仿人的反应情绪。据此我们可分别将机器人分为一般用途机器人和高级用途机器人两种。一般用途机器人是指不具有情感,只具有一般编程能力和操作功能的机器人。那么对于一般用途的机器人我们完全可以严格的用程序去控制它的行为而没必要去给他赋予情感。而对于高级层面的情感机器人来说,我们就适当的赋予一些情感。但即使是这样一部分高层次的情感机器人,在赋予人工情感仍然需要考虑到可能会带来的某些潜在的危害,要慎之又慎。

3.2根据角色赋予情感

同样也可以根据人工智能机器人角色的不同选择性的赋予其不同类型的情感。人类与机器合作起来比任何一方单独工作都更为强大。正因为如此,人类就要善于与人工智能机器合作,充分发挥人机合作的最大优势。由于计算机硬件、无线网络与蜂窝数据网络的高速发展,目前的这个时代是人工智能发展的极佳时期,使人工智能机器人处理许多以前无法完成的任务,并使一些全新的应用不再禁锢于研究实验室,可以在公共渠道上为所有人服务,人机合作也将成为一种大的趋势,而他们会以不同的角色与我们进行合作。或作为工具、顾问、工人、宠物、伴侣亦或是其他角色。总之,我们应该和这些机器建立一种合作互助的关系,然后共同完任务。这当然是一种很理想的状态,要做到这样,首先需要我们人类转变自身现有的思维模式:这些机器不再是一种工具,而是平等的服务提供人。

举例来说,当机器人照顾老人或是小孩的时候,我们应该赋予它更多的正面情绪,而不要去赋予负面情绪,否则如果机器人的负向情绪被激发了,对于这些老人或者小孩来说危险性是极大的;但是,如果机器人是作为看门的保安,我们对这种角色的机器人就可以适当的赋予一些负向的情绪,那么对于那些不按规则的来访者或是小偷就有一定的威慑力。总之,在我们赋予这些智能机器人情感前必须要周到的考虑这些情感的程度和种类,不要没有顾忌的想当然的去赋予,而是按分工、作用赋予限制性的情感约束,达到安全的目的。

3.3对赋予人进行约束

对人工智能情感赋予者进行约束,提高赋予者的自身素质,并定期考核,并为每一被赋予情感的人工智能制定责任人。

纵观人工智能技术发展史,我们可以发现很多的事故都是因为人为因素导致的。比如,首起机器人杀人案:1978年9月的一天,在日本广岛,一台机器人正在切割钢板,突然电脑系统出现故障,机器人伸出巨臂,把一名工人活生生地送到钢刀下,切成肉片。

另外,某些研究者也许会因为利益的诱惑,而将人工智能运用在不正当领域,或者人工智能技术落入犯罪分子的手中,被他们用来进行反对人类和危害社会的犯罪活动。也就是用于所谓的“智能犯罪”。任何新技术的最大危险莫过于人类对它失去控制,或者是它落入那些企图利用新技术反对人类的人的手中。

因此为了减少这些由于人而导致的悲剧,我们需要对这些研究者本身进行约束。比如通过相应的培训或是定期的思想政治教育、或是理论知识的学习并制定定期的考核制度来保证这些专家自身的素质,又或者加强对人工智能事故的追究机制,发生问题能立即查询到事故方等等,通过这样一系列强有力的硬性指标达到减少由于人为因素导致悲剧的目的。

3.4制定相应的规章制度来管理人工智能情感的发展

目前世界上并未出台任何一项通用的法律来规范人工智能的发展。不过在1939 年,出生在俄国的美籍作家阿西莫夫在他的小说中描绘了工程师们在设计和制造机器人时通过加入保险除恶装置使机器人有效地被主人控制的情景。这就从技术上提出了预防机器人犯罪的思路。几年后, 他又为这种技术装置提出了伦理学准则的道德三律:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观;(2)在不违反第一定律的前提下,机器人必须绝对服从人类给与的任何命令;(3)在不违反第一定律和第二定律的前提下,机器人必须尽力保护自己。这一“机器人道德三律”表现了一种在道德忧思的基础上,对如何解决人工智能中有害人类因素所提出的道德原则,虽然得到很多人的指责,但其首创性还是得到公认的。尽管这个定律只是小说家提出来的,但是也代表了很多人的心声,也是值得借鉴的。

那么对于人工智能情感的约束呢?显然,更加没有相应的法律法规来规范。那么,我们就只能在赋予人工智能情感的道理上更加的小心翼翼。比如,我们可以制定一些应急方案来防止可能导致的某些后果,也即出现了问题如何及时的处理之。另外我们在操作和管理上应更加慎重的去对待。也希望随着科学技术的发展,能够在不久的将来出台一部相应的规章制度来规范人工智能情感的管理,使之更加精确化、合理化。

4结束语

人工智能的情感研究目的就是探索利用情感在生物体中所扮演的一些角色、发展技术和方法来增强计算机或机器人的自治性、适应能力和社会交互的能力。但是现阶段对这方面的研究虽然在技术上可能已经很成熟,但是人工智能情感毕竟是模拟人的情感,是个很复杂的过程,本文尝试性的在人工智能发展中可能遇到的问题进行了有益的探讨。但是不可否认仍然有很长的道路要走,但是对于人工智能的发展劲头我们不可否认,将来“百分百情感机器人”的问世也许是迟早的事情。

参考文献:

[1] 赵玉鹏,刘则渊.情感、机器、认知――斯洛曼的人工智能哲学思想探析[J].自然辩证法通讯,2009,31(2):94-99.

[2] 王国江,王志良,杨国亮,等.人工情感研究综述[J].计算机应用研究,2006,23(11):7-11.

[3] 祝宇虹,魏金海,毛俊鑫.人工情感研究综述[J].江南大学学报(自然科学版),2012,11(04):497-504.

[4] Christine Lisett,i Cynthia Lerouge.Affective Computing in Tele-home Health[C].Proceedings of the 37th IEEE Hawaii International Conference on System Sciences,2004.

[5] Valerie.The Roboceptionist[EB/OL].http://.

[6] 张显峰,程宇婕.情感机器人:技术与伦理的双重困境[N].科技日报,2009-4-21(005).

[7] 张晓丽.跟机器人谈伦理道德为时尚早[N].辽宁日报,2011-11-04(007).

[8] Peter Norvig.人工智能:机器会“思考”[J].IT经理世界,2012(Z1):331-332.

篇(8)

每次基本上看100个,30个甚至以上是有技术含量的项目;而在中国,目前为止仍然是看100个,甚至可能看不到一个有技术含量的公司。不仅如此,美国十多年前就设置了人工智能专业,而中国教材二十年不变。

从量变到质变。作为一个经济体量冉冉升起渐与美国比肩的国家,中国在产业创新的价值层面却严重滞后。在中国,模式创新占到80%,而美国60%以上是技术创新。

有用即真理。当很多模式还没走到穷尽的时候,实用主义观念如此有效,也很正常。但即便中国企业界诞生诸如小米、微信乃至马云这样的现象级事件,那些在本土行之有效的技巧依然很难跨境移植,获得更具普世意义的成功。更可怕之处在于,这些企业个体的成功,对更广泛的企业群体几乎毫无意义。

――为什么中国亟须一场商业思想新启蒙?

不仅仅是因为“中国经济面临着一个严重的缺陷,即缺乏思想市场。这是中国经济诸多弊端和险象丛生的根源”,从某种程度上说,中美经济拥有两套话语体系。在这个无人看管的接力区,渴望与焦虑并存。丛林规则的信徒最终将加入公共秩序。

如何打破平行世界的藩篱,让中国企业融入全球价值链?

时间是技术的朋友

谷歌的阿尔法狗战胜世界围棋冠军;曾经价格昂贵并只服务于政府、军队的基因测序,现在普通消费者只需花约1 000美金便可以采用;史上首部人工智能编剧的短片《Sunspring》入围今年伦敦科幻电影竞赛十强……

事实上,过去数十年科技创新的积累已经促进创新由量变向质变转化,同时现在已迎来恰逢其时的市场契机,市场应用窗口已经打开,科技创新带来的社会变革及其伴随的蝴蝶效应正在发生。

在新兴的技术领域中,具备生态和产品颠覆性的创新获得了比较积极的商业认可。比如机器人、虚拟现实(VR)、增强现实(AR)、物联网与智能家居等。而以人工智能、计算机视觉、生命科学为代表的技术革新,正在带动诸多关联性技术领域迎来爆发期。

全球科技创新的浪潮之下,美国依然是中心,但以中国为代表的新兴力量正在崛起。中国的技术创新公司凭借庞大的智能设备和互联网用户基础,快速获得生长空间与商业增长,它们正尝试通过产品与投资形式,参与全球科技公司的竞争。

全球科技创新与中国机遇,在未来很长的一段时间里,都将是以技术创新为主导的中国公司需要破解的命题。毫无疑问,前沿技术将是未来商业模式的核心驱动力,因为只有技术创新才能保住企业的基业常青。

风马牛都相连的生意真那么好?

软银总裁孙正义一个月内从阿里巴巴和腾讯拿了186亿美元,又借了136亿美元,买了一家好多人都不认识的公司。什么公司?

2016年7月18日,日本软银集团宣布将以320亿美元现金收购英国移动芯片公司ARM。目前,全球逾95%的智能手机配置ARM芯片,应用范围覆盖传感器、智能手机及服务器。

在债务累累的情况下,软银斥巨资收购ARM,目的很简单――押注物联网的未来。

继计算机、互联网与移动通信网之后,物联网被认为是新一波信息产业浪潮。在这股浪潮下,世界上的万事万物,只要嵌入一个微型感应芯片,就能变得智能化。据相关机构预测,到2020年,物联网设备安装量将达260亿。未来,所有能想到的任何事物都将连接物联网。

不只是ARM卖了一个好价钱,国内物联网平台Broadlink也在今年完成C轮7 000万元融资。在资本寒冬中,Broadlink能获得巨额融资也说明了物联网的吸金能力。

在国内物联网应用市场,Broadlink是鲜有在软硬件解决方案上均取得领先的新兴企业。在具体应用中,Broadlink自主研发的Wi-Fi物联网传输模块、云计算平台和智能终端应用,可以为各类家电厂商提供成熟完整的智能家电解决方案;同时Broadlink还为用户提供 DIY 智能插座、智能遥控、家庭空气质量分析仪等智能家居产品。

今年3月,Broadlink了Broadlink DNA 3.0计划。BroadLink DNA 系统是目前全球较成熟的物联网PaaS平台之一,能够帮助智能家居产品实现快速无缝接入。它是家电智能化的一站式解决平台,支持多连接协议,一次接入DNA系统后,可对接所有云平台(京东、阿里、微信、华为、国美、苏宁等),同时提供免费的数据SaaS服务。

目前,BroadLink已经连接服务了超过200家企业,包括家电、电工以及智能硬件行业,真实联网设备超过8百万台。接下来,BroadLink将把连接厂家的数百个品类产品进行整合与场景化,落地智慧地产与物业的实际应用。

“人人基因”探索者

随着基因组科学的发展,未来人类将进入“人人基因”时代。基因测序领域在技术突破和政策放宽的影响下,不断迎来爆发。中国企业目前在基因测序服务及信息分析领域处于世界领先地位,华大基因、贝瑞和康等都在各自主打领域扮演着探索者角色。

从应用市场来看,癌症检测是目前最被消费者关注的项目,无创产前测序则是第一个落地并商业化的项目。无创产前检测的目的是预防新生儿出生缺陷,并提供整体解决方案,这一技术的背后是一个百亿元规模的庞大市场。

作为在国内无创DNA产前检测领域市场占有率第一的公司,贝瑞和康以高通量基因测序技术为核心,将步骤繁琐到只能在实验室进行的检测技术,优化成为可直接在医院提供服务的商业化产品。

2015年3月20日,国家食品药品监督管理总局批准了贝瑞和康基因测序仪和胎儿染色体非整倍体检测试剂盒注册。其中基因测序仪NextSeqCN500正是针对中国临床需求,贝瑞和康与美国最大基因测序公司亿明达合作研发出一款新型高通量的基因测序仪。贝瑞和康着力于将这款测序仪的步骤简化,检测流程从原来几天的时间缩短成几个小时。目前国内获批无创产前基因检测的108家试点医院中,有60度家与贝瑞和康达成合作,其中有超过50家已进入产品模式。

更为重要的是,贝瑞和康测序仪的大批量检测单位成本较低,医院或第三方检测机构的唐氏综合征检测价格或能直线下降,从而有望成为唐氏综合征等染色体病的产前“普筛”手段。

除了产前基因检测,在肿瘤基因检测领域,贝瑞和康也在探索技术产业化的有效路径。

事实上,基因测序行业是一个庞大的产业。很多基因检测公司开始以孕前、产前、新生儿、青少年等完整生命周期的各阶段来进行产品开发和应用。未来将有更多产品进入商业化。

从大众创业到精英创业

在互联网女皇玛丽・米克尔的报告中,智能语音被认为是下一代人机交互的新范式,正在各个领域全面开花。

作为国内最大的智能语音厂商,科大讯飞目前已经将智能语音技术应用在移动应用、智能家居、机器人、车载、教育等各个领域。与BAT围绕自身技术、用户与基础服务构建着差异化的人工智能竞争生态不同,科大讯飞选择在语音识别这一单点领域进行突破,并围绕于此建立基于语音系统的通用解决方案平台。

依托于中文语音合成、语音识别、口语评测等多项技术研发与突破,科大讯飞以专用领域的技术解决方案为切口,研发构建了目前国内最全的语音技术平台,并实现了语音领域最为广泛的落地解决方案。

目前,科大讯飞推出的从大型电信级应用到小型嵌入式应用,从电信、金融等行业到企业和家庭用户,以及从PC到手机等各种移动设备来看,其已具备能够满足不同应用环境的多种产品的能力。比如,在人脸和声纹识别的演示中,科大讯飞利用声纹识别可以将任何人说的话实时转译成郭德纲、林志玲等明星的声音;在人机交互中,科大讯飞支持多轮对话和上下文理解,并且攻克了粤语、闽南语等方言识别。

在国内语音识别市场上,科大讯飞研发的语音合成产品的市场份额达到70%以上,在电信、金融、电力、社保等主流行业的份额更达 80% 以上,开发伙伴超过 10 000 家,以讯飞为核心的中文语音产业链已粗具规模。

科大讯飞依托市场份额的绝对占有率和构筑多年的技术门槛形成了他们在语音识别解决方案领域独特的市场竞争力,这也为国内其他初创型人工智能企业的未来发展提供了良好的借鉴。

价值再定义,不懂就出局

我们面对的是一个商品不再作为主要价值载体的世界,商品的价值链与服务价值链相比,重要性将大不如前。

在新的全球价值链条下,消费升级正在带来新的需求和新的商业服务。高端医疗、定制旅游、在线教育、文娱IP、互联网金融、企业服务等非商品的消费重构着商业世界。在重构一切当中,消费者在价值链条上的作用空前强大。因此,能否为用户创造价值,是考验企业商业能力的第一条军规。

重构即创新,创新即价值。今天的商业逻辑已经转变为用户为王,我们的商业的模式,也必须作出相应的调整和布局。从价值革命的角度来说,评判一个商业模式可以分为两个基本维度:第一个维度是价值的创造和传递,能否满足用户新的消费需求,并把价值有效地传递给用户;第二个维度是在为用户创造价值的基础上,如何来获取企业的那部分价值。

因此,对于企业来说,不但要融入全球价值链条,还要不断优化供给侧,从而跑赢消费端升级,实现高水平的供需平衡。创造新供给,才能更好地激活新需求。在未来商业的变革中,企业只有真正创造出有高价值的产品、内容、技术,才可能得到消费者的认可。

企业服务斗法新战场

当前,连接越来越成为未来商业的核心。由用户思维引发“连接型商业”时代的到来,使得国内企业服务市场空间将是万亿级的新商业。

中国最大的企业通讯云服务商容联云通讯,近日宣布完成7 000万美元C轮融资,这是国内企业通讯领域迄今为止最大的一笔融资。

容联是国内第一个踏足互联网通讯的企业,通过整合运营商的网络资源、通信资源,将专业的通讯能力打包成API接口与SDK,为企业和开发者提供通话、短信、视频、呼叫中心、IM、流量等便捷、高效和高性价比的通讯服务和不同场景下的行业通讯解决方案。

目前容联的平台上已累计拥有超过20万名开发者和5万家企业客户,服务的客户包括但不限于腾讯、阿里巴巴、京东、百度、360、小米等知名企业,全面覆盖O2O、出行、旅游、物流、房产、在线教育、互联网医疗、政企、企业IT系统等众多行业。

在国内,真正面向企业提供全渠道融合通信能力的企业服务市场,还只是刚刚开始。尽管容联云通讯在呼叫中心、IM等各细分领域都有竞争对手,但从全通讯、一站式的概念来看,能够看到的竞争对手并不多。

作为容联C轮的领投方,红杉资本中国基金合伙人周逵认为:容联产品满足了企业客户、尤其是互联网企业对通讯服务“便捷、高效、高性价比”的需求,以平台为核心,从分享通讯资源到分享通讯技术再到分享企业级入口,容联是国内企业通讯云服务的开创者。

篇(9)

0 引言

智能科学是信息科学的制高点。从物质科学演进到信息与智能科学,研究的对象发生巨变,因此研究的理念和方法也必须随之改变,这是不言自明的道理。然而,由于科学观与方法论的抽象性(无形性),这种不言自明的道理却往往在实践中被人们视而不见。

我们对信息与智能科学技术发展的历史稍加考察就可以发现,由于科学观与方法论具有抽象性或无形性特点以及人类的思维习惯存在惰性,数十年来信息与智能科学技术的研究依然沿用传统的科学观和方法论,由此导致一系列重大的学术研究失准,在客观上延缓了信息与智能科学的发展进程。

在半个多世纪的科学研究实践中,笔者曾经在这方面反复经历失败与成功,有过正反两个方面的经验和教训,最终深切地感悟到:科学观与方法论问题对于信息与智能科学领域的研究与教育具有特别重要的意义。于是,笔者常常不由自主地思考和总结信息与智能科学领域中的科学观与方法论问题,得到一些初步的领悟,愿在此与读者共享并欢迎批评指正。

1 传统的科学观与方法论

有什么样的研究对象,就需要有与之相适应的研究方法,而方法论又源于科学观。换言之,有什么样的科学观,就会形成什么样的方法论,科学观和方法论是指引人们从事科学研究的世界观和方法论。

传统自然科学的研究对象是物质系统和能量系统。物质观和能量观便天然地成为传统自然科学的科学观,而对复杂物质和能量系统实行分而治之、各个击破、合成还原则成为传统自然科学行之有效的方法论。

近几百年来,面对越来越多的复杂物质系统和能量系统,传统自然科学的科学观和方法论指导全球研究大军频繁出击,战无不胜,攻无不克,所向披靡,为近代自然科学技术的发展与繁荣建立了历史性的卓越功勋。

2 传统科学观与方法论对信息领域科学研究的误导

传统科学观和方法论虽然在近代科学实践中屡试不爽,但是在一类新的研究对象面前却产生了一系列相当严重的误导作用。这类新的研究对象就是以信息为主导特征的复杂信息系统,而智能科学就是研究这类系统的代表性学科。

2.1 误导案例之一:探究思维奥秘

一个最为明显的误导例证就是关于人类大脑思维奥秘的探究。按照传统的物质观和能量观,人类大脑系统是一个复杂的物质系统,也是一个复杂的能量系统;为了探索大脑思维的奥秘,。应当对它实行分而治之、各个击破、合成还原的研究。于是,研究者对人类大脑实行各种各样的解剖研究,试图查明大脑各个解剖单元的物质结构和能量关系,从而解开人类大脑思维的秘密。

令研究者大失所望的是,尽管通过解剖研究可以查明大脑各个局部组织的物质结构和能量关系,但是对于大脑为什么能够思维以及大脑怎样进行思维这样一些基本问题,仍然始终摸不着头脑并且一筹莫展。

百战百胜的传统方法论出现了什么问题?原来,尽管大脑是复杂的物质系统,也是复杂的能量系统,但它的本质是以信息及其转换为主导特征的复杂信息系统。研究者按照传统科学方法论将大脑这个复杂信息系统分解为相对简单的解剖单元(分系统)时,就丢失了各个分系统之间相互联系和相互作用的信息,而这些相互联系和相互作用的信息正是复杂信息系统的生命线。舍弃了生命线,当然就不可能通过各个分系统的合成还原“能够思维”的大脑。

2.2 误导案例之二:Shannon信息论

另一个非常基本的误导案例是关于信息概念和理论的研究。按照正常的理解,人们处理和利用的任何信息都是形式、内容和效用的三位一体:形式只是信息的外表,效用是信息的价值,内容才是信息的内核。人们根据信息的形式感知它是否存在,根据信息的效用确定对它的取舍,根据信息的内容达成对它的理解。如果只感知信息的形式而不了解它的内容和价值,就无法据此做出正确的决策。

然而,在分而治之方法论的指导下,Shannon信息论仅仅根据通信过程的要求(而不是根据信息运动全部过程的要求),就针对信息的形式(而不考虑信息的内容和价值)建立了后人所称的信息理论。实际上,正如Shannon自己所说,它只是通信的数学理论(mathematical theory ofcommunication),而不是完全的信息理论。

这种误导的结果使Shannon信息论虽然在通信等统计领域发挥了巨大作用,但对于整个信息科学(特别是对于其中的智能科学)领域而言却难以有所作为。现今人们对于信息的烦恼便是网络上信息的鱼龙混杂,良莠难分,而Shannon信息论对此却不能提供任何有效的解决方法,原因就在于它只是关于信息形式的统计理论,完全没有考虑信息的内容与效用。同样,Shannon信息论对于智能科学的研究难有作为,这都是传统科学方法论误导信息研究所造成的结果。

2.3 误导案例之三:智能模拟的方法

还有一个同样基本的误导案例是关于人类智能的机器模拟(人工智能)问题。按照分而治之的传统科学方法论,人工智能研究者认为:人类智能系统可以分解为结构、功能、行为3个基本层面,因而可以分别从结构、功能、行为3个不同的角度对人类智能进行模拟。于是,基于结构模拟的人工神经网络研究、基于功能模拟的物理符号系统研究、基于行为模拟的感知动作系统研究随之出现,成为人工智能研究的3大主流方法。

这样引发的问题是,虽然3种研究方法都具有相同的研究目标,即希望成功地在机器上模拟人类的智能,并且各自都取得了不少令人鼓舞的研究成果,但是人们却不知如何才能把三者集成起来并形成和谐的合力,以便更好地促进人工智能研究的进步。

事实上,长久以来,3种方法不仅没有能够形成和谐的合力,反而偶有互相否定、互相激烈抨击的事件发生,终于形成三足鼎立的不和谐局面,这种状态显然很不利于人工智能研究的整体发展,这也是分而治之方法论误导所产生的不良后果。

2.4 误导案例之四:人工智能的理论模型

更为典型的误导案例是人工智能的理论模型。常理告诉我们,意识是智能的直接基础。如果一个人连意识的能力都没有,他怎么可能具有智能呢?同样的常理告诉我们,人的智能有两个基本方面:情感与理智。如果一个人没有情感,他怎么可能具有完整的智能呢?而且,意识、情感、理智是相互联系、相互作用、密不可分的三位一体。

然而,按照分而治之的传统科学方法论,人工智能理论的研究硬是把意识和情感因素从智能的研究领域中排除出来。于是,人工智能理论一方面长期回避对意识的研究,另一方面又忽视对情感的探索,最终变成一个既不完整又不真实的人工智能理论模型。分而治之传统科学方法论导致人们不能深入和完整地理解人工智能。

总之,面对以信息及其转换为主导特征的开放复杂信息系统(智能系统是这类系统的典型代表)的研究,基于物质观和能量观的分而治之方法论不但不再有效,而且还会产生许多后果相当严重的误导。

3 开放复杂信息系统需要的科学观与方法论

正反两方面的研究实践启示我们,以智能系统为代表的开放复杂信息系统的研究,不能照搬我们原先所熟悉的传统科学观和方法论,而是迫切需要全新的科学观和方法论。经过长期的实践和探究,我们认为开放复杂信息系统的科学观包括以下4个基本观念。

1)信息观。

既然贯穿开放复杂信息系统全局的主导因素是信息和信息运动过程,那么开放复杂信息系统的研究首先就必须遵循信息观,即研究的关注点必须聚焦于系统的信息和信息运动过程,而不应当只盯着系统的物质结构和能量关系。

2)系统观。

开放复杂信息系统的研究必须遵循明确的系统观:一方面,人们所关注的信息应当是形式、内容、价值三位一体内涵完整的信息,而不是仅考虑形式因素的信息;另一方面,信息运动的时空过程必须保持完整性,人们不能只关注信息传递这样一个局部的过程,也不能只关注理智这样一个局部的方面。

3)生态观。

开放复杂信息系统应当是一种“活的系统”,因此人们必须遵循清晰的生态观,也就是说必须把开放复杂信息系统中信息运动过程的来龙(本体论信息)去脉(知识、基础意识、情感、理智、智能策略和智能行为)作为一个有序的生态过程进行一体化的研究,而不应当把信息、知识、智能看作一个各行其是的拼盘。

4)机制观。

既然开放复杂信息系统是一类生态系统,对它的研究就必须遵循机制观,即必须把关注点放在信息如何生成知识与如何生成智能的生成机制(即生长规律)上,而不应当把关注点放在系统的结构、功能和行为上。这是因为系统的结构和功能都是为实现生长机制而服务,行为则是系统机制实现的外显结果。

总之,信息观可以呈现开放复杂信息系统的生命脉络;系统观可以抓住开放复杂信息系统的信息全局特征;生态观可以把握开放复杂信息系统的有机联系;机制观可以理解开放复杂信息系统的生成规律,它们构成了开放复杂信息系统科学观的四位一体。

那么,开放复杂信息系统的科学研究方法论是什么呢?一般而言,有什么样的科学观就会形成什么样的方法论。科学观是认识所研究对象的基本观念,方法论是体现基本观念的研究方法,因此任何一种科学研究方法论都可以(而且应当)从科学观中自然引申出来。

根据这个基本原理,研究以智能系统为代表的开放复杂信息系统的科学方法论就可以表述为:遵循信息观、系统观、生态观和机制观的根本原则,考察信息资源(本体论信息)生成相关产品的生态转换规律。具体地说,就是要系统地(系统观)、联系地(生态观)、深刻地(机制观)考察本体论信息(信息观)生成认识论信息:知识和智能的规律,或者更简洁地说就是要系统地、联系地、深刻地考察信息转换的规律。:总之,信息转换是针对一切开放复杂信息系统研究都适用的科学方法论。

4 新的科学观方法论和研究成果

20世纪80年代以来,笔者逐渐领悟到信息观、系统观、生态观、机制观四位一体的科学观和信息转换方法论,并将其用于指导自己的信息科学和人工智能基础理论研究,获得了如下一些重要的创新成果。由于篇幅所限,笔者叙述从简。

4.1 全信息理论

传统方法论令Shannon信息论存在严重局限。我们根据新科学观提出语法信息、语义信息、语用信息三位一体的全信息概念,其中,语法信息用“肯定度”参数表征,用概率论和模糊集合理论描述;语义信息用“逻辑真实度”参数表征,用模糊逻辑理论描述;语用信息用“效用度”参数表征,用模糊集合理论描述。

这样,原先各自独立发展起来的信息获取(检测与识别)、信息传递(通信与存储)、信息处理(计算)、信息认知和信息决策(人工智能)、信息执行(控制)就得到了统一的描述和处理,形成了完整统一的信息科学理论。

4.2 本体论信息到全信息转换:第一类信息转换原理

根据新方法论,我们发现并阐明了图1所示

的由本体论信息到全信息的转换原理(又称第一信息转换原理),证明全信息理论不仅在理论上合理,而且在技术上可行。

图1表明,人们利用传感系统可以把本体论信息映射为相应的语法信息,利用语法信息可以从知识库检索l出(或者通过与目标进行相关运算计算出)与之相对应的语用信息,通过对语法信息和语用信息的逻辑运算可以演绎出语义信息。所有这些操作都在技术上可行。

4.3 知识的外生态学理论

知识在信息和智能科学中扮演着极其重要的角色,但是在分而治之传统方法论的影响下,知识被孤立地分割出来,在人工智能理论研究中没有得到应有的重视。在新科学观和方法论指导下,我们发现知识并不是一种孤立和静止的研究对象;恰恰相反,它是一个极其活跃的生态学系统。

一方面,知识不断由认识论信息的归纳而来;另一方面,知识又在系统目标的制导下通过演绎的方法向智能生长而去。换言之,“信息_÷知识_智能”转换是知识的外部生态系统。这一发现的意义不仅揭示了知识的生成机制,而且揭示了智能的生成机制,直接导致新的人工智能模拟方法问世。

4.4 信息一知识转换:第二类信息转换原理

知识外生态学原理表明:知识由全信息转换而来。信息是现象,知识是大量相关现象所蕴含的共同本质,因此实现由全信息到知识的转换算法,原则上是归纳型算法。由大量信息现象到知识本质的归纳过程是由量变到质变的过程,也称为“涌现”过程。这是知识外生态学提供的一项重要启发。

4.5 智能的共性核心生成机制

知识外生态学系统的发现不仅揭示了知识的生成规律(第二类信息转换原理),而且还启迪了智能的共性核心生成机制:信息知识智能的转换。具体来说就是在任何情形下,智能的核心生成机制都是由信息(关于问题的信息、关于问题求解目标的信息、关于先验知识的信息)到知识(求解问题所需要的专门知识)再到(求解问题的)智能策略的转换,显然,这是一切智能(包括人类智能和人工智能)的共性核心生成机制。

4.6 人工智能的机制模拟方法

受到智能共性核心生成机制的重要启发,我们提出人工智能的新的模拟方法,这就是机制模拟方法:信息_知识-÷智能的转换,这是区别于已有的结构模拟、功能模拟、行为模拟方法的全新方法。

众所周知,系统的生成机制统管系统全局,系统的结构和功能都为生成机制服务,而行为则是机制实现所产生的结果,因此人工智能的机制模拟方法比传统的结构模拟、功能模拟、行为模拟方法具有更深刻和更本质的意义。

4.7 知识的内生态系统

运用新的科学观和方法论,我们又发现了知识的内生态系统:知识内部不是如铁板一样凝固的对象,而是一个充满活力的生态系统;认识论信息(全信息)首先生长成为欠成熟的经验知识,接着后者通过验证和完善生长成为成熟的规范知识,经验知识和规范知识又进一步凝聚成为超成熟的常识知识。简而言之,经验知识规范知识常识知识是知识的内生态学系统。知识内生态学系统的发现直接导致人工智能3大主流方法的统一。

4.8 人工智能的统一理论

人工智能的结构模拟方法(人工神经网络,后来发展成为计算智能)利用的是训练得到的经验知识;功能模拟方法(物理符号系统,后来收缩成为专家系统)利用的是人工输入的规范知识;行为模拟方法(感知动作系统,后来发展成为机器人)利用的是人工输入的常识知识。知识的内生态学系统表明,经验知识、规范知识、常识知识是知识的3个相生(而不是相克)状态,因此原先鼎足三分的人工智能3大主流方法在机制模拟方法的框架内也呈现出相生关系,达到了和谐的统一。这显然是人工智能理论研究的重要进展。

4.9 全信息—智能转换:第三类信息转换原理

第一类信息转换原理是信息内部转换的原理,即由本体论信息到认识论信息(全信息)的转换;第二类信息转换原理是由全信息到知识的转换;第三类信息转换则是全信息向基础意识、情感和理智的转换。

我们运用新的科学观和方法论后发现:基础意识的生成机制是在全信息的激励下启动,在本能知识和常识知识支持下展开,在系统目标导控下实现的转换;情感的生成机制是在全信息的激励下启动,在本能知识、常识知识和经验知识支持下展开,在系统目标导控下实现的转换;理智的生成机制是在全信息的激励下启动,在本能知识、常识知识、经验知识和规范知识支持下展开,在系统目标导控下实现的转换。与全信息一知识转换过程类似,这些转换也存在量变到质变(涌现)的过程。

4.10 高等人工智能原理

受到传统方法论的影响,现有人工智能理论的智能模型是一种既不完整又不真实的模型。基于上面所述的第一、第二、第三类信息转换原理,我们提出图2所示的高等人工智能理论的研究模型,图中的符号G表示系统的目标;K1表示本能知识和常识知识的集合;K2表示本能知识、常识知识和经验知识的集合;K3表示本能知识、常识知识、经验知识和规范知识的集合;K4表示本能知识、常识知识、经验知识、规范知识和决策艺术知识的集合。

从图2中可以看出,高等人工智能系统直接面向开放的外部世界,后者不断产生各种事物的本体论信息;感知系统(而不是简单的传感系统)按照第一类信息转换原理把本体论信息转换成为认识论信息(全信息);认知系统按照第二类信息转换原理把全信息转换成为知识;基础意识、情感和理智系统则分别在知识K1、K2、K3支持并在目标G导控下完成第三类信息转换,把全信息分别转换成为基础意识、情感和理智;决策系统则在知识K4支持并在目标G导控下把情感表达和理智表达综合成为解决问题的智能策略;执行系统把智能策略转换成为智能行为,反作用于外部世界。

如果智能行为产生的结果与目标一致或可以接受,这种策略就作为一种正确的知识补充到知识库;如果智能行为产生的结果与目标之间存在比较明显的误差,那么这个误差就成为一种新的信息反馈到感知系统,经系统后续处理,补充知识,优化策略,使新的智能行为产生更好的结果,如此循环往复,直到满意为止。这是一个完整而真实的人工智能模型,对于人工智能未来的发展具有重要意义。

5 结语

篇(10)

知识表示与知识推理是智能信息处理的基础。从人工智能的角度看,知识是构成智能的基础,人类的智能行为依赖于利用已有的知识进行分析、猜测、判断和预测等。当人们希望计算机具有智能行为时,首先需要在计算机上表达人类的知识,然后再告诉计算机如何像人一样地利用这些知识。

自从人工智能领域诞生以来,知识表示与知识推理就一直是其中最为重要的子领域。经过五十多年的发展,知识表示与知识推理领域的许多研究内容、研究方法和研究成果已经深深渗入到计算机科学,进而对计算机学科的发展产生了深远的影响。例如,在C++、Java等面向对象程序设计语言中,“继承”这一最为核心的技术就来源于知识表示与知识推理。再如,在软件自动化领域,许多程序规格语言和程序验证技术都借鉴了知识表示与知识推理领域的Prolog语言等研究成果。从工程开发的角度看,专家系统、智能搜索引擎、智能控制系统、智能诊断系统、自动规划系统等具有所谓智能特征的系统都或多或少地依赖于知识表示与知识推理技术。因此,对于计算机专业的学生来说,学习知识表示与知识推理方面的课程,对于今后在相关领域从事系统开发和科学研究都大有裨益。

在ACM与IEEE-CS联合攻关组制订的计算教程CC2001(Computing Curricula 2001)中,知识表示与知识推理得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成:在其中的IS(Intelligent Systems)知识领域中,关于知识表示与知识推理的内容占据了10个知识单元中的2个,即知识单元“(Is3)知识表示与推理”以及知识单元“(IS5)高级知识表示与推理”。在ACM和IEEE-CS进一步修订后的计算机科学教程CS2008(Computer Science Curriculum 2008)中,知识表示与知识推理同样得到了高度重视。此外,在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,上述的IS3和IS5两个知识单元被全部包括到计算机科学专业的核心课程“人工智能”中。然而,据我们了解,由于“人工智能”在许多高校仅仅作为专业任选课开设,使得计算机相关专业的许多学生无法接触到知识表示与知识推理方面的内容。与此同时,由于课时数限制及没有得到重视等因素,实际开设的“人工智能”课程(包括本科生课程和研究生课程)往往难以覆盖CC2001在知识单元IS3和IS5中列出的各个知识点。

实际上,经过五十多年的发展,知识表示与知识推理领域已经沉淀出一系列基本的方法、理论和技术;这些方法、理论和技术在CC2001的知识单元IS3和IS5中基本上都以知识点的形式列举了出来。作为计算机专业的教育工作者,我们有责任将这些体现了几代人智慧结晶的知识介绍给学生。另一方面,从研究者的角度来看,知识表示与知识推理是一个非常活跃的研究领域;尤其是随着Web技术的发展以及Web科学的出现,知识表示与知识推理将在计算机科学中扮演越来越重要的角色。面对万维网这个全球最大的分布式信息库,如何让计算机对其中海量的数据和信息进行分析、推理和管理,进而为人类提供方便的知识服务,是目前信息技术领域面临的一个重大问题。针对这个问题,国内外研究者基本上都是从人工智能的角度寻求解决思路;近年来成为研究热点的语义Web更是完全建立在知识表示与知识推理的基础上。因此,从开拓学生思维以及介绍研究与技术前沿的角度来看,也非常有必要向学生讲授知识表示与知识推理的相关内容。

基于以上认识,我们为计算机软件与理论专业和计算机应用技术专业一年级的硕士研究生开设了一门32课时的选修课程,以CC2001和CS2008列出的知识单元为核心,对知识表示与知识推理的相关内容进行教学。本文对教学设计和教学实践中遇到的主要问题进行分析,针对这些问题给出相应的解决对策,并对我们获得的经验和教训进行总结。

1 “知识表示与知识推理”知识体的教学设计

自上世纪九十年代以来,国内外许多高校就将“知识表示与知识推理”作为一门课程,面向研究生或高年级的本科生开设。其中比较著名的包括加拿大多伦多大学Hector J.Levesque教授开设的知识表示课程,美国斯坦福大学Leom Morgenstem教授开设的知识表示课程,英国曼彻斯特大学Ulrike Sattler教授等讲授的知识表示和推理课程,中山大学刘咏梅教授讲授的知识表示和推理课程等。但是,由于没有统一的课程设置标准,这些课程讲授的知识点都不尽相同。2000年,Leom Morgenstem和Richmond H.Thomason总结了开设知识表示与知识推理课程时面临的挑战,提出了相应的解决思路。其中,针对该课程缺乏统一的教学知识体的情况,他们设计了一个持续14周、每周2次课的教学大纲。在文献[5]中,Leora Morgenstem进一步修订了之前提出的教学大纲,建议在其中增加语义Web及Web本体语言OWL等内容。

尽管目前各高校开设的知识表示与知识推理课程的课程大纲仍然不尽相同,但比较可喜的是,对知识表示与知识推理的教学在CC2001计算教程中得到了高度重视。CC2001分别在“知识表示与推理”和“高级知识表示与推理”两个知识单元中列出了关于知识表示与知识推理的教学内容。知识单元“知识表示与推理”由以下知识点组成:命题逻辑和谓词逻辑回顾,归结原理与定理证明,非单调推理,概率推理,贝叶斯定理。知识单元“高级知识表示与推理”由以下知识点组成:结构化知识表示(包括对象与框架、描述逻辑和继承系统),非单调推理(包括非经典逻辑、缺省推理、信念修正、偏好逻辑、知识源的集成、冲突信念的聚合),对动作和变化的推理(包括情景演算、事件演算和分枝问题),时态和空间推理,非确定性推理(包括概率推理、贝叶斯网络、粗糙集和可能性理论、决策理论),针对诊断的知识表示与定性知识表示。在CC2001的基础上,CS2008在知识单元“知识表示与推理”中增加了合一与提升、前向链接、反向链接以及归结等知识点;在知识单元“高级知识表示与推理”中增加了本体工程和语义网络两个 知识点。

以CC2001和CS2008列出的知识点为基础,在综合考察了国内外相关课程的开设情况之后,我们对“知识表示与知识推理”课程的教学内容及相应的学时分配设计如下。

1)概述(2学时)。介绍知识表示与知识推理领域的发展历史、现状和前景:讲授知识表示的基本思路和基本原理;介绍知识表示方法和技术的典型应用:列举典型的采用了知识表示技术的系统,与没有采用知识表示技术的系统进行比较分析。

2)基于一阶谓词逻辑的知识表示和推理(4学时)。讲授一阶谓词逻辑的语法、语义和语用;通过例子讲授如何应用一阶谓词逻辑进行知识表示;讲授如何应用消解原理进行知识推理;讲授如何应用Tableau算法进行知识推理;分析一阶谓词逻辑存在的局限。

3)Horn子句逻辑与产生式系统(2学时)。讲解Horn子句及其过程解释;介绍SLD归结以及分别采用反向链和正向链的推理过程;通过例子讲授如何应用Horn子句逻辑进行知识表示和推理;对Prolog语言进行简单介绍;通过例子介绍如何应用产生式系统进行知识表示和推理。

4)结构化知识表示(6学时)。介绍对象与框架,介绍基本的框架形式系统:介绍语义网络,对推理过程中的继承机制进行介绍。介绍描述逻辑家族的研究历史和发展现状;以逻辑系统ALC为例,讲解描述逻辑的语法和语义;通过例子讲授如何应用描述逻辑进行知识表示;讲授如何应用Tableau算法对描述逻辑刻画的知识进行推理。

5)非单调知识表示和推理(4学时)。介绍非单调性推理的研究历史;讲解封闭世界假设与开放世界假设;讲解缺省推理和限定推理;对自认知逻辑、偏好逻辑和真值维持系统进行介绍;对信念修正、知识源的集成以及冲突信念的聚合进行介绍。

6)非确定知识表示和推理(4学时)。对模糊逻辑进行介绍;讲授概率推理和主观贝叶斯方法;对粗糙集、可能性理论和决策理论进行介绍。

7)解释与诊断(2学时)。讲授反绎推理的基本思路,将其与演绎推理和归纳推理进行比较分析;以一个电路系统为例,讲授如何在知识表示的基础上采用反绎推理进行故障诊断。

8)动作与规划(4学时)。介绍动作与规划领域的研究历史和发展现状;讲授如何在STRIPS系统中对动作进行刻画以及如何进行规划求解:讲授如何应用情景演算和事件演算对动作进行刻画、推理、及规划求解;对框架问题、条件问题和分枝问题进行介绍;对规划语言PDDL进行介绍。

9)时态和空间推理(2学时)。对时间点/时间段、离散/连续、有限/无限、线性/分支等表示时态信息的不同方式进行介绍;对Allen的区间代数理论进行介绍;对线性时态逻辑和分支时态逻辑进行介绍;对基于点/基于区域、离散/连续、有限/无限、同维/混合维等表示空间信息的不同方式进行介绍;对区域连接演算RCC进行介绍;对时态与空间推理的结合进行简单介绍。

10)语义Web和本体工程(2学时)。介绍语义Web的基本思想、技术现状和发展趋势;讲授语义Web的层次模型以及各个层次的目标和功能;对资源描述框架RDF、Web本体语言OWL、Web规则标记语言RIF、Web查询语言SPARQL等进行介绍。对本体的构建、管理和维护进行介绍。

上述教学内容的基本特点是覆盖了CC2001和CS2008列出的关于知识表示与推理的所有知识点。此外,我们将目前作为计算机科学和人工智能领域研究热点的语义Web等内容引入了课堂教学,不仅可以将相关研究前沿展示在学生面前,而且还可以让学生更加深刻地体会学习知识表示与知识推理的价值,进一步激发他们的学习热情。另一方面,上述教学内容存在的一个缺陷是内容过多。由于受到课时数的限制,部分内容在讲授时不能充分展开,留给学生课堂练习和讨论的时间不充裕。

2 教学实践中的主要问题及对策

在围绕“知识表示与知识推理”知识体开展教学实践时,我们遇到的问题主要来自以下几个方面:教师和学生对“人工智能”课程以及其中的“知识表示与知识推理”知识体不重视,缺乏合适的教材,学生缺乏必要的基础知识。下面对这些问题进行逐一分析,对我们采取的对策进行相应介绍。

2.1 师生对“人工智能”课程不重视

许多教师和学生对“人工智能”课程不够重视,甚至存在偏见。我们觉得,这种现状很大程度上是由人工智能自身的发展历程造成的。人工智能领域刚诞生时就被赋予过高的期望;早期的研究者也过于乐观地给出了一些不切实际的承诺。由于不能在短期内实现过高的目标和兑现相应的承诺,使人工智能领域在上世纪80年代末90年代初一度跌入低谷,甚至达到了声名狼藉的地步。这一特殊的发展历程使得一部分对人工智能了解不多的教师和学生产生误解,认为人工智能是一个比较务虚的领域。这种误解甚至影响到“人工智能”课程的开设。目前,在许多高校计算机相关专业的课程设置中,“人工智能”往往只作为选修课程开设,没有得到教师和学生的普遍重视。

实际上,从信息技术发展规律的角度来看,人工智能的上述发展历程是很正常的。根据市场权威研究机构Gartner给出的“技术成熟度曲线”(hype cycle)理论,一项新的IT技术在产生之后,一般先是默默无闻地奋力发展几年,然后会由于被大家寄予很高的期望而迅速火爆起来,接着会因为没能兑现过高的承诺而跌入谷底,最后会再次崛起并由于过硬的成就而被大众普遍接受。人工智能已经经历了从默默无闻到迅速火爆再到跌入谷底的发展过程,目前正处于再次崛起的阶段,并且将通过不断取得的成就而被大众普遍接受。

人工智能的教学在CC2001和CS2008中得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成,作为其中的知识领域之一,智能系统(即人工智能)与离散结构、程序设计、操作系统、计算机体系结构等已经得到普遍重视的知识领域具有了相同的地位。在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,也将“人工智能”作为了计算机科学专业的核心课程。但是,对人工智能相关知识的传播需要一个长期的过程,仍然需要广大科研和教育工作者的不懈努力。

2.2 师生对“知识表示与知识推理”知识体不重视

即便部分教师和学生认识到人工智能知识领域的重要性,但对于其中的“知识表示与知识推理”知识体仍然不够重视,认为没有必要专门通过一门课程进行教学。

针对这个问题,我们可以对人工智能领域的发展历程作进一步考察。我们知道,人工智能领域的诞生就是从知识表示和知识推理开始的。在1956年标志着人工智能诞生的Dartmouth会议上,Herbert Simon和Allen Newell展示的“逻辑理论家”就依赖于知识表示和知识推理。在此之后的五十多年中,知识表示与知识推理就一直是人工智能中最为重要的子领域。相 应的一个佐证是,1966年到2009年期间,在获得图灵奖的56名科学家中,Marvin Minsky、John Mccarthy、Herbert Simon、Allen Newell、Edward Feigenbaum和Raj Reddy等6名科学家都在知识表示与知识推理领域取得了开创性的研究成果。

知识表示与知识推理的重要性在CC2001和CS2008中同样得到了体现。CC2001给出的“智能系统”知识领域由以下10个知识单元组成:智能系统中的基本问题、搜索与约束求解、知识表示与推理、高级搜索、高级知识表示与推理、智能主体、自然语言处理、机器学习与神经网络、人工智能规划系统、机器人;C$2008在CC200I的基础上增加了智能感知这个知识单元。其中,关于知识表示和知识推理的教学内容不仅占据了两个知识单元,而且在智能主体、人工智能规划系统、机器人等知识单元中也占据了相应的多个知识点的位置。由于32课时的人工智能选修课程通常只能对上述知识单元作一个概要性的介绍,对于想进一步深入学习的学生,在有条件的情况下,我们完全有必要开设一门关于“知识表示与知识推理”的课程。另外,从上一节给出的教学设计可以看出,如果要覆盖CC2001和CS2008给出的关于知识表示与知识推理的所有知识点,一门32课时的课程在时间上还很不够用。因此,基于以上分析,我们希望“知识表示与知识推理”的教学首先能够得到相关教师的认可和重视,然后通过课程设置等途径逐渐吸引学生的关注,并在教学过程中激发起学生的学习兴趣和热情。

2.3 缺少合适的教材

尽管CC2001和CS2008详细地列出了关于知识表示与知识推理的主要知识点,但是,据我们所知,目前还没有出现完全覆盖这些知识点的合适教材,而中文的相关教材更是缺乏。

在参考了多方面的资料之后,我们选择了Ronald Brachman和Hector Levesque撰写的《Knowledge Representation and Reasoning》作为教材。Ronald Brachman和Hector Levesque都是知识表示与知识推理领域的著名学者。其中,Ronald Brachman于1977年在哈佛大学攻读博士学位时提出了KL-ONE系统,开创了目前成为研究热点的描述逻辑领域,之后于2003年担任了美国人工智能学会的主席,目前是ACM院士、雅虎全球研究运营副总裁。Hector Levesque在知识表示领域也做出了许多开创性的研究成果,曾于2001年担任人工智能顶级会议IJCAI的主席,于2006年当选加拿大皇家学会会士。除了时态和空间推理以及本体工程这两个知识点之外,CC2001和CS2008中列出的其他关于知识表示与知识推理的知识点,在《Knowledge Representation and Reasoning》中都基本上得到了体现。另外,为了在课程中向学生介绍语义Web方面的知识,我们选择了Grigoris Antoniou和Frank van Harmelen撰写的《A Semantic Web Primer》作为参考书目。

2.4 学生缺乏必需的基础知识

知识表示与知识推理的核心思想是采用形式语言(尤其是逻辑语言)对知识进行刻画和推理,因此要求学生在学习该课程前具有扎实的数理逻辑基础知识。

尽管数理逻辑对于整个计算机学科来说具有非常重要的作用,但在目前计算机相关专业的课程设置中,数理逻辑往往只作为离散数学课程的一个部分进行教学,在课时数量上非常有限。此外,从教材的角度来看,大部分离散数学教材的数理逻辑部分主要介绍命题逻辑的相关知识,而且只介绍命题逻辑联结词、范式、等值演算、自然推理系统等最基本的内容;对一阶谓词逻辑以及命题逻辑中更为深入的内容介绍得很少,甚至不介绍。这些内容对于学习知识表示与知识推理知识体来说远远不够。例如,根据我们在讲授“知识表示与知识推理”之前的调查,许多研究生对于一阶谓词逻辑的语法与语义等基本概念都还比较模糊,对于消解原理、Tableau方法、可满足性问题等内容更是没有接触过。

针对上述问题,除了原计划关于一阶谓词逻辑知识表示的4个课时之外,我们临时增加了2个课时的课堂教学,为学生补充命题逻辑的语法和语义、公式可满足性问题、Tableau判定算法、基于消解原理的判定算法等内容。由于受到课时的限制,许多重要的结论及其证明过程无法在课堂上详细阐述。

值得一提的是,由于研究课题的需要,我们组织部分研究生一起学习了John Bell和Moshe Machover撰写的著名教材《A Course in Mathematical Logic》。在学习这本教材时,我们将研究生分为三个小组,让各个小组自学该教材,对其中的引理、定理以及问题(Problem)进行证明或求解,然后在每周一次的学习班上使用黑板讲解他们的证明或求解过程。在3个月的时间里,将这本教材中的第一章和第二章学完后,这些研究生的数理逻辑知识明显上了一个台阶。在之后学习知识表示与知识推理的过程中,这部分研究生的学习效果也明显好得多。在今后的教学中,我们希望计算机相关专业的研究生能够先学习一门数理逻辑方面的课程,然后再学习知识表示与知识推理课程。

篇(11)

技术与教育之间的关系,我们以为是一个不等式:1+1≠2。

一方面,整个世界对教育的抱怨不断强化,如诺贝尔物理学奖获得者中村修二批评整个东亚教育体系“浪费了太多生命”。美国投资家查理・芒格演讲指出:“光靠已有的知识,你走不了多远”……另一方面,仅以联合国教科文组织为例,继1972年出版了研究报告《学为生存:教育世界的今天和明天》和1996年出版了研究报告《教育:内在的财富》之后,2016年又公开出版了一份新的研究报告《反思教育:向“全球共同利益”的理念转变?》。联合国教科文组织总干事伊琳娜・博科娃在这一报告的《序言》中指出:“社会无处不在经历着深刻变革,这种形势呼吁新的教育形式,培养当今及今后社会和经济所需要的能力……我们必须高瞻远瞩,在不断变化的世界中重新审视教育。”

一方面,微软创始人比尔・盖茨2013年在出席美国德克萨斯州奥斯汀市举办的SXSW互动大会教育分会上明确表示:过去十几年间教育领域的技术发展陷入了停滞,研发投入也远远不够……到了2016年,比・盖茨在ASU-GSV峰会上所做演讲围绕“科技革命如何引导教育进入下一阶段”的主题时谨慎明确表示:“我们的基金会已经在美国教育上花费了几十亿美元,不过在此之前,我们首先需要搞清楚现在这些学生是什么样的,以及我们怎么才能很好地服务于他们。”另一方面,2017 年 6 月召开的联合国国际电信联盟(ITU)等联合国机构和 XPRIZE 基金会共同组织了人工智能造福人类峰会(AI for Global Good Summit),旨在讨论让人工智能符合可持续发展的目标(SDG)强调的 17 个可持续发展目标中,“质量教育(Quality Education):用个性化教学变革教育”赫然在目。

以上两组看似对立,实则呼应的案例,揭示了当前教育变革的痛点、痒点和奇点,都与时展、科技进步等外在因素间架构起诸多交集,而由此派生出来的诸如学习模式、思维特质、个性潜质和行为科学、脑科学等新兴教育边缘学科之间形成了新的认知和有了新的应对之策。曾经几时,教育陆续地迎来了许多新技术。从最初的广播录音到电影电视,再到后来的互联网……然而,技术到底能否改变教育呢?如果我们只是试图用颠覆性革命视角去看待技术的教育价值,那么无疑会得到悲观的结果,而在现实中,技术对于教育的改变是温水煮青蛙式的改变:第一,技术改变了知识观念,对知识的定义不再拘泥于总结性结论信息的汲取,而更重视可持续发展,乃至未来趋势性的元素预判。第二,技术改变了教育界限,学校正在成为学生生命中重要成长阶段的孵化器,进而要求教师承担起多元智慧导引的新使命。第三,技术改变了学习,关注正式学习形式、拓展和延伸学习的内涵等深度学习要素排序急剧上升。

反观本段落的不等式,答案应该是:教育因技术而成长,技术因教育而迭代。

教育技术的内涵与外延该不该重构

教育变维时代,应该能达成学习变频的交集。

“变维”一词最形象的揭示出现在《三体》,而最精准的学术定义倾向于“谷歌学术”;限于篇幅,这里只罗列一组相关概念延伸:降维、升维、高维、低维、众维、分维……简单理解就是一句话“升维思考,降维执行(打击)”。在教育视域下,看似高维的技术攀升,并不一定只有操作升维才能响应,事实上,反倒是在契合时代进步的同时,不忘初心,更显得适切教育本元。教育装备,教育技术,教育工程,教育生态……这一路走来,教育技术的内涵与外延重构的核心概念大可归结为一个词:“跨界迭代”。唯一需要阐明的一点就是,在不被传统教学范式捆绑的同时,也实在没必要刻意追求技术条件与装备环境的高大上先行;高解构与低结构之间是完全有可能达成平衡的。依我们的经验,通过八项保障性学能资源体系的建构,同样可以在确实有需要的境况下,达成类似的目的(这八项实验生态改革是:在既有学科实验室的基础上,第一做到突破教材实验底线要求,实现学科成长实验贯通;第二是要求学科间实验室实现交叉实验项目的开放响应;第三是鼓励创建基于学科拓展的特色实验室;第四是引进学校区位环境内的社会博物馆科技馆资源课程;第五是寻求驻在学校所在城市的大专院校实验室向中小学生有条件开放;第六是说服社会高新企业研发级实验室为中小学生研究提供方便;第七是建立基于实验项目可行性论证之后的中科院系所研发环境的支撑;最后,是建立与海外科研机构、高校资源链接的离岸实验系统)。

在教育的执行层面,比如学科、学校、课堂、学教……介入因子的能动变化确实稍显被动,即便是前进也亦步亦趋,鲜少主动因应。究其原因,还是观念过于固守,思维定式影响力过于强大,加之教育界内外求全责备、又自我混乱的评议生态的干扰,就使得自我变革的欲望不断被内耗,自我探究的勇气不断被质疑,自我实验的冗余度环境不甚理想……即便如此,我们依然有可能在“变频”中收获坚守。大家熟知的(基于兴趣,而非成绩)“走班制”“学习广场”“学术假期”不再多言,除此之外,还有一些做法可以借鉴。比如“STEM”课程,同样以“机器人教育”为抓手,有很多学校都群起效之,但真能做到学科融合、学能一体的经验实在还不够多;这里,贡献一己设计,期待抛砖引玉:“使命召唤――卓越成长支撑共同体”。由“学能生态孵化环境”(可选项包括学科成长促进机制、国家课程贯通重构、团队协作课程开发、校内微型实验基地群落地等);“未来生涯导引系统”(可选项包括潜质检测分析、个性特质跟踪及行为科学介入训练、对接国际能力档案的第三方多元评价响应、职业导向辅导等);“资源辅佐响应体系”(可选项包括八级实验环境支撑、预现未来的深度学习同频、远程异地交流后台建设等);“访学成长基地布局”(可选项包括世界高端学术观摩、跨学段课程先修、学生境内学术假制度和离岸访学基地建设);注重品牌内涵附加值提升的外联共享特色(可选项包括结合区位环境的联盟校个性课程生态再设计、高端课程资源社群、校际联动课程众筹协调机构、学生专利世界等)五部分协调响应(可渐次推进)。

教育技术有哪些引领教改的发力点

技术只是工具,外在环境可以改变一部分人,而不是全体。从教育的视角,有两个理由可以佐证。

其一,“天生我材必有用”名言的支撑点在于“不拘一格降人才”;当下教育变革中,一个最大的困惑就在于,我们总是在寻求一种能够帮到所有学生齐步向前的“万全之策”。事实上,这只能是一种善良却不科学(更不理性)的愿望而已。一旦我们对教育的认知有了如此这般的修正,那么,技术对教育的影响力才有可能真正释放出来。

其二,我们都已经熟知一个词“STEM”,我们也都不同程度地了解人类发展经历了漫长时期的同时,最重要的进化,是学会使用工具,有了“技术”。单从字母排序上,“技术(Technology)”位列第二,但这之后的工程(Engineering)和数学(Mathematics),与前面的科学、技术之间,难道没有发现一种内在的教育规律么?在教育的金字塔结构中,“科学”承载着所有,但“工程”却引领着技术!而最终稳坐桂冠的永远都是“数学”(哲学境界的象征)。所以,理性的解读应该是教育工程既传承了科学,也弘扬时代未来,更实践着科学发展。

因此,技术影响力延后对教育领域的波及,乃在于教育期待技术的支撑而不是替代;由此延伸,也就顺带着回答了另一个问题:为什么以总结性经验(知识)为主要表征的教育方法论,千百年来却又一直承担起建构未来的重任。

下面的举证,都是为了以上推演的成立。

首先,最新技术,尤其是到了智能时代的技术爆炸阶段,技术不再以效仿人类为己任。比如,机器人不再止步于减轻人的劳动付出,而是向着无人境界远行;再比如,深蓝和阿法狗选择了挑战人类引以为傲的高智慧尊严;再来看看权威机构的预判,全球数百位顶尖科学家,耗费漫长时间,搭建了一个复杂数学模型,通过类似摩尔定律的多重推演,得到一个最终结论:人工智能或将在2040年,达到普通人智能水平,并引发智力爆炸。这一时刻,距今还有23年……面对这样的发展趋势,来自教育的回答是“教育不教知识和技能,却能让人胜任任何学科和职业”(理查德・莱文(Richard Charles Levin),耶鲁大学校长)。

其次,比23年期限更可怕的是,到达节点后,人工智能或将实现瞬间飞跃。对AI的最新定义是“非生物智能”!人工智能专家普遍认同,非生物智能不可能锁死在人类自己能够展望的水平上。它将超越人类,变成我们无法理解的智慧物种。这里,就给教育以警示,我们必须提早介入到帮助所有学生认清情势,并提前因应的绸缪之中,@里的教育重点,或将越来越多地从“技术中心论”调适为“生存中心论”。

再次,教育将优先关注那些有效的个性化学习产品。比如,“Big History Project”(这个产品重新定义了小孩学习科学的方式);比如,NewClassrooms和ThinkCERCA就分别为K12学生学习数学、掌握读写能力提供了全新的学习体验……

最后,要清醒地认清,就教育的支点而言(毕竟美国正式推出STEM是以“国家战略”的名义的),教育技术与获得技术支撑的教育之间的关系,是一种目与纲的关系。与此同时,亟待建立证据基础来评判产品是否有效,比如LEAP Innovations这个组织就在做这件事情,它针对个性化学习产品提供了行之有效的评估方法。

我们布局最新教育技术应用的设计

着眼于未来办教育,这是教育的初心,更是教育不遗余力追求的本元。但样本肯定不是唯一的,甚至在现阶段,只能存在挂一漏万的实验设计。

我们现在正在开发的“未来学校”模式,就其契合技术这个视角而言,大抵做了四个方面的响应。

第一,“同频时代”。不单是指学校的基础设施将得到极大提升,教室会变得很不一样。不仅是说跟进了一些最尖端的智能设备,而是学习(是的,不再是教育教学)的整个布局都会变得个性化。在这方面,我们持续了整整十年的摸索,上文提及的“八级学习资源系统”将多快好省地保证深度学习模式的有效实施,而不必再纠结于经费、师资、教材等的制约。

第二,“同步世界”。我们重点试验了两大系统,一个是Summit Public Schools和Facebook联合开发的一种在线教育工具――PLP(个性化学习平台)。这一软件能将整个学年的课程放在一起,形成视觉化的项目图,而学生可以在日程表上安排自己的学习进度、选择学习材料并参加考试。通过PLP,教师也可以评估学生的学习情况,并与学生配合,共同确定新课程计划。另一个是Wolfram Alpha(也称为WolframAlpha或Wolfram|Alpha,缩写WA),是由Wolfram Research公司推出的一款在线自动问答系统,在美国 Popular Science 杂志的投票评选中获得2009年度最伟大的科技创新产品的荣誉);Wolfram|alpha就像从一个巨大的电子大脑(electric brain)搜索答案,它能针对广泛的问题提供详尽的答案,即使这些问题以不同的方式询问,它也能应对自如。