绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇减少碳排放的主要途径范文,希望它们能为您的写作提供参考和启发。
前言
开展污水和污泥处理系统低碳技术研究, 目的是在我国污水处理工作向中小城镇快速推进时, 在排水规划、工艺技术选择方面, 不仅仅关注工程造价, 也不仅仅采取包含运行费用后的全寿命方案比较, 而应在更高层次上关注低碳技术的研发。近期应特别关注污水系统碳排放指标研究, 在方案选择中注重污水输送、污水处理和污泥处理的全过程整体性考虑; 注重分析污水输送的方式, 工艺技术的原位排放和异位排放, 污泥处理过程的能源资源回收;注重分析低碳运行指标; 采用碳尺进行方案比较, 推动我国低碳污水系统的建立和发展, 使城镇污水系统的建设运行实现低消耗、低污染、低排放目标。
一、污水输送过程温室气体排放问题分析
在污水输送过程中, 温室气体的直接排放主要途径是排水管道厌氧环境产生 CH4, 间接排放则包括污水提升所用电耗等。有研究表明, 污水在压力管道中停留的时间越长, 产生的 CH4 量越大, 管道的管径越大, 产生的 CH4量越大,压力管道中的 CH4浓度接近甚至超过标准状态下CH4的饱和浓度 22mg/ L, 这些溶解于污水中的 CH4, 通过放气阀、有压流转换为重力流或者进入污水处理厂后, 释放到空气中。
二、污水、污泥处理过程中温室气体排放研究
1、温室气体排放途径。污水处理是温室气体的主要分散排放源之一。就污染物去除过程而言, 主要产生 CO2、CH 4 和 N2 O, 对能量供给过程来说, 发电、燃料生产会排放 CO2。按照温室气体产生位置划分, 污水处理的温室气体可分为原位排放和异位排放两种类型。原位排放是指污水和污泥处理过程中排放的温室气体, 异位排放主要是指污水处理厂现场消耗的电能、燃料和化学物质在生产和运输过程中排放的温室气体, 除此以外, 还包括尾水排放至自然水体中污染物降解产生的温室气体, 以及污泥运输和处置过程排放的温室气体。但因缺乏 N2O 排放的准确数据, 现有的温室气体排放量研究主要集中在 CO2和 CH4排放方面。
2、污水处理过程温室气体的排放。污水处理过程涉及到的温室气体产生环节较多,需要限定的边界条件也很多。对好氧工艺而言, 其碳排放量与工艺泥龄和进水 BODu浓度均呈正相关。比较好氧和厌氧工艺, 在进水 BODu浓度小于 300 mg/ L 时,由于厌氧工艺可回收利用的 CH4对碳排放的削减不足以抵消其处理出水中溶解的 CH4 量, 此时, 三种好氧工艺的碳排放量均低于厌氧工艺。当进水BODu 浓度超过 300 mg / L , 厌氧工艺通过回收沼气, 一方面可减少 CH4排放, 另一方面降低化石燃料消耗, 使处理过程的碳排放少于好氧工艺, 此时,进水 BODu越高, 厌氧工艺的优势越明显。
3、污泥处理过程温室气体的排放。污水中的有机碳有相当部分转移到污泥中, 计算和评估污泥处理处置过程中温室气体排放量已成为美国、英国等国家的污水处理厂削减碳排放和评价项目长期可持续性的重要组成部分。在重力浓缩、气浮浓缩和离心浓缩 3 种浓缩工艺中, 离心浓缩的碳排放量最大, 气浮浓缩次之, 重力浓缩最少; 通过回收厌氧消化过程产生的沼气, 厌氧消化反而降低了碳排放量; 在板框压滤、离心脱水和带式压滤等 3 种机械脱水技术中, 碳排放总量从高到低次序依次为: 带式压滤板、离心脱水和板框压滤; 对焚烧/ 熔融技术来说, 沸腾炉的碳排放量最高, 流化炉次之, 熔融最低。由此可见, 污泥厌氧消化过程的沼气回收对减少污泥处理处置过程的碳排放量贡献较大。
三、温室气体减排途径分析研究
1、树立低碳规划理念。污水系统规划最为关键的问题是科学选择排水体制和处理模式, 实际规划中应在综合考虑城市规模和布局、受纳水置、环境容量等因素的基础上, 评估不同方案并统筹考虑污水再生利用和污泥资源利用的方向和规模。显然, 就污水收集系统而言, 采用分散处理的方案, 既有利于污水的再生回用, 又可降低污水长距离输送过程中的能耗和 CH4排放。
2、选择低碳水处理技术。(1)选择生物处理降低药剂用量。在污水生物处理中, 药剂消耗所排放的温室气体量超过污水处理厂排放总量的 50% , 是生物处理原位排放量的 2倍, 是电力消耗排放量的 4 倍。而化学处理往往需要消耗比生物处理更多的药剂, 药剂制备和运输过程产生的温室气体更多, 因此, 生物处理比化学处理更低碳。(2)选择节碳工艺减少外加碳源。选择节碳工艺, 避免外加碳源, 是减少生物处理过程碳排放的关键。短程硝化反硝化和反硝化脱氮除磷技术是两种广受关注的节碳工艺。短程硝化反硝化是通过创造亚硝酸菌优势生长条件, 将氨氮氧化稳定控制在亚硝化阶段, 使亚硝酸盐氮成为硝化的终产物和反硝化的电子受体, 短程硝化反硝化技术可节约 25%左右的需氧量和 40%左右的碳源, 减少 50%左右的污泥量; 反硝化脱氮除磷是利用反硝化聚磷菌在缺氧状态下以硝酸盐为电子受体, 同时完成过量吸磷和反硝化脱氮过程, 可节省 30%左右的需氧量和 50%左右的碳源, 减少 50%左右的污泥产量。(3)高浓度污水可选择厌氧工艺。污水厌氧反应产生 CH4的量随着进水有机物浓度的增大而增大, 污水浓度越高, 采用厌氧处理所回收的沼气越多, 经过收集利用后削减温室气体排放的贡献越大,当减碳量足以抵消厌氧处理出水中溶解的 CH4量时, 厌氧处理技术较好氧技术更低碳。
3、关注污泥处理处置能源回收。(1)选择厌氧消化回收能源。在污泥处理方面, 厌氧消化是一种较为低碳的污泥处理技术, 在生物降解有机物质的同时回收沼气, 实现污泥能源回收。沼气可以用于发电和加热, 沼气发电可补充污水处理厂 20%~ 30% 的电耗, 发电过程还可从内燃机热回收系统回收 40%~ 50% 的能量。(2)避免污泥填埋降低碳排放量。污泥填埋不仅占用大面积土地, 且填埋过程会产生大量无法有效收集的 CH4, 在污泥处置中属于高碳排放工艺。因此, 在工艺选择时应避免采用填埋。
一、现状概述
根据政府间气候变化专门委员会(Intergovernmental Panel on Climate Change, IPCC)的划分,主要有如下六种温室气体排放(Green Hose Gas, GHG)导致了大气温度的异常变化,即二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、氢氟碳化物(HFCS)、全氟碳化物(PFCS)、六氟化硫(SF6)。在此基础上,各国政府拟定了各种国内温室气体管控机制[],他们独自或与其它第三方组织、跨国企业建立温室气体计量的相关准则,或者在企业可持续性指标中加入温室气体评价项目,透过供应链的力量,要求企业上游供应链提供温室气体排放量相关信息,并寻求第三公证单位进行检验与查证。
这些温室气体计量方法或准则。《商品和服务生命周期温室气体排放评估规范》(PAS2050)是基于生命周期评价的产品碳排放计量方法。生命周期评价方法是一种“从摇篮到坟墓”的评价方法,正越来越多地被用来评价人类活动所产生的环境问题。它要求详细研究其生命周期内各单元过程的能源需求、原材料利用和活动可能造成的污染排放,包括原材料资源化、开采、运输、制造/加工、分配、利用/再利用/维护以及废弃物处理。因此,生命周期评价能够更加全面的体现企业在原料选取、生产过程、成品运输及控制产品能耗等方面的减排潜能,可以促进企业采取落实循环经济,使用再生原材料,合理处置副产品及废料,技术改造控制产品能耗等措施降低排放量,更好地实现节能减排的目的。
在本文用生命周期评价方法分析了国内某复合木地板生产工厂连续2年温室气体排放量,并尝试通过数据对比探讨生产型企业的碳减排途径。
二、方法简述
(一)方法学及参数的确定
LCA碳盘查在方法学上主要采用PAS2050:2008中生命周期评价方法学;产品的排放因子主要来自英国政府DEFRA碳排放数据库以及GHG protocol排放因子数据库,同时参考了《2006年IPCC国家温室气体清单指南》、《中国能源统计年鉴2010》、《中国区域电网基准线排放因子》等相关资料。
(二)分析阶段的划分
在LCA评价中,产品的生产过程分为原材料生产阶段、产品生产阶段、运输分销阶段、安装使用阶段、以及处置或再生阶段。其中,原材料生产阶段主要指原、辅材料的生产和有关的过程;产品生产阶段指所有生产过程和与生产有关的运输/储存活动、包装、与场地相关的排放,以及产生的所有材料如产品、废物、共生产品和直接排放,排放源包括厂内叉车、空调、冰箱、检测设备制冷、灭火器、乙炔、柴油、化粪池及电力等的使用;运输阶段主要包括卡车、轮船、火车等;安装使用阶段是指安装过程中使用的材料及能源,包括防潮膜及极少量电力,使用阶段消费者基本无能源消耗;处置阶段指产品废弃后的处理处置排放。
三、盘查结果及分析
(一)主辅料排放
第二年与第一年相比总产量减少了102321平方米,主料排放量减少710tCO2e,辅料排放量增加310 tCO2e,总体上原材料部分排放量减少400 tCO2e,但减排量相对产生量极小。
(二)生产阶段排放
生产环节的排放量增加了1662tCO2e,经对比可以看出,除原材料运输外,生产阶段排放主要来自用电、叉车运输和自有车辆使用三个部分。
进一步分析得知,第二年生产环节电、油等消耗有所增加导致排放量增加,具体见下表
可以看出,该厂在产量大幅下降的同时生产电耗、油耗和自有车辆使用量的相对增加造成了生产阶段的排放量增加。
(三)运输阶段排放量
运输阶段排放量增加了577tCO2e,其中海运和铁路运输的比例有所增加,由于海运和铁运的排放因子小于汽运的排放因子,因此增加海运和铁运的比例有助于降低运输阶段排放量。但由于业务范围日趋扩大,产品的销售网络也日益完善,随即增加了运往各地的里程数,因此运输总里程增加较多,运输阶段排放量仍有较明显的增加。
(四)安装使用阶段排放
由于盘查的前设条件为安装阶段仅消耗极少电力并使用一定量的防潮膜,消费者在使用过程中仅消耗少量水进行清洁,电力和水的消耗量极小,可忽略不计,因此安装和消费者使用阶段的主要排放来自防潮膜的上游排放。该部分排放量约占总排放量的5%左右,但因防潮膜的使用量不在企业可控范围内,对于企业主动减排讨论意义不大,因此不做赘述。
(五)废弃阶段
该厂生产的废弃物主要为木糠和地板产品最终废弃后的处置,其中木糠处理分为厂内做燃料燃烧和外运做其他产品原料;因此厂内处理的排放为木糠燃烧的排放量,而厂外处理的排放仅为运输阶段的排放,厂外处置部分排放计入下游产品排放,不在盘查范围内;废弃地板处置方式假设为全部燃烧。
可以看出废弃阶段主要排放来自废弃地板处理,占废弃阶段总排放的90%以上。
四、评价结果及减排途径分析
由以上分析可以看出,各阶段的GHG排放特点各有不同,其中有汇率、价格变动等客观原因导致的排放量变化,也有生产率变化、生产能耗变化等企业经营管理方面的原因导致的排放量变化。
原材料阶段排放主要来自原辅材料的上游排放,包括材料从自然界开采、加工、包装等过程的排放,因此这一阶段的减排应主要依靠:①提高工艺技术水平,提高成品率,减少原辅材料的使用量;②尽量采购上游排放较少的原辅材料,如经过碳中和认证的材料、或生产过程中碳排放较少的产品,以及其他生产的副产品等。
生产阶段的主要排放来自用电、叉车使用和自有车辆使用。这一阶段的减排主要依靠:①企业提高自身管理水平,减少不必要的出行,或提高自有车辆的使用效率;②因叉车主要用于物料的搬运,电力使用也是生产不可或缺的一部分,与生产息息相关,企业应自查原因,在产量较大幅度减少的前提下,生产能耗和叉车使用量大大增加,提高管理水平,优化电力和叉车的使用效率,降低排放。
运输阶段的排放量上升与企业业务发展水平有关,同时也与企业运输外包商的运输策略有关。在相同的运输距离和载重前提下,不同运输途径的排放因子为海运<铁运<汽运,因此运输外包商应尽可能多的使用海运和铁运,减少汽运。若企业依靠自身的市场地位影响运输外包商的运输策略,将有可能对企业的GHG减排带来较为可观的效益;此外,企业在经销商的设置上也可以考虑布局方式和位置,以便减少运输距离,减少运输阶段排放量。
废弃阶段排放主要来自残品的处置排放。这一阶段的减排策略包括:①提高生产技术和管理水平,提高产品优良率,减少残品数量;②尽量与其他厂商签订回收协议,使废弃的地板进入下游产业链,成为其他产品的原辅料,降低下游排放。
生物炭通常指树木、农作物废弃物、植物组织或动物骨骼等生物质在无氧或部分缺氧及相对低温(
生物炭具有巨大的比表面积、发达的多孔结构,表面有大量的官能团,对有机物和重金属离子具有强烈的吸附能力,因此生物炭常被用在污染物吸附、重金属污染治理、土壤改良等方面。近年来,生物炭在土壤中的固碳减排效应成为各研究机构和学者关注的重点,被认为是缓解温气候变暖的有效途径。生物质炭化成本低,原料充足,制得的生物炭具有高度稳定性,在土壤中具有明显固碳减排的作用,目前对其研究主要集中在碳封存和减少温室气体排放两个方面,弱化了生物炭替代氮肥生产及使用过程所产生的减排效应,没有严格的从“固碳”、“减碳”和“零碳”三个方面细分进行研究,生物炭在替代化肥生产使用量方面所起的“零碳”效应潜力巨大,也是固碳减排的重要方面。本文综合论述了生物炭的“固碳”、“减碳”和“零碳”效益,以及生物炭在低碳农业中的应用,为今后生物炭的研究和应用提供参考。
1.生物炭在固碳减排领域的效应
1.1 生物炭在土壤中的储碳、固碳效应
CO2在全球温室气体排放中所占比重最大,全球每年CO2排放量达250多亿t[3]。土壤是引起气候变化和全球变暖的温室气体重要的排放源,土壤和植物根系的呼吸作用释放的CO2占全部CO2排放的20%[4]。同时,农田土壤也是重要的碳汇,是《京都议定书》认可的固碳减排方法之一,在减少温室气体排放,稳定大气CO2浓度中具有重要地位。自然条件下,植物经过光合作用吸收的CO2,50%进过植物呼吸作用返回到大气,另50%经过矿化作用转化为CO2(碳中性),没有任何净固碳作用。而如果将植物残体炭化,植物残体中剩余的25% 的C 被转化为生物炭施加到土壤中,由于生物炭非常稳定,可能仅有大约 5% C在土壤微生物的作用下矿化分解成 CO2返回到大气中,整个大气中碳会因此减少20%(碳负性)[5]。生物炭具有高度的芳香化结构,具有很强的抗腐蚀性,同时能与土壤中矿物质形成团聚体,减弱微生物对生物炭的作用,能够长时间的保留在土壤中,起到碳储存的作用。Kuzyakov 等[6]研究表明,生物炭在土壤中的平均停留时间大约为 2000 年,半衰期约为 1400 年。另外,生物炭能够扩充土壤有机碳库,增加土壤的碳封存能力和肥力。生物炭的碳封存途径,一是通过炭化直接使易矿化的植物 C 转变为稳定的生物炭;二是通过增加植物生物量,提高了植物对大气 CO2的捕获能力,增大植物体转变成土壤中的有机碳[7];还能够通过改变土壤中有机质(SOM) 腐质化、稳定性和呼吸速率等,抑制土壤有机碳(SOC)的分解,起到碳封存的作用[8]。将生物炭作为储碳形式,埋在土壤或者山谷中,能够实现大规模的碳封存效果,对于减缓气候变化具有重大意义。
1.2 生物炭的“零碳”效应
生物炭的零碳效应主要体现在增加作物产量,代替或减少化肥使用量,从而在化肥全过程中不排放或者减少温室气体的排放。化肥的生产及运输过程中消耗大量的能源,West等[9]研究认为,在整个氮肥生产和运输过程中所排放的温室气体为0.857gCO2-CgN-1。程琨等[10]对农作物生产碳足迹的分析表明,农业化肥投入引起的碳排放约占农作物生产总碳排放的60%,其中氮肥占95%`。土壤N2O排放量与施肥量存在线性相关关系,王效科等[11]研究发现,当化肥施用量减少到0和50%时,土壤N20减排量分别占当前排放的41%和22%。并且氮肥使用量减少30%不会造成粮食的减产[12],因此减少氮肥使用量是农业减排的重要途径。生物炭施加到土壤中,能够明显改善土壤营养状况,起到缓释肥作用,减少或替代化肥的使用,从而减少化肥生产过程中及施用过程中温室气体的产生。据估算,10t的生物炭能够替代1t氮肥,从而可以减少1.8t碳当量的温室气体产生[13]。生物质炭化过程电耗低,电耗产生的CO2排放远低于生产氮肥的CO2排放量。生物炭就地炭化可以直接还田,也可以与肥料混合制成炭基肥,替代或减少氮肥的施用量,从而减少生产及运输氮肥过程的能耗,减少温室气体的产生,因此生物炭具有显著的“零碳”效应。
1.3 生物炭的“减碳”效应
CH4在100a尺度的全球变暖潜能值(GWP)是CO2的21倍,大气中CH4的浓度是N2O的6倍,高达1800ppb。N2O的GWP是CO2的298倍,可稳定存在长达150年[14],农业活动产生的CH4约占大气CH4的 50%,主要来源是水稻种植、动物养殖。化肥的大量使用是N2O最主要的人为排放源。生物炭施加到土壤中,能够显著的降低CO2、CH4及N2O等温室气体的排放量,具有明显的“减碳”效应。生物炭在土壤中通过表面吸附溶解性有机碳(DOC),并促进包裹有机质的土壤颗粒的形成,降低土壤有机碳的矿化作用,减少CO2排放[15],Steiner 等[16]研究发现自然状况或者添加鸡粪、堆肥、树叶等有机质的土壤中,添加生物炭后,土壤中C的损失率从25%以上降低为4%~8%。王欣欣等[17]研究发现,水稻土中添加不同用量的竹炭,CH4和N2O季节累计排放量比对照组降低了58.2%~91.7%和25.8%~83.8%,相对于常规肥处理而言,分别降低了64.3%~92.9%和72.3%~93.9%。与秸秆直接还田会增加土壤总N2O的排放量相比,具有明显减排效益[18]。
目前对于生物炭改变土壤的非生物环境(如土壤pH、容重和持水量等),影响微生物作用,从而减少N2O的产生量的研究较多。而对于生物炭对硝化细菌和脱氮菌等微生物直接作用来减少N2O的排放的研究相对较少。生物质在低温炭化过程中,会产生PAHs和酚类物质(PHCs),土壤中的PAHs和PHCs能够降低生物活性,具有杀菌的性能。研究发现,经缓慢裂解所制得的生物炭中PAHs的含量低于经快速裂解和气化所制得的,其PAHs的含量从78.44 ng・g-1到2125 ng・g-1[19],且一般在350-550℃温度下制得的生物炭中PAHs含量最高,Wang等[20]研究发现,300-400℃制得的生物炭中PAHs对于减少N2O的排放起主要作用,在200℃制得的生物炭中含有少量的PAHs但含有大量的PHCs,加大了对微生物的毒性,影响硝化和反硝化作用,因此N2O排放量很低。按照施炭量计算,施加生物炭带入的PAHs量低于环境安全值,不会污染环境。
一般认为,生物炭施入土壤后能降低CH4的排放量,Liu 等[21]研究表明,水稻土壤中添加竹炭生物炭和水稻秸秆生物炭后,CH4的排放量分别减少了51.1%和91.2%。Feng等[22]研究认为,新制得的生物炭施加到土壤后,增加土壤的空隙度,增强了甲烷氧化菌对CH4的氧化作用,但同时也能刺激产甲烷细菌的活性,但是甲烷氧化菌对CH4的利用度超过甲烷的产生量,因此生物炭能够减少土壤中CH4 的排放量。
1.4 生物固碳减排经济效益
“固碳”方面,1t生物炭,按照60%含c量计算,其中2%生物炭在土壤中以CO2形式逸出,剩下58%以稳定C形式存在,相当于2.15t CO2被封存。“零碳”及“减碳”方面,1t生物炭能够替代氮肥0.58t,减少温室气体1.04t,在土壤中还能抑制温室气体的产生,粗略计算,1t生物炭埋入土壤,固碳减排CO2约3.2t,按照目前欧盟CO2交易价格4.11美元/吨计算,1t生物炭可获得收益13.15美元。
2. 生物炭在低碳农业中的应用
农业活动是温室气体的第二大排放源,约占全球温室气体排放总量的14%,据估计,全球每年由农业扰动,由土壤释放到大气中的碳量约为 0.8×1012kg~4.6×1012kg[23],氮肥大量使用、秸秆等生物质焚烧、垦荒种地等农业活动产生大量的温室气体,农业是节能减排的重点领域。同时,农业也是一个巨大的碳汇系统,一方面可以调整农业生产结构,改善种植模式,增大农作物的碳吸收量。另一方面可以通过扩大土壤有机碳库减少温室气体排放。扩大土壤有机碳库是农业固碳增汇的关键,中国有 18 亿亩耕地资源,若土壤有机质含量提高 1%,土壤可从空气中净吸收 306 亿tCO2[24]。据Lal估计[25],全球农业土壤碳库扩充潜力为1.2~3.1 PgC/a,耕层土壤有机碳含量提高1tC・a/hm2,发展中国家粮食产量年增加2400~3200万t,农业的固碳增汇潜力巨大。
生物炭具有良好物理性质和土壤调理功能,对土壤水溶液中的K、P、硝态N及铵态N[26]等营养元素具有较强的吸附能力,可以增加土壤有效P、K、Mg和Ca含量[27]。研究发现,炭基肥与常规复混化肥处理水稻田比较,施氮量减少19.04%,水稻的经济产量提高6.70%以上,可以明显提高氮肥的利用率[28]。Chan 等[29]研究表明,在低纬度地区,每公顷农田施用 20t以上的生物炭可减少 10%的肥料施用量。相比于秸秆等生物质直接还田,生物炭还田或者制成炭基肥入田便于运输管理,能够防止土传病害,可以减少化肥的施用量,提高氮肥利用率。
低碳农业就是充分利用农业碳汇功能,尽可能减低其碳排放功能,实现食品生产全过程的低碳排放,其核心是在生产经营中减少温室气体排放[30]。据 Woolf 等[31]估计,生物炭埋入土壤可抵消高达16%的全球化石燃料碳排放。生物炭在低碳农业中应用的四个着力点:第一,保肥增产作用,减少化肥使用量;第二,废弃生物质炭化还田,减少温室气体排放量;第三,改善土壤条件,减耕免耕[32],降低土壤因扰动而释放CO2等温室气体;第四,扩容土壤有机碳库,增强土壤的碳汇功能。积极倡导通过生物质能源与碳封存耦合模式、能量自给碳封存模式、农林复合模式、工农复合模式等开展生物炭的低碳农业[33]。
3.结论与展望
生物炭本身的结构和性质使其在改善土壤条件、增产治污及固碳减排方面的应用具有广阔的应用,成为各国研究机构和学者研究的重点,今后的研究中应严格区分生物炭的“固碳”、“零碳”和“减碳”功能,从各环节发挥生物炭固碳减排的作用。由于生物质炭化成本低,原料充足,制得的生物炭具有高度稳定性,其作为温室气体排放抑制剂和碳封存剂的重要作用为温室气体减排工作开辟新的思路,有望成为减缓温室效应最经济的最有效的途径。
参考文献:
[1]Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems: A review [J]. Mitig Adapt Strat Global Change, 2006(11):403- 427.
[2]Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal- a review[J]. Bio Fertil Soil, 2002,35:219-230.
[3]罗金玲,高冉,黄文辉,等.中国二氧化碳减排及利用技术发展趋势[J].资源与产业,2011,13(1): 132.
[4]IPCC, 2007. Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability. Summary for Policy Makers. Inter-Governmental Panel on Climate Change.
[5]Lehmann J. A handful of carbon[J]. Nature, 2007, 443: 143-144.
[6]Kuzyakov Y,Subbotina I,Chen H Q,Bogomolova I,Xu X L.Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling [J]. Soil Biology and Biochemistry,2009,41: 210-219.
[7]Smith P. Carbon sequestration in croplands: the potential in Europe and the global context[J]. European journal of agronomy, 2004, 20(3): 229-236.
[8]Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainablebiochar to mitigate global climate change [J]. Nature Communications, 2010, 1( 5) : 1-9.
[9]West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1): 217-232.
[10]程琨,潘根兴,张斌,等.测土配方施肥项目固碳减排计量方法学探讨[J].农业环境科学学报,2011, 30(9):1803-1810.
[11]王效科,李长生,欧阳志云.温室气体排放与中国粮食生产[J].生态环境, 2003,12(4):379一383.
[12] UK-China Project on“Improved Nutrient Management in Agriculture :A Key Contribution to the Low Carbon Economy”[EB/OL]. Beijing, SAIN project, 2010. http:// sainonline. org/SAIN-website(English)/pages/Projects/lowcarbon. Html.
[13]Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research [J]. CSIRO Land and Water Science Report, 2009, 5(09): 17-31.
[14]IPCC, 2007. Climate Change 2007. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[15]Liang B, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010, 41(2): 206-213.
[16]Steiner C,Teixeira W, Lehmann J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil, 2007, 291( 1-2) : 275-290.
[17]王欣欣,邹平,符建荣,等.不同竹炭施用量对水稻田甲烷和氧化亚氮排放的影响[J].农业环境科学学报,2014, 33(1):198-204.
[18]刘慧颖,华利民,张 鑫.不同施氮方式对玉米产量及N2O排放的影响[J].农业环境与发展,2013,30(5): 76-80.
[19]Hale S E, Lehmann J, Rutherford D, et al. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars[J]. Environmental science & technology, 2012, 46(5): 2830-2838.
[20]WANG Zhen-yu, ZHENG Hao, LUO Ye, et al. Characterization and influence of biochars on nitrous oxide emission from agricultural soil[J]. Environmental Pollution, 2013, 174: 289-296.
[21]LIU Yu-xue, YANG Min, WU Yi-min, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6): 930-939.
[22]FENG You-zhi, XU Yan-ping, YU Yong-chang, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology and Biochemistry, 2012, 46: 80-88.
[23]马友华,王桂苓,石润圭,等.低碳经济与农业可持续发展[J].生态经济,2009(6):116- 118.
[24]蒋高明.发展生态循环农业,培育土壤碳库[J].绿叶,2009 (012): 93-99.
[25]Lal R. Sequestering carbon in soils of agro-ecosystems[J]. Food Policy, 2011(36):S33-S39.
[26]Kimetu J M, Lehmann J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents [J]. Australian Journal of Soil Research, 2010,48(47):577-585.
[27]Lehmann J, Peteira da Silva Jr J, Steiner C, et al. Natrtent awatl ability and leaching in an archaeological Anthrosol and a Ferralso of the Central Amazon basin: Fertilizer., manure and charcoal amendments [J]. Plant and Soi, 2003,249(2):343-357.
[28]陈琳, 乔志刚,李恋卿,等. 施用生物质炭基肥对水稻产量及氮素利用的影响[J]. 生态与农村环境学报,2013, 29(5): 671-675.
[29]Chan K Y, Xu Z. Biochar: nutrient properties and their enhancement[J]. Biochar for environmental management: science and technology, 2009: 67-84.
[30]王松良,Ealdwelle D,祝文烽.低碳农业:来源、原理和策略[J].农业现代化研究,2010,31(5):604-607.
[31]Woolf D. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010,1(5):1-9.
[32]Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment [J]. Soil and Tillage Research,1997, 43(1), 81-107.
[33]罗煜,陈敏,孟海波,等.生物质炭之低碳农业[J].中国农学通报,2013, 29(26): 93-99.
作者简介:
在现代工业生产过程中绝大多数产品的原料都有多种来源,同时也对应着多种不同的匹配性工艺过程。不同的原料和工艺过程对应不同的CO2排放,针对具体的应用对象开发和选择适宜的原料和工艺,能够从源头上避免产生不必要的CO2排放。这是目前CO2减排最有效的途径,主要通过国家政策和税收、产业结构调整和升级,以及合理的能源定价机制和能源产品价格来引导实现。以燃煤发电为例,选择低灰精煤和合理的过剩空气系数就能有效降低烟气量,减少无效热量外排,从而提高煤的利用率、减少CO2的排放。同样采用循环流化床燃烧发电、RGCC和多联产发电、超临界发电等均能达到上述目的。以合成甲烷工艺为例,选择褐煤和长焰煤采用燃气型的鲁奇炉气化和循环流化床分级热解气化要比合成型的气流床气化生产的合成气甲烷含量高(约10%左右)、氧耗低;合成甲烷时产生较难利用的低温热源减少10%以上。从整个合成甲烷工艺核算,前者煤的利用率高、能耗和氧耗低,同样规模的合成甲烷,自然就减少了CO2的排放。对于循环流化床分级热解气化,固态排渣相对换热容易,水封用水量较低,加之循环流化床分级热解气化相对鲁奇炉气化合成气不含煤焦油,不会产生含酚废水,因此循环流化床分级热解气化合成甲烷的工艺过程能耗更低,更有利于避免高碳排放。另外煤化工发展含氧化合物燃料和多联产工艺、民用燃料采用天然气、大力发展核能、水电、风能和生物能、化工行业大力实施循环经济、发展纯电动汽车等均能实现从源头避免高碳排放。
2过程减少碳排放
在经济活动过程中,开采、生产、使用和终端产品消费等各个阶段都需要能耗,都存在能源使用效率。我国目前万元GDP能耗水平与发达国家有较大差距,物理能耗水平约比国际先进水平高20%~30%左右。例如2007年,我国每千瓦时供电耗煤比国际先进水平高44g标煤,每吨钢能耗水平比国际先进水平高58kg标煤,每吨水泥综合能耗水平比国际先进水平高31kg标煤,分别高出14%、10%和24%。另外生产的产品利用率偏低,又变相地增加了能耗。通过优化设计,使用高效节能的工艺设备、高效适宜的催化剂和合理使用优质产品均能实现节约能耗,减少终端产品的使用量。减少终端产品的使用量就是相应减少了产品生产量,避免生产这部分产品产生的能耗。节能降耗自然就减少了CO2的排放,这是目前CO2减排最容易实现、成本最低并且具有较大收益的途径,在国家政策强制下均能通过企业自身调整和改造来实现。对于现代煤化工的龙头———大型煤气化来说,空分是投资和能耗均占气化工艺50%左右的必不可少的过程,其产品主要是液氧,副产的液氮只需使用部分产量,其余的均被低效利用或排放。如果采用深冷分离为主的梯级分离工艺,大部分氮气组成在低压端就作为产品气外送,无需经过空气压缩机高能耗加压,最终产品主要是液氧和部分液氮,工艺所需的高压氧气通过泵液体低能耗加压即可满足。这样大大降低了空气压缩机的处理量和能耗,从而达到降低气化工艺投资和能耗的目的。利用化石能源花费巨大的能耗和成本生产的氮肥,由于我国化肥产品落后、使用工艺不当和不合理施肥,利用率仅有30%左右,不到发达国家的一半,不仅造成了浪费,而且造成了严重的面源污染。如将现有的化肥改造为缓控增效肥料,并采用相应的耕作模式,就可提高作物产量和品质以及化肥使用效率,从而减少了肥料的消费量和生产这部分肥料的所产生CO2排放。化工行业合理选择高效催化剂以及分离、反应、换热和泵送高效节能设备,采用调频技术等可以大幅度降低能耗。蒸馏是化学加工工业中首选的均相体系分离技术,也是目前总能耗最大的化工分离过程。如将梯形垂直长条帽罩与规整填料有机结合的NS倾斜长条立体复合并流塔板用于改造F1浮阀塔板,阀孔动能因子高达34,开孔率高达40%以上(国内外目前塔板最大开孔率仅为20%左右),提高处理能力2倍以上(目前国内外最高提高70%)、降液管通过能力3倍以上,降低板压降30%以上,同时提高板效率30%以上,操作弹性为4倍,解决了塔器大型化塔内件结构和安装难题,这在国内外尚属首例。各行各业节能降耗技术和产品枚不胜举,这是目前我国实现CO2减排的最有效途径,仅需要相关部门和协会优化集成,加大推广力度。
3终端的固定与储存
经济活动只要消耗资源和能源,必然会产生碳排放,没有绝对的零碳排放过程。由于化石能源使用量剧增,自然界碳循环每年出现约257亿tCO2的过剩,逐年累计引发了日益变化无常的全球气候问题。目前国内外相关企业和学者为了应对全球气候变化,普遍关注、研发和实施CO2的捕集与封存,这是迫不得已和最终解决CO2减排的方法,也是实施起来成本过高,并且技术不成熟,存在诸多的风险和次生灾害。
实际上,解决人为排放的CO2过剩,除了被动地减少CO2产生量,更为积极的措施是加快碳利用,增加CO2消耗量,主动减少CO2的过剩,从而在碳循环中实现碳平衡。这是突破碳减排对经济发展影响,实现工农业同时快速发展的积极有效途径。这既是个技术问题,也需要建立国内碳市场,通过合理的碳交易,对企业间、行业间和地区间CO2排放的不平衡,找到一个较好的解决办法。目前尽管中国GDP已超过日本成为第二,但人均很低,仍处于发展中,经济还不完善,生活还不富裕,然而中国已成为世界第一大CO2排放国,并逐年递增。发展经济与减排成为我国两难的选择,加之存在国家能源安全、粮食安全、耕地与城镇化和工业化、以工哺农、三农问题和环境保护等战略性难题,被动采取减少CO2产生量的捕集与封存措施,将会对我国经济的发展和上述诸多难题的解决带来限制和障碍。
针对我国的国情和发展的现状,结合国际碳减排的机制,不同CO2浓度的工业排放可采用不同的减排与固碳措施。现阶段,对于工矿企业主要排放源的低浓度CO2,可以采取低成本的异地生物固碳减排措施,加快碳循环和碳固定。这样不仅可以实现CO2实际排放量的减排,同时可以改良土壤增加有效耕地面积,大量增加粮食和生物质能,从而在逐步提高人民生活水平的前提下,低成本大力发展低碳经济,同时兼顾解决国家能源安全、粮食安全、耕地与城镇化、以工哺农、三农问题、淡水资源不足和环境保护等战略性难题,满足我国今后较长时间的减排要求,提高我国应对全球气候变化的实际能力和国际地位。
对于如煤化工和石灰等行业排放的高浓度CO2(90%以上),采用捕集技术回收,通过制造干冰、用作合成尿素、水杨酸、环碳酸酯和聚碳酸酯等的原料以及CO2驱采油、农业大棚CO2气肥等,都是成本和能耗较低、减排和经济效益较好的方法。对于数量多、分布广的如发电和中小锅炉等排放的低浓度CO2(小于16%),工矿企业现阶段无需采用集中固碳处理,可以利用国内碳交易实现异地化低成本固碳。根据我国目前的土地分布、土壤组成、农业现状和生物能源地发展,以及工农业发展不平衡和剪刀差等具体情况,对于低浓度CO2烟气,工矿企业可按照CO2排放量,将用于集中固碳处理的投资和操作费用,拿出来反哺农林业。政府或相关机构把这部分资金集中起来,用于改造中低产田,提高粮食单产、品质和生物质产量;改良非耕地、盐碱滩涂、沙漠化和重金属污染等退化土壤,利用现代农业技术种植适宜的速生能源植物和农作物,发展碳汇林和牧草或改造退化草原,充分利用太阳能,加快碳循环,增加CO2消耗量,主动减少CO2的过剩,从而实现循环平衡。同时又大幅度提高有效耕地面积和生物质能源产量,热解生产生物原油,增加了农民的收入,降低了企业CO2减排的成本,从而实现工业、农业、政府和社会的多赢。这个方法可以简单概括为一条工艺路线:企业出资形成碳汇基金———投资农林业———改良土壤、增强碳汇能力———增加粮食和生物质产量———通过工业热解生产生物质原油———多方受益。将生物质转化为能源燃料时,无需考虑生物质作为食品时所需顾及的转基因和有毒有害微量物质问题,转基因物种在产量提高、种植地域和污染土壤修复中均能产生巨大的经济、环保和社会效益。生物质快速热解液化技术是最好的碳利用出路和产品,从而加快了碳循环,实现了碳循环平衡。
另外,利用生物质不到7d的快速腐化生产腐植酸,作为有机肥提高土壤的腐殖质,有利于提高土壤肥力和保肥保水性,进而提高农作物产量。将我国绝大多数土壤腐殖质含量不足1%提到2%左右,这也将是一个千亿吨级的土壤安全储碳方式。
4结语
(1)针对具体的应用对象和原料提出了开发和选择适宜的原料和工艺,从源头上避免产生CO2排放的措施,是目前CO2减排最有效的途径。
关键词:农村碳排放;负外部性;社区管理模型;社区共管
中图分类号:F327;F205文献标识码:A文章编号:1001-8409(2013)10-0121-05
Research on the Community Management
of Rural Carbon Emissions Problem
WEI Huilan, ZHAO Songsong
(School of Economics, Lanzhou University, Lanzhou 730000)
Abstract: This paper, through the rural carbon emissions community management model and its extension model's construction and analysis, proves the theoretic model propositions. Finally, it puts forward policy Suggestions on rural carbon emissions community management.
Key words: rural carbon emissions; negative externalities; community management;community comanagement
一、引言
随着经济的发展,碳排放对农村社区的作用力也随之增加。目前农村碳排放态势一是农民碳排放行为负外部性较强;二是农民低碳行为自主治理的集体行动能力相对较差。这是农村碳排放管理面临的两个基本困境。因此,运用外部性理论来解释农村低碳路径就显得更为合理。从实践来看,解决居民行为负外部性的途径往往是政府治理,但政府治理缺乏相应的激励机制,以致于国家通过强制手段来管制人们的资源使用行为时,其能力是有限的。另外,由于农村社区碳排放量的产权较为复杂且难以彻底私有化,因而也难以依靠市场机制来解决。
社区管理途径为这一问题的解决提供了一个可行思路[1]。本文通过农村碳排放社区管理模型及其扩展模型的构建和分析,试图证明,碳排放社区管理不仅能促使私人利益与社区利益的统一,还可以借助于政府、市场等途径构建社区共管模式,实现社区利益与社会利益的统一,最终提高社区碳排放负外部性内部化的效率。
二、碳排放社区管理理论分析
社区管理是指在政府指导下,社区职能部门、社区单位和社区居民对社区各项公共事务和公益事业进行的基于本土知识特定治理结构的自我管理[2,3]。将社区管理含义的边界扩展,其基本含义是与以社区为主体的保护,并拥有社区资源的自我管理权;同时又可向另外两个主体延伸:向上可进入政府的保护活动中,向下又可进入实施碳排放产权私有化的范围。
碳排放社区管理是建立在降低社区居民碳排放负外部性之上的双赢管理模式,其本质特征在于降低碳排放负外部性。然而,农村碳排放负外部性的含义告诉我们,由于碳排放负外部性的存在,即农村社区居民不必弥补外部成本而获得碳排放收益,使得农村碳排放快速增加。实际上,农村碳排放的负外部性理论比上述要复杂得多,表现在社区农民的行为集合使所有相关方的成本-收益函数被动地发生了改变[4]。不同内容的负外部性,其影响程度和范围是不同的,根据碳排放负外部性的程度和社区管理交易费用可将其分为社区内、社区外以及整体性影响三类[5],如表1所示。社区内负外部性即社区居民对另一居民产生了影响,使其收益降低。非本社区负外部性表面社区居民对非本社区居民也产生了影响,使其收益降低。而其他负外部性产品是指过度的碳排放会导致其他“坏公共物品”的产生,如秸秆燃烧、砍伐树木等消耗碳汇而增加碳排放的行为,会导致气候变暖等“坏公共物品”。
合理管理模式的选择, 取决于负外部性程度和交易费用的高低[6]。而兼顾降低碳排放负外部性和交易成本优势的碳排放社区管理,不仅会促使社区居民碳排放的私人利益、社区利益和社会利益的共赢,还会通过以下几方面降低农村碳排放的负外部性。
表1农村碳排放负外部性的分类
负外部性种类负外部性程度社区管理
交易费用社区内的
负外部性社区居民间的负外部性强度大、范围小小社区居民对农村农业系统的负外部性强度小、一定范围小农村碳汇服务能力的下降强度大、范围小小非本社区的负外部性社区居民对非社区居民的负外部性强度小、一定范围大农村对城市的负外部性强度小、范围小大其他负外部性产品坏公共物品的产生强度大、范围大大(一)农村社区管理中的合作
社区管理的基本特征是社区管理制度,更重要的是其所代表的文化机制。这一核心观点可分解为社区文化价值与社区社会机制。社区文化价值方面,碳排放上涨会导致降低碳排放的物质价值和精神价值增加,两种价值共同引导人们的合作倾向。社区社会机制方面,包括社会关系纽带和社会声望体系,也会促进合作。社区管理实际上会使社区居民产生一体化倾向,因而在碳排放社区管理的模式中,搭便车问题会得到缓解[7]。
(二)农村社区管理中的激励机制
除合作条件之外,还需要另一个条件:社区如何使用自身的碳排放选择。社区管理的激励机制是基于这样一种认识:碳排放增加会给社区带来长期影响,且碳排放选择收益为农村社区居民拥有[8]。正是特定地理空间的聚集效应,从而塑造了低碳问题上的利益共同体——社区,使低碳选择在社区层次上具有“产权私有且可收益性”的性质,碳排放社区管理的激励机制便产生了,进而使居民产生低碳选择,最终降低了碳排放负外部性。
(三)农村社区管理中的本土经验
与现代科技为基础的经营管理相比,社区成员在长期与自然环境的互动中发展出来的传统知识,颇符合现代生态学原理,为某些人类生态学者认可,称之为生态智能[9]。社区居民对社区资源的使用已成为一种社区生存机制,并以口头知识、传统、宗教等形式表现出来,形成了人与自然较为和谐的互动关系。这些关系会降低社区居民碳排放负外部性的产生以及强度。
(四)农村碳排放社区管理的双向扩展性
至于碳排放社区管理的含义,可将其边界向政府保护活动和市场私有化扩展,成为社区共管模式。政府方向上,社区共管包括政府制度化的参与、协作管理、公共物品管理转移和以环境管理等。私有方向上,则可以利用市场机制进一步影响社区居民的碳排放选择。
三、社区管理与农村碳排放量模型假设
通过以上分析发现,社区居民碳排放行为使居民间产生了负外部性特征,而碳排放社区管理的提出,为社区居民碳排放的共赢模式提供了一个可行途径。由此提出研究假设。
假设1:社区管理可以通过降低农村碳排放负外部性,进而降低碳排放量。
假设2:社区对于降低碳排放具有长期的管理者地位。
假设3:社区居民可以从低碳选择中获得收入。
假设4:社区居民与非社区居民生产、消费的各种产品和碳排放产品均存在于完全竞争市场。
社区管理在改善农村碳排放问题上具备有效性,但也有不足的地方。我们来分析一个简单的模型[10,11]。假定在农村碳排放市场中只有3个参与者:产生碳排放的社区居民1、负外部性接受者的社区居民2和非社区的居民3。
(一)社区管理的有效性——社区自我管理
首先分析社区内负外部性,假定在农村碳排放市场中只有2个参与者,产生碳排放的社区居民1和作为负外部性接受者的社区居民2,社区居民1产生QCO2的碳排放。令社区居民1的成本函数为C1(Q1,QCO2),其中Q1是社区居民1生产消费的所有产品,QCO2是社区居民1生产消费Q1产生的碳排放,这里把碳排放量看作一种产品。则社区居民2的成本函数是C2(Q2,QCO2),其中Q2是社区居民2生产消费的所有产品,QCO2是社区居民2接受社区居民1产生的碳排放数量。社区居民2生产消费Q2取决于社区居民1产生的碳排放量。假设碳排放增加了社区居民2生产消费的成本,碳排放降低了社区居民1生产消费的成本。同时假定他们的成本-收益函数是已知且相同的,最后假定,碳排放的产生是一个单向负外部性模型[12]。
社区居民1的最大化问题为:
maxP1Q1-C1(Q1,QCO2) (1)
社区居民2的最大化问题为:
maxP2Q2-C2(Q2,QCO2) (2)
社区居民2只能接受社区居民1产生的碳排放量, 社区居民1可以选择任意的碳排放量。
关于3种产品分别求导可得,社区居民1最大化的一阶条件为:
P1=C1(Q1,QCO2)Q1 (3)
0=C1(Q1,QCO2)QCO2 (4)
社区居民2最大化的一阶条件为:
P2=C2(Q2,QCO2)Q2 (5)
上述3个条件表明:在个人利润最大化点上,社区居民生产消费每种产品的价格应等于其边际成本。对于碳排放QCO2来说,假设它的价格为0,进而得出:社区居民1产生的碳排放会引起社区居民2生产消费的成本随碳排放的增加而增加,这是社区居民1生产消费导致的部分社区外部性成本。可以预期,社区居民1会产生更多的碳排放QCO2。
通过简单的模型分析社区管理模式下的碳排放成本-收益状况。假设社区居民1和社区居民2的生产消费活动在社区管理的指导下,进行Q1、Q2、QCO2的生产消费活动,这样社区负外部性就内部化了,原因在于如果碳排放交由社区管理,那么它在选择社区利益最大化计划时,会综合考虑社区居民1和社区居民2之间的相互影响。
社区管理后的社区利益最大化问题为:
maxP1Q1+P2Q2-C1(Q1,QCO2)-C2(Q2,QCO2) (6)
社区管理后的社区利益最大化一阶条件为:
P1=C1(Q1,QCO2)Q1 (7)
P2=C2(Q2,QCO2)Q2 (8)
0=P1=C1(Q1,QCO2)QCO2+C2(Q2,QCO2)QCO2 (9)
式(9)表明,社区管理后,整个社区会同时考虑碳排放对社区居民1边际成本的影响和对社区居民2边际成本的影响。也就是说,社区居民1考虑到了自身经济活动产生的负外部性。
社区管理之前,碳排放的最优数量由式(4)决定,对式(4)进一步推导可得:
MC1(Q*1,QCO2*)=0 (10)
社区管理之后,碳排放的最有数量由式(9)决定,对式(9)进一步推导可得:
-MC1(Q*1,QCO2*)=MC1(Q*2,QCO2*)>0 (11)
式(11)中,MC1(Q*2,QCO2*)>0,这是因为碳排放增加会使社区居民2的成本增加。社区管理后的社区居民1会在-MC1(Q*1,QCO2*)>0的地方进行生产,也就是说,与社区管理之前相比,社区居民1产生的碳排放降低了。
结论一:社区管理下的碳排放最优条件为两个社区居民关于碳排放的边际成本之和等于0,如图1所示,-MC1=MC2,在这种假设条件下,社区管理之前产生的碳排放水平由Q2降低到Q1。
(二)社区管理的不足和扩展——社区共管
社区管理在降低社区内负外部性具有一定的有效性,但对于农村碳排放产生范围较广的负外部性问题,社区管理的成本-收益优势就丧失了。换个角度来讲,社区管理在降低农村碳排放负外部性的作用还可以扩展,除了社区完整拥有降低碳排放的权利之外,向上可以与政府治理接壤,向下则与产权私有契合。将非社区居民3考虑进来,对第一个模型进行扩展,假设与扩展前的假设相同。
假设社区居民1、社区居民2和非社区居民3共同组成了社会成本-收益,社区居民1和社区居民2组成了社区成本-收益,自变量均为碳排放减少量,令非社区居民3的成本函数C3(Q3,QCO2),可构建社区共管的社会最优效果为:
TB=P1Q1+P2Q2+P3Q3-C1(Q1,QCO2)-C2(Q2,QCO2)-C3(Q3,Q1CO2) (12)
从式(12)可以看出,虽然社区居民1的生产消费活动引起了非社区居民3成本函数的变化,即非社区居民3在做经济决策时需要考虑Q1CO2。对式(12)求导并等于0,并进一步推导可得:
TB′=(MSB-MSC)-(MCB-MCC)=0 (13)
其中MPC代表居民为生产、消费碳排放所支付的成本,MSC是农村系统中生产、消费产品的全部成本,MPB为农村系统中个人降低碳排放所带来的收益,MSB为农村系统所获得的总收益,MEB是碳排放减少所带来的正外部性收益。式(13)可转化为:
MAXS=[(MSB-MSC)-(MPB-MPC)]=[(MSB-MPB)-(MSC-MPC)](14)
则社区管理解决农村碳排放外部性的最优结果为:
MAXS=(MEB-MEC) (15)
由图2可知,式(15)可理解为MEB和MEC两个线的交点。其中MEC为 碳排放造成健康和财产损失的成本,包括碳排放所引起经济影响、生态环境问题、健康、人们的幸福水平等。MEB为碳排放减少所带来的正外部性。如图2所示,Q为社区居民追求个人利益最大化的碳排放减少量,Q2是碳排放为0的点。对于Q2这一点,MEC值很大,则负外部性较强,即碳排放减少量不能降低太多。在Q1点,MEB=MEC,即降低农村碳排放的边界负外部性成本等于其边界负外部性收益,可使农村社区与社会实现降低碳排放的帕累托改进,Q1为最优农村碳排放点。接下来面对的问题,则是碳排放边际外部成本如何由边际外部收益来支付。 对MEB进一步分析可得:
MEC=MSC-MPC (16)
MNPB=MPB-MPC (17)
根据式(15)、式(16)和式(17)可得:
MEB=MEC=MNPB (18)
式(17)表示社区居民的个人净收益等于边际个人收益减去边际个人成本。如图3所示,社区外部面对Q2数量的碳排放负外部性。根据帕累托改进的原理,当碳排放减少Q2时,此时碳排放减少最多,但MNPBMPB,表明存在帕累托改进。在Q1>Q>Q2时,MNPB0)从成本减收益来看,这个负外部性是最优的,此时边际外部性成本等于边际个人净收益。
结论二: 式(18)表明对于社区外的负外部性影响,需要通过社区管理的扩展,即社区共管模式来降低碳排放[20]。具体策略是降低碳排放获得的个人净收益,由享用降低碳排放的边际外部收益来支付,即可以达到降低碳排放负外部性的目的。
四、夏官营村:半干旱农村社区案例
(一)研究区概况
兰州市榆中县夏官营村地处榆中县中部,黄土层深厚,年平均气温657℃,四季分明,属温带半干旱大陆性气候,年均降雨350毫米,共有农村户口16133人。2004年底农民人均纯收入达2080元。夏官营村距兰州中心城区大约46公里,与榆中县城距离大约为13公里。距离市中心较远,这是西部大多数农村的特点基于百度百科夏官营镇基本情况的叙述与笔者调查所得。 。当地植被覆盖率低,植被和农田防护林数量在逐年减少。
(二)农村社区碳排放与社区管理
夏官营镇温室气体账户应该考虑三个关键排放源。农村碳排放的碳源种类主要有3个方面:分别是村镇生态子系统、农业生态子系统、自然生态子系统。村镇生态子系统主要包括:①人口:这里主要指常住人口。②能源:本地区的生活消费能源主要为煤,汽油在交通运输中叙述,同时汽油使用量较小,秸秆在农业系统中叙述,在本地区使用量较大。③交通运输:主要能源为汽油。农业生态子系统:首先农业变化很难预测,这主要是因为农业系统本身的不确定性,即便没有全球变暖、虫害要素禀赋差异,气候同样也很敏感,而这些因素无法准确预测,只能尽力试图预测农业的碳排放,包括:①化肥生产和使用过程中所导致的碳排放,主要是生产过程、运输过程和使用过程中耗费的化石燃料所导致的碳排放,同时化肥的过量使用改变了土壤结构、形成了环境污染,也会产生碳排放。②农药生产和使用过程中所引起的碳排放。③由于农业机械运用而直接或间接耗费的化石燃料所产生的碳排放。④灌溉过程中耗费的化石燃料产生的碳排放。⑤农作物秸秆资源作为农户生活燃料或露天焚烧造成的秸秆碳排放[10]。自然生态子系统主要包括草地植被等自然系统形成的生态过程。在调查过程和分析资料的过程中发现,化肥、农村土地结构所引起的N2O的增温潜能是CO2的200倍左右,氮引起的温室效应问题在未来几十年会更加严重。
针对夏官营村的三个关键碳排放子系统及其碳排放负外部性基本状况,本文对其进行了基本的社区管理分析:合作、激励机制较适用于社区内负外部性和非本社区的负外部性,社区共管下的双向扩展功能适用于其他负外部性产品;对于农业生态子系统来讲,合作、激励机制较适用于社区内负外部性和非本社区的负外部性,双向扩展功能适用于其他负外部性产品;而对于自然生态子系统来说,合作、本土经验较适用于社区内负外部性和非本社区的负外部性,双向扩展功能适用于其他负外部性产品(如表2)。表2夏官营村的碳排放负外部性及其社区管理
子系统
负外部性村镇生态子系统人口、
能源、交通运输农业生态子系统化肥、农药、
农业机械、农药灌溉、秸秆 自然生态子系统
草地植被社区内负外部性强度大、范围小强度小、一定范围强度小、范围小非本社区的负外部性强度小、一定范围强度小、一定范围强度小、一定范围其他负外部性产品强度小、范围大强度小、范围大强度小、范围大社区管理功能合作、激励机制、双向扩展合作、激励机制、双向扩展激励机制、本土经验、双向扩展
五、结论与政策建议
基于以上对农村碳排放负外部性的社区管理模型分析得出以下结论:社区管理主要通过社区自我管理和社区共管两种降低农村碳排放负外部性机制,进而对降低农村碳排放产生影响。
根据结论一可知,社区自我管理可以实现农村碳排放的降低,实现了帕累托有效的碳排放量。但这种管理模式在实际管理中的运用会遇到一定障碍,比如基于碳汇交易的碳排放市场仍未完全建立起来,以及社区居民生产消费各种产品的市场和碳排放市场为完全竞争市场假设的影响,因此社区管理模式的实行是建立在解决这些问题的基础之上的。
根据结论二可知,社区居民降低碳排放的边际外部性成本,可由降低农村碳排放的边际个人净收益来支付。这一研究为构建降低农村碳排放的社区共管模式提供了有效思路。
此模式目前面临的状况是农村居民降低农村碳排放的收益严重不足、降低碳排放的边际外部收益不清晰和难以统筹管理,可以采用的方法是政府划定个人净收益范围等政策来为社区创造降低碳排放的收益机制,这样降低农村碳排放的社区管理模式才是可持续的。在更大程度上,政府应当通过订立契约、立法、补贴、税收政策等手段将一部分公共物品与服务的生产管理让渡给社区组织承担或者支持社区管理模式。
参考文献:
[1]Elinor Ostrom.The Evolution of Institutions for Collective Action[M].Cambridge University Press,1990.
[2]黎熙元.现代社区概论[M].广州:中山大学出版社,1998.
[3]汪波.城市社区管理体制创新探索——行政、统筹、自治之三元复合体制[J].新视野,2010(2):40-43.
[4]安德鲁·马斯克莱尔·迈克尔·D.温斯顿.杰里·R·格林,刘文忻,李绍荣主译.高级微观经济学[M].中国社会科学出版社, 2001:489-524.
[5]蔡防.论农业经营形式的选择—着重于社区合作组织的经济学分析[J].经济研究,1993(1):26-32.
[6]何灵巧.外部性的分类及外部性理论的演化[J].浙江大学学报(人文社会科学版),2002(1):152-158.
[7]陶传进.环境治理:以社区为基础[M].社会科学文献出版社,2001:18-146.
[8]Jeffrey A, McNeely. A Foreword by Tropical Deforestation: The Human Dimension[M].Columbia University Press,1996.
[9]Berkes, Firket.Sacred Ecology: Traditional Ecological Knowledge and Resource Management. Taylor and Francis[M].1999.
[10]陈万灵.社区研究的经济学模型——基于农村社区机制的研究[J].经济研究,2002(9):57-66.
[11]盛洪.论社区资产个人化的途径:“分”与“卖”[J].管理世界,1998(3):42-48.
2.企业碳排放权的形成途径根据企业不同的碳排放权交易目的,目前市场上企业取碳排放权主要有以下三种途径:(1)由政府无偿分配。在现行条件下,对于碳排放权的分配主要采用的就是无偿分配的形式,企业作为政府补助处理。(2)有偿取得。主要涉及以下四种情况:①政府竞拍。②在碳排放权交易市场购买。③发达国家与发展中国家合作,共同开展CDM项目。发达国家向发展中国家提供节能减排所需的资金和先进技术,赚取项目所产生的碳排放权;④企业互相交易,通过JT项目购买对方的经核准的碳排放权。(3)由企业自身创造。
二、碳排放交易目的与会计计量属性的内在联系
1.碳排放权交易的计量属性特点分析历史成本计量属性主要在购置或形成碳排放权时进行初始计量。由于我国目前碳排放权交易市场处于探索阶段,采用历史成本进行核算可以避免公允价值计量模式下会计处理的复杂性和不可靠性。但是,历史成本忽略了企业的资产负债的价值是会波动的,这样有可能会低估或高估资产负债表中各项目的价值。在公允价值计量下,能更加公允的反映财务报表经济利益的流入流出,较好地反映企业无偿取得的碳排放权或是支付对价很少取得的碳排放权的价值。公允价值与历史成本相两者处在不同的时态。在一定程度上,公允价值相比历史成本更能反映可交易的碳排放权的经济实质。但是,我国目前还处在碳减排量交易的初级阶段,未形成一个大规模的交易市场,有时碳排放权的公允价值难以计量,企业很难对其进行有效核算。
2.不同碳排权交易目的的会计计量属性选择不同交易目的的碳排放权会计计量属性选择如表1所示。由于企业的持有目的可能会因为管理层的意图或者企业的发展趋势而发生变化,企业应该应该采用历史成本和公允价值相结合的多重计量属性以减少碳排放权交易估值的不确定性。
三、不同碳排放权形成途径的会计计量方法
1.企业碳排放权的初始计量企业取得政府机构无偿分配的碳排放权,应当按照公平市场价格确认无形资产和递延收益,递延收益在以后期间平均分摊,费用化计入当期损益;如果碳排放权不存在公允市场价格,先暂时以名义金额(1元)计入当期损益,待以后公允价值能够可靠估计时再做调整。企业通过对外购买方式获得的碳排放权初始计入“无形资产”等科目,金额为企业购买时实际支付的价款以及相关税费,在借方确认为无形资产的同时,贷记“银行存款”。
2.碳排放权减值的处理碳排放权的价值会受到市场价格波动、科技进步等因素影响,未来流入企业的经济利益不确定,可收回金额无法准确计量,所以应当在每一个资产负债表日对碳排放权进行减值测试。
毫无疑问,生活垃圾不当处理与温室效应之间的关系已无需赘言。在快速城市化的今天,我国绝大部分城市尤其是大城市已陷入了垃圾围城。据国家环保部门监测发现,我国600多个城市中已超过1/3个陷入了垃圾包围当中,这其中几乎全部的大城市日均垃圾处理能力接近饱和,而垃圾的每日新增量却以几何级增长。然而,另一方面,我国城市生活垃圾处理方式却依然陈旧,远远滞后于发达国家,垃圾处理方式落后使得大量垃圾未经过处理或简单处理后便排放至大气中,造成了持续严重的空气污染和水污染,从生存角度上说这必将威胁到城市居民的生存空间和生存质量,而从国际范围内来看也将影响到我国的国际形象,干扰到我国碳排放政策制定和节能减排标准的划定。从西方工业发达国家在生活垃圾处理方式选择以及在诸如广东韶关这类生态环境良好的中型城市试点来看,无害化、减量化和资源化的先进垃圾处理方式不但在节能减排上具有明显的可行性,而且也符合我国国情。本文就以韶关市花拉寨生活垃圾卫生填埋场生产垃圾处理方式选择及尝试为例探讨了以上方式的可行性。
1 城市生活垃圾处理的碳排放问题介绍
1.1 垃圾资源收集与运输中的碳排放问题
垃圾处理从收集、运输、处理等环节,均存在碳排放问题。生活垃圾在未进入收集系统时就已经产生了不少温室气体,例如厨余垃圾,多是蔬菜及瓜果残渣,一经堆积极易发酵腐烂,从而释放出大量的 CO2,而遍布各个角落的垃圾桶垃圾也会因为长期淤积而发酵释放CO2;在运输过程中,在垃圾收集及运输过程中需要消耗能源产生CO2,如汽油的消耗,也有运输车辆尾气排放大量的CO、CO2和NO2等温室气体。
1.2 垃圾填埋过程中的碳排放问题
同样垃圾在填埋过程中也会出现多种温室气体排放问题。除了垃圾直接埋入坑中会直接释放CH4外,在填埋中常用的渗沥液在渗沥液调节库中也会排放出NO2和CH4。当然,垃圾填埋作业中机械操作过程中因为消耗了化石燃料,从而释放部分的CO2.
1.3 垃圾焚烧中的碳排放问题
在对生活垃圾进行焚烧处理的过程中碳排放问题主要包括一是焚烧过程中会添加化石燃料以起到助燃的作用,如辅助燃油、点火用油等,在燃烧中会产生CO2;二是垃圾本身燃烧自身所产生的CO2、NO2等气体;三是焚烧厂贮坑中垃圾产生渗沥液在厌氧发酵过程中产生CH4。韶关市花拉寨生活垃圾卫生填埋场正在论证垃圾焚烧,如何在焚烧处理尝试新技术。
2 生活垃圾处理中的减排策略
韶关市位于广东省北部,自然环境良好,但生态环境较脆弱,近几年致力于打造国家“优秀旅游城市”。随着韶关近十年来城市化和工业化进程加快,城市人口急剧增加,造成城市生活垃圾产生量也随之攀升。作为立足于打造“优秀旅游城市”的韶关,面临着发展与生态环境保护的矛盾。对此韶关在探索城市生活垃圾处理上做了大量的工作,也取得了一些成绩,其中韶关市花拉寨生活垃圾卫生填埋场作为韶关市唯一大型生活垃圾处理厂,近几年在尝试垃圾处理方式上做了一些有益的实践,形成了垃圾从收集、运输、卫生填埋的全过程碳减排的垃圾处理新思路。
2.1 源头上的垃圾资源回收
从资源角度说,垃圾是放错地方的资源。据此认识,加大垃圾资源回收利用力度和水平是从根本上减少垃圾碳排放量的最具经济价值和社会价值的措施。因此,通过对垃圾中的废品进行回收再利用,可以减少产品的原材料消耗,从而减少化石燃料消耗和电力消耗。主要减排途径在于提高各种废品的回收率。韶关市花拉寨生活垃圾卫生填埋场在垃圾分类处理上做了大量前期工作,目的就是促进垃圾变资源,方便回收再利用。
2.2 垃圾收集和运输
前面提到过,垃圾在收运过程也产生大量的温室气体,因此从收集运输角度进行减排可从以下几个角度着手:一是优化垃圾收运处理系统,减少垃圾运输距离。如建设垃圾中转站,实现大型垃圾转运车替代小型垃圾收运车,减少垃圾收运的总里程。韶关在市区垃圾量大的地区设置了垃圾中转站,专门配置大型垃圾运输车来取代数量众多的小型垃圾运转车,未来韶关还将考虑将运输车燃料天然气化,以较少化石燃料排放;二是采用节能指标高的垃圾车或采用清洁燃料(如生物质燃料、氢燃料等),在同等运输距离条件下也可以减少燃料燃烧产生的碳排放。
2.3 垃圾卫生填埋的减排处理
生活垃圾卫生填埋是垃圾终端处理方法。在我国卫生填埋占有处理方式的70%以上,属于应用最普遍的处理方法。
在卫生填埋过程中,有机物在厌氧微生物的作用下生化分解产生含有大量CH4和CO2的垃圾填埋气。同时含有少量氨、氧化碳、氮氧、硫化氢、氮等成分。
垃圾填埋过程中的碳排放主要集中在垃圾本身降解释放CH4以及渗沥液排放的CH4和N20。因此减排途径可从以下几个方面着手:一是加强垃圾填埋气体收集与处理系统,防止无序排放。包括火炬燃烧、发电、供热、制作替代燃料等;二是加强填埋场调节池的密封和气体收集处理;三是加强填埋场节水、节电、节能管理,减少能源消耗。
2.4 垃圾焚烧的减排处理
目前许多城市选择对垃圾进行直接焚烧来处理垃圾,实际上这种方式也是最为有效的垃圾处理方式之一,但焚烧方式不当往往也造成了大量温室气体的排放,对此从焚烧设施利用和焚烧资源再利用角度来说,减排的途径可以是一通过垃圾焚烧发电产生绿色电力,发展循环经济;二是加强提高焚烧厂热能利用水平和热能效率,即提高垃圾燃烧率;三是在焚烧炉渣中回收金属。据ISWA 2009估计,垃圾焚烧的碳减排潜力为0.2~0.7吨CO2当量/吨垃圾,可见数量相当可观。
2.4 制定和实施垃圾处理技术的新路径
前面提到过,垃圾处理无害化、减排化和资源化是垃圾处理的未来发展方向,也是实施垃圾处理技术革新的新路径。如针对比重最大的垃圾焚烧技术,在垃圾焚烧中应用干馏技术可以达到无污染、无排放的效果。干馏技术主要分为高温干馏技术、低温干馏技术和垃圾干馏-煤气化技术,从国外实践来说是能够解决生活垃圾处理碳排放问题的技术。高温干馏是在无氧状态下将垃圾干馏,分解成为可燃气体后再进行燃烧,加热方式为外加热,可以实现无氧干馏,但是有可能会产生废气排放;低温干馏技术是将生活垃圾置于无排放无焚烧,无污染的低温干馏碳化炉中进行处理,杜绝了废气排放和其他污染。技术革新是释放垃圾处理减排潜力最佳捷径。
参考文献:
中图分类号:F327 文献标识码:A 文章编号:0439-8114(2014)19-4757-05
DOI:10.14088/ki.issn0439-8114.2014.19.065
Relationship between Rural Economic Development and Agricultural Carbon Emission Based on in Yanshan-Taihang Mountain Areas Environmental Kuznets Curve Model
REN Hui-bin, LI Jian-min
(Business College, Agricultural University of Hebei, Baoding 071000, Hebei, China)
Abstract: Taking calculated 8 counties in Baoding city as an example. The agricultural carbon emission in this area from 1997 to 2012. The relationship between environment and rural economy development was analyzed by environmental kuznets curve model. The results showed that the agricultural carbon emission was increasing. The rate of agricultural carbon emission growth was slowed down. The relationship between carbon emission and agricultural economy development presented an “U”-shaped curve. The trend was influenced by many factors. Advices were proposed to reduce application rate of fertilizers, pesticides and plastic film, to use new advance technology of agriculture and to develope new agricultural economy.
Key words: environmental kuznets curve(EKC); Yanshan-taihang mountain areas; agricultural carbon emission
燕山-太行山片区保定区域(下文简称保定西部地区)位于保定市西部,地处京津等发达城市周边,面积为130万hm2,2012年末总人口为323.2万人,乡村人口为283.5万人;区域共包含8县,分别为涞水、阜平、涞源、望都、易县、唐县、曲阳、顺平。该区域属于重要生态功能区,担负着京津冀等地区重要城市的绿色生态安全屏障、水源涵养和供给、土壤保持等多项生态任务。该地区环境质量要求高、生态任务重。随着国家对农业的支持力度不断加大,该区域农村经济迅猛发展,农民人均纯收入从1997年的1 779.78元增长到2012年的4 068.62元,年均增长速度达到5.67%,成为推动保定地区经济发展的重要动力。然而在该区域农村经济飞速增长的同时,农业生产过程中化肥、农药、塑膜等污染性农用物资的大量使用给环境带来的压力日益明显,其中,1997~2012年,该区域化肥、塑膜使用量增幅分别达到27.05%和24.75%,影响到区域重要生态功能的持续发挥及农业的可持续发展。
面对农村经济发展与农村生态保护的双重压力,处理好二者的关系是该地区的当务之急。由于碳排放可以衡量大多数农用物资对环境的压力,因此本研究从农业碳排放的角度出发,对保定西部地区1997~2012年农业生产资料的碳排放进行测算,并对该区域农业碳排放与农村经济发展的关系进行环境库兹涅茨曲线(Environmental kuznets curve, EKC)模拟验证,以求找出两者的内在联系,这对保定西部地区协调农村经济发展和生态保护的关系、制定相关环保政策具有重要指导意义。
1 环境库兹涅茨曲线(EKC)简介
生态环境与经济发展之间的关系一直以来都是各国学者研究的热点。20世纪90年代初期,美国学者在对66个国家的14种环境污染物在12年间的变化规律进行深入研究后,发现环境质量状况与经济发展水平之间存在着倒“U”型曲线关系[1],即一个国家或地区在经济发展初期,由于该国或地区的生产技术水平比较落后,导致环境污染程度随着经济发展而不断地升高,但是当该国或地区经济发展到一定程度,伴随着科学技术和人民生活水平的提高,该国或地区的环境污染程度会逐渐降低[2],这和美国经济学家库兹涅茨1955年提出的库兹涅茨曲线(Kuznets curve)非常相似,因此形象的称之为环境库兹涅茨曲线。
EKC模型提出后,国内学者纷纷运用此方法对经济发展与环境质量的关系进行验证。张晖等[3]、牟新利等[4]、王义加[5]从农村面源污染角度进行分析,结果表明农村面源污染与经济发展水平呈现倒“U”型曲线关系。林伯强等[6]采用EKC模拟和二氧化碳实际预测法两种方式对中国二氧化碳排放量的拐点进行研究,并对拐点影响因素进行分析。李国志等[7]、许广月等[8]对中国东、中、西部地区二氧化碳排放量的变化进行分析,发现东部、中部地区二氧化碳排放量与经济增长呈倒“U”型曲线关系。
2 燕山-太行山片区(保定区域)农业碳排放现状分析
2.1 碳排放计算方法
碳排量计算所用数据来源于《河北农村统计年鉴(1998-2012)》,包括保定区域8县的化肥折纯量、农药使用量、塑料薄膜使用量、机耕面积、有效灌溉面积和农业机械总动力6项,其中2012年数据系根据《保定经济统计年鉴(2013)》统计数据补充而来。根据相关学者的研究[1,9,10],农业生产要素的碳排量可使用以下公式进行计算:
Et=Em+Ef+Ep+Ec+Ei (1)
式(1)中,Et表示农业生产总碳排放量,Em、Ef、Ep、Ec、Ei分别表示农用机械、化肥、农药、塑料薄膜以及农业灌溉所产生的碳排放量。其中,农业机械的碳排放计算公式为:
Em=(Am×B)+(Wm×C) (2)
式(2)中,Am为机械耕地面积,Wm为农业机械总动力,B、C为转化系数,分别为16.47 kg/hm2、0.18 kg/kW[1]。其余农业生产要素碳排放计算公式分别为:
Ef=Tv×δf;Ep=Tp×δp;Ec=Tc×δc;Ei=Ti×δi
上式中,Tf、Tp、Tc、Ti分别为化肥折纯使用量、农药使用量、塑料薄膜使用量、有效灌溉面积,δf、δp、δc、δi分别为各农业生产要素碳排放转化系数,取值分别为0.896 kg/kg、4.934 kg/kg、5.180 kg/kg、266.480 kg/hm2[9,11]。
2.2 总体区域农业碳排放现状分析
2.2.1 区域碳排放总量及人均排放量趋势分析 依据上述方法和《河北农村统计年鉴》相关数据,对燕山太行片区保定区域1997~2012年农业生产中的碳排放量进行测算。从农业碳排放总量变化趋势(图1)可以看出,该地区农业生产要素碳排放整体呈现上升趋势,从1997~2012年该区域农业碳排放总量从96 228.06 t增长到118 570.20 t,增加了22 342.14 t,增长幅度为23.22%,平均增长速度为1.42%。从变化趋势上还可以看出,该地区农业碳排量自1997~2000年增长速度较慢且比较稳定。2001~2003年碳排放量出现大幅波动,原因为小麦、玉米等高化肥需求作物的最低收购价格涨幅较小,农民受其影响改种其他作物,小麦、玉米种植面积波动较大,导致化肥、农药等使用量出现较大波动。2004~2007年保定西部地区农业碳排放量快速上升,主要是因为2003年底和2004年初小麦、玉米等收购价格大幅上涨,种植面积扩大,化肥、农药等使用量增多所致,其中2007年化肥使用量(折纯量)比2005年增加了7 862 t,增长幅度达到8.54%。2008~2012年该地区农业碳排放总体为增长态势,但速度有所放缓,原因是随着该地区农村生活水平提高,农民意识到环境保护的重要性,同时该区域农业生产技术也在提高,化肥、农药的使用效率有所提升。但是,由于该区域农业生产对化肥等物资依赖程度较高,且利用率较低,该地区农业碳排放总量仍有可能出现快速增长的趋势。从人均碳排放量的变化趋势(图1)可以看出,该区域人均碳排放量从1997年的36.342 6 kg上升到2012年的41.826 0 kg,增长幅度为15.09%,人均碳排放量的变化趋势与碳排放总量的变化情况基本一致,自1997~2000年增长速度较慢且比较稳定,2001~2003年人均碳排放量出现一定波动,2004~2007年人均碳排放量快速增长,2008~2012年人均碳排放量总体仍呈上升趋势,但增长速度开始放缓。
2.2.2 各途径碳排量特征分析 从各排放途径碳排放量计算结果(表1)可知,1997~2012年化肥使用产生的碳排放量所占比例平均为80.98%,排名第一,化肥的过量使用是该区域碳排放不断增加的主要原因;农药使用产生的碳排放量所占比例平均为14.24%,是该区域农业所占比例碳排放的第二大途径;农用塑料薄膜产生的碳排放量所占比例平均为2.39%,排名第三;农业机械的碳排放量所占比例平均为2.37%,排名第四;农田灌溉碳排放量所占比例最小,平均仅为0.02%。
从各个途径的碳排放量变化趋势(表1)上看,1997~2012年保定西部地区农业生产过程中,化肥、农业机械使用所产生的碳排放量均呈现稳定、快速的增长趋势;塑料薄膜使用产生的碳排放量呈现一定程度的波动,但总体呈现增长趋势,原因是塑膜使用量的外界影响因素较多;农药使用和农田灌溉所产生的碳排放量未出现明显增长,但因每年病虫害程度和降雨量不同,使用量不稳定,碳排放量呈波动式变化。从1997~2012年,耕作机械碳排量的增长幅度为32.22%,平均增长速度最快,为1.88%;化肥的碳排量增长幅度为27.05%,平均增长速度排名第二,为1.61%;塑料薄膜碳排量增长幅度为24.75%,平均增长速度排名第三,为1.49%;农药产生的碳排放量每年在15 000 t左右波动;农田灌溉碳排放量则在25 t左右波动。
2.3 区域内各县农业碳排放现状分析
从表2中可知,各县2012年农业碳排放总量排序结果前4名为易县、唐县、顺平、望都。这些地区都是以种植业为主的农业大县,由于农业生产规模化程度较低,再加上种植户自身条件的限制,“高投入、高消耗”的粗放型农业发展模式在这些地区普遍存在。其中,易县由于现代农业起步晚,生态保护、耕地保护等多方面存在不足,化肥、农药等物资利用效率相对较低,碳排放量较高。就各排放途径碳排量比较而言,化肥使用产生的碳排放量排名前四的县为唐县、易县、望都、顺平;农用机械使用产生的碳排放量排名前四的县为曲阳、易县、唐县、望都;塑料薄膜使用产生的碳排放量排名前四的县为顺平、涞水、易县、望都;农田灌溉产生的碳排放量排名前四的县为易县、望都、曲阳、顺平;农药使用产生的碳排放量排名前四的为易县、曲阳、顺平、唐县;人均碳排放量较高的四县为望都、顺平、易县、唐县。
3 研究区域农业碳排放与经济发展的EKC验证
3.1 变量选择与数据来源
本研究采用环境库兹涅茨曲线模型(EKC)对保定西部地区农村经济发展与农业碳排放的内在联系进行验证。通常EKC模型所用数据有时序、截面、平行3类,在实证过程中采用时序数据进行验证。选取该区域农村人均碳排放量作为被解释变量,由于农民碳排放偏好主要由农民个体收入决定,且选取该区域农村人均纯收入指标作为解释变量比选取农村总收入更能反映农村经济发展状况,因此本研究选取农村人均纯收入作为解释变量。1997~2012年该区域农村人均碳排放量、农村人均纯收入指标具体数据见表3,其中人均纯收入来源于《保定经济统计年鉴》1998~2013年数据,人均碳排放量系运用上文数据计算所得。
3.2 EKC模型的选取
本研究选取国际常用的简约式二次环境库兹涅茨曲线(EKC)模型对保定西部地区农村经济发展水平和农业碳排放之间的关系进行验证,模型具体形式如下:
Y=β0+β1X+β2X2+ε (3)
选取该区域农村人均碳排放量Y作为农业碳排放水平指标,并将其作为被解释变量;选取该区域人均纯收入X作为农村经济发展水平指标,将其作为解释变量;β0,β1,β2分别为EKC模型的待定系数,ε为模型的随机干扰项。模型待定系数β0,β1,β2取值不同,农业碳排放量指标与农村经济发展水平指标间的关系也不同:
1)当β20时,农业碳排放量指标Y和农村经济发展水平指标X形成的二次曲线开口向下,表现为倒“U”型,即二者为环境库兹涅茨(EKC)曲线关系。
2)当β2>0且β1
3)当β2=0,β1≠0时,农业碳排放量指标Y和农村经济发展水平指标X表现为线性关系。
4)当β2≠0时,根据二次曲线的性质,可知曲线拐点为■。
3.3 计量模型运算结果
运用Eviews5.0软件,使用表3中的数据对环境库兹涅茨曲线(EKC)模型的待定系数进行估计,运算结果如表4所示。
通过表4中的估计结果,可知决定系数R2=0.894 516,自变量X对因变量Y具有较高的解释意义,F值=64.600 87(Prob=0.000)方程整体回归显著,DW统计量为1.373 593,通过检验,拟合方程为:
Y=22.841 8+0.009 669X+(-1.23×10-6)X2 (4)
回归方程的二次项的系数为-1.23×10-6,一次项系数0.009 669大于0,这表明农村人均碳排放量和农村人均纯收入之间存在着倒“U”型的EKC曲线关系。根据二次函数的性质,可知该曲线方程的拐点为3 930.49,其含义为:当保定西部农村人均纯收入达到3 930.49元时,农村人均碳排放量将会随着人均纯收入的增加而逐渐降低。
从图2可看出,保定西部地区2012年农村人均纯收入为4 068.62元,已超过3 930.49元。该地区整体农业碳排放即将进入下降阶段,其原因一方面是因为随着农业生产技术水平的提高,农民对化肥、农药、塑料薄膜等农业生产资料的利用效率越来越高,另一方面是由于农民生活水平的提高,对生活环境质量的要求也逐渐提高。但是,EKC曲线仅仅是对农业碳排放和农村经济发展水平两者以前经验数据的描述,很多不确定性因素的变动都可能会对该趋势产生影响,如农业政策、自然因素等,较长时期内该地区仍面临着农村经济快速发展和生态治理的双重压力。此外,从区域内部各县2012年实际农村人均收入情况来看,阜平(3 262元)、唐县(3 698元)、涞源(3 079元)、曲阳(3 308元)、顺平(3 283元)这5个县的农村人均纯收入还低于拐点值3 930.49元,这些县的人均碳排放量还将会升高。
4 燕山-太行山片区(保定区域)农业减排策略
研究结果表明,1997~2012年保定西部地区农业碳排放量为上涨趋势,但近些年增长速度开始降低,且EKC模型验证结果显示农村人均纯收入与人均碳排放量两者呈倒“U”型曲线关系,2012年该区域农村人均纯收入为4 068.62元,已超过EKC模型拐点数值3 930.49元,农业碳排放量即将进入下降阶段。然而,多种不确定性因素都会对该趋势产生较强影响,很长时期内该地区仍面临着农村经济快速发展和生态环境保护的双重压力,对此提出以下对策。
4.1 科学降低化肥、农药、塑膜使用量
从各碳排放途径的排放量看,2012年该地区化肥、农药、塑料薄膜的碳排量之和为115 568.83 t,所占比例高达97.46%,远远超过其他途径产生的碳排放。其中化肥碳排放量最高,所占比例为82.35%;农药碳排放量位居第二,所占比例为12.89%,必须采取措施降低这些物资的使用强度。但是,降低这些农用物资的使用量,并不是不使用这些物资,而是科学地减少不必要的浪费,合理、高效地利用这些物资。保定西部地区应大力推广测土配方施肥技术、化肥深施技术,提高化肥使用效率,提倡农民使用有机肥、生物肥、农家肥等代替传统化肥,如秸秆还田、使用沼渣沼液代替传统化肥等方式;通过农业技术讲座、科普宣传的方式让农民科学掌握农药使用剂量,提高农药的使用效率,引导农民使用生物农药或其他低毒农药,并向农民推广生态防治法,如:利用害虫天敌、杀虫性植物、微生物等方式进行农作物除虫,减少农药用量;推广新型揭膜技术,降低塑膜的残留率,采取措施鼓励农民使用生物降解、光降解等新型农膜代替传统农膜,不仅节约农民揭膜成本,还能降低环境污染,减少碳排放。同时,对于化肥、农药、农膜用量较高的县域,如易县、顺平、唐县等地,应加强管理,并结合具体情况采取恰当方式,减少碳排放。
4.2 采用先进农业技术,降低机械碳排放
保定西部地区农业机械的碳排放量从1997年的2 250.13 t增长到2012年的2 975.48 t,增长幅度为32.22%,年平均增长速度达到1.88%,是所有碳排放途径中增长速度最快的。为减少该地区农用机械的碳排放,应在耕作、播种、灌溉等生产环节采用先进的技术,如:保护性耕作技术、精量化播种技术、节水灌溉技术等,降低能耗,减少碳排放。其中,应用保护性耕作方式比普通的农业耕作方式节省15%~20%的机械动力,还可减少20%~35%的石化燃料使用量[12]。其次,淘汰落后的高污染、高能耗农业机械设备,鼓励农机生产企业与科研院所合作,根据当地自然条件,研发适合当地农业生产的设备。
4.3 发展新型农业经济,降低农业碳排放
通过实证分析,表明保定西部农业碳排放和农村经济发展水平之间存在着明显的倒“U”型EKC曲线关系。说明经济发展会对农业生产中的碳排放产生显著影响,管理部门应当依托当地优势资源,提高农民的收入,增强其减排热情。充分利用该地区紧邻京津冀地区发达城市的区位优势,依托京津冀市场对高端有机农产品的巨大需求,大力发展有机农业。同时,还应注意制定相关的农业减排法规,防止农户在生产中为了追求短期利益而对环境造成不可逆转的破坏。
参考文献
[1] 陈 勇,李首成,税 伟,等.基于EKC模型的西南地区农业生态系统碳足迹研究[J].农业技术经济,2013(2):120-128.
[2] 张锦文.宁夏环境质量与经济增长的环境库兹涅茨关系验证及成因分析[J].干旱区资源与环境,2007,21(10):39-42.
[3] 张 晖,胡 浩.农业面源污染的环境库兹涅茨曲线验证[J].中国农村经济,2009(4):48-53.
[4] 牟新利,祁俊生,黄 宇,等.重庆农业面源污染的环境库兹涅茨曲线评价[J].贵州农业科学,2011,39(1):228-230.
[5] 王义加.基于EKC假设的浙江省农业经济增长与环境污染关系分析[J].中国农村水电水利,2011(6):36-43.
[6] 林伯强,蒋竺均.中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J].管理世界,2009(4):27-36.
[7] 李国志,李宗植.二氧化碳排放与经济增长关系的EKC检验――对我国中、东、西部地区的一项比较[J].产经评论,2011(6):139-151.
[8] 许广月,宋德勇.中国碳排放环境库兹涅茨曲线的实证研究[J].中国工业经济,2010(5):37-47.
[9] 赵培华.基于灰色关联分析的河南省低碳农业影响因素研究[J].河南农业科学,2013,42(8):167-170.
我国处于工业化的阶段,想要减少碳的排放行之有效的方法就是提高其能源的利用效率,并且我国提高能源效率的空间较大。我国主要是建筑物以及交通运输和工业这三者碳的排放量较大,尤其是工业所排放的碳量。我国属于发展中的国家,拥有较为先进技术的同时也拥有落后的技术。在建筑方面需要效仿欧洲国家,建筑零排放的建筑物,从而减少碳的排放量。同时不断提升工业的能源,将落后的产能迅速的淘汰,同时,将排放量降到最低。在交通方面可以通过修建高速铁路,尽量减少飞机的班次,可以在提供便捷服务的同时减少碳的排放量。
1.2调整我国产业结构
发展低碳经济的有效途径就是调整产业结构,并发展低碳的产业,将其高碳像低碳转变,使其成为升级我国产业结构的主要方向。应该将重点放在知识密集以及技术密集的产业,例如信息以及现代服务的产业,尤其是现代服务业,我们必须要减少制造环节所产生的能耗和物耗以及污染。优化产业的结构,提高高碳产业市场准入的标准,并积极的发展低碳产业,这对于我国未来经济的发展具有十分重要的意义。
1.3大力推广低碳技术
发展低碳经济需要将低碳技术作为其发展的支撑,从而才能真正意义上实现低碳经济。目前,我国还需要进行不断的自主创新并且积极的研究开发以及推广并应用捕获以及封存碳的技术,以及能源的再生利用技术,恢复生态以及替代资源化技术等,使其先进技术中节能的优势充分的发挥出来,并且促进清洁的生产与循环利用,进一步使能源的附加值以及使用效率提高,在保障其能源供应处于安全的同时对温室气体的排放进行控制。特别是,对于太阳能以及风能和生物能源等已经成熟了的低碳技术要大力的推行,并倡导将其应用到节能型建筑物以及环保型的农业这些领域中去。
1.4建立完善的碳交易市场
温室气体排放权的交易体系可以简称为碳交易,碳交易运行的机制有两种,分别是配额以及项目的交易。也就是通过项目合作的这种形式,买方需要向卖方提供资金或者是技术方面的支持,从而使温室气体的减排额度减少。碳交易市场的建立属于系统工程,我国应该尽快建立一套发展全国统一的与其碳市场相关的法律规范体系,使其目前的排放交易所发挥其应有的作用,提高省市对于碳交易的管理以及认知的能力,并且还需要积极的构建以及供给碳交易信息的平台。
1.5加强国际间交流与合作
想要发展低碳经济必须要加强国家和国家的合作。在发展低碳经济以及自然生态保护大气环境等较多领域开展国际性的环保合作项目。同时建立新的环境保护合作机制,为大力推进国际组织以及政府机构参与到环境保护等方面的合作提供法律依据。积极建设环保产业,并且在产业的规划上面将新型的能源以及环保材料与设备技术的研发作为发展的重点,吸引各个国家环保企业的注入,从而为环保产业的发展提供资金以及技术和人才方面的支持。
2保护大气环境的措施
大气环境的破环,是导致全球变暖以及酸雨形成的主要原因,因此,在发展低碳经济的同时要注意大气环境方面的保护。
2.1首先在工业布局方面要合理
大气状况对于人们特别重要,因此应该均匀的分布工业生产,不能将工业生产集中到局部或者是少数的大城市中。这样,单位面积所排放的污染物较少,有利于自然的净化。特别是,在选择厂址方面也应该选择符合其性质的地方,例如,应该将产生有害气体的厂址选在居民区下风向。
2.2改进燃料结构及方式
能源结构不合理,使其能源利用率较差,从而导致我国大气污染更加严重。因此,必须要改善我国能源的结构,并且加大石油以及天然气的比重,不断发展新的能源,并且还可以采取一些具体的措施,例如区域供热,使煤气化得以实现。
2.3提升人们环境保护的意识
采取植树造林的方法,绿化我们生活的环境,由于绿色的植物可以将大气中氧气更新,从而使空气的成分得到调节,达到净化大气的目的。因此,大面积的进行植树造林可以对温室效应进行调节,增加生物链中的含碳量,使其大量的碳无法进行转换,进而不能进入大气中去。(好像是不太通)同时还需要根据气候变化培育出适合该气候的新农作物,从而减少温室气体对环境造成的影响。
中图分类号:X22 文献标识码:A 文章编号:1007-3973(2011)004-118-02
近年来,由于温室气体的大量排放,全球平均温度呈逐年升高的趋势,严重影响到了人类的生存发展。为了应对全球气候变化的重大挑战,上世纪末,联合国环境与发展大会先后通过《联合国气候变化框架公约》和《京都议定书》,2009年更是召开了有史以来规模最大的哥本哈根世界气候大会。可见,碳排放量的控制已经成为世界各国的共识,并作为经济建设中的重要指标加以监测、研究。
由于低碳发展模式不仅符合时代要求,而且势必会对人类社会产生深远影响,国内外众多学者、机构纷纷开展碳足迹和碳结构方面的研究,在宏观和微观方面取得了很多有意义的成果。宏观方面,碳足迹研究主要集中在国家经济建设中的碳排放政策与措施等大的尺度上,但不够细化;微观方面,则主要关注于个人和家庭的碳足迹研究,但还没有对高校碳足迹和碳结构进行研究的。然而,国内高校人数多,规模大,并有数目庞大的实验室和办公机构,是碳排放的“大户”。因此,高校碳足迹和碳结构研究具有重要的现实意义。
本文首先总结了碳足迹计算的相关方法,为高校碳足迹研究提供了有效的途径。其次,针对高等院校的特点,分析并对比了各高校的碳足迹与碳结构。最后,初步提出了高校碳足迹研究的方案和意义,从而为提倡大学生低碳生活方式和绿色校园建设提供了有益的建议和帮助。
1 碳足迹计算的相关方法和常用实例
目前国内外用得较多的碳足迹计算方法有两种。第一种,利用生命周期评估(LCA)法(这种方法更准确也更具体):第二种是通过所使用的能源矿物燃料排放量计算(这种方法较一股)。用汽车的碳足迹作为一个例子:第一种方法会估计几乎所有的碳排放量,涉及汽车的制造(包括制造汽车所有的金属、塑料、玻璃和其它材料),使用和最后处理等各个环节。第二种方法则只计算制造、使用和处理汽车时所用化石燃料的碳排放量。
其实,碳足迹的计算是个相当复杂的过程,根据情况的不同会有所区别。理论上讲,碳足迹的计算应包括一切用于电力、建设我们的家园、运输(包括旅行时乘坐汽车、飞机、铁路和其它公共交通工具)的能源,以及我们所使用的所有消耗品。
高校碳足迹的计算最终可以归结于个人碳足迹的计算。为了研究的方便,忽视个体的特殊性,借助已有的碳足迹计算常用实例,对研究个体(每个大学生)采用抽样调查的方式计算其碳足迹,求出平均值,最后估算出高校总的碳足迹。
通过相关资料的搜集,本文整理出了个人碳足迹计算中的一些常用实例,主要包括以下几个方面:
由于高校人员组成的特殊性,其个人碳足迹的计算也有别于其他情况。因此可根据具体情况,采用上述部分常用实例估算出高校中个人的碳足迹。
2 高校里的碳结构分析
大学作为一个特殊的社会环境,它的碳排放结构相对于其他的社会环境有它独特的特点,但是其大体结构还是相同的。一方面是碳的排放,另一方面则是碳的吸收。
2.1碳的排放
大学里的碳排放最多的就是通过用电和用水,在这里我们考虑主要的因素而忽略一些比较次要的因素。家庭的“碳排放”主要由四部分构成:用电量、用水量、用气量、耗油量。大学校园里面教师开车比较多,我们将这部分的碳排放归于家庭的排放,大学校园的主体还是学生,学生主要以自行车和乘校车为主。
2.1.1用电方面
用电量主要、由教学楼用电,办公用电和寝室生活用电几部分组成。教学楼用电,一个教室会有很多学生共同使用,将总的碳排放平均到每个学生还是很少的,这点是学校用电的特点。办公用电,每个办公室的使用人员比教室的使用人员少得多,这样平均下来的碳排放相对较高。寝室生活用电的碳排放平均下来属于这三者的中等水平。
2.1.2用水方面
用水主要来源于寝室生活用水,在学生中提倡节约用水,可以减少碳排放量。
2.1.3用气方面
由于学生宿舍普遍没有安装热水器等用气设备,因此这部分碳排放主要来源于教师宿舍和校内食堂、旅社等用气量大户。
2.1.4耗油量方面
如今,随着经济水平的提高,高校里的私家车数量日益增多,成为碳排放的又一大来源。虽然有些家庭殷实的学生也拥有私家车,但数量极少,故忽略不计。另外,伴随着高校的扩招和发展,校车数量不断增加,其耗油量成为高校碳排放的重要组成部分。
2.1.5用纸方面
纸张的使用在碳排放量中占有很大的比重。由于高等院校的特殊性,其用纸量特别巨大。主要包括学生、教师所用的教材、打印资料、生活用纸等方面。
2.2碳的吸收
高校里的碳结构主要涉及碳排放,碳吸收方面很少,主要是通过绿色植物的光合作用来吸收二氧化碳。众所周知,绿色植物的光合作用和呼吸作用相互影响可以净化空气,使大气中的O2和CO2含量保持相对稳定。一个大学校园的树木每天光合作用吸收的CO2除了抵消掉自身的呼吸作用产生的CO2,还可以吸收我们所产生的CO2。
另外,水可以溶解二氧化碳,虽然溶解度较低,但像湖泊、海洋等大型水域则能有效地吸收二氧化碳。比如武汉大学紧邻东湖,东湖水对校园的碳吸收有一定的贡献。
3 高校里的碳结构比较
高校中的碳结构分析应包括碳排放和碳吸收两方面,而各种高校按类别应该分为偏文类大学,理工类大学和综合性大学,因此高校中的碳结构比较应按如下方面进行。
3.1碳排放方面
碳排放主要包含用电引起的碳排放,教师学生以及游客甚至是教职工所养宠物等的呼吸排放,工程建设方面的碳排放,能源结构不同所引发的碳排放不同等。
对于文科类学校(以武汉地区的中南财经政法大学为例)由于没有专业需求故碳排放仅仅是一些日常生活的排放,并且一些偏文的财经类大学人数相对较少,故而生活用电,师生呼吸排放,能源利用等相对其他类型的大学来说较少,
对于理工类大学(如华中科技大学)除生活用电外,还需大量实验用电,并且实验用电会占较大一部分,同时由于理工类大学人数比较多,故生活用电实验用电以及能源结构不同所造成的碳排放会比财经类大学多出很大一部分,
对于综合类大学(如武汉大学)其碳排放会更加复杂,其既有正常的生活用电也包含理工学生的实验用电,而且一般综合性大学都是各地著名的景点,因此每年特定的时期(武大的樱花节)会有较多的游客前来参观游览,故游客也会引起很多的碳排放,而且武大大多是老建筑因而会有许多建筑需要维修翻新,一些建筑材料会含有碳,故而会对碳排放产生一定的影响,综合看来,综合类院校的碳结构会比其他学校复杂。
3.2碳吸收方面
碳吸收主要是植物的光合作用引起的,因而各高校的碳吸收就看各高校植物的多少,一般来讲综合类的大学其植物会远远多于财经类大学理工类大学,因而综合类大学的碳吸收作用会多于其他类型学校碳吸收。
因此,高校里的碳结构比较应该从细而论,从各方面分析,这样才会有更加全面的结果。
4 结论
通过对高校碳结构的分析和比较,减少高校碳足迹的主要途径有以下两个方面:减少碳排放量和增加碳吸收量。
一、前言
西部大开发实施以来,西北五省经济进入快速增长阶段,但是给环境带来了负面效应,如CO2排放逐年增加。在全球变暖引起整个世界关注前提下,如何控制和消减这种趋势,显得尤为必要和迫切。
近年来,国内外学者对中国CO2排放的影响因素进行了很多研究,其中国外代表性研究成果有Wang(2005)等指出能源强度是减少CO2排放的最重要因素 [1]。Zhang(2000)等指出政府通过政策和技术手段大大降低了能源强度[2]。国内代表性研究成果有:徐国泉(2006)等指出经济发展拉动了中国人均碳排放量增长,能源效率和能源结构具有抑制作用,但是难以抵消经济发展的拉动作用,导致中国碳排放量增长[3]。宋德勇(2009)等指出我国4个阶段不同经济增长方式的差异是碳排放波动的重要原因,切实转变增长方式是减少碳排放的根本途径[4]。
目前还没有对中国西北五省碳排放因素进行定量分解并相互比较的研究。本文基于指数分解法中的对数平均方法,以西北五省2000 —2010年的数据资料为基础,分析西北五省碳排放量的影响因素,以期探求出减少西北五省碳排放有针对性的对策建议。
二、研究方法
(一)西北五省碳排放量的测算和基于LMDI模型的碳排放公式分解
本文利用各种化石能源的消费量,粗略地估算化石能源(煤炭、石油、天然气)使用所产生的碳排放量。
借助B.W.Ang(2005)的LMDI方法,将西北五省碳排放分解为能源结构、能源强度、碳排放系数、人均产出、人口数量五个因素。
(二)数据来源
本文中的数据都来源于《中国能源统计年鉴》(2000—2011年)和《中国统计年鉴》(2000—2011年)。
三、实证分析
(一)西北五省的碳排放量概况
2000—2010年10年间,西北五省的碳排放量总共增加了15025.64万吨,增长率为206.62%。其中,碳排放量增速最快的是宁夏,其次为陕西,第三位是新疆,第四位是青海,最后一位是甘肃。
(二)各分解因素对西北五省碳排放量影响
2000—2010年,能源结构因素促使西北五省碳排放量增加。具体来说,能源结构因素导致陕西、甘肃、新疆这三个地区碳排放量上升,其贡献值分别为464.34、61.40、4.85;但却导致青海、宁夏碳排放量下降,其贡献值分别为-50.49、-185.59。
能源强度因素是西北五省各地区碳排放下降的主导因素。能源强度因素对陕西、甘肃、青海、宁夏、新疆碳排放的贡献值分别-2729.25、-5551.57、-1510.17、-12684.89、-4267.18,其中第二产业和第三产业的调整与变化是导致西北五省碳排放量下降的关键因素。由于西北五省产业结构不完善,仍然以工业为主,服务业欠发达,因此西北五省的能源强度与全国水平相比要高。调整产业结构也就成为西北五省节能减排的核心政策。
经济发展因素导致西北五省碳排放量增加,其对陕西、甘肃、青海、宁夏、新疆碳排放的贡献值分别为11539.70、6880.87、2030.08、6516.44、7670.99。因此,如何发展经济又对环境产生较小影响成为西北五省面临的重要课题。
人口数量变化因素也导致西北五省碳排量增加,但相对经济发展因素来说对西北五省产生的影响较小,其对陕西、甘肃、青海、宁夏、新疆碳排放的贡献值分别为324.77、38.48、123.70、423.37、695.01。
四、结论和政策建议
(一)结论
2000年至2010年西北五省各地区的碳排放量总体上呈现上升的趋势,而且自2002年实施西部大开发计划以来,碳排放量增速变快。仅在2010年,碳排放量从大到小的顺序依次是陕西、新疆、甘肃、宁夏、青海。
按照各因素对碳排放量贡献程度的不同,这里将陕西、甘肃、新疆归为一类,将青海和宁夏归为一类。
对于陕西、甘肃、新疆,各因素的贡献值中正指标有能源结构、经济发展、人口数量变化因素,负指标只有能源强度因素,其中经济发展因素是主要因素。
对于青海和宁夏,各因素的贡献值中正指标有经济发展、人口数量变化因素,负指标有能源结构、能源强度因素。
(二)政策建议
1、针对陕西、甘肃、新疆的政策建议
由于经济发展因素是造成陕西、甘肃、新疆碳排放增加的主要因素,所以这三个地区应该制定发展低碳经济政策。政府需要研究出台促进低碳经济发展的财政税收、金融信贷等相关政策和措施,改善有利于低碳产业发展的宏观环境,通过政策引导,鼓励各地区加大低碳产业的投入,逐步推进低碳产业发展。
2、针对青海、宁夏的政策建议
能源结构因素是青海、宁夏区别于其他三省碳排放因素分解的主要因素,这主要是由于这些地区的能源消费结构较为单一,主要依靠煤、原油、天然气等为主。这些一次能源是不可再生能源,过渡依赖一次能源消费必然会造成一次能源的浪费。在没有高效的开采技术条件下,应该加大对一次能源的保护。借鉴西方发达国家如何开发利用清洁能源的方法,通过清洁能源的开发,提升新能源在能源消费中的比重。
3、针对西北五省各地区总体的特点,提出以下几点减少碳排放量的建议
(1)加快产业结构调整,发展第三产业
在分解碳排放量的四个因素中,能源强度因素是导致西北五省各地区碳排量减少的因素。产业结构的不合理,是导致西北五省碳排量基数大、增速高的根源。应加快产业结构调整的步伐,培育和发展一批科技含量高、综合效益好、极有可能成为西北五省新经济增长点的战略性新兴产业,例如旅游业。旅游业发展可以带动一系列相关产业发展,例如物流配送服务业等西北五省具有潜在优势的第三产业中的新兴行业,加强产业结构的调整。
(2)加强能源的合理开发,重点开发太阳能、风能
结合西北五省自身的环境特点,如日照充足、高原风力资源充沛,通过招商引资在日照充足的沙漠地区建立太阳能工业区,利用环境优势来发展工业。西北五省不仅太阳能能源丰富,风力资源也十分丰富。应充分利用自身风力资源储量丰富的优势,加大对风力资源的开发与投入,优化能源消费结构。
参考文献:
[1]Wang C,Chen J N,Zou J. Decomposition of energy related CO2 emission in China:1957—2000 [J]. Energy,2005,30:73—83
[2]Zhang Z X. Decoupling China's carbon emissions increase from economic growth:An economic analysis and policy implications [J]. World Development,2000,28(4): 739—752