绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇可降解塑料原理范文,希望它们能为您的写作提供参考和启发。
中图分类号:TQ464 文献标识码:A 文章编号:1671-2064(2017)07-0210-02
由于传统塑料材料的机械强度与韧性优良,传统塑料材料被广泛应用于包装材料,但是对石油基材料的过度使用,导致一次性消耗的自然资源过多,这使环境恶化。处理石油基包装材料的主要方法――填埋、焚烧造成了对居民的困扰。随着人们环保意识的不断加强,可降解材料应运而生,针对资源短缺、环境污染的问题,可降解材料的特点是原料绿色无污染,降解之后的产物对环境影响污染较小,甚至无污染。
1 可降解材料的概述
可降解材料是在生产过程中加入添加剂,使其本身在一定时间内能维持普通塑料的正常功能,超过一定时间或被废弃后,在光或微生物或其他因素的作用下,进行自身降解而后消失的材料。可降解材料可以减少一次性的难降解塑料在焚烧时对环境造成的危害,缓解填埋一次性难降解材料造成的人地矛盾。可降解材料从降解方式进行分类,可以分为光降解材料、生物降解材料以及其他降解材料。
1.1 光降解材料
光降解材料是一类添加光敏剂或引入特殊键的光敏基团,在太阳光的参与下,自身能进行对自身结构进行破坏的材料。
一类光降解材料的作用原理是聚合物在吸收太阳光后,光增敏基团被激活,使聚合物产生有双键等易于被降解的杂质,进一步发生氧化反应,最后降解为二氧化碳和水。例如:将一氧化碳为光敏单体与烯烃类单体聚合得到的如含有羰基结构的聚乙烯、聚氯乙烯等的光降解聚合物与同类树脂混合,可得到一种光降解材料;另一类光降解材料的原理是聚合物在生产时加入少量光敏剂,光敏剂在光照的条件下,促使聚合物产生自由基,加快自身的降解速率。光敏剂具有在光降解材料使用期内抗氧化的作用且能帮助维持光降解材料的正常使用,但在光降解材料使用期过后,又能促进其吸收光能进行自我分解的双重作用。含有光敏剂的光降解材料可分为含有过度的金属化合物如金属氧化物、有机金属化合物等的光降解材料和含有如蒽醌、嵌二萘等具有敏化烯烃塑料的多环芳香族碳氢化合物的光降解材料。
影响光降解的因素有聚合物结构(如含有羰基等)、光敏剂的添加、光波长、大气条件。光降解材料的缺陷有:第一,光降解的引发剂大多是对人体有害,因此不能应用于食品级,医疗级塑料;第二,大部分光降解材料不能被完全降解,这可能使其对环境的危害更大,第三,光降解材料应用范围较狭窄(地域狭窄),但可大面积应用于农田。
1.2 生物降解材料
由于光降解材料的局限,以及广泛的生物来源,目前的研究热点更多地放在生物降解材料上,相对于光降解材料,生物降解材料的原料来源更加绿色,降解的产物对环境的污染性也更加小。生物可降解材料是一类在酶或微生物的作用下,使维持自身结构的分子链逐渐断裂,形成对环境无害的小分子化合物的材料。
生物降解的方式有生物的物理、化学作用和酶的直接作用。根据来源的不同可以分为微生物降解型的生物材料、合成高分子型的生物降解材料、天然高分子型的生物降解材料。微生物降解材料是以有机物为碳源,微生物进行发酵转化为高分子聚酯,利用这种高分子聚酯制作为塑料的材料。合成高分子型的生物降解材料是利用化学方法合成在自然界中与原本存在的利于降解的高分子化合物。天然高分子型的生物降解材料是在合成时以淀粉、纤维素、木质素等多糖化合物为原料,在必要的条件下加入生物降解添加剂或经氧化、改性而加工制成的塑料。其中,淀粉基构成的可降解材料和PLA构成的可降解材料是当今研究的热点,PHB作为可降解材料也有较为广泛的应用。
淀粉通过植物光合作用而形成的,易得,降解后仍以二氧化碳和水的形式回归到生态环境中,是完全无污染的非常优良的生物降解材料。针对淀粉作为原料来源的淀粉基塑料是目前可降解材料领域研究的一大热点。淀粉基塑料研究的阶段主要有三个:第一阶段是少量淀粉加入到传统塑料中来达到可降解的目的;第二阶段是增加淀粉含量和淀粉与其中组分的连接;第三阶段是将淀粉经过处理,形成完全由淀粉组成的塑料。对淀粉进行改性,使其能够进行生物降解或能溶于水是研究的热点话题,如PVA与淀粉的混合物的研发。淀粉基塑料还有需降低成本、提高机械强度,以及提高给降解材料的降解周期控制等研究空间存在。目前研究最为成功的是将淀粉和高分子材料进行共混得到性能良好的可降解材料。
PLA(聚乳酸)是多糖经过降解发酵制得、纯化、聚合而成的环境友好型树脂。PLA是由乳酸分子在一定条件下脱水缩合而成。PLA在土壤掩埋条件下,在温度、氧气、弱碱性的共同作用下,6~12个月降解为乳酸,最终经微生物代谢,形成二氧化碳和水。PLA因其优良的生物相容性和机械强度,被广泛应用于新兴功能型医用高分子材料如医用手术缝合线、骨科用固定材料等。
PHB(聚β-羟基丁酸酯)是细菌体内碳源和能源的以颗粒状储存的酯类积累物。PHB对气体有阻挡性,能用于未添加抗氧化剂的食品的包装袋;PHB有良好的生物相容性,可用于手术缝合线、骨折固定材料;因PHB能够降解,可用于与农药或贵重药品的包埋处理。因为PHB用细菌发酵法进行生产,所以PHB的生产重点放在基因工程等技术。针对其易结晶、较脆、降解速度较慢的缺点,如何通过物理或化学的方法改善PHB的性能成为研究的重点对象。
1.3 其他降解材料
PVA(聚乙烯醇)因具有可控性――控制其醇解度和聚合度来把握PVA的溶解时间,成膜性、物理强度好――完全可以满足制做塑料的条件、毒性低、可达到100%降解、降解产物对环境无危害等优点,成为能够替代当今塑料的重点材料。PVA的原材料,PVA树脂分子链上的醋酸乙烯酯基体积较大,该基团的存在使得分子链上的羟基之间不易形成氢键,也一定程度上阻止了大分子之间的相互靠近,而PVA分子链上的羟基能和水分子之间形成氢键,这使PVA具有良好的水溶性,优异的水溶性有利于材料的降解。但是,单一的PVA材料机械强度难以满足使用要求。目前,淀粉/PVA共混体系能够满足塑料的正常使用,但是随着时间的加长,其力学性能下降得很快,说明其基本能满足可降解材料的条件。若要提高淀粉/PVA的耐水性,则可对淀粉/PVA共混体系进行甲基化改性、交联处理、加入纳米二氧化硅或加入柠檬酸和石油砂。但是PVA的生产工艺主要为流延法――首先将原料组分配好,后和水流延涂布到不锈钢辊上,再进行刮、剥离、收卷等工艺,因此,存在效率低和费用大的缺陷。PVA还需解决如何使高温水溶膜遇低温水完全不溶以及均匀及透明等问题。
光/生物双降解是一类加入一定量的光敏剂、促氧化剂等的在光和生物的共同作用下进行降解的聚烯烃材料。第一,有研究表明,生物降解以光降解为基础,对此,因其现已用于地膜、餐盒,这表现出了这种兼具两种降解方式的的技术先进性和实效性;第二,光/生物双降解材料降解较快,约60天能被完全降解。
2 发展前景及展望
大部分的可降解材料存在机械强度较小和韧性较弱以及降解的控制性较弱的缺c,因此,第一,可以多开发复合型可降解塑料,避免了单一原料造成的力学性能缺陷着重点放在开发应用范围广,原料易得、价格低廉的产品;第二,简化生产工艺扩大生产来促进可降解材料为我们实际生活所用。
3 结语
随着人们环保意识的增强和科技的飞速发展,可降解材料逐步取代石油基材料是必然趋势,如何充分发挥可降解材料的融传统包装材料的功能和特性和可降解,回归大自然的优点,成为各国研发的重点。
参考文献
B. 炼钢 一氧化碳、棕色烟尘
C. 氨氧化法制硝酸 二氧化硫、三氧化硫
D. 接触法制硫酸 一氧化碳、黑色烟尘
2. 硅酸盐工业的一般特点是( )
①以含硅物质作为原料 ②主要产物是硅酸盐 ③反应条件是高温 ④反应原理是复杂的物理变化和化学变化
A. ①③ B. ②③ C. ①②③④ D. ③④
3. 下列关于金属保护的说法,正确的是( )
A. 在铁制品表面涂上搪瓷可以防腐,若搪瓷层破损后仍能起防止生锈的作用
B. 镀锌铁制品表面的锌层破损后仍能起到防止铁生锈的作用
C. 钢铁制造的暖气管外常涂有一层沥青,这是一种改变金属内部结构的方法
D. 轮船外壳水线以下常装有一些锌块,这是利用了牺牲阴极的阳极保护法
4. 最近研制的一种可降解塑料,代号为3HB,结构简式为[H―O―CH―C―OH][CH3] [n] [O],具有良好的生物适应性,能在自然界中自行降解,下列说法中正确的是( )
A. 可降解塑料3HB,在自然界中通过水解反应降解为该聚合物的单体
B. 该聚合物的单体中含有的官能团仅有醛基
C. 1 mol该单体分别与钠、碳酸氢钠溶液完全反应时,消耗钠和碳酸氢钠的物质的量之比为1∶2
D. 由单体生成降解塑料3HB的反应为加聚反应
[铁矿(Fe2O3)][高温尾气
(CO2+H2O)][CH4][合成气(CO+H2)][合成其
他产品][Fe][还原
反应室][燃烧室][混合气(CH4+O2,其体积比为1∶2)][催化
反应室] 5. 竖炉冶铁工艺流程如图,使天然气产生部分氧化,并在特殊的燃烧器中使天然气燃烧:CH4(g)+2O2(g)=CO2(g)+2H2O(g),催化反应室发生的反应为:CH4(g)+H2O(g)?CO(g)+3H2(g) [Δ]H1=+216 kJ・mol-1;CH4(g)+CO2(g)?2CO(g)+2H2(g) [Δ]H2=+260 kJ・mol-1(不考虑其他平衡),下列说法正确的是( )
A. 增大催化反应室的压强,甲烷的转化率增大
B. 催化室需维持在550~750℃,目的仅是提高CH4转化的速率
C. 设置燃烧室的主要目的是产生CO2和水蒸气作原料气与甲烷反应
D. 若催化反应室中,达到平衡时,容器中n(CH4)=a mol,n(CO)=b mol,n(H2)=c mol,则通入催化反应室的CH4的物质的量为[a+b+c4]
6. 下列说法中正确的是( )
A. 天然纤维就是纤维素
B. 合成纤维的主要原料是石油、天然气、煤和农副产品
C. 化学纤维的原料不能是天然纤维
D. 生产合成纤维的过程中发生的是物理变化
7. 下图表示某些化工生产的流程(有的反应条件和产物已略去)。
请回答下列问题:
(1)写出下列物质的名称:E ,H ,K ;
(2)流程中所涉及的化学工业 (写出两个即可);
(3)反应I需在500℃进行,主要原因是 ,实际工业生产中,反应Ⅱ的条件是 ;
(4)工业上,析出K后,再向母液中继续通入E,并加入细小食盐颗料,其目的是 ;
8. 氯化亚铜(CuCl)是有机合成工业中应用较广泛的催化剂,它是白色粉末,微溶于水,不溶于乙醇,在空气中会被迅速氧化。从酸性电镀废液(主要含Cu2+、Fe3+)中制备氯化亚铜的工艺流程图如下:
[调节pH、温度
过滤][酸浸(pH≈4)
蒸发、过滤][电镀废液][电镀污泥][滤液][铁粉][高浓度硫
酸铜溶液][氯化钠][滤液][CuCl晶体] [碱
过滤]
金属离子含量与pH、CuCl产率与混合液的pH的关系图:
[1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0][95
90
85
80
75][pH][1 2 3 4 5 6 7 8 9][10][CuCl][Cu2+][Fe3+][产率%][的浓度][(g・L-1)][Cu2+的浓度][Fe3+的浓度][CuCl产率]
请回答下列问题:
(1)电镀污泥的主要成分是 (写化学式);
(2)酸浸时发生反应的离子方程式是 ;
李壮:曾经有文献做过这样的调查报道,“从1852年英国诞生第一座冲水公厕开始,水冲厕所逐渐在世界范围内普及。水冲式厕所对改善人类的生活环境,防止粪源性疾病的流行起到了重要作用。但水冲式厕所也是污染环境的一个主要根源。据统计,每人每天大约上厕所6~8次,一年大约2500次。成年人每人每年平均产生粪尿约550l,其中粪便约50l尿约500l,COD约30kg粪尿中所含的养份以氮、磷、钾为主。含氮4.5kg磷0.8kg钾1.8kg这些养份80%以上存在于尿中水冲式厕所每次需用6-13自来水冲洗,即用99%的清洁水冲洗1%的粪便,产生100%的生活污水。据测算,冲厕用水约占生活用水量的20%全国城镇人口每年冲厕用水不低于50亿吨相当于25座中型城市的年供水量。生活污水中人体粪便是地表水富营养化的主要原因。据中国科学院地理与湖泊研究所的调查和研究认为:太湖流域各种途径对太湖水体磷的贡献率依次为:人体(粪便)排磷43 57%,洗衣排磷16.1%,畜禽排磷12.51%,农业(化肥流失)排磷11.89%,工业(污染)排磷7.41%,水产养殖排磷5.30%,其它排磷3.22%。在江河湖海中有70%的氮也来源于生活污水。”
根据2008年度的环境统计年报报道的数据,当年全国的废水排放总量为571.7亿吨,其中工业废水排放量占废水排放总量的42.3%,生活污水排放量占废水排放总量的比例高达57.7%。全国废水中化学需氧量排放量为1320.7万吨,其中生活污水化学需氧量排放量占化学需氧量占排放总量的65.4%;全国废水中氨氮排放量127.0万吨,生活污水氨氮占到氨氮排放总量的76.6%。
据统计,当年全国共有1692座城市污水处理厂,全年共处理废水237.3亿吨。其中,生活污水202.9亿吨,占到总处理水量的85.5%,其中仅城镇生活污水处理率就达到57.4%。我国的辽河、海河、淮河、长江、黄河、松花江和珠江七大流域的污水治理设施的年运行费用在351.6亿元,城市生活污水处理率为57.0%。
在国家的“十二五”环境保护规划中,主要着力削减化学需氧量和氨氮排放量,规划将化学需氧量排放总量由2010年的2551.7(万吨)降低到2015年的2347.6(万吨);氨氮排放总量由2010年的264.4(万吨)降低到2015年的238(万吨)。为了实现这一目标,国家还启动了建国以来投资最大的水污染治理科技项目,总经费概算三百多亿元的水体污染控制与治理科技重大专项(水专项)。
从以上数据我们可以得知,一方面,人类粪便处理造成了大量宝贵的水资源的浪费,污染了环境,人们不得不投入大量的资金建设污水收集与处理系统;另一方面,巨量化肥的使用不仅降低了土壤质量,而且进一步污染了地下水及河流。我们很早就意识到:如果能将粪便单独收集、集中处理就可以变废为宝,从源头上解决粪便污染,大大降低生活污水中的化学需氧量和氨氮排放量。而且,从现有技术发展来讲,具有实施的可能性。进一步延伸,还有可能同时解决餐厨垃圾对环境的污染。
但是,由于冲水马桶在世界各个城市及富裕地区的普及,城市居民打开水龙头就能得到自来水,如厕之后一按按钮马桶就会出水,将排泄物冲走;很少有人关心这些自来水是从哪里来的,以及那些排泄物进入下水道之后去了哪里。要改变人们的“方便”系统,非常困难。然而,来自互联网的一则消息为解决“将粪便单独收集、集中处理、变废为宝,从源头上解决粪便污染”,这一难题找到了突破口。
记者:您所讲的突破口是什么?
李壮:2011年11月15日,云南省盈江县委副书记在微博上发帖称盈江地震灾区盏西镇中心寄宿制小学是一所山区小学,共有师生1000多人,全校却只有男女各七个蹲位的小厕所。每到早操结束或课间休息时,厕所都非常拥挤,要排长长的“方便队”。该小学一老师说,“……大部分学生都去这个厕所方便,课间休息15分钟,一直都很挤,学生们需要排队如厕。确实有个别学生靠每天少喝水来减少去排队。”“老师们采取了调剂措施,学生上课后,老师讲完课程或者抽空去上厕所……”该县委副书记呼吁:“孩子们希望能有一个大厕所,希望有能力的人们能帮助解决这个难题!”
因为我的童年时代是在陕北度过的,曾经在农村城镇的学校就读,所以对微博上的这条消息感同身受。目前我国许多农村城镇学校仍然以使用旱厕为主,卫生条件差,夏天蚊蛆四串,苍蝇乱飞,臭气熏天,即便如此,相当多的农村城镇学校仍然由于蹲位少,存在如厕困难的问题。
我们本着因地制宜、就地取材的原则,提出了简洁而有效地“零污染、零感染、零废弃物排放,变废为宝”解决方案。
尽管目前的方案比较实用,还可以解决没有卫生间的家庭在室内大小便的问题。但还比较简陋。然而,对于没有水冲厕所,甚至旱厕也不够的农村城镇来说具有必要性和可行性。并可以在使用过程中进一步发现问题、解决问题,为全面推广提供经验教训。成为“由农村包围城市”,向全人类推广“零污染、零感染、零废弃物排放,变废为宝”如厕方式的突破口。
记者:您是研究应用化学和电分析化学专业的,不仅是电分析国家重点实验室的研究员.博士生导师,而且还曾在德国著名的Jena分子生物技术研究所分子细胞和电子显微学实验室担任客座科学家。是什么力量促使您关注到“如厕”这一看似不起眼的问题的?
李壮:这些年来,我主要从事DNA与蛋白质相互作用、扫描探针显微学及纳米化学领域的研究工作,曾经提出了利用原子力显微镜制作基础因组DNA高分辨物理图的概念,改进和发展了DNA、单链DNA及DNA/限制性内切酶EcoRI在DNA质粒pBR 322上酶切点和星号活力高分辨物理图,成功获得了人类基因组130kb-190kb BAC DNA克隆分子展开形貌图,为发展快速、精
确、简便的用于解决大规模DNA测序中排序与组装困难的高分辨物理图提供了可能。近年又负责973项目“纳米材料与纳米技术在水污染物检测与治理中的应用基础研究“课题“基于纳米材料与纳米技术发展高效、快速、智能检测表征系统的新原理、新方法”作为一名科学家,研究工作不能局限在书斋和实验室,应该放眼到外界更广阔的天地里。
我们从事科学研究目的是为人类提供更好的生活、生存环境,解决国家、人民切身相关的实际问题。我童年时期在陕北的生活经历给我留下了非常深刻的印象,所以我了解农村城镇学校、家庭如厕难这一实际问题。有人曾经说过,人不吃饭可以坚持生存一个月,不喝水能够维持生存一个星期。但是,人不大小便能够坚持多长时间?如厕问题看上去简单,实际上是人类最基本、最重要的生命活动内容之一。目前水冲厕所虽然方便,但后果是浪费了资源,污染了环境。人们不得不花大力气治理。
记者:您能给我们具体介绍一下您所研究的解决污染源头.改善如厕环境的方案以及这一方案的特点吗?
李壮:要在农村城镇学校推广必须考虑经济性和实用性,我所提的方案特点是“零污染、零感染、零废弃物排放变废为宝”,而且简便易行。
具体到方案本身,因为关系到如厕问题,其实本方案可以按照大便和小便的步骤来区别划分。1.小便:步骤:A.将饮料瓶用剪刀剪成塑料杯作为支撑物。B.将一次性不透明可降解塑料袋放入塑料杯,可降解塑料袋袋口粘有封口胶带或扎口丝。C.将小便便入可降解塑料袋后,用粘在袋口的封口胶带或扎口丝将装有尿液的塑料袋密封。D.将密封的装有尿液的塑料袋从支撑的塑料杯中取出,放到指定的地方集中处理。E.将支撑的塑料杯归还或放到指定位置以便重复使用。如果希望能够进一步降低费用,用口径较大的带盖的饮料瓶也可以。小便后,将瓶中尿液倒入指定的尿液收集桶,空瓶盖盖后可重复使用。(当然,为了避免交叉感染,最好每个人用自己的尿瓶)。而且经过适当的练习这一方法也可适用于女性。
2.大便:步骤:A.将塑料便盆(淘宝价格5元/个)作为支撑物。B.将一次性不透明可降解塑料袋放入塑料便盆,可降解塑料袋袋口粘有封口胶带或扎口丝。C.将大便便入可降解塑料袋后,用粘在袋口的封口胶带或扎口丝将装有大便及手纸的塑料袋密封。D.将密封的装有大便及手纸的塑料袋从支撑的塑料便盆中取出,放到指定的地方集中处理。E.将塑料便盆归还或放到指定位置以便重复使用。
3.使用场所:本方案无需构建特殊建筑,只要能将男女分开,各自拥有隐秘空间即可。甚至下课后可以在教室或礼堂用布或不透明塑料布拉成隔离空间,分别供男女当厕所用,大小便后将密封在塑料袋中的大小便放到指定的地方,将布或不透明塑料布撤离之后,教室或礼堂即又可正常使用。此外还可采用更简单的办法:下课后将教室分为男教室和女教室,在规定的时间内分别用作男厕所和女厕所,规定的时间结束后恢复原教室。其实在任何地方拉个帘子形成隐秘空间,都可以方便,将帘子撤掉又可还原原来空间,但是如果有条件还是建议建造专门使用地方。
4.集中处理:A.在大小便的场所或指定其他地方放至少带有两个容器的车(或手推车)用于分别收集小便和大便,容器中放大的较结实的塑料袋,当快收集满时,将袋口密封进一步保证没有臭气泄露。B.将密封的塑料袋中的大小便运到指定的地方堆肥还田,或制造有机化肥,制造沼气或制备生物燃料。小便还可以卖给生物公司提取尿激酶等。
由于本方案采取将大小便密封在一次性不透明可降解塑料袋中,解决了臭味问题,也解决了蚊蛆苍蝇寄生虫及交叉感染问题。但要求教育使用者必须习惯将塑料袋口封闭,严格管理。
原则上本方案可用于解决任何多人同时如厕、可以解决没有卫生间的家庭在室内大小便的问题。由此扩展,原则上本方案可以解决人类的如厕问题。当然,在技术和加工制造及管理方面需要根据实际情况相应地改进和发展。要全面推广,必须进一步研究和发展完善更方便的全自动技术。
引言
1.1环境保护已成为当前国际关系、经贸合作中的一个极为重要的问题,也日益严重地影响着我国国民经济的可持续发展。在我国过去几十年的经济发展中,由于忽视了发展中的环境保护,目前环境状况十分严峻。近年来虽采取了大量控制措施,但环境质量下降的趋势仍在继续。
2.1现代生物技术是应用现代生物科学以及某些工程原理,如酶工程,基因工程,微生物工程等,利用生命体(从微生物到高级动物)及其组成(含器官,组织,细胞,细胞器,基因)来发展新产品或新工艺的一种技术体系。一般认为,生物技术包括基因工程,细胞工程,酶工程和发酵工程四个方面。
2.2生物技术直接关系到与人民生活,卫生,健康密切相关的医药卫生,食品工业,化学工业,农业的发展。可以在粮食危机,能源危机,环境污染中发挥巨大的作用,并且还可以从基因的角度治愈人类的遗传病。因此,现代生物技术已经被世界各国列为重点项目。
3.现代生物技术的特点
生物是构成生态系统的要素,生态系统内物质循环主要是依靠生物过程来完成的。科技的发展也充分证明生物技术是环境保护的理想武器,这一技术在解决环境问题过程中所显示的独特功能和显着优越性充分体现在它是一个纯生态过程。生物技术在处理环境污染物方面具有速度快、消耗低、效率高、成本低、反应条件温和以及无二次污染等显着优点,受到了高度重视。
目前生物技术应用于环境保护中主要是利用微生物。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、有毒有害物质的降解、清洁可再生能源的开发、废物资源化、环境监测、污染环境的修复等环境保护的各个方面,发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移。
利用环境生物技术可治理用其他方法难以处理的环境介质,即用生物修复技术净化环境,使受污染的宝贵资源如水资源(包括地面水和地下水)、土壤等得以重新利用,同时还可进一步强化环境的自净能力。
环境生物技术不仅单纯适用于环境污染治理,如今已相当广泛地应用于环境监测,尤其是以生物传感器为核心的环境生物监测技术,可在线在位迅速地提供环境质量参数,成为环境质量预报和报警中的重要组成部分【1】。
4.现代生物技术在环境保护中的应用
4.1污水的生物净化
污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。
4.2污染土壤的生物修复
重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。
4.3白色污染的消除
废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫【2】。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。
4.4化学农药污染的消除
一般情况下,使用的化学杀虫剂约80%会残留在土壤中,特别是氯代烃类农药是最难分解的,经生态系统造成滞留毒害作用。因此多年来人们一直在寻找更为安全有效的办法,而利用微生物降解农药已成为消除农药对环境污染的一个重要方面【3】。能降解农药的微生物,有的是通过矿化作用将农药逐渐分解成终产物CO2和H2O,这种降解途径彻底,一般不会带来副作用;有的是通过共代谢作用,将农药转化为可代谢的中间产物,从而从环境中消除残留农药,这种途径的降解结果比较复杂,有正面效应也有负面效应。
5.结语
著名的天文学家和生物学家,佛瑞得霍意耳(Fred Hoyle)先生曾经说过,还未解决的主要问题的答案应该由基本的假设来得到,而且同时也必须依靠经过反复尝试和检验的科学工具及方法。随着处理技术的不断发展,生物方法所能处理或修复的对象也在时刻不停地改变。为了使生物技术能满足新的发展需要。我们必须真正进行探索,并且可能以过去未曾想象到的方式来使用生物或是它们的衍生物。
参考文献
中图分类号:TS721 文献标识码:A 文章编号:1674-0432(2010)-11-0039-1
0 概述
专家分析,随着中国加入WTO,对一次性塑料的淘汰步伐将大大加快,由此促进塑料替代品研究开发的兴起。植物纤维制品从研制思想上完全突破了用降解法解决“白色污染”的框框,从根本做起,采用全天然的麦秸、稻草、稻谷壳、玉米杆等多种植物纤维型无污染废弃物为原料,将全天然材料配制成可食用的粘结剂,将上述全天然废弃物原料压制粘结而成。其产品具有无毒、无味、强度高、可在-26℃至100℃条件下正常使用、成本低(与纸浆模塑容器相比)、抛到野外后3月内可全部被土壤吸收、粉碎后可用做家畜饲料、生产过程不产生任何污染等特点。由此可见,开发研制秸秆育苗钵是社会的需要,是解决塑料对环境污染的一个重要途径和手段。
1 国内研究现状
目前国内育苗钵的原料主要以普通塑料为主,可降解塑料次之,秸秆为主体原料的育苗钵生产相对很少。目前市场上销售的以秸秆为原料的育苗钵主要有:纸制育苗钵、新型无菌营养育苗钵、秸秆贮水育苗钵、多元营养育苗钵等。主要制取方法有以下几种:
1.1 滕翠青等采用稻草纤维为增强材料,以淀粉为基体,研制出一次性秸秆纤维增强复合材料
采用土埋法研究了该复合材料的可降解性能。将该复合材料模压成花盆,结果发现该复合材料具有优良的可降解性能。陈海荣等对用稻草、木屑制成的育苗钵进行了甜瓜育苗研究,结果表明,采用该育苗钵进行甜瓜育苗是可行的,其中以口径7cm的最为合适,能培养出壮苗;在湿度较高的情况下,钵体能在15-25天的时间内被甜瓜根系穿透,埋土30天后钵体开始被降解。
1.2 彭祚登等对以小麦秸秆为主要原料制成的秸秆容器进行了育苗试验
研究表明:该容器易分解和腐烂,分解的快慢与基质中的水分状况有密切的关系;容器的透气、透水性好,但保水性能较差;容器易破碎;容器可以促进苗木侧根形成根团,但苗木的主根很容易穿透容器的底部。试验的秸秆容器适合培育幼苗期侧根发达、主根细弱的植物.对于主根发达且生长迅速的植物不适宜。
1.3 沈明卫、郝飞麟等对水葫芦制作温室栽培育苗钵的可行性作了研究
试验虽然取得初步的成功,但是发现的问题也很多,例如:干燥所需要的消耗的功率较大;耐水性不令人满意等。
1.4 彭祚登、刘彦明、杨会英等对秸秆育苗钵的技术特性作了部分研究
其研究结果为:秸秆育苗钵可以促进苗木侧根形成根团,但是苗木的主根却很容易穿透容器底部;秸秆育苗钵透气、透水性好,但保水性能较差,温度越高,钵内基质水分散失速度越快,温度大于35℃时,钵内水分急剧散失;秸秆育苗钵就有可分解性;湿度是影响秸秆育苗钵分解的重要因子;秸秆育苗钵的容易分解性对于培育1年生以上、生长速度较快的苗木以及育苗时间较长的苗木不利。
1.5 杨青、沈新原等选用废纸、废棉等为原料制取育苗钵
该试验采用真空吸附网模成型法制取育苗钵。成型原理为:以不锈钢网模作为过滤介质,在其一侧造成一定程度的负压(真空),而使废纸浆中的水排出,实现纤维和水的固液分离,从而使纤维附着在网模表面,形成与网模形状一致的钵体,经脱模、烘干,即得育苗钵。
2 国外研究现状
我国育苗钵以塑料为主,而国外则以降解塑料和纸质育苗钵为主。利用秸秆制取育苗钵的研究很少。
国外使用的纸制苗钵,主要由中国等发展中国家生产和提供。纸制苗钵由于前期造浆过程中多采用化学处理法,不仅会排放出含有腐蚀性的强碱黑液,而且还排放有害的废渣、废气,“三废”的污染严重。目前,纸制苗钵的价格过高,在国内很少使用。从德国的一些用户信息反馈,这种苗钵还有一个致命的弱点,即容易受潮变形,难以在育苗自动生产线上使用。
据资料显示,北美地区几年内有8家生产农作物秸秆育苗钵的厂家倒闭。通过这些失败的例子,我们可以吸取农作物秸秆制取育苗钵的失败的原因和经验教训。首先对原料的收购、收集、贮存、利用率和实际成本等缺乏了解。一般遗弃在农田的秸秆是其强度最好的部分,在运到工厂的过程中带回大量尘土、脏物和垃圾,在贮存中必须控制虫害和含水率。其次,工厂的规模小,难以达到盈利的目的。秸秆制取的育苗钵的价格高于传统的塑料育苗钵。小型秸秆育苗钵厂由于原料成本一般较高,加之小厂在承受技术、安全和销售等管理费用方面的能力处于劣势,它们初期投资小的优势很快会被生产现实所抵消。
3 结语
按照可持续发展战略的要求,以循环经济行为原则构建环保产业体系,以发展环保科技促进生态环境的改善,以对环境改善的要求促进环保科技的发展。这是环保产业的发展目标。而新兴的植物纤维材料,是对废弃物的循环利用,顺应了时代的发展潮流,只要将植物纤维工程材料替代塑料发泡容器技术全面地转化为生产技术,以此为起点,面对市场的强烈需求,不断扩大植物纤维材料在各个领域的应用范围,我们完全可以相信,植物纤维材料必将像塑料的使用范畴一样具有广阔的市场前景。
参考文献
[1] 范学凤.秸秆新用途[J].农村实用科技,1998,(9),25.
[2] 郭康权,赵东,等.植物材料压缩成型时粒子的变形及结合形式[J].农业工程学报,1995,11,(1):138-143.
[3] 郭佩玉.秸秆综合利用的重大发展[J].饲料工业, 1992,13,(12):20-24.
在当今的社会中,人们日常生活中的垃圾日渐增多。有些垃圾是不能回收利用的,那么这些垃圾又怎样处理呢?现在,我就想出了一个“垃圾处理器”,让我来讲解讲解吧!
垃圾处理器的外形庞大,是由一种不反光的玻璃和一个连接器组成的。人们可以把垃圾先倒到传送带里,传送带则会将垃圾运送到玻璃球中。太阳的反光会使垃圾变得恶臭,有垃圾处理器则不用担心。它是采用一种摸起来像可降解塑料一样的材质的玻璃,却反光,而且玻璃球内部将会喷出一种茉莉花精油和水合成的喷雾。而且,整个垃圾处理器外面也会有类似的喷雾喷出,虽然处理器是无需人工的,但为了避免臭味累积,也安装了喷雾。
接下来,垃圾在玻璃球中将会产生翻天覆地的变化。首先,玻璃球会自动把垃圾分类,可回收为一类,不可回收为一类,废电池为另一类。然后,不可回收的垃圾将会利用一种特殊的原理将它分解成一小粒一小粒,然后用一些泥土混杂在一起,利用一种高科技的高温加热,从出口出来的便是肥沃的营养土了,可用来种植物,而且效果会比一般的泥土好很多。接下来,可回收的垃圾,将会利用一种化学原理迅速降解,然后用一种特殊的胶质物质连接,就是一块一块明亮的玻璃,可用于家居专用。再就是废电池的处理了,废电池将会被特殊的金属物质加,并改换成无贡的碱性电池,这样,再以后电池用完,就可随生活垃圾处理了。人们每天倒垃圾,还能免费得到营养土,玻璃和碱性电池,既环保又省钱。
这就是我想象中的垃圾处理器,虽然它暂时还没有问世,但我相信,十年,二十年,五十年……我们总有一天会把它变成真的,造福人类的美好生活。
关键词:广州市;固体废物;二次污染
1广州市固体废物污染现状
1.1广州市工业废物污染现状
近年来,广州市工业生产产生的固体废物急剧增加,组成成份日趋复杂。2005年全市固体废物产生总量达2334万吨,其中一般工业固体废物就占有1400万吨,该市固体废物的处理处置总量虽接近1000万吨,但现有的固体废物处理处置设施数量上远远不能满足废物处置需求,设施建设普遍简陋,达不到“无害化”的标准,二次污染严重。
1.2广州市城市生活垃圾污染现状
目前广州市平均日产垃圾6300吨。生活垃圾,主要在位于黄埔区的大田山垃圾填埋场集中处理。但由于各种原因,这些生活垃圾在处理过程中又给当地的居民群众造成了较为突出的二次污染。尤为令人吃惊的是,已开场10多年、并计划将于年内关闭的大田山垃圾填埋场,其污水处理系统至今还处于调试阶段,大量未经任何处理的污水直接排放到河涌里。
1.3广州市有毒化学固体废物污染现状
目前广州市每年的危险固体废物产量约为2万吨,废旧电子电器12万吨,废塑料包装物和农用薄膜32万吨。其中医疗废物进行集中处理处置的只有广东生活环境无害化处理中心等3家,医疗废物集中安全处置达标率只有40%;大量的危险废物被不规范焚烧或倾入没有采取防渗措施的生活垃圾填埋场,甚至直接排入环境中,造成严重的环境污染。
1.4广州市白色污染现状
广州市目前使用的是EPS(俗称白色)泡沫塑料快餐具,其年消耗量在20亿~30亿只,大量弃掷的泡沫塑料快餐具形成“白色污染”。21世纪广州市的白色垃圾有300多万吨。由于EPS泡沫塑料消耗的是无法再生的石油资源,用作发泡剂的氟利昂是对地球大气臭氧层造成不可逆转破坏的“元凶”,它埋在地里会使土壤劣化,焚烧处理又会产生10余种有毒气体污染空气,故而成为灾难性的“白色污染”。它已同汽车尾气、有磷洗涤剂一起被列为我国环保治理的三大重点。因为白色垃圾需要百年以上时间才可以在自然界自然降解,所以解决它的污染问题被称做百年难题。
2广州市固体废物污染治理对策
2.1工业固体废物污染的治理对策
(1)冶金废渣的治理对策。
①高炉渣:高炉渣的产量随冶炼技术及矿石的品位不同而变化。高炉渣属于硅酸盐材料。它化学性质稳定,并具有抗磨、吸水等特点,可供广泛应有,国内对高炉渣的应用都很重视,美、英、法、日本等国高炉渣的利用率已达100%,甚至出现了很多专营高炉渣商品的公司和工厂。我国高炉渣的利用率已达85%以上。为了适应不同的用途,高炉渣可分别被加工成水渣、矿渣碎石和膨胀矿渣等几类主要产品。
②钢渣:钢渣是炼钢过程中排出的固体废物,包括转炉渣、电炉渣等。炼钢过程中的排渣工艺,不仅影响到炼钢技术的发展,也与钢渣的综合利用密切相关。目前,炼钢过程的排渣处理工艺大体可分为如下四种:冷弃法;热泼碎石工艺;钢渣水淬工艺;风淬法。
(2)化工固体废物的治理对策。
①对硫铁矿烧渣,应根据其含铁量的不同确定其用途,铁含量高的应回炉炼铁;低铁、高硅酸盐的硫铁矿烧渣宜做水泥配料。
②铬渣可代替石灰石作炼铁熔剂。在冶炼过程中铬成为金属进入铁组分中,可彻底消除六价铬浸出的危害;根据铬渣在高温下能还原成低价态无毒铬的原理,可将铬渣掺入煤中用于发电、用铬渣作玻璃着色剂或钙镁磷肥和铸石。还可利用碳对铬渣进行干法还原除毒;用电解法处理铬酸、生产铬盐精、回收原理含铬硫酸氢钠等。
③烧碱盐泥可采用抽滤、沉淀过滤法进行处理,或用于制氧化镁等;含汞盐泥可用次氯酸钠氧化法、氯化-硫化-熔烧法进行处理,并回收金属汞。
④电石渣可制水泥或代替石灰作各种建筑材料、筑路材料等,还可用来生产氯酸钾等化工产品。
⑤其它化工废物,如,磷渣可烧制磷酸;甲醇废触媒可生产锌-铜复合微肥;溶剂厂母液可生产二甲基甲酰胺等;染料废渣制硫酸铜等产品;胶片厂的废胶片和废液可回收银。
2.2生活垃圾污染的治理对策
(1)填埋法。
①垃圾填埋场的选址。选址时遵循的原则是:远离生活区和水源地;避开上风口和水源地上游;自然地理条件不适宜飘浮扩散和渗漏。
②对填埋场需要进行严格的防渗漏处理,以免垃圾中的有害物在雨水或地表径流的冲刷下随水渗漏,污染地下水和相邻土壤。
③垃圾场表面覆土和排气管网设置。
(2)堆肥法.
堆肥生产的主要工艺过程是:生活垃圾-分类-破碎-发酵-烘干-磨粉-配料-造粒-干燥-包装-出厂。如果是生产一般堆肥,则在发酵工艺完成后,即可直接使用;如果生产有机复合肥,则在配料工艺需要添加一定配比的化肥。有机复合肥的有效肥力是一般堆肥的4~5倍。目前广州市的固体污染只有少量是用的堆肥法处理。
(3)焚烧法。
广州市现在有1座大型垃圾焚烧厂——李坑垃圾焚烧厂。李坑生活垃圾焚烧发电厂一期是广州市重点工程项目之一,项目总投资7.25亿元。投入运行的一期工程设计日处理垃圾1040吨,占目前广州市日产生活垃圾量的约1/7;该厂年发电1.3亿度,能满足10万户家庭生活所需,是符合广州特点,达到国内领先水平的垃圾焚烧发电厂。利用垃圾发电、“变废为宝”是李坑生活垃圾焚烧发电厂有别于垃圾填埋场的一大亮点。该项目还是国内第一个采用中温次高压参数的焚烧发电厂,通过提高蒸汽温度和压力有效提高蒸汽回收效率,使发电量增加20%以上。此外,与垃圾填埋场需大量占用土地不同,该厂在设计原则上尽可能节约用地,目前一期用地仅为3.2万平方米,是兴丰垃圾填埋场的1/10。
2.3白色污染处理方法
①实行垃圾分类,以利回收利用。清洁的废塑料制品可重复使用、造粒、炼油、制漆、作建材等。而从垃圾场重新分拣废塑料制品,则费时费力,且塑料的利用价值也很低。所以一定要在废塑料制品进入垃圾流之前将其分类回收上来。目前,发达国家大都走回收利用的路子。我国城镇尽快推行垃圾分类弃置已势在必行。
②依靠科技进步,发展可降解塑料。美国、日本等发达国家已研制成功以植物淀粉为主要原料的可降解塑料,大大缩短了其可降解周期。广州市新型塑料的研制也取得了重大进展,已经和正在开发出以淀粉、秸秆纤维、天然草浆等材料制成的“绿色”替代品。
③加强立法,强化管理,尽量减少或控制使用不可降解塑料的生活用品。以法规的形式明确生产者、各级销售者和消费者回收利用的义务。目前美国、日本等发达国家已明令禁止使用一次性塑料快餐餐具。广州市也为此专门制定了地方性法规,扼制“白色污染”的污染源。
2.4广州市垃圾二次污染的防治措施
(1)填埋场场底防渗。
为防止垃圾渗滤液污染地下水,必须在填埋场底采取有效的防渗措施。以前垃圾填埋场底部都铺放一层防渗材料,主要有黏土、沥青、塑料膜等合成橡胶等。近几年国外开始采用人工合成防渗层,有的采用双防渗层,效果明显好于前者。垂直防渗可采用帷幕灌浆、不透水布等。各填埋场可根据具体工程和水文地质情况,采取相应的防渗措施。
(2)渗滤液的收集处理。
垃圾渗滤液的处理方法包括生物、物化及土地处理法。生物处理法包括好氧处理、厌氧处理和厌氧-好氧处理。物化法主要有化学混凝沉淀、电解氧化、活性炭吸附、密度分离、化学氧化、化学还原、膜渗析、汽提、湿式氧化等多种方法。和生物法相比,物化法受水质水量影响小,出水水质稳定,尤其对BOD/COD较低而难以生物处理的垃圾渗滤液有较好的处理效果。由于物化法处理费用较高,一般用于渗滤液预处理或深度处理。渗滤液的土地处理包括慢速渗滤系统(SR)、快速渗滤系统(RI)、表面漫流快速渗滤处理系统(ARI)等多种土地处理系统。土地处理主要通过土壤颗粒的过滤,离子交换吸附和沉淀等作用去除渗滤液中悬浮颗粒和溶解成分。通过土壤中微生物作用使渗滤液中有机物和氮发生转化,通过蒸发作用减少渗滤液量。
(3)填埋气的处理和回收利用。
①填埋气的收集。由于大部分沼气在填埋场填埋过程中就已形成,所以沼气采集应在填埋过程中就开始实施。在荷兰,对正在使用的垃圾场,主要采用立式或水平式收集技术。立式采气系统是在垃圾场的填埋过程逐步建造成的,其方法是在填埋场内均匀分布竖立大口径钢管,在每个钢管外砌筑竖井,当填埋厚度达到2~5米时,将钢管向上抽一部分,并继续砌筑,直到填埋场达到设计高度,然后将钢管移走。
②填埋气的净化。溶剂吸收法是目前较为成熟的沼气净化方法,如采用双塔式溶剂吸收法提纯垃圾沼气,设备简单、成本低、操作简便,净化效果好。
关键词:二氧化碳的产生 危害 控制
二氧化碳的产生
(1)凡是有机物(包括动植物)在分解、发酵、腐烂、变质的过程中都可释放出CO2。
(2)石油、石蜡、煤炭、天然气燃烧过程中,也要释放出CO2。
(3)石油、煤炭在生产化工产品过程中,也会释放出CO2。
(4)所有粪便、腐植酸在发酵,熟化的过程中也能释放出CO2。
(5)所有动物在呼吸过程中,都要吸氧气吐出CO2。
(6)所有绿色植物都吸收CO2释放出氧气,进行光会作用。CO2气体,就是这样,在自然生态平衡中,进行无声无息的循环。
CO2通常情况下,是一种气体,每时每刻都存在于空气中,供绿色植物自由自在地进行着呼吸(光合作用)。为人类创造着财富。
二氧化碳的危害
大气温室效应是指大气物质对近地气层的增温作用,其增温原理即随着大气中CO2等增温物质的增多,使得能够更多地阻挡地面和近地气层向宇宙空间的长波辐射能量支出,从而使地球气候变暖。其可能的积极作用是使部分干旱区雨量增多,高纬度农业区热量状况改善,但更主要的是负面影响,就是亚热带和温带的旱、涝灾害发生频繁,以及冰山熔化,海平面上升,沿海三角洲被淹没。因此,减少大气增温物质的排放量是人类刻不容缓的义务。
温室效应是怎么来的?我们能做什么? 温室效应主要是由于现代化工业社会过多燃烧煤炭、石油和天然气,这些燃料燃烧后放出大量的二氧化碳气体进入大气造成的。 二氧化碳气体具有吸热和隔热的功能。它在大气中增多的结果是形成一种无形的玻璃罩,使太阳辐射到地球上的热量无法向外层空间发散,其结果是地球表面变热起来。因此,二氧化碳也被称为温室气体。 人类活动和大自然还排放其他温室气体,它们是:氯氟烃(CFC〕、甲烷、低空臭氧、和氮氧化物气体、地球上可以吸收大量二氧化碳的是海洋中的浮游生物和陆地上的森林,尤其是热带雨林。
二氧化碳的防治对策
(1)全面禁用氟氯碳化物
实际上全球正在朝此方向推动努力,是以此案最具实现可能性。倘若此案能够实现,对于二五年为止的地球温暖化,根据估计可以发挥3%左右的抑制效果。
(2)保护森林的对策方案
今日以热带雨林为生的全球森林,正在遭到人为持续不断的急剧破坏。有效的因应对策,便是赶快停止这种毫无节制的森林破坏,另一方面实施大规模的造林工作,努力促进森林再生。目前由于森林破坏而被释放到大气中的二氧化碳,根据估计每年约在1~2gt.碳量左右。倘若各国认真推动节制砍伐与森林再生计划,到了二五年,可能会使整个生物圈每年吸收相当于0.7gt.碳量的二氧化碳。具结果得以降低7%左右的温室效应。
(3)汽车使用燃料状况的改善
日本汽车在此方面已获技术提升,大幅改善昔日那种耗油状况。但在美国等地,或许是因油藏丰富,对于省油设计方面,至今未见有何明显改善迹象,仍旧维持过度耗油的状况。因此,该地区生产的汽车在改善燃油设计方面,具有充分发挥的余地。由于此项努力所导致的化石燃料消费削减,估计到了二五年,可使温室效应降低5%左右。
(4)改善其他各种场合的能源使用效率
是要改善其他各种场合的能源使用效率。今日人类生活,到处都在大量使用能源,其中尤以住宅和办公室的冷暖气设备为最。因此,对于提升能源使用效率方面,仍然具有大幅改善余地,这对二五年为止的地球温暖化,预计可以达到8%左右的抑制效果。
(5)对石化燃料的生产与消费,依比例课税
如此一来,或许可以促使生产厂商及消费者在使用能源时有所警惕,避免作出无谓的浪费。而其税金收入,则可用于森林保护和替代能源的开发方面。 任何化石燃料一经燃烧,就会排放出二氧化碳来。惟其排放量会因化石燃料种类而有不同。由于天然瓦斯的主要成分为甲烷,故其二氧化碳排放量要比煤碳、石油为低。同样是要产生一千卡的热量,煤碳必须排放相当于0.098公克碳量的二氧化碳;这在石油则为0.085公克;若是换成天然瓦斯只需排放0.056公克即可。
(6)鼓励使用天然瓦斯作为当前的主要能源
因为天然瓦斯较少排放二氧化碳。最近日本都市也都普遍改用天然瓦斯取代液化瓦斯,此案则是希望更进一步推广这种运动。惟其抑制温暖化的效果并不太大,顶多只有1%的程度左右。
(7)汽机车的排气限制
由于汽机车的排气中,含有大量的氮氧化物与一氧化碳,因此希望减少其排放量。这种作法虽然无法达到直接削减二氧化碳的目的,但却能够产生抑制臭氧和甲烷等其他温室效应气体的效果。预计将对二五年为止的温暖化,分担2%左右的抑制效果。
(8)鼓励使用太阳能
譬如推动所谓「阳光计划之类。这方面的努力能使化石燃料用量相对减少,因此对于降低温室效应具备直接效果。不过,就算积极推动此项方案,对于二五年为止的温暖化,只具4%左右的抑制效果。其效果似乎未如人们的期待。
(9)开发替代能源
利用生物能源(Biomass Energy)作为新的干净能源。亦即利用植物经由光合作用制造出来的有机物充当燃料,藉以取代石油等既有的高污染性能源。
(10)二氧化碳的掩埋。
据科学家最近称,为了解决全球变暖,拯救地球。人们不得不把大量的二氧化碳直接注入地下。所以在未来50-60年之间将二氧化碳埋入地下的方式可能会作为一种减少温室效应的最有力的措施而被采用。
(11)二氧化碳合成可降解塑料
我国科学家经过两年的难苦研究,今天在这项技术上取得了重大突破。使用已开发的催化剂的催化效率超过世界最高水平的两倍,纳米技术的应用使每克催化剂能够催化合成140-180克塑料,每吨塑料所用的催化剂成本仅200元左右。且制成的新塑料中二氧化碳的含量达43%。成本为0.9万元/吨,是目前市场同类产品的价格的三分之一至四分之一。不久前,中国科学院专家组对这个项目进行了验收。认为该项目实现了高效催化二氧化碳制备可降解塑料,成本低,可年产3000吨以上,已具备实现工业化的条件。
结语
二氧化碳的研究已成为当今科学界的热点,各国均投入大量资金、人力、物力。我国将在今后五年内投入7000万元用于研究生态对二氧化碳的作用,为破解全球关注的“二氧化碳失踪之谜” 和“全球变暧之谜” 作出贡献。人类不但要征服自然,改造自然,而且还有义务保护自然。
参考文献:
中图分类号:P208 文献标识码:A 文章编号:1674-7712 (2013) 02-0010-02
随着当即社会的发展,触屏技术应用增长迅速,当今触屏技术激烈的竞争、推动着技术发展。现代触屏技术的应用已经开始普及,使我们的社会生活有了进一不的提高,方便了人们的工作,提高了人们对电子触屏的兴趣,促使触屏技术在以后的发展中占主导地位。触摸屏在我国的应用范围非常广阔,主要有公共信息的查询,如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外还可广泛应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。触摸屏还会走入家庭,随着城市向信息化方向发展和电脑网络在日常生活中的渗透,信息查询都会以触摸屏――显示内容可触摸的形式出现。
一、触摸技术的应用原理
触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。
触摸屏的主要三大种类是:电阻技术触摸屏、表面声波技术触摸屏、电容技术触摸屏。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面图有一层透明氧化金属(ITO氧化铟,透明的导电电阻)导电层,上面在盖有一层外表面硬化处理、光滑防擦的塑料层 、它的内表面也涂有一层ITO涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。
二、触屏技术的应用
(一)现代生物技术在环境保护中的应用
(1)污水的生物净化
污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。
(2)白色污染的消除
废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。
有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-β羟基烷酸,研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过程,降低提取成本。
(二)液晶触摸屏控制中的可编程逻辑
对于触摸技术的类型、显示器的类型和显示器制造商,液晶显示器的接口往往是不同的。对设备的设计人员而言,常常难以在其产品线上选择一个显示控制器芯片以适应所有不同的显示器。越来越多从事设计配有触摸屏液晶面板的人机界面(HMI)系统集成的设计人员转向使用可编程逻辑器件,以实现他们所需的灵活性。现场可编程门阵列(FPGA)技术使得系统架构师一次就能够确定人机界面控制器的架构,同时能够扩展到整个产品系列,可采用不同的微控制器、CPU,液晶面板以满足各种应用。FPGA技术还可以很容易实现高性能的矢量图形,以及用单芯片与现实世界接口。
莱迪思的LCD-Pro是专门为基于FPGA的高级触摸屏视频图形控制器而设计的,为系统设计者提供单个人机界面结构,加速产品的上市,并大大节省了开发成本。与现有的IP配合在一起,LCD-Pro简化了设计,设计人员能够更快的推出新产品,从而适应新兴市场的要求,而不需要重新设计平台。
表面声波技术使用超音波穿透触控屏幕面板。触碰面板时,部分声波将被吸收。对超音波造成的变化会换算出触控事件发生的位置,然后该信息会传送至控制器进行处理。
表面声波的优点是:因为其使用纯玻璃结构,与电阻式、电容式技术相比,表面声波技术可提供绝佳的影像清晰度、解析度及较高的透光性。
表面声波的缺点有:这项技术原先是针对较小尺寸荧幕所设计,所以不便应用于超过30寸的荧幕尺寸。由于该技术无法加以封装,容易受到表面脏污及水分的破坏,因此不适用于许多工业及商业应用产品。表面脏污会导致屏幕上产生暗点,需要定期清洁感应器及不定期进行调校。基于技术本身的运作方式,使其同时也难以避免受到不必要的干扰,如外部声音的干扰。
利用触摸屏技术,用户只要用手指轻轻地指碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术极大方便了那些不懂电脑操作的用户。这种人机交互方式,赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。
参考文献:
[1]贾达.基于PLC、触摸屏的四级传送带顺序控制系统.兰州工业高等专科学校学报2009,(01):23-25.
[2]杨跃宗,裴艳芳.触摸屏与PLC在供水系统中的应用[J].淮北职业技术学院学报2009,(05):52-53.
1我国生态环境现状
目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8000万人和6000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。
2现代生物技术与环境保护
现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。
(1)生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。
(2)利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。
(3)生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。
所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。
3现代生物技术在环境保护中的应用
3.1污水的生物净化
污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。
3.2污染土壤的生物修复
重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。
3.3白色污染的消除
废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。
有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-β羟基烷酸(PHAs),研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过程,降低提取成本。
The Present Situation and Tendency of Sludge Front
Treatment Technology
WeiZhen Shen
(Beijing Machinery and Electricity Institute, Hi-tech Co.Ltd., Beijing 100027,China)
The main development direction for the sludge treatment is tending to disposal of resources and energy utilization in the world in recent years. Therefore, such as anaerobic digestion and aerobic fermentation technology and other traditional mainstream technology has been vigorously sought. Meanwhile, the techniques of sludge pyrolysis to produce oil fuel and sorbents, and composting to be used in soil are studyed. The paper puts forward that the present situation and tendency of sludge front treatment technology of domestic and overseas, and discussed its developing trend.
中图分类号:TU992文献标识码: A
经过几十年的发展,欧美、日本等发达国家已出台了较完善的污泥处理处置与资源化政策法规及标准规范,相关技术和设备也趋于成熟,以在污泥无害化处理处置的基础上实现最大程度的资源化再利用作为总体思路和技术路线,逐步形成了以污泥厌氧消化、好氧发酵、干化、焚烧、土地利用为主流技术,并不断研发污泥制油、生产活性炭、研制动物饲料等前沿技术的污泥处理处置市场。
虽然近年来我国污泥领域发展较快,各项技术和专用设备有了较大进展,主流技术、前沿技术同步发展的污泥处理处置市场也正在形成。但与发达国家相比,我国污泥处理处置率仍然低下,技术和设备水平仍然落后,污泥处理处置总体思路和技术路线也不够明晰,相关的法律法规及标准规范不够完善,总之我国污泥处理处置市场还有很长的一段路要走。由于国情不同,各国采用处理方式和技术也各不相同,本文对国内外目前前沿技术发展现状进行综述。
1、国内外污泥处理处置与资源化前沿技术进展
1.1 污泥制油能源利用技术
污泥中的有机质可以转化为燃油,能有效控制重金属的排放,可回收利用易储藏的液体燃油,可获得较高的油品收率,提供700 kWh/t 的净能量,破坏有机氯化物的生成,具有污泥处理与能源利用的双重性质。污泥制油技术分为两种方法:污泥热解制油技术和污泥直接热化学液化法。
1.1.1污泥热解制油技术
污泥热解制油是利用污泥中有机物的热不稳定性,在常压(或高压)和缺氧的条件下加热污泥至高温,借助污泥中所含的硅酸铝和重金属(尤其是铜)的催化作用将污泥中的脂类和蛋白质转化成碳氢化合物,由于干馏和热分解作用使污泥最终转化为价值较高的燃料油、反应水、不凝性气体(NNG)和炭。
热解生成的油收率与污泥中的有机物含量直接相关,通常生污泥最高(占44%),其次为剩余污泥(35%),消化污泥最低(25%)。发热量可达到29~42.1 MJ/kg,与石油提炼厂生产出来的石油低级馏出液相似,可以直接用于柴油机车和发电。但热解油黏度高、气味差。热解油的大部分脂肪酸可转化为酯类,酯化后其黏度低约4倍,热值可提高9%,气味得到很大改善。不凝气热值2~9MJ/kg,污泥炭热值约10MJ/kg,热解前的污泥干燥、反应器加热可利用产品中低级燃料(燃料气、炭)的燃烧来提供能量,实现能源循环。污泥热解制油过程如图1。
污泥热解制油过程示意图
污泥热解工艺最初是Bayer等人在1978年提出, 1986年,澳大利亚的Perth和Sydney两个城市建起污泥热解制油的第二代试验厂,为大规模污泥低温生物油化技术的进一步开发提供了大量的数据和实践经验。1999年8月,世界上第一套污泥低温热解制油工业化工艺装置——Enersludge在澳大利亚成功试运行,处理规模(按干污泥计)为25t/d,每吨污泥可产出200~300L与柴油类似的燃料及约半吨的烧结炭,并申请为专利。
1.1.2污泥直接热化学液化制油技术
鉴于污泥低温热解制油需要对脱水污泥进行干燥而耗能巨大,因此英、美、日对污泥直接热化学液化法研究较多。污泥直接热化学液化制油是将经过机械脱水的污泥(含水率约70%~80%),在250~340℃、5~15MPa条件下,并以碳酸钠作为催化剂,污泥中有近50%的有机物能通过加水分解、缩合、脱氢、环化等一系列反应转化为油状物,得到的重油产物用萃取剂进行分离收集。重油产品的组成和性质取决于催化剂的装填与反应温度。反应过程可得到热值约为33MJ/kg的液体燃料,收率可达50%左右(以干燥有机物为基准),同时产生大量不凝性气体和固体残渣。基本工艺流程图如图2所示。
污泥直接热化学液化制油技术的设备可分为间歇式反应装置和连续式反应装置两类。间歇式反应中,污泥脱水至含水率70%~80%即可满足相关反应要求,向高压釜中加入液化催化剂Na2CO3后,高压釜经过排气后冲入氮气至所需压力,随后升温。随着温度的增加,工作压力随之增加。然后通过压力调节阀释放高压来使工作压力保持恒定,反应产生气体被气体储罐收集。连续设备的运用不仅在工艺上可以得到更大的改进,在运行费用上也会大大降低,推进该技术的应用。
目前直接热化学法处理污泥的典型工艺包括:美国 PERC工艺,LBL工艺,日本资源环境技术综合研究所的液化工艺,荷兰 Shell 公司的 HTU工艺等。
根据国外的经验,目前的投资成本与运行维护成本均比较高,同时,涉及的操作条件比较复杂,需要考虑诸多的因素如反应温度、反应时间、触媒种类、触媒添加量、反应压力等。此外,油化处理效率也与污泥种类性质等有关。
污泥直接热化学液化制油的基本流程图
1.2 污泥建材利用技术
污泥建材利用主要包括利用污泥及其焚烧产物制砖、轻质陶粒、生态水泥、制纤维板、熔融微晶玻璃等。
总的来说,污泥的多项建材利用技术已经成熟,应用前景良好。其中,建筑砖块、轻质材料以及水泥材料等技术,已经在日本、德国等国家开始进行规模化生产应用或者在计划大规模生产再利用。其中日本在这方面走在了前面,已经有许多成功运行的工程实例,据统计到2002年末,日本污泥有效利用率高达63%,其中建材利用的比例为40%。在我国,污泥用于建材资源化利用是一种有效的污泥减量化及资源化手段,在北京、重庆及上海等地均进行过相应的生产性研究。总的来说,大多还处于研究及尝试的阶段。
1.2.1污泥制砖
脱水污泥主要由Fe2O3、Al2O3、SiO2、CaO、MgO等粘土矿物质成分组成,其性质近似粘土,具有可塑性、烧结性、耐热性和吸附性,并且污泥中含有大量灰分和铝盐或铁盐等混凝剂成分,可以作为建筑材料中的添加剂,为其制砖创造条件。比较常见的污泥制砖技术主要有两种:
①污泥焚烧灰制砖
该方法是将污泥焚烧灰添加适量辅料(如粘土、粉煤灰、煤矸石等)成型烧结制砖。污泥焚烧灰中的SiO2含量较低,因此在利用污泥焚烧灰制砖时,需添加适量的黏土与硅砂,从而提高SiO2含量。一般较为适宜的质量配比为焚烧灰:黏土:硅砂=1:1:(0.3~0.4)。污泥焚烧灰制造流程如下图3.
②干化污泥直接制砖
该法是直接将干燥的城市污泥破碎后与粘土等辅料成型烧结制砖,同时可以利用污泥中潜在热值。干化污泥用于直接制砖时,应对污泥中的成分进行适当的调节,使其成分与制砖黏土的化学成分相当。当污泥与黏土按质量比1:10配料时,污泥砖可以达到普通红砖的强度。此污泥砖的制造方式受坯体中有机挥发分含量的限制,当有机挥发物达到一定限度会导致烧结开裂,从而影响砖块的质量,污泥掺加比例较低。因此,从黏土砖限制要求来看,生污泥较难成为一种适宜的污泥建材方法。干化污泥制砖工艺流程图见图4。
污泥焚烧灰制砖工艺流程
污泥干化后制砖工艺流程
污泥的掺量比例、成型压力和焚烧温度是决定砖抗压强度、吸水率、热导率、抗折强度等性能的关键性因素。当污泥掺量为0~200 g/ kg 时, 随着污泥掺量的增加,污泥砖的抗压强度明显降低,吸水率随之增大。成型砖坯密实度下降,在焙烧过程,污泥中重金属熔融固化,有机物挥发,所形成的气孔和孔洞降低了砖体抗压强度及。当污泥掺量低于100 g/ kg 时,污泥砖性能符合国家《烧结普通砖》标准( GB 5101- 2003) 要求。当成型压力为20~60 MPa时, 随成型压力的增大,污泥砖的抗压强度逐渐升高,吸水率逐渐减小。当烧结温度为900~1100℃时,随着温度的升高,污泥砖的抗压强度逐渐增强,吸水率逐渐降低,当烧结温度高于1050℃时,砖的抗压强度和均已达到了标准要求。当保温时间超过1.5 h 时,随着保温时间的延长,污泥砖的降低,吸水率也相应增大。
美国、英国等发达国家都在该领域进行了较多的研究,对污泥制砖工艺、污泥制砖的影响因素、污泥砖块产品的性质等方面取得阶段性研究成果。其中,日本的污泥焚烧灰制砖技术,走在世界前列,受到越来越多的重视。目前已经有8座完整规模的厂用100%的污泥焚烧灰制砖。制成的砖块被广泛用于公共设施。德国对于污水污泥的建材利用才刚刚起步,没有任何长期工业上的实践,正借鉴日本的经验,并与日本开展合作研究项目。
在我国,有关利用污泥焚烧灰制砖的报道很少,而利用干污泥直接制砖却有较多的文献说明。如中石化胜利油田规划设计研究院、同济大学环境科学与工程学院、南京制革厂等研究机构、高等院校和国内企业对干污泥直接制砖进行了试验研究,但缺乏实际的工程应用,所以在今后的研究中还要结合经济效益进行投资、收益的估算并大胆借鉴国外经验,开发污泥前处理及混合焙烧等成套工艺及配套设备,才能将污泥的制砖利用付诸实际。
1.2.2污泥制陶粒
污泥陶粒是污泥经加工制粒或粉磨成球后烧胀而成的一种人造轻陶粒,具有轻质高强、保温隔热、耐久性好、抗震性好等优点。污泥制陶粒主要工艺流程如下图5。
污泥陶粒生产工艺流程图
湿污泥与预先干化好的干污泥一起进入污泥混合机,经混合、均匀化后形成颗粒,完成均化过程后,送至干化器进行干燥。污泥干化器主要分为直接加热和间接加热。为了防止污泥在干化过程中结成大块,一般采用旋转干化器。干化器的热风进口温度为800~850℃,排气温度为200~250℃。污泥经干燥后从含水率80%左右下降到5%左右。干化器的排气进入脱臭炉,炉温控制在650℃左右,使排气中的恶臭成分全部分解,以防产生二次污染。部分燃耗是在理论空气比约0.25以下燃烧,使污泥中的有机成分降解,大部分成为气体排出,另一部分以固定碳的形式残留。部分燃烧炉内的温度控制在700~750℃。燃烧的排气中含有许多未燃成分,送至排气燃烧炉再次燃烧,产生的热风可作为污泥干化的热源。部分燃烧后的污泥中的固定碳为10%~20%,热值为1256~7536kJ/kg。烧结是制陶粒的最后一道工序,烧结陶粒的强度和相对密度与烧结温度以及产品中残留碳含量有关。残留碳的含量与陶粒的强度成反比,残留碳的含量越多,强度越低。烧结温度在1000~1100℃之间为宜,超出此温度范围陶粒强度会降低。陶粒的相对密度随烧结温度升高而减少,在上述温度范围内,其相对密度为1.6~1.9,烧结时间一般为2~3min。
欧美、日本等发达国家对利用各类污泥制陶瓷产品的可行性做了研究,并对制成的样品进行了吸水率、多孔性、线性收缩和横向断裂强度等物理性能和浸出液的测试。我国多个企事业机构都对污泥制备陶粒技术进行了研究,比如同济大学的研究人员对苏州河底泥为主要原料烧制陶粒的工艺参数进行了分析,以及广州华穗轻质陶粒制品厂采用城市污水处理厂污泥替代河道淤泥或部分粘土烧制轻质陶粒,并获得成功。
1.2.3污泥制水泥
污泥的化学特性与水泥生产所用的原料基本相似,垃圾焚烧灰的化学成分中一般有80%以上的矿物质是水泥熟料的基本成分。因此利用水泥回转窑处理污泥来制造水泥,不仅具有焚烧法的减容减量化特征,且燃烧后的残渣成为水泥熟料的一部分,不需要对焚烧灰进行填埋处置,是一种两全其美的生产途径。利用污泥做生产水泥的原料有三种方式:一是直接用脱水污泥;二是干化污泥;三是污泥焚烧灰。不管是采用哪种方式,关键是污泥中所含的无机成分必须符合生产水泥的要求。除CaO含量较低、SiO2含量较高外,污泥焚烧灰的其它成分含量与硅酸盐水泥含量相当,因此,污泥焚烧灰加入一定量的石灰或石灰石,经煅烧即可制成硅酸盐水泥。污泥水泥性质与污泥的比例、煅烧温度、煅烧时间和养护条件相关。与普通硅酸盐水泥相比,在颗粒度、相对密度、波索来反应性能等方面基本相似,而在稳固性、膨胀密度、固化时间方面较好。
世界上发达国家利用水泥窑处理废弃物生产生态水泥已有20余年的历史,拥有成熟的经验。1996年4月瑞士的HCBRekingen水泥厂成为世界上第一家具有利用废料的环境管理系统的水泥厂,并得到ISO14001国际标准的认证。在欧洲水泥生产者联合会所属的水泥厂中每年焚烧处理100万t有害废物。日本40多家水泥企业,其中50%以上工厂均处理各种废弃物。虽然我国同济大学、上海水泥厂等也做了利用污泥代替粘土生产水泥的尝试,但总体来说,利用垃圾焚烧灰、市政污泥等废弃物来生产水泥尚属起步阶段。
1.2.4污泥制纤维板
污泥中含有大量有机成分,利用其中的粗蛋白与球蛋白(酶)能溶解于水及烯酸、稀碱、中性盐水溶液的性质,在碱性条件下加热、加压后发生蛋白质变性,制成污泥树脂(又称蛋白胶),使之与漂白、脱脂处理的废纤维压制成板材,即为污泥生化纤维板。污泥制纤维板的工艺流程图见图6。
污泥制纤维板的工艺流程图
污泥树脂调制是将脱水至含水率85%~90%的污泥与药品混合,装入反应器搅拌均匀,然后通入蒸汽加热至90℃保持20min后,再加入石灰,在90℃条件下反应40min即可。为使其具有较好的凝胶性、预压成型时容易脱水,可在调制中投加碱液、甲醛及混凝剂(如三氯化铁、硫酸亚铁、硫酸铝或聚合氯化铝),还可加硫酸铜以提高除臭效果和加水玻璃以增加树脂的粘滞度及耐水性,使成品经久耐用。
国内外已有人尝试用污泥来制纤维板,但制造过程和成品仍有一些气味,需要脱臭,强度也有待提高。
1.3活性污泥制取活性炭
由于污泥中含有大量有机物,在一定的高温下以污泥为原料通过改性可以制得含碳吸附剂。根据污泥碳化机理,污泥吸附剂一般分为直接活化和热解碳化后再活化两种。其中,热解碳化后再活化最为常用,主要包括热解碳化和活化两个步骤。碳化是把原料热解为碳渣,活化是关键步骤,是根据要求把碳化物变为所需要的多孔结构物质。目前活化方法有两类:物理活化和化学活化。相对于物理活化,化学活化需要较低的温度,活化产率高,通过选择合适的活化剂控制反应条件可制得高比表面积活性炭。但化学活化对设备腐蚀性大,污染环境,其制得的活性炭中残留化学药品活化剂,应用受到限制。污泥吸附剂生产工艺流程如下图7。
针对不同的污泥和所制吸附剂的不同用途,可相应采用不同的制备方法,而不同的制备方法所得到的吸附剂性能差别很大。影响吸附剂性能的主要因素有:活化药剂的种类、浓度、热解时间、热解温度和活化温度等。活性炭微孔的形成和发展与原材料的孔结构、活化剂的种类、活化温度、活化时间、活化剂流量、催化剂种类、催化反应速度等诸多因素有关。
污泥制备吸附剂工艺流程
近年来,美国、日本、法国、中国、西班牙、新加坡等国家的研究者对污泥改性制备吸附剂技术进行了较多的研究。近年来,研究的重点是污泥热解方法及工艺的优化、吸附剂制备中间过程和方法的改进、活化药剂的选择等方面。
1.4污泥中蛋白质利用技术
1.4.1制造动物饲料
污泥中粗蛋白占28.7%~40.9%,灰分占26.4%~46.0%,纤维素占26.6%~44.0%,脂肪酸占0~3.7%。其中,70%的粗蛋白以氨基酸形式存在,包括蛋氨酸、胱氨酸、苏氨酸等。污泥蛋白中几乎含有家畜所需的所有氨基酸,且各种氨基酸之间相对平衡,是一种非常好的饲料蛋白来源。
但是,活性污泥作动物词料还存在一些问题,主要包括毒性方面和非毒性方面的问题。毒性方面的问题主要有:①病原菌的污染问题。②活性污泥饲料组织学和病理学研究:饲喂污泥蛋白质饲料,动物肺、肝、肾、心脏和内脏等组织有何异常。③污泥重金属毒性物质动物发生元素积累问题。非毒性方面的问题主要有:①化学组成,商业价值低。②与传统动物饲料相比,污泥蛋白质饲料的适口性差、消化性低、营养价值不足,近来的研究系采用化学或酶处理活性污泥以提高其蛋白质消化率。③污泥干燥的经济性问题。但即使如此,用污泥作饲料将是变废为宝的一项重要举措,值得深入的研究。
1.4.2制造蛋白质灭火器
目前国内灭火剂主要有NaHCO3、NaCl干粉灭火剂、蛋白灭火剂等种类。其中,蛋白类泡沫灭火剂以其可靠性大、安全系数高、生物降解性强等优良的性能一直占据着泡沫灭火剂市场的主导地位。但由于国内饲料蛋白源匮乏导致其价格较高,因此,利用污泥水解蛋白质制备蛋白质泡沫灭火剂具有一定现实意义。
武汉市科技局等单位进行了利用剩余活性污泥水解制备蛋白质泡沫灭火剂,并取得一定研究成果,李亚东等研究人员还申请了发明专利。但总体来说,目前该项技术研究还少见报道。
1.4.3污泥中蛋白质提取技术
无论是将污泥蛋白用作动物饲料,还是用于蛋白质灭火器,都需要依靠蛋白质提取技术,蛋白质提取工艺流程图见图8。
蛋白质提取工艺流程图
(1)溶胞技术
提取蛋白质首先要对污泥进行溶胞处理。通常的溶胞方法包括物理、化学、生物以及多种方法联合等方法。
①物理法
物理溶胞主要是利用机械剪切力破坏细菌的细胞壁,实现污泥细胞的溶解。物理法主要有以下几种:
高压喷射法是利用高压泵将污泥循环喷射到一个固定的碰撞盘上,通过该过程产生的机械力来破坏污泥内微生物细胞的结构,使得胞内物质被释放出来,从而显著提高污泥中蛋白质的含量,促进水解的进行。然而,高压喷射法处理污泥过程的机械能损失较大,所以该方法在实际的工程应用中难以推广。
超声波法是利用20KHz到10MHz波段范围内的超声波破坏微生物细胞的细胞壁,使得细胞内的有机质释放出来,从而促进污泥水解和消化的进行。该技术具有无污染、能量密度高、分解速度快等特点,但在细胞破碎后固体碎屑的水解方面却不如添加碱和加热法。同时超声波的作用受到液体温度、粘度、表面张力等参数和超声波发生设备的影响,在短时间内难以投入大规模工程化应用。此外,超声波法设备投资巨大、能耗高,也是这一技术不能迅速推广的主要原因。
水解法的温度范围一般为40~180℃,污泥固体有机物在水解过程中经历两个过程:首先是微生物絮体的离散和解体,细胞内的有机物质被释放并溶解。其次是溶解性有机物不断水解,脂肪水解成甘油和脂肪酸;碳水化合物水解成小分子的多糖和单糖;蛋白质水解成多肽、二肽和氨基酸;氨基酸进一步水解成低分子有机酸、氨及二氧化碳。与机械破碎、超声和化学预处理等手段相比,热水解的优点在于在实现细胞破碎、释放胞内有机物的同时将大分子有机物水解。
②化学法
化学法主要有以下几种:
加碱处理法就是在常温条件下,通过加NaOH、KOH或Ca(OH)2等碱性物质,其作用是在抑制细胞活性的同时,溶解细胞壁,释放蛋白等细胞内物质。
加酸处理法就是用酸处理污泥,由于污泥微生物的胞外聚合物中含有一些两性物质,这些两性物质在酸性条件下会溶解,转化为溶解性物质,从而对污泥的絮体结构有一定破坏作用,从而达到溶胞效果。
臭氧氧化污泥的过程包括:对微生物的破壁、溶解和对有机物的矿化三个阶段。臭氧首先作用于污泥细胞的细胞壁和细胞膜,促使细胞死亡溶解;细胞溶解后胞内的蛋白质、核酸和多糖等物质被释放出来;臭氧进一步氧化大分子有机物质,使其变为小分子物质或者直接转变为二氧化碳和水。
③生物法
生物酶技术是指向污泥中投加能够分泌胞外酶的细菌,或直接投加溶菌酶等酶制剂(抗菌素)水解细菌的细胞壁,以此达到溶胞的目的。但是,同时这些细菌或酶还可以将不易生物降解的大分子有机物分解为小分子物质,随着溶菌酶量的增加,污泥中蛋白质和多糖浓度随之降低。
④多种方法联合
此外,多种方法联合的方式也逐渐得到重视,包括热酸法、热碱法和微波+过氧化氢法等,可以更好的实现污泥溶胞提取蛋白质效果。
(2)蛋白质的分离技术
污泥溶胞液是多糖,蛋白质和脂肪等有机物以及重金属等多种物质组成的混合溶液,需要将目标蛋白质从其中分离纯化出来,从而满足污泥蛋白在其他领域的应用,主要是通过溶胞液的浓缩和浓缩液的结晶来实现的。
传统浓缩法主要有减压蒸馏法和泡沫法分离蛋白质。减压蒸馏法借助真空泵来降低系统内的压力,便可以在低温下对溶液进行蒸发浓缩,适用于那些在常压蒸馏时未达沸点即已受热分解、氧化或聚合的物质。泡沫分离蛋白质是利用蛋白质的表面活性对其进行分离的一种方法,分离过程中的条件温和,对蛋白质的活性影响较小,成本较小,且能耗较低,而且对蛋白质的生物活性没有明显影响。但当溶液中含有组分活性相近的物质时,分离效果较差。另外,对于较高浓度的溶液,分离效率便会降低,分离效果较差。近年来随着膜工业的发展,膜分离法也开始渐渐兴起,微滤、超滤、反渗透和电除盐是目前最为常用的四种技术。
蛋白质结晶方法主要有沉淀法,传统沉淀法包括盐析沉淀法、有机沉淀分离法、等电点分离法等。盐析沉淀是蛋白质提纯工艺中最早采用,至今仍为广泛应用的方法。其原理是在高浓度蛋白溶液中,随着盐浓度的逐渐增加,蛋白质水化膜被破坏,其溶解度下降而从溶液中沉淀出来。有机沉淀剂法是向蛋白质溶液中加入乙醇、丙酮等水溶性有机溶剂,降低水的活度。随着有机溶剂浓度的增大,水对蛋白质分子表面荷电基团或亲水基团的水化程度降低,溶液的介电常数下降,蛋白质分子间的静电引力增大,从而使蛋白质凝聚和沉淀。等电点沉淀法是通过调节溶液的pH值,削弱或破坏分子表面的双电层及水化膜,分子间引力增加,使两性电解质的溶解度下降而沉淀析出。
1.5污泥制生物可降解塑料
生物可降解塑料是指在自然界如土壤和/或沙土等条件下,和/或特定条件如堆肥化条件下或厌氧消化条件下或水性培水及其所含元素的矿化无机盐以及新的生物质的塑料。按原材料不同分类,目前生物降解塑料主要有以下几种:聚羟基烷酸酯(PHA)、聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)及其共聚物、聚乳酸(PLA)、脂肪族芳香族共聚酯、聚乙烯醇(PVA)类生物降解塑料、二氧化碳共聚物、聚-β-羟基丁酸酯(PHB)等。生物降解塑料可以依靠生物的生命代谢活动来合成,目前国内外的研究主要集中在菌种筛选和培育、反应机理、操作工艺、反应器类型、反应条件和合成物的提取技术方面。
PHA是目前研究较多的生物可降解塑料类型,以之为例,能够合成PHA的细菌种类很多,包括光能利用菌、古细菌、革兰氏阳性、革兰氏阴性菌、好氧菌和厌氧菌,共计65个属,300多种。其中研究较多的有芽孢杆菌属(Bacillus)、产碱杆菌属(Alcaligenes)、假单胞菌属(Pseudomonas)、固氮菌属(Azotobacter)、红螺菌属(Rhodospiriclum)和放线菌属(Actinomyces)等。PHA在细菌体内合成经历三个步骤:第一步,各种底物经代谢进入三羧酸循环,生成乙酰辅酶COA;第二步,乙酰辅酶COA经各代谢途径形成各种前体,再由不同酶转化为(R)-3-羟基脂酰辅酶A;第三步,(R)-3-羟基脂酰辅酶A,再由PHA合酶聚合成为PHA。由于合成的PHA存在于细菌细胞内,因此需要将细胞破碎,才能提取出PHA颗粒从而实现其进一步的利用。目前PHA的提取方法很多,主要有有机溶剂提取、氯酸盐提取法、酶法提取、碱法提取、机械破碎法等。
生物可降解塑料前景诱人,但仍有一些技术问题需解决:①降解塑料制品机械强度不够,需要通过与其他聚合物单体共混来使生物降解塑料的某一方面品质得到提升,但是综合性能却有不足,这就需要通过技术攻关加以解决;②生产成本需进一步降低;③以污泥为原料的生物可降解塑料的附加值较低,需要通过技术的提高使其得到进一步提高。