欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

重金属污染现状大全11篇

时间:2024-01-06 16:56:52

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇重金属污染现状范文,希望它们能为您的写作提供参考和启发。

重金属污染现状

篇(1)

中图分类号 X53 文献标识码 A 文章编号 1007-5739(2013)09-0229-03

重金属是指比重大于5.0 g/cm3的金属元素,包括Cu、Zn、Ni、Pb、Cr、Cd、Hg、As、Fe、Mn、Mo、Co等。通常自然界中重金属元素的背景值很低,其暴露不会对周围环境造成影响。但由于工业生产规模扩大,城镇化迅速发展,在农业生产中,污水灌溉和化肥、农药的使用量加大,导致土壤系统中重金属不断累积,明显高于其背景值,从而恶化了生态环境的质量,并通过食物链直接危害人体健康。据统计,全世界平均每年排放Hg约1.5万t,Cu 340万t,Pb 500万t,Mn 1500万t,Ni 100万t[1]。随着重金属污染问题的日益突出,土壤污染防治工作已在“十一五”期间被提上中国环境保护工作的重要议程,并成为第1个“十二五”国家规划。针对上述情况,笔者结合我国土壤重金属污染的现状,对当前土壤重金属污染的修复技术及其作用机理进行分析,并总结其各自的优势与不足,以期为综合治理土壤重金属污染提供参考依据。

1 我国土壤重金属污染现状

我国面临着相当严峻的土壤重金属污染问题。农业部调查数据显示[2],我国约140万hm2的农业用地采用污水灌溉,受到重金属污染的土地面积占污染总面积的64.8%。据有关资料表明,我国重金属污染的农业土地面积为2 500 hm2左右,导致粮食减产逾1 000万t,并造成1 200万t以上的粮食被重金属污染,将各项经济损失进行合计,至少高于200亿元[3]。污染土地中,严重污染面积占8.4%,中度污染面积占9.7%,轻度污染面积占46.7%。Hg 和Cd 的污染面积最大。如上海农田耕层土壤Hg、Cd含量增加了50%,江西大余县污灌引起的Cd污染面积达5 500 hm2,沈阳张士灌区Cd污染面积达2 533 hm2。我国农田土壤污染除Cd、Hg污染外,Pb、As、Cr和Cu的污染也比较严重。以保定市污水灌区为例,其Zn、Cu、Pb、Cd的检出超标率分别达到100.0%、27.5%、50.0%、87.5%[4]。此外,我国菜地土壤重金属污染也较为严重[5-7]。广州市蔬菜地Pb污染最为普遍,As污染次之;重庆近郊蔬菜基地土壤重金属Hg和Cd出现超标,超标率分别为6.7%和36.7%;珠三角地区近40%菜地重金属污染超标,其中10%属严重超标。近年来,由于工业“三废”、机动车废气和生活垃圾等污染物的排放,我国城市土壤普遍受到不同程度的重金属污染,主要污染元素为Pb、Cd、Hg。且城市土壤中大部分重金属污染含量普遍高于郊区农村土壤,并具有明显的人为富集特点[8]。

2 土壤重金属污染修复技术

2.1 物理修复

物理修复是指通过各种物理过程将污染物从土壤中去除或分离的技术,主要包括土壤淋洗法、工程措施法、电热修复法等。

2.1.1 土壤淋洗法。该方法是应用最多、应用最早、技术最成熟的物理修复方法。采用淋洗液(包括无机溶液清洗剂、复合清洗剂、清水、表面活性剂、有机酸及其盐清洗剂、螯合剂等)对土壤进行淋洗,使固相重金属转化为液相,重金属从土壤中转移到废水,再通过对废水进行回收处理,从而实现土壤的修复。Wasay et al[9]研究发现,EDTA和DTPA能有效地去除土壤中Hg以外的重金属元素,同时也提取出大量土壤营养元素。土壤淋洗法简便、成本低、处理量大、见效快,适用于大面积重度污染土壤治理,尤其是轻质土和砂质土。但这种方法在去除重金属的同时,易造成地下水污染及土壤养分流失。因此,既能提取各种形态重金属又不破坏土壤结构的淋洗液,将为该方法修复重金属污染土壤提供广阔的应用前景。

2.1.2 工程措施法。该方法是较为经典和传统的土壤重金属污染修复方法,包括深耕翻土、换土、客土等。深耕翻土与污土混合,或者通过换土和客土等手段,可以使土壤中重金属的含量有效降低,从而降低其对植物的毒害。不同的方式适宜于不同污染程度的土壤,重污染区的土壤宜使用换土和客土方法改良,而轻度污染的土壤则适宜于采用深耕翻土的方法进行修复。工程措施法的优势在于效果稳定和彻底,但是也存在一定的不足,如费用高、工程量大、易降低土壤肥力和破坏土壤结构,还有换出的污染土壤也存在二次污染的隐患,应妥善处理。据报道,对1 hm2面积的污染土壤进行客土治理,每1 m深土体需耗费高达800万~2 400万美元[10]。因此,工程措施不是一种理想的污染土壤修复方法。

2.1.3 电热修复法。该方法利用高频电压产生电磁波,再通过电磁波作用而产生热能,从而促使土壤中挥发性重金属得以分离,实现土壤的修复和改良。目前,该方法适用于修复受Hg或Se等可挥发性重金属污染的土壤。有研究表明,采用该法可使砂性土、黏土、壤土中Hg含量分别从15 000、900、225 mg/kg降至107、112、115 μg/kg,回收的Hg蒸气纯度达99%[11-12]。这种方法虽然操作简单、技术成熟,但能耗大、操作费用高,也会影响土壤有机质和水分含量,引起土壤肥力下降,同时重金属蒸气回收时易对大气造成二次污染。

2.2 化学修复

化学修复也是一种原位修复技术,即通过向重金属污染土壤中添加改良剂,以调节和改变土壤的理化性质,使重金属发生沉淀、吸附、拮抗、离子交换、腐殖化和氧化还原等一系列化学反应,降低其在土壤中的迁移性和被植物所吸收的可能性,从而达到治理和修复污染土壤的目的。常用的改良剂有石灰性物质[13-15]、磷酸盐化合物[16-17]、硅酸盐化合物[18]、金属及其氧化物[19-20]、黏土矿物[21-23]、有机质[24-26]等,其作用机理见表1。这种方法虽然简单易行,但其不足在于它只是改变了重金属在土壤中的存在形态,却没有把重金属从土壤中真正分离出来,如果土壤环境发生变化,容易造成其再度活化,引起“二次污染”。

2.3 生物修复

生物修复是利用生物(主要是微生物、植物和动物)的新陈代谢作用吸收去除土壤中的重金属或使重金属形态转化,降低毒性,净化土壤。该方法是运用生物技术治理污染土壤的一种新方法,具体包括微生物修复法、植物修复法、动物修复法等。由于该方法效果好、易于操作,日益受到人们的重视,已成为污染土壤修复研究的热点。

2.3.1 微生物修复。该方法是通过微生物进行作用,将土壤中重金属元素进行沉淀、转移、吸收、氧化还原等,从而对污染土壤进行修复。如柠檬酸菌能够与Cd形成CdHPO4沉淀;无色杆菌、假单胞菌能够使亚砷酸盐氧化成砷酸盐,从而降低As的转移和毒性;还有些微生物能够把剧毒的甲基汞降解为毒性小、可挥发的单质Hg[3]。尽管微生物修复引起极大重视,但大多数技术仍局限在科研和实验室水平,很少有实例报道。但随着分子生物学的发展,一些如细菌表面展示技术、噬菌体抗体库技术、酵母表面展示技术等[27],有望在治理土壤重金属污染中发挥重要作用。

2.3.2 植物修复。植物修复广义上是指利用植物提取、吸收、分解、转化、固定土壤、沉积物、污泥或地表、地下水中有毒有害污染物技术的总称;狭义上是指利用耐性和超富集植物将污染土壤中的重金属浓度降低到可接受的水平。根据其修复过程和机理,植物修复法可分为以下4种:①根部过滤[28],即通过耐性植物根系对重金属的吸收并保持在根部。常用的植物有水生植物、半水生植物以及个别陆生植物,如向日葵、耐盐野草、宽叶香蒲等。该法多应用于修复水体的重金属污染。②植物稳定[29],即利用植物根际的一些特殊物质,使土壤中污染物转化为相对无害物质的方法。常用的植物有印度芥菜、油菜、杨树、苎麻等。该法多应用于治理废弃矿场和重金属污染严重地区。③植物挥发[30],即利用植物吸收土壤中的重金属,并将其转化为可挥发状态,通过植物叶片等部位挥发出去,以降低土壤中重金属的含量。常用的植物有印度芥菜以及湿地上的一些植物。该法多应用于修复污染土壤中含有挥发性的重金属(如Hg、Se等),但易造成大气污染。④植物提取[31],即利用超富集植物从土壤中吸取重金属,并将其转移、贮存到地上部,然后通过收获,从而达到去除污染土壤中重金属的目的。目前,已发现超富集植物有700种以上,且广泛分布于约50科中,并主要集中在十字花科。该法适用面广,对于修复多种重金属污染土壤均有效。

植物修复法成本低,对环境扰动小,能绿化环境,具有良好的社会、经济、环境综合效益,适用于大规模污染土壤的修复,属于真正意义上的绿色修复技术。但该方法也有一定的缺点:一是超富集植物生长缓慢,常受土壤类型、气候、水分、营养等环境条件限制,导致修复污染较严重土壤的周期长;二是修复过程局限在超富集植物根系所能伸展的范围内;三是超富集植物只能积累某一种重金属,而土壤污染大多是重金属的复合污染;四是超富集植物需收割并作为废弃物妥善处置,将对生物多样性存在一定的威胁。

2.3.3 动物修复。动物修复是利用土壤中的某些低等动物(如蚯蚓等)吸收重金属的特性,在一定程度上降低受污染土壤的重金属比例,以达到修复重金属污染土壤的目的。有研究表明[32],蚯蚓在其耐受浓度范围内,对重金属的富集量随着重金属浓度的增加而增加,同时对重金属的选择性受其体内酶的影响。但这种修复方法不足在于低等动物吸收重金属后可能再次释放到土壤中,造成二次污染。

2.4 农业生态修复

农业生态修复是近几年新兴的修复技术,它是通过改变耕作制度、调整作物品种、调控土壤化学环境(包括土壤pH值、水分、氧化还原电位等)、改变土地利用类型、增施有机肥(堆肥、厩肥、植物秸秆等)、控施化肥等措施,以减轻重金属对土壤的危害[33]。我国在这一方面研究较多[34-36],并取得了一定的成效。这种方法具有投资少、无副作用等特点,适用于中轻度污染土壤,但也存在修复周期较长、效果不太显著等不利因素。

3 结语

综上所述,目前重金属污染土壤的修复技术很多,但就单一技术来看,任何一种修复技术都有其局限性,难以达到预期效果,进而无法大力推广。而且土壤重金属污染修复作为一项系统工程,不仅需要土壤学、植物生理学、遗传学、环境工程学、分子生物学等多个学科的共同努力,还需要多种修复技术的综合应用,即将物理修复、化学修复、生物修复科学地结合起来,取长补短,才能达到更好的效果。

4 参考文献

[1] 李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.

[2] 崔德杰,张玉龙.土壤重金属污染现状与修复技术研究[J].土壤通报,2004,35(3):366-370.

[3] 骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.

[4] 谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.

[5] 茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.

[6] 唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74- 75.

[7] 魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.

[8] 和莉莉,李冬梅,吴钢.我国城市土壤重金属污染研究现状和展望[J].土壤通报,2008,39(5):1210-1216.

[9] WASAY S A,BARRINGTON S,TOKUNAGA anic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns[J].Water,Air,and Soil Pollution,2001(3):301- 314.

[10] CHANEY R L,LI Y M,ANGLE J S,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997(8):279-284.

[11] KAWACHI T,KUBO H.Model experimental study on the migration behavior of heavy metals in electric to kinetic remediation process for contaminated soil[J].Soil Sci Plant Nutr,1999,45(2):259-268.

[12] 刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报:自然科学版,2009,10(1):73-78.

[13] CHEN Z S,LEE G J,LIU J C.The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J].Chemosphere,2000,41(1-2):235-242.

[14] 廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,17(3):101-103.

[15] 陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.

[16] SEAMAN J C,AREY J S,BERTSCH P M.Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition[J].J Environ Qual,2001,30(2):460-469.

[17] 周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展[J].生态学报,2007,27(7):3043- 3050.

[18] DA CUNHA K P V,DO NASCIMENTO C W A,DA SILVA A J.Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L)grown on a contaminated soil[J].Journal of Plant Nutrition and Soil Science,2008,171(6):849-853.

[19] GRAFE M,NACHTEGAAL M,SPARKS D L.Formation of metal-arsenate precipitates at the goethite-water interface[J].Environmental Science and Technology,2004,38(24):6561-6570.

[20] KUMPIENE J,ORE S,RENELLA G,et al.Assessment of zerovalent iron for stabilization of chromium,copper,and arsenic in soil[J].Environ-mental Pollution,2006,144(1):62-69.

[21] 娄燕宏,诸葛玉平,顾继光,等.粘土矿物修复土壤重金属污染的研究进展[J].山东农业科学,2008(2):68-72.

[22] 柯家骏,陈淑民,胡向福,等.膨润土粘土矿物吸附重金属的研究[J].重庆环境科学,1993,15(1):4-6.

[23] MAHABADI A A,HAJABBASI M A,KHADEMI H,et al.Soil cadmium stabilization using an Iranian natural zeolite[J].Geoderma,2007(137):388-393.

[24] VACA-PAULIN R,ESTELLER-ALBERICH MV,LUGO-DE LA FUENTE J,et al.Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil[J].Waste Management,2006, 26(1):71-81.

[25] 陈世俭,胡霭堂.有机物质种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(1):38-40.

[26] 华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59,62.

[27] 李宏,江澜.土壤重金属污染的微生物修复研究进展[J].贵州农业科学,2009,37(7):72-74.

[28] DUSHENKOV S,VASUDEV D,KAPULNIK Y,et al.Removal of uranium from water using terrestrial plants[J].Environ Sci Technol,1997, 31(12):3468-3474.

[29] 敖子强,熊继海,王顺发,等.植物稳定技术在金属矿山废弃地修复中的利用[J].广东农业科学,2011(20):139-141,147.

[30] MITCH L,NICOLE P,DEBORAH D,et al.Zinc phytoextraction in Thlaspi caerulescens[J].International Journal of Phytoremediation,2001, 3(1):129-144.

[31] 丁华,吴景贵.土壤重金属污染及修复研究现状[J].安徽农业科学,2011,39(13):7665-7666,7756.

[32] 伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J].农业环境科学学报,2009,28(1):78-83.

[33] 刘候俊,韩晓日,李军,等.土壤重金属污染现状与修复[J].环境保护与循环经济,2012(7):4-8.

篇(2)

1 引言

随着我国加入世界贸易组织,经济全球化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重中金属污染不仅对生物的生存有危害,对于人类自身的危害同样十分严重。农村因农药的的大量使用从而导致土壤重金属污染严重,城市则因为工业原因导致土壤重金属污染严重。

而在处理重金属污染方面,目前国内有资质处理重金属污染的公司寥寥无几。由于我国经济的快速发展、工业化的快速发展使得土壤的重金属污染问题越来越严峻,土壤的重金属污染又与人民的生活息息相关,所以我们必须重视土壤重金属污染问题,研究其解决方法。

2 现状

根据我国有关权威相关部门的显示,目前在我国东部发达经济地区为数不多的耕地中,其中有超^七成以上的土地被污染,并且照这个趋势来看,如果不及时采取有效措施,污染的情况还会持续加剧,对地下水资源的质量和人们的身体健康构成严重威胁,影响十分恶劣。

根据国家环境监测中心的调查结果,我国的土壤污染种类多样,从重度金属污染到轻度污染、中度污染、高度污染都有不同程度的涉及,其中尤以重金属污染最为严重,由于重金属近年来在工程使用超标,在严重污染领域已经首当其冲,需要引起人们的高度重视。

镉、砷、汞等有毒重金属所导致的重金属污染比起传统的水污染影响是十分恶劣的,破坏力强,恢复时间久,修复速度慢 在一些重金属超标污染严重的工业区,我国有些城市的大片农田受多种重金属污染,超过十成的的土壤已经基本丧失土地生产力,近十年都无法进行耕种收获。

严峻的问题越来越导致周围环境的恶化和生态的变化,也开始引发人们的思考和行动,早在2005年,我国有关立法机关便通过了对污染的防御和治理的有关条款进行规定,要求企业和公司在生产过程中承担社会责任,减少污染物的排放,为人们的生命健康和生态环境的改善从法律角度提供了理论基础,让企业、公司有法可依。

3 污染来源

从上文的统计结果中我们可以看出,我国的当前主要污染以重金属为主,那么主要是哪些金属构成的呢?它们是怎么来的呢?研究表明,我国目前的重金属污染以镉、铅、铬、铜、锌等为主,其中镉的污染最为严重。而重金属的主要来源是人类的生产生活活动,例如工业污染物的排放、农业用水农药污染以及人类生活污水的排放等。

3.1 铅的来源

铅作为原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业;铅板制作工艺中排放的酸性废水中铅浓度最高,电镀废液产生的废水铅浓度也很高。

3.2 镉的来源

镉可以为钢、铁等电镀,提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的镉用于电镀、颜料、塑料稳定剂、合金及电池等行业。

3.3 镍的来源

镍在废水中主要以二价离子存在,主要是硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。电镀业、采矿、冶金、石油化工、纺织等工业,以及钢铁厂、印刷等行业是含镍废水的工业来源,其中以电镀业为主。

3.4 银的来源

硝酸银是常见银盐中唯一可溶的,废水中含银的主要成分也是硝酸银。硝酸银广泛应用于无线电、化工、机器制造、陶瓷、照相、电镀以及油墨制造等行业硝酸银有着广泛应,电镀业和照相业则是含银废水的主要来源。

4 土壤污染的修复

对于土壤的重金属污染处理方法,目前主要有四大类,即化学方法、工程方法、生物方法以及农业方法。

4.1 化学方法

该方法针对不同的土壤状况,选择合适的化学试剂加入土壤,用以去除土壤中的重金属,降低土壤中重金属的含量。也可抑制污染物质的再次溶出、扩散,从而最终达到降低重金属污染的目的。

4.2 工程方法

该方法是将污染的土壤移除后加入未污染土壤,并且对已污染的土壤进行处理,从而达到修复土壤的目的。可以对已污染土壤通过热处理(将污染土壤加热,使土壤中的挥发性污染物挥发并收集起来进行回收或处理)、淋洗(用淋洗液来淋洗污染的土壤)、电解(使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走)等方式加以处理。该种方法具有效果彻底、稳定等优点,但同时操作方式较为复杂、治理费用高并且易引起土壤肥力降低等缺点。

4.3 生物方法

该方法通过利用某些生物的特殊习惯以及生理功能来适应、改善土壤的重金属污染状况。利用蚯蚓和鼠类吸收土壤中的重金属,利用微生物的生物功能对土壤中的重金属进行吸附、沉淀、氧化、还原,降低土壤中溶解的重金属含量。该种方法实施简便,投资少,对环境极为友好,但是所需时间极长,短期内治理效果十分不理想。

4.4 农业方法

该方法通过因地制宜的改变一些耕作管理制度、在污染土壤上种植不进入食物链的植物来减轻重金属的危害。农村的土壤重金属污染的主要来源是农药的大量使用,因此改进耕种制度便显得极为重要。选择合理有效科学的耕种方式可以很大程度的降低土壤再次被污染程度,辅以生物方法可以解决长期的污染问题,并且对于环境很友好,非常值得提倡。

5 前景

土壤的重金属污染存在治理难、治理时间长的难题,因而如何有效的在不对土壤肥力造成影响的情况处理重金属污染就显得极为重要。而目前的大部分方法都处于实验室试验阶段,并没有合理有效的处理方式,因此研究出一种优秀的土壤重金属污染处理方式极为重要,目前我国土壤重金属污染形势十分严峻,可以说刻不容缓。

通过对以上一些土壤重金属污染修复技术的介绍,可以预测,在今后的重金属污染治理中,生物方法将发挥巨大作用。同时,修复过程不仅仅局限于一种修复方式,而将成为两种或多种修复方式共同作用的情况。因此,在我们了解各种修复方式的实际操作方法及其优缺点后,在应用过程中取长补短,才能更大的发挥其修复能力。并通过一些新的修复思路和方法的探索,为今后的研究指明方向,这还需要植物生理学、土壤学、生态学、化学、遗传学、环境保护学和生物工程等多个学科的共同努力来实现。

修复的成功和失败经验,特别是结合我国国情,加强研究,将会使我国污染土壤及地下水和地表水的生物修复的工作进入到一个崭新的阶段。

6 结语

重金属复合污染是当前土壤污染研究的重要科学问题。由于土壤中重金属复合污染的普遍性及它们在生态系统中具有多样、复杂的复合效应机制,包括协同作用、拮抗作用以及加和作用等,还有复合污染的复杂性和特殊性,因此,土壤重金属复合污染是很难治理的。因此我们要大力研究其治理方式,尤其是生物方法,在不破坏环境的前提下治理污染问题。

参考文献

[1]重金属污染土壤修复技术述评_何启贤

[2]重金属土壤污染修复技术初探_林帅

[3]土壤的重金属污染及其防治_张国印

[4]重金属污染及其生物修复_诸振兵

篇(3)

[中图分类号] X53 [文献标识码] A [文章编号] 1003-1650(2017)05-0287-01

陆良县隶属于云南曲靖,陆良县位于云南省东部,素有“滇东明珠”之称。我县土地面积广阔,农业粮食的播种面积901050亩,轻重工作发展迅速,经济实力雄厚。但是由于工业的发展和其他因素的影响,导致了我县的环境遭到了严重污染,尤其是土壤的重金属含量过高,严重阻碍了我县农业经济发展。针对这样一个状况,我农业综合服务中心相关负责人组织工作小组,制定了工作重点,积极寻求土壤重金属的污染成因、污染特点、污染危害,然后探讨了土壤重金属污染的预防和治理方式,科学合理的保护土壤,缓解重金属污染,促进农业健康发展。

1 土壤重金属污染现状

1.1 金属汞污染

土壤中汞的来源包括土壤母质、大气中汞的干湿沉降、工业污染源、农业污染源、含汞废弃物。其中农业污染主要是含汞农药的使用、含汞废水、废气、废渣的排放而污染土壤所致。较低含量的金属汞一般不会造成土壤污染,但是在土壤微生物作用下, 汞金属转化为具有剧烈毒性的甲基汞, 也称汞的甲基化。金属汞污染对农作物的危害随着作物的种类不同而有不同。

1.2 重金属镉污染

在我国的重金属土壤污染中,镉污染是危害性最大的,镉污染土壤特点有色金属矿产开发、冶炼及其他工业生产排出的废气、废水和废渣都会造成镉污染。而耕地大量使用的磷肥中也有相当高的镉含量,因此当这些磷肥进入土壤,也加重了土壤中的镉浓度。此外,城市污泥和垃圾的焚烧也可导致土壤中镉含量增高,由于土壤对镉有很强的吸着力, 因而镉易在土壤中造成蓄积。

1.3 重金属铅污染

铅是土壤污染较普遍的元素。污染源主要来自铅化工业的发展产生的废气、废水、废渣, 汽油燃烧后的尾气中含大量铅, 矿山开采、 金属冶炼、 煤的燃烧、大量含铅化肥使用、蓄电池的丢弃等也是重要的污染源。

1.4 重金属砷污染

土壤砷污染主要来自大气降尘、 尾矿与含砷农药, 燃煤是大气中砷的主要来源。砷中毒可影响作物生长发育, 砷对植物危害的最初症状是叶片卷曲枯萎, 进一步是根系发育受阻, 最后是植物根、 茎、 叶全部枯死。

总的来说,土壤重金属污染对植物的影响主要是对其生理生态过程、植物的产量和质置方面,如果污染过于严重的话,就会直接导致植物根系坏死,植物得不到应有的土壤营养,生长寿命大大缩减,甚至于直接死掉。

2 土壤重金属污染的预防措施

2.1 加大环境监管和治理力度

土壤重金属污染的情况越来越严重,造成了严重的危害,因此,政府必须引起高度重视,加大对土壤重金属含量的监测。首先政府部门应该组织一批专业的技术人才,采用先进的监测技术和设备,对我县的土壤进行动态监测,全面掌握重金属污染的类型、污染的程度,充分了解土壤中金属成分、含量的变化,统计监测信息,将土地进行重金属筛选,根据土壤污染的具体情况,恰当的选择土壤修复技术,为治理更大范围的重金属污染区积累经验;其次要坚强环保部门对环境的监管力度,杜绝重金属污染的来源,督促相关工业园区引进净化设备,含重金属元素的废弃物进行净化处理,减少排出量,同时严格控制城市生产生活废水直接进入农田,从根本上防止重金属对土壤的污染。

2.2 扩大土壤重金属污染宣传

重金属污染已经成为我县首要的土壤污染类型,必须提高人们的防范意思。我们可以利用先进的技术,通过互联网平台、以手机为载体,传统的书籍报刊等多种形式和途径,深入开展农产品产地土壤重金属污染防治的宣传工作,广泛动员和组织社会各界力量积极参与农产品产地土壤重金属污染防治工作,在全社会形成一种良好的社会风气,提高人们对土壤重金属污染的关注,让人们了解土壤重金属污染的严重危害性,自觉进行 土壤保护。

2.3 加强技术培育

将土壤重金属污染的专业技术人员组织起来,成立土壤重金属防治小组,深入我县各地区,对土壤重金属污染进行调查研究,为了更好的开展工作,一要积极开展技术培训,不断提高其整体业务素质,特别是基层机构人员的知识结构、技能和业务素质,提高他们的专业水平,同时我们还要根据污染情况,有针对性的开设培训内容,更好的服务于我县的土壤治理工作中。

2.4 客土深翻,缓解污染

重金属的土壤污染,阻碍作物的生长发育,必须在短时间内根除,才能进行的正常的农运活动。因此我们可以在污染地区彻底挖去污染土层,换上新土,以根除污染物,也可以进行土壤的耕翻土层,采用深耕,将上下土层翻动混合,使表层土壤污染物含量减低。

2.5 施用化学改良剂,

根据土壤重金属污染的类型,向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。

土壤重金属污染的防治是环境监测的重要任务,是保障我县广大人民群众身体健康的根本,是促进经济快速发展的主要推力。采取科学有效的土壤污染防治措施,能够有效改善土壤结构,提高土壤肥力,降低土壤环境的污染。在未来的环境监测和农业生产中,政府和人民更应该携起手,爱护我们共有的生存土地,让重金属污染事件不再发生,远离人民群众,实现环境友好型的生存环境。

参考文献

篇(4)

重金属污染是指由重金属或其化合物造成的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化。近年来,关于重金属污染事件屡见不鲜,从湖南儿童血铅超标、陕西风翔数百儿童铅超标、福建紫金矿业含铜酸性废水渗漏到重金属污染“菜篮子”等事件的发行,重金属污染已影响到我们的生活环境。该问题已经引起了世界各国科学家的高度重视,解决这个问题迫在眉睫。

1 厦门市重金属污染现状

厦门市重金属污染主要是金属表面处理加工业(电镀行业)、金属结构制造业、皮革及其制品业等行业发展过程中污染物排放逐渐累积形成的。根据全国污染源普查结果,2010年厦门市废水中汞、镉、总铬、铅、类金属砷等5种重金属排放量以区域来划分的话,集美区占全市的72.75%;同安区占全市的17.59%;海沧区占全市的7.96%;思明区占全市的1.09%;翔安区占全市的0.57%;湖里区占全市的0.05%。5种重金属污染物按排放量大小排序为:总铬占全市总排放量的94.83%;铅占全市的3.78%;砷占全市的1.24%;镉占全市的0.05%;汞占全市的0.1%。从2010年污染源普查数据看,我市主要重金属污染元素是铬,重金属污染集中区域是集美区,主要污染来源为工业废水污染。总铬排放量较大的行业有:金属表面处理加工业(电镀)、金属制厨房调理及卫生器具制造业、金属结构制造业等行业。主要涉铅行业有:钨、钼冶炼业等行业。

重金属污染具有隐蔽性、潜伏性、不可逆性和长期性等特点,污染危害大,持续时间长、治理成本高。重金属污染物通过大气、水体、土壤的迁移转化和食物链的生物放大作用污染环境,危害粮食、食品安全和人体健康。

2 厦门市重金属污染防治存在的问题

2.1布局分散,发展方式粗放

由于厦门市涉重金属的企业入驻较早,粗放型增长方式尚未根本改变,改革开放初期环境准入制度几乎空白,项目环境影响评价中未对环境与健康风险评估进行评估,地方引进企业仅从经济发展角度考虑,造成涉重金属行业和企业无序发展,布局分散,结构污染比较突出,对环境造成一定程度的污染。

2.2企业对重金属污染防治工作重视不够

近年来,厦门市不断加强对涉重金属企业的监管,并建立了先锋电镀企业集中控制区,但重金属排放企业依然比较分散,监管难度大,源头预防控制未能全面落实。企业对重金属污染防治重视不够,有些企业对现有排放标准执行不严,一些中小企业不严格执行环评和环保“三同时”等环保制度。企业自我监测措施不完善,尚未建立特征污染物日监测报告制度;重金属污染突发事件的应急装备和技术水平不高。

2.3环境监管能力不足,基础工作有待进一步加强

当前,厦门市环保队伍人员不足,环境监察与环境监测力量有待加强,重金属污染物在线监控能力相对薄弱,尚末建立重金属污染预警应急体系。通过近几年的摸排调查,全市重金属污染物整体排放情况基本摸清,但对环境影响程度尚未进行全面评估,污染治理技术产业支撑不够,重金属污染的基础调查、科学研究、技术政策等还滞后于污染防治。

3 主要重金属污染防治对策

3.1加大结构调整力度

坚持以“调结构、促减排”为手段,严格执行国家有关产业政策和产业调整振兴规划,建立落后产能淘汰机制,分区域制定和实施重点防控行业落后产能淘汰措施,明确淘汰进度。对于重金属排放企业主动淘汰落后产能的,安排财政资金予以支持。

3.2严格项目准入条件

3.2.1严格区域准入

禁止在饮用水源保护区等重要生态功能区新建涉及重金属污染物排放的项目。非工业区和食品、生物医药等有特殊要求的产业园区以及工业区通用厂房原则上不再审批有重金属污染物排放的项目,其它区域按行业准人要求审批。改建、扩建项目要达到厦门市“十二五”,重金属减排和增产不增污的要求。

3.2.2严格产业准入

凡涉及重金属排放的新建项目,除高科技(科技局批文)及高附加值(经发局批文)项目、并能解决总量指标的区域外,一律不予审批。

3.2.3严格限制排放重金属相关项目

新建、改建、扩建项目坚持新增产能与淘汰产能“等量置换”域“减量置换”的原则,实施“以大带小”、“以新带老”;严格控制企业建设项目选址,合理确定重金属企业的排放浓度和环境安全防护距离,确保周边群众身体健康。

3.3积极推进清洁生产

依法实施强制性清洁生产审核,大力发展循环经济。按照省环保厅、省经贸委的工作部署,督促涉重金属企业加快强制性清洁生产审核评估和验收进度。对于经公布要求进行强制性清洁生产审核的企业,未实施清洁生产审核或者虽经审核但不如实报告审核结果的企业,责令限期改正,对拒不改正的依法从重处罚。

3.4严格污染源监管

3.4.1进一步摸清重金属污染情况

全面调查涉重金属企业污染物排放、治理设施运行情况及其周边区域环境隐患,深入开展污染现状评估,进一步摸清重金属污染情况,全面掌握辖区内重金属污染情况动态,有针对性地制定重金属污染综合防治计划,加大监控和治理力度。

3.4.2加强对污染源监管,促进企业稳定达标排放

进行重金属特征污染物自动监控装置试点工作,待条件成熟后逐步实现重点重金属污染源安装自动监控装置,实行“实时监控、动态管理”,确保污染物稳定达标排放。督促涉重金属企业进一步完善突发环境事件应急预案和应急处置设施,配备应急物资,定期组织应急培训和应急演练。

3.4.3规范企业日常环境管理,提高操作运行水平

要求企业建立重金属污染物产生、排放详细台帐,每月向环保部门报备污泥等危险废物产生量、处置去向等环境管理信息资料,实施动态管理;指导企业完善治污设施,规范物料堆放场、废渣场、排污口等建设,提升污染治理技术水平。

3.4.4严格执行项目审批要求,清理违法企业

篇(5)

中图分类号: TD21 文献标识码: A

矿产资源作为人们生产生活的基本,这种资源的开发利用为发展国民经济起到重要推动力的同时,也引发了比较严峻的环境问题。我国部分地区矿产资源丰富,随着现代化工业的快速发展,越来越多的金属矿山被开采,随着矿山开采年份的延长,矿山周边土壤环境中重金属污染现象越来越严重,并逐渐为人们所关注,一旦土壤环境中的重金属积累到一定程度就会引起土地退化、地表水和地下水污染,并通过植物进入食物链被人或动物摄取,危害人体健康。因此,有必要对这一问题进行密切关注,并采取相应的防治措施。

1、金属矿山土壤重金属污染和危害

1.1金属矿山土壤重金属污染的来源

金属矿山周边土壤中的重金属, 除本身由于地球化学作用而可能造成背景值偏高外,其它则主要来源于金属矿产开采、洗选、运输等过程中废气、废水的排放及固体废物的堆放。露采或坑采的钻孔、爆破和矿石装载运输等过程产生的粉尘和扬尘中含有大量的重金属, 经过雨水的淋溶进入周边土壤;废水主要包括矿坑水,选矿、冶炼废水及尾矿池水等,废水以酸性为主, 以含有大量重金属及有毒、有害元素为特征。有色金属工业固体废弃物主要是指在开采过程中产生的剥离物和废石, 以及在选矿过程中所排弃的尾矿,这些固体废物若在露天堆放,容易迅速风化,并通过降雨、酸化等作用向矿区周边扩散, 从而导致土壤重金属污染。

1.2金属矿山土壤重金属污染的影响

土壤重金属污染的影响主要体现在以下三点:首先,淋溶作用。是指在降水的淋溶作用土壤中的重金属向下渗透到深层土壤或地下水层。其次,被人或动物的吸入。由于受污染的土壤直接暴露在环境中,人或动物就会通过土壤颗粒物等形式直接或间接地吸入到体内。从而损坏人或动物健康。最后,就是通过植物吸收利用进入食物链,进而对食物链上的生物产生毒害。

1.3金属矿山土壤重金属污染的特点

与其它污染形态有所不同的是, 金属矿山含重金属废弃物种类繁多,并且土壤重金属污染有其自身特点,对环境的危害方式和污染程度都不一样,主要表现为:第一点,土壤重金属污染往往要通过对土壤及农作物样品进行监测后才能确定,具有滞后性和隐蔽性。第二点,重金属在土壤中不容易迁移、扩散和稀释,很容易在土壤中不断积累而超标,具有累积性。第三点,重金属污染的自然降解是非常困难的, 积累在土壤中的重金属很难靠稀释作用和自净作用来消除,具有难治理性和不可逆性。

1.4金属矿山土壤重金属污染的危害

土壤被污染后,大部分污染物质能较长时间存在于土壤环境中,难以消除,易被人们所忽视。土壤重金属污染的主要危害包括:首先,影响植物生长。土壤中的重金属通过雨水淋溶作用向下渗透, 不仅会导致地下水的污染,还会被金属矿山周围的植物吸收,影响植物的生长发育。其次,危害人体健康。受污染的土壤直接暴露在环境中,为人或动物所吸收后,会严重危害人体健康。最后,降低土壤的生态功能。重金属污染能明显影响土壤的理化性质,进而降低土壤微生物量和活性细菌量,减少土壤系统中的生物多样性, 从而影响土壤生态结构和功能的稳定。

2、金属矿山土壤重金属污染的治理途径

2.1物理方法

物理修复是借助物理手段去除土壤中污染物的技术。分为热力修复、蒸汽浸提修复等热处理,及 电动力学修复、压裂修复、稳定化修复、物理分离修复工程措施法。一般情况下,热处理法主要针对汞污染,效果比较明显,但工程量较大,耗能较多,且易使土壤有机质和土壤水遭到破坏。而工程措施是利用外来重金属多富集在土壤表层的特性,去除受污染的表层土壤后,将下层土壤耕作活化或用未被污染活性土壤覆盖,从而将耕作层土壤中的重金属浓度降至临界浓度以下。

2.2物理化学方法

物理化学方法通常分为三种:一种是电动修复法。这是一门新的经济型土壤修复技术,在不搅动土层的基础上,在包含污染土壤的电解池两侧施加直流电压形成电场梯度,土壤中的重金属通过电迁移、电渗流或电泳的途径被带到位于电解池两极的处理室中并通过进一步的处理,从而实现污染土壤样品的减污或清洁。一种是土壤淋洗法。是指利用有机或无机酸等淋洗液将土壤固相中的重金属转移至液相中,再把富含重金属的废水进一步回收处理。一种是玻璃化技术法。对某些特殊重金属利用电极加热将重金属污染的土壤熔化,冷却后形成比较稳定的玻璃态物质。

2.3化学方法

化学修复是利用加入到土壤中的化学修复剂石灰、 沸石、 钙镁磷肥等与污染物发生化学反应,有效降低重金属的水溶性、 扩散性和生物有效性,促使土壤中的重金属元素转化为难溶物,从而使污染物被降解或毒性被去除或降低的修复技术。

2.4农业方法

农业生态修复是近几年新兴的修复技术,是因地制宜地调整一些耕作管理制度,在重金属污染土壤中种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等措施来降低土壤重金属污染,从而改变土壤中重金属的活性,降低其生物有效性,减少重金属从土壤向作物的转移,从而达到减轻其危害的目的。

2.5生物方法

污染土壤的生物修复分为植物修复技术、微生物修复技术和动物修复技术。植物修复技术是指利用自然生长或遗传工程培育的植物及其共存微生物体系,清除污染物的一种环境治理技术。微生物修复技术是指利用土壤中某些微生物的生物活性对重金属具有吸收、沉淀、氧化和还原等作用,把重金属离子转化为低毒产物,从而降低土壤中重金属的毒性。动物修复技术是指利用土壤中某些动物能吸收重金属的特性,在一定程度上降低污染土壤中重金属含量。与其它治理重金属污染的技术相比生物修复技术设施较简便、投资较少、无二次污染,但是治理效率低。

3、今后的发展方向

在各种修复技术中,工程修复技术虽然效果好,但费用昂贵,难以用于大规模污染土壤的改良,而且常常导致土壤结构破坏、生物活性下降和土壤肥力退化。而农业措施虽然周期长,但只适用于轻度污染的土壤。生物修复费用低廉,而且能带来一定的经济效益,还具有一定的生态效益,是一种较为理想的方法,但也存在着对土壤肥力、气候、水分、盐度等自然和人为条件要求严格、对一种或两种重金属选择性修复等问题。植物修复技术作为一种新兴高效、绿色廉价的生物修复途径,现已被科学界和政府部门认可和选用,并逐步走向商业化。尽管存在上面这些难点, 重金属污染土壤的植物修复技术作为一种新兴的环境友好型修复技术,在今后环境污染治理中有望发挥不可替代的作用。

4、结语

近年来,我国金属矿业迅速发展,所造成的重金属污染日益加剧,而现有的重金属污染土壤的修复技术很多虽然很多,但都有其局限性,难以达到预期效果,因此,还需要将多种修复技术科学地结合起来综合应用,取长补短,才能达到更好的效果。

篇(6)

中图分类号 X53 文献标识码 A 文章编号 1007-5739(2013)16-0212-03

随着城镇化的发展,城市近郊蔬菜地的土壤受到“三废”排放、城市垃圾污染、大气降尘、农药和化肥的不合理施用等因素影响,土壤重金属含量超标问题逐渐凸显[1]。近年来,人们的食品安全意识和环境保护意识得到提高,蔬菜质量和安全性越来越受到关注。因此,对城市周边的蔬菜地土壤重金属污染现状进行调查,对保障城市周边蔬菜地的食品安全有重要意义。

我国对蔬菜基地重金属污染状况的广泛研究始于21世纪初,自2004年我国实行食品质量安全市场准入制度以来,人们对食品安全更加重视。如,上海市对张江镇蔬菜基地的土壤重金属研究指出,其污染程度达到重度污染,主要污染元素为Cd、Cu、Zn、Hg,其主要原因是采用污水灌溉[2]。重庆市曾对沙坪坝区蔬菜基地的土壤进行调查,结果发现土壤污染程度为中度污染,主要重金属污染元素为Cd和Hg[3]。

有学者对成都地区几种蔬菜中重金属Hg、As、Cd、Pb的含量分析指出,Cd、Pb是成都地区蔬菜中的主要污染元素[4],然而,其研究并未对蔬菜基地土壤中的重金属含量及其分布进行研究。因此,该文以成都市近郊——江家菜地和温江永宁镇的2个“菜篮子”基地为研究地点,通过实地采集地表土样,分别测定土壤中的重金属元素(Cd、Pb、Cu、Zn、Ni、Cr)含量,阐述了2个蔬菜基地的土壤重金属污染的现状,旨在为保障成都市蔬菜基地的土壤安全和防治等提供参考依据。

1 资料与方法

1.1 研究区域范围

研究区域分别为成都市东郊锦江区江家菜地、西郊温江永宁镇2个蔬菜基地,海拔高度513~531 m。该区域位于成都平原,属亚热带湿润季风气候,夏季高温多雨,雨热同期,冬季温暖湿润,年降水量800 mm以上,作物一年两熟,土壤以紫色土为主。

1.2 样品采集

根据成都市近郊蔬菜地的分布现状,选取种植历史超过40年的蔬菜地——锦江区江家菜地和温江区永宁镇“菜篮子”2个基地作为研究对象,在2个蔬菜基地各布设4个样点,据GPS定位数据,用ArcGIS绘制了土壤采样点分布图(图1)。根据采样地实际情况采用对角线式采样法,为避免局部偶然因素,采集5个重复土样,每个样点采用5个土样等量混合。采样时,用木勺或竹刀采集植物根系土,采样深度0~20 cm。采集的土壤样品经自然风干后,剔除生物残骸、植物碎片、碎石和砾石,研磨过100目尼龙筛,用四分法取装入聚乙烯塑料袋备用。

1.3 样品分析方法

土壤pH值的测定方法采用电位测定法(PHS-2C型pH计);土壤铅、镉的测定方法采取石墨炉原子吸收分光光度法(GB/T 17141-1997)[5];铜、锌的测定方法采用火焰原子吸收分光光度法(GB/T 17138-1997)[6];镍的测定方法采用火焰原子吸收分光光度法(GB/T 17139-1997)[7];铬的测定方法采用火焰原子吸收分光光度法(GB/T 17137-1997)[8]。进行试样分析时所用的试剂均为分析纯,所用的水均为去离子水。

1.4 评价方法

1.5 评价标准

该文土壤污染物的评价标准依据《国家土壤环境质量标准(GB15618-1995)》中的2级标准,具体如表1所示;土壤综合评价分级标准依据《绿色食品产地环境质量状况评价纲要》中的分级标准[10]。根据中国绿色食品发展中心《绿色食品产地环境质量状况评价纲要》(试行)(1994 年)的规定,将土壤的污染情况划分为5个等级,污染等级划分标准如表2所示。

2 结果与分析

2.1 土样的pH值和重金属测定结果

江家菜地和温江区永宁镇2个样地的土壤pH值的分布情况如图2所示。可以看出,在8个采样点中,有7个采样点的土壤pH值均小于7.0,呈酸性;只有Y4采样点的pH值大于7.0,为7.03,呈弱碱性。总体而言,采样点的土壤呈酸性。

各样点重金属含量测定结果如表3所示。可以看出,江家菜地和温江区永宁镇2个样地Cd含量的均值分别为0.24、0.23 mg/kg;Pb含量的均值分别为30.36、29.69 mg/kg;Cu含量的均值分别为40.01、38.91 mg/kg;Ni含量的均值分别为64.87、64.98 mg/kg;Cr含量的均值分别为39.14、40.56 mg/kg。由此可以看出,两地的Cd、Pb、Cu、Ni、Cr含量差别很小。而Zn含量的均值分别为85.62、129.31 mg/kg,温江区永宁镇Zn含量明显高于锦江区江家菜地,高出43.69 mg/kg,但仍属于正常范围。

由图3可以看出,与各重金属标准含量相比,2个样地土壤中Cd、Pb、Cu、Zn、Cr的含量均没有超过标准值(GB15618-1995),属于正常范围。而2个蔬菜基地的Ni元素明显高出标准值24 mg/kg左右。

2.2 评价结果

2.2.1 单项污染指数评价。土壤重金属的单项污染指数和评价结果如表4、图4所示。可以看出,江家菜地和永宁镇蔬菜基地的Cd、Pb、Cu、Zn、Cr的污染指数均小于1,这说明两地Cd、Pb、Cu、Zn、Cr的含量均未超标。而两地Ni的污染指数均为1.62,大于1,可见江家菜地和永宁镇蔬菜基地都存在镍污染。

2.2.2 综合污染指数评价。由于仅使用单因子评价不能反映整体的污染情况,综合污染评价采用兼顾了多种污染物的水平和某一种污染物的污染严重程度,能够综合地反映污物状况。从表4可以看出,江家菜地、温江区永宁镇的综合污染指数分别为1.24、1.25,根据土壤综合评价分级标准可以判断两地的污染等级为3级,均受到轻度的重金属污染。

3 结论与讨论

3.1 结论

成都市近郊江家菜地和永宁镇2个蔬菜基地土壤中重金属污染为轻度污染,污染等级为3级。其中,Ni含量超标,为污染下限值的130%;其余5种金属Cd、Pb、Cu、Zn、Cr的含量均未超标。

单项污染指数结果表明:土壤中Ni含量超标,单项污染指数达到1.62。其中,Cd、Cu含量虽然未超标(仅为污染下限值的80%),但超出四川省紫色土的背景值含量(紫色土的范围为7~54 mg/kg,平均值为23 mg/kg)[11];而Pb含量均占污染下限标准值的12%;土壤中Zn元素含量,江家菜地的土壤Zn含量是污染标准值的43%,低于紫色土的背景值含量(紫色土的范围为48~131 mg/kg,平均值为109 mg/kg[11]),温江区永宁镇的Zn含量占污染下限值的65%,高于紫色土的背景值含量;土壤中Cr含量仅为污染下限值的25%。

综合污染指数表明:江家菜地和温江区永宁镇的重金属污染等级均达到3级,污染指数分别为1.24、1.25,Ni元素是污染元素,土壤污染程度属于轻度污染,作物开始受污染。

3.2 讨论

成都市某些蔬菜地的土壤虽然也受到重金属污染,但是与上海市、重庆市的一些蔬菜地土壤污染程度相比,成都市的蔬菜基地的土壤污染程度较轻且污染元素为单一的Ni。

上海市张江镇受污染的蔬菜基地,67%的土壤达到重度污染、33%为中度污染,污染元素为Cd、Cu、Zn、Hg 4种重金属元素;其污染途径可能与含Hg农药、含Cd的渣肥施用、污水大面积灌溉、化工污染物扩散以及采用黄浦江底泥作为耕作土壤有关。对于重庆市沙坪坝区受污染的土壤而言,污染程度属于中度污染,污染元素为Cd和Hg;污染途径与施用含Hg农药和含Cd的渣肥、污水灌溉和大气粉尘相关。

目前,虽然有研究指出土壤中Ni含量的多少主要受成土母质的影响,且与土壤粘粒、阳离子交换量等相关[12]。但对于成都市受Ni元素污染的土壤,其污染原因尚不明确,还需要做进一步研究,以便从源头上控制土壤中Ni元素污染。

4 参考文献

[1] 朱美英,罗运阔,赵小敏,等.南昌市近郊蔬菜基地土壤和蔬菜中 重金属污染状况调查与评价[J].江西农业大学学报,2005,27(5):782-784.

[2] 姚春霞,陈振楼,张菊,等.上海市浦东新区土壤及蔬菜重金属现状调查及评价[J].土壤通报,2005,36(6):884-887.

[3] 李其林,黄昀.重庆市近郊区蔬菜地土壤重金属含量变化及污染情况[J].土壤通报,2002,33(2):158-160.

[4] 罗晓梅,张义蓉,杨定清. 成都地区蔬菜中重金属污染分析与评价[J].四川环境,2003,22(2):49-51.

[5] 国家环境保护局.GB/T 17141-1997土壤环境质量标准[S].北京:中国标准出版社,1997:93-96.

[6] 国家环境保护局.GB/T 17138-1997土壤环境质量标准[S].北京:中国标准出版社,1997:101-107.

[7] GB/T 17139-1997土壤质量镍的测定火焰原子吸收分光光度法[S].北京:中国标准出版社,1997.

[8] 国家环境保护局.GB/T 17137-1997土壤环境质量标准[S].北京:中国标准出版社,1997:97-100.

[9] 赵军,张浩波,赵国虎.兰州市安宁区蔬菜地土壤酸度及重金属的测定和评价[J].甘肃农业大学学报,2012,47(2):115-119.

篇(7)

【摘 要】为了解2014年湘江长沙段丰、枯水期底泥中重金属含量,在对湘江长沙段污染现状详细调查与分析的基础上,利用地积累指数对湘江长沙段底泥重金属进行综合性的评价分析。结论:湘江长沙段水域受到不同程度的重金属污染,从总体的污染程度分析,各种污染物的污染程度为Cd>Zn>Pb>Cu,污染的地区和时间差异大,各采样点污染程度为:橘子洲大桥西 >黄泥塘>乔口,且枯水期大于丰水期。环境有关部门应及时采取措施,防止水域环境污染的进一步恶化。

关键词 湘江长沙段;重金属污染;地积累指数

基金项目:湖南省大学生研究性学习和创新性实验计划项目“2014年湘江长沙段底泥重金属污染现状评价”。

作者简介:钱慧琳(1991—),学生,预防医学专业。

通讯作者:杨双波,37岁,女,卫生毒理学硕士,副教授,主要从事预防医学教学及教学管理。

水体沉积物作为水环境中重金属主要蓄积库,可以反映水体受重金属污染的现况[1]。湘江流域集中了湖南省六成人口和七成左右的省内生产总值,亦承载了60%以上的污染,湘江既是纳污水体,又是该流域居民的重要生活饮用水及农业用水水源。由于产业结构和工业企业地区分布的不合理,部分江段重金属含量已超过环境功能区规划所允许的纳污范围[2-3]。近年来,随着湘江沿岸工业“三废"的大量排放、城市生活垃圾和污泥的不合理利用、含重金属农药和化肥的过量施用等,湘江流域底泥接纳的各类重金属污染物含量逐年增长,对湘江长沙段底泥重金属污染进行研究,有利于进一步了解重金属在环境中的迁移转化行为,为重金属污染的综合防治提供依据。为此本文以长沙城市生态体系为单元,以湘江流经长沙段为研究对象,使用地积累指数法对湘江长沙段底泥重金属污染进行定量分析评价,以便为当前湘江水域治理和城市规划提供基础数据。

1 研究水域概括

湘江全长858千米,流域面积9.46万平方千米,沿途接纳大小支流1300多条,流域内资源分丰富,有丰富的煤、铁、猛、铅、锌、铜等矿产资源,沿岸有采选矿业和冶炼业[4]。本次研究区域为湘江流域的长沙段,湘江流域集中了湖南省六成人口和七成左右的省内生产总值,亦承载了60%以上的污染,湘江既是纳污水体,又是该流域居民的重要生活饮用水及农业用水水源。由于产业结构和工业企业地区分布的不合理,部分江段重金属含量已超过环境功能区规划所允许的纳污范围。

2 湘江长沙段底泥重金属污染分析与现状评价

本研究从湘江长沙段表层底泥中的重金属污染物入手,通过全年度监测,设计的3个断面不同采样点采集的底泥样品中Cd、Pb、Zn、Cu四种重金属元素的检测,调查和评价湘江长沙段底泥中重金属的污染程度。

2.1 采样点布设及编号

本课题研究样品采集采用断面取样方法,于湘江长沙段共设计3个断面,并于每个断面上设计2个代表性取样点,于河边左岸和河中心处分别进行浅层底泥取样工作。

采样时间间隔为枯水期(12-2月)和丰水期(5-7月)进行样品采集,即全年度共进行2次样品采集工作,每次采集6个代表性样品。3个断面具体地理位置见下表1。

2.2 样品的采集与处理

用无扰动重力底泥采样器采集底泥表层0~20cm沉积物,用聚乙烯保鲜袋包装,封口并标记后带回实验室。将采集的底泥样品转移至洁净搪瓷盘中,自然风干,剔除硕石、木屑、动植物残体等异物,混合均匀后用玛瑙研钵研磨处理,全部过100目尼龙筛,用广口玻璃瓶保存备用。所用器皿均用浓度10%硝酸溶液浸泡12h以上,去离子水洗净后自然风干[5]。

2.3 样品的测试

底泥样品的消解参照中国环境监测总站的《土壤元素近代分析方法》。测定Cu、Pb、Zn、Cd的底泥样品用HNO3—HF—HclO4法消解,然后用电感耦合等离子体原子放射法测定(ICP—AES),测试过程中,每批样品分析均作2个全程序空白,借以检查和控制样品在处理和测试过程中可能带来的污染。采用平行样控制样品测试的精密度,平行样的数量不少于测试样品的10%[6-7]。

3 研究结果与讨论

湘江长沙段12个底泥样品中4种金属含量见表2.可见于中国土壤环境质量标准(GB15618-1995)中三级标准[8]相比较,Cd元素在每个采样点含量都有超标,Zn在枯水期黄泥塘断面的河心采样点超标,Pb和Cu在各个采样点均不超标。Cd和Zn在长沙段最富集,在枯水期均数分别为土壤背景值的24.1倍、2.5倍,在丰水期分别为13.9倍、1.4倍。Cd在枯水期和丰水期的变异系数为2.56和0.58,相对较大,表示人为干预作用较大,可得出Cd元素以外源污染形式进入湘江较多。

4 底泥重金属污染程度评价

底泥重金属污染程度评价方法:地累计指数法

地累计指数法是德国海德堡大学沉积物研究所的科学家Muller于1979年提出的一种研究水环境沉积物中重金属污染的定量指标[9],其计算公式是:

Igeo=log2Cn/(KBn)

式中,Cn 为元素n在沉积物中的含量(指质量比,实测值),mg/kg;K为考虑各地岩石差异可能引起背景值变动而取的常数,K=1.5;Bn 为粘质沉积岩(即普通岩)中该元素的地球化学背景值,研究中采用长沙地区土壤的背景值作为评估背景值[10],以更客观地评价富集程度。

从表4可得:检测金属元素中Cd的污染程度最大,平均污染级别达到3级,为中~强度污染,其中枯水期橘子大桥西河断面的污染达4级,属强度污染。元素Zn稍有污染平均污染级别为1级,在枯水期橘子大桥西断面河心和黄泥塘左岸采样点污染达2级数中度污染。其他采样点基本上无污染。综合分析上述重金属的地积累指数分级由大到小依次为:Cd、Zn、Pb、Cu。从季节分布来看,枯水期与丰水期重金属污染物分布有差异,Cd和Zn枯水期污染大于丰水期,主要是由于丰水期湘江水流量交大,污染物不易沉积而枯水期水流较缓污染物慢慢沉积到水底。从地域分布来看,从上游到下游,污染物的分布差异较大。黄泥塘与橘子洲大桥西河段受附近冶炼厂、化工厂、城市生活废水等的污染,是重金属污染主要断面,主要污染物为Cd和Zn。

5 结论

(1)与国家土壤三级标准和长沙地区土壤背景值相比较,主要污染物为Cd和Zn,枯水期污染程度大于丰水期,主要污染面为橘子大桥西河段。

(2)地积累指数方法评价结果表明,各污染物污染程度为:Cd>Zn>Pb>Cu。

(3)从本次研究显示,橘子大桥西河段污染较严重,该河段属于市区中心地带,主要有大量的城市生活废水和湘江沿岸地区工业废水的排入,控制该地区重金属污染是长沙城市环境治理迫在眉睫的任务,也是改善湘江水体环境质量的关键。

参考文献

[1]李经伟,杨路华,夏辉.白洋淀底泥重金属污染地积累指数法评价[J].人民黄河 2007(12).

[2]彭利,罗钰,朱奕,许雄飞. 湘江长沙段沉积物重金属污染状况及潜在生态风险评价[J].环境研究与监测,2009,(03):1-4.

[3]刘耀驰,高栗,李志光,刘素琴,黄可龙,李倦生. 湘江重金属污染现状、污染原因分析与对策探讨[J].环境保护科学,2010,(04):26-29.

[4]唐文清,刘利,冯永兰.河流底泥重金属污染现状分析及评价[J].衡阳师范学院报,2008(6).

[5]张祥,黄坚,马慧雪.湘江长沙段沉积物中重金属污染评价[J].广州化工,2012,(23):120-123.

[6]陈翠华.江西德兴地区重金属污染现状评价及时空对比研究[D].成都理工大学,2006.

[7]Bruning H, Rulkens WH. New solvent extractionp rocess for organic and heavymetals pollutants[M]//Hinchee RE, et al. Remediation and beneficial reuseof contaminated sediments. Columbus Rich2land: Battelle Press, 2002: 283-289.

[8]戴塔根,邓吉秋,等.长株潭城市群区域生态地球化学评价[M].长沙中南大学出版社,2008,26,174.

篇(8)

中图分类号 X53;X56 文献标识码 A 文章编号 1007-5739(2012)20-0247-02

蔬菜是人们生活中不可缺少的副食品,为人体提供所必需的多种维生素和矿物质,城镇化速度的加快及工业的迅速发展,使得环境污染问题日益加重,致使蔬菜中重金属和农药残留含量急剧增加,给人类健康造成了严重伤害。重金属积累特点及其对环境的污染是目前蔬菜重金属研究的重点。城市及其郊区是重金属污染的重要区域,了解和掌握土壤和蔬菜重金属的污染现状,对指导当前和以后蔬菜无公害化生产和环境保护等方面具有重要指导意义。

1 杭州市土壤重金属污染现状

谢正苗等[1]调查杭州市4 个蔬菜基地土壤中Pb、Zn、Cu的含量,结果发现蔬菜基地土壤中重金属的含量虽然未超过国家土壤重金属环境质量标准,符合无公害蔬菜的发展要求,但已超过其自然背景值。4个调查区中拱墅区土壤中重金属含量大于其他3个区;江干区蔬菜基地土壤—蔬菜中重金属的空间变异很大。老城区近50%的土壤属于Ⅲ类以上,几乎无Ⅰ类土壤,有些特色产品的种植土壤甚至存在一定的环境风险[2]。城市土壤中的磁性物质对重金属有显著的富集作用,杭州市土壤的磁性物质含量分别是0.20%~2.75%(平均值0.75%),磁性物质对重金属的富集系数大小为Fe>Cr>Cu>Mn>Pb>Zn[3]。

郭军玲等[4]研究发现杭州市蒋村土壤已受到Zn 的明显污染,污染等级为轻污染,乔司和下沙土壤重金属为高度累积,七堡和蒋村土壤重金属达到严重累积程度。李 仪等[5]研究发现杭州市区表土Pb、Cd和Hg含量随离城市距离增加而下降,土壤中重金属Pb、Cd和Hg的积累主要与大气沉降有关;同一区块中茶园表土重金属Cu和Zn含量明显高于附近林地土壤,施肥等农业措施对茶园土壤Cu和Zn的积累有较大的影响。

2 杭州市蔬菜重金属污染情况

杭州市野外常见野生蔬菜铅的超标率达87.5%,镉的超标率为12.5%,铜和锌无超标现象[6]。小青菜和小白菜中Pb超标,但Zn、Cu未超标,其富集系数顺序为Zn>Pb>Cu,且小青菜更易受重金属污染,其重金属含量均大于小白菜[1]。

宋明义等研究发现,根茎类蔬菜中Cd、Pb常超标,叶菜类蔬菜中除Cd、Pb常超标外,Hg也常超标,豆类和茄果类情况相对较好,未发现超标现象。其中,半山附近蔬菜中Cd、Zn含量接近国家食品卫生规定的标准限值,蔬菜和水稻中以Pb超标情况较严重;江干区蔬菜基地的蔬菜重金属污染也较为普遍,不同蔬菜品种中均有重金属超标现象[2]。王玉洁等[3]研究发现蔬菜的可食部位和非可食部位Pb含量均出现严重超标现象,样本超标率达100%;但是4种蔬菜可食部位含Cu量和含Zn量均未出现超标现象,部分蔬菜根系含Cu量和含Zn量却出现超标现象。

3 蔬菜重金属的吸收与富集规律

3.1 不同区域的差异性

北方地区蔬菜重金属污染相对南方地区轻,南方地区污染形势最为严峻的为Cd,这可能是由于南方土壤pH值低、有机质含量等决定的重金属存在形态、活性有关。由于土壤中Cd的化学活性最强,全国范围内Cd污染最为严重[7]。

重庆市小白菜中的As质量比在南岸区菜市场中可达0.068 mg/kg,但在渝中区只有0.012 mg/kg,二者相差5.7倍;渝中区菜市场藕中Hg质量比为0.189 1 mg/kg,但在北碚区菜市场中只有0.056 7 mg/kg,二者相差3.34倍[8]。

3.2 不同种类的差异性

基因型差异使得同一种蔬菜对重金属元素的吸收、累积特点各不相同。此外,土壤粘粒含量、有机质含量、pH值等土壤环境条件都会导致蔬菜中重金属含量差异[9]。

重金属污染以镉和铅为主,根茎类和瓜果类较为突出;镉污染最严重,排序为:根茎类、瓜果类、豆类、叶菜类;芋头和葱中镉污染均超标,最大超标倍数分别达到1.9倍和5.1倍[10]。叶菜类蔬菜中锌、铜、铅平均含量均高于瓜豆类蔬菜,只有镉的平均含量低于瓜豆类蔬菜[11]。不同种类和类型的蔬菜对重金属的富集能力不同,Zn:叶菜类>瓜果类>根茎类;As:叶菜类>根茎类>瓜果类;Hg:根茎类>瓜果类>叶菜类[8]。

3.3 同种蔬菜对不同重金属的吸收和富集差异性

蔬菜对Cu、Zn、Pb的相对富集能力基本一致,其富集系数顺序为Pb>Cu>Zn[3]。同一种蔬菜吸收不同重金属的能力不同,富集元素的规律是Cd>Zn、Cu>Pb、Hg、As、Cr。也有发现当Zn、Cd、Cu混施时,Cd的存在促进了大豆叶片中Zn的积累,而Cu的存在则使Zn和Cd的浓度降低[12]。

3.4 不同部位的差异性

重金属在植株体内各部位的分布状况不同。一般在进入器官积累多。菠菜Cd的积累量为叶片、根>茎,而Cd和Cu的积累量依次为叶片>根>茎杆,Pb的积累量则依次为根>茎>叶片;青菜叶片中的Cr、Cd、Pb、Cu等的含量均高于茎[12]。铜和锌含量地下部要比地上部高,蒲公英地上部的铜和镉含量明显高于地下部,地上部分别是地下部的2.80倍和1.92倍;野三七地上部的铅含量也比地下部高,是地下部的1.21倍;水芹地上部的镉含量也高于地下部,是后者的1.53倍[6]。

4 评价方法

对重金属污染评价方法有很多,主要以指数法最多,其中指数法分单项因子污染指数法和综合污染指数法。

某样点蔬菜的污染程度单项污染指数Pi是根据蔬菜中污染物含量与相应评价标准进行计算,其计算式为Pi=Ci/Si。式中,Ci表示污染物实测值;Si表示污染物评价标准。Pi1 为污染。

综合污染指数法主要考察高浓度污染物对环境质量的影响,可以全面反映各污染物对土壤的不同作用。目前,内梅罗综合污染指数法在国内应用较为普遍。

5 参考文献

[1] 谢正苗,李静,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的环境质量评价[J].环境科学,2006,27(4):742-747.

[2] 宋明义,刘军保,周涛发,等.杭州城市土壤重金属的化学形态及环境效应[J].生态环境,2008,17(2):666-670.

[3] 王玉洁,朱维琴,金俊,等.杭州市农田蔬菜中Cu、Zn和Pb污染评价及富集特性研究[J].杭州师范大学学报:自然科学版,2010,9(1):65-70.

[4] 郭军玲,张春梅,卢升高.城市污染土壤中磁性物质对重金属的富集作用[J].土壤通报,2009,40(6):1421-1425.

[5] 李仪,章明奎.杭州西郊茶园土壤重金属的积累特点与来源分析[J].广东微量元素科学,2010,17(2):18-25.

[6] 杨晓秋,丁枫华,孔文杰,等.几种野生蔬菜重金属积累状况的调查研究[J].广东微量元素科学,2005,12(7):12-16.

[7] 刘景红,陈玉成.中国主要城市蔬菜重金属污染格局的初步分析[J].微量元素与健康研究,2004(5):42-44.

[8] 张宇燕,陈宏.重庆市市售蔬菜中锌、砷、汞的污染现状评价[J].三峡环境与生态,2012(1):47-51.

[9] 郑小林,唐纯良,许瑞明,等.湛江市郊区蔬菜的重金属含量检测与评价[J].农业环境与发展,2004(2):34.

篇(9)

Study on the status and detection technology of heavy metal pollution in water environment

CHEN Huiming, LIU Min, XIAO Nanjiao, LUO Yong

(Jiangxi Environmental Monitoring Center, 330039, Nanchang, PRC)

Abstract: this paper summarizes the current situation of heavy metal pollution in water environment in China .It has been found that many bays and rivers have been polluted by heavy metals in China, and they are mostly compound pollution. The author also introduces some detective methods, such as electrochemical analytical methods and spectral methods and etc. The research results can be used for providing technological support for detection of heavy metal and protection of ecological environment.

Key words: water environment; heavy mental pollution; detection

前言

若金属元素的原子密度超过每立方厘米五克,即可认为其是重金属。如铜、铅、锌、镉铁、锰等,均属于重金属,共有四十五种。若水体内排入的重金属物质,无法结合自净能力将其净化,而最终导致水体的性质、组成等发生改变,影响水体内生物生长,并对人的健康、生活产生不良影响的,即属于水环境重金属污染。在工业、农业快速发展的同时,许多污染物被排入河流内,其中也包含重金属,最终导致水质恶化,也由此产生了一系列严重后果。不论是在何种环境中,重金属污染物的降解都极为困难,并且能够积累在植物、动物体内,并结合食物链不断富集,最终进入人体,对人体健康产生危害,这类污染物也是对人体产生最大危害的一种污染物[1]。

1、目前我国水环境中重金属污染的现状

1.1我国水环境重金属污染的范围比较广

不论是海南的三亚湾、还是广东地区的北江、亦或是武汉的东湖、连云港的排淡河、山东地区的胶州湾、长春的松花江等,都体现出了极为显著的重金属污染特征。

1.2我国水环境中重金属污染大多为复合污染

对比国家相关的水质标准来看,山东曲阜的大沂河、包头段黄河内,均出现了极为严重的Cu等重金属的污染。Cd污染,则主要出现在香港的四大重点河流之中;就黄浦江上游的饮用水源来看,不论是支流、还是干流,Hg的平均浓度均超过了地表水环境质量标准(GB3838-2002)的Ⅲ类水标准,而对比Ⅲ类水标准后可以发现,不论是干流、还是支流的As浓度相对较低[2]。

1.3重金属的含量与水环境的盐度及pH值等有关

若盐度偏高,则重金属元素在水中的含量相对较高、水底沉积物内则不会出现较高的金属含量;若盐度偏低,则恰好相反。当pH值相对偏高时,重金属元素含量偏低的为水体,而偏高的则为水底沉积物;若pH值较低时,则正好相反[3]。

1.4重金属含量一般表现为近岸高,中部低;沉积物中高,水相中较低

第二松花江中下游河段,水中重金属平均含量都不高,且远未达到国家制定的相关地表水水质标准;对比河段水中的重金属含量来看,沉积物内的重金属含量则明显偏高。在巢湖湖区、支流沉积物内重金属含量的对比方面来看,支流的Cd、Zn等含量更高。

1.5重金属的潜在生态风险较高

处于第二松花江中下游区域的沉积物,其重金属含量目前已达到中等偏强的生态风险等级,且主要为Cd以及Hg。长江口表层水体内存在的类金属以及重金属,就采样点位来看,重金属含量相对较低,但仍有潜在风险存在。香港重点河流,基本都面临生态危害,有个别区域目前的生态危害已相对较强。此外,水量、季节的变化等,也都会导致水环境内重金属含量产生变化。

2、水环境中重金属的检测技术方法研究与发展

因为不论是人体、还是环境,都将因重金属元素受到影响,所以检测重金属工作就显得极为关键。当前,对重金属进行检测的方法主要有:电化学法、光谱法等。

2.1电化学分析法

结合电极上、溶液内物质的化学性质,由此形成的一种分析方法,即为电化学分析法。结构简单、小巧、操作便捷,都是该方法的主要优点,能够进行连续、自动化分析,分析方法较为准确、便捷[4]。具体方法包括如下:

2.1.1伏安法和极谱法

结合电解过程,不论是极谱法、还是伏安法,都可对流-电位、电位-时间曲线进行分析,其区别在于:前者运用的是表面可周期更新的滴汞电极、后者则为表面无法更新、固体电极等液体电极。伏安法内还包括了吸附溶出、阴极溶出伏安法等,其检测下限极低,这也是伏安法的主要优势,能够在现场、在线运用,同时也可实现多元素识别[5]。

2.1.2电位分析法

若此时的电流为零,电位分析法可对电池的电极电位、电动势等进行测定,由此结合浓度以及电极电位的关系,实现物质浓度的测定。该方法的优点较多,如试样需求较少、较好的选择性,同时不会破坏试液,因此在分析珍贵试样时,较为适用。这种方法能够实现快速测定、操作相对简单,因此连续化、自动化也可实现。

2.1.3电导分析法

结合对溶液电导值的测量,获得其中离子浓度的方法,即被认为是电导分析法,大致可分为两种,分别是电导滴定法以及直接电导法。其优势在于便捷、快速,后者的灵敏度相对较高,缺点则是电导值的测定,为所有电导的总和,而不能对其中具体离子的含量进行测定和区分,由此影响选择性。

2.2光谱法

2.2.1原子荧光光谱法

其原理在于,原子蒸气对特定波长的光辐射进行吸收,由此得以激发,当原子被激发以后,结合该过程发射出特定波长的光辐射,即原子荧光。在相应的实验条件下,不论荧光类型是什么,其辐射强度均与被分析物质的原子浓度为正比关系,按照波长分布可开展定性分析。这种方法的选择性较强、灵敏度相对较高,方法相对简单。其欠缺之处在于,应用范围并不广泛,因为许多物质的荧光产生,需要结合试剂加入才能实现[6]。另外,还需要深入的对化合物结构、荧光产生过程的关系进行探究。

2.2.2原子发射光谱法

结合电激发、热激发之下,试样内的不同离子、原子发射特征的电磁辐射,而开展的针对元素的定量、定性分析的方法,即为原子发射光谱法。其优势在于,有较好的选择性、分析速度相对较快,随待测元素的多少,会对准确度存在影响。其缺陷在于,设备相对昂贵,而如硫等非金属元素,则无法较为灵敏的加以分析。一般以元素分析为主,但就样品内上述元素的化合物状态,则无法确定。

2.2.3原子吸收光谱法

以蒸汽相内被测元素的基态粒子为基础,测定原子共振辐射的吸收强度、被测元素含量的一种方式,即为原子吸收光谱法。火焰原子吸收光谱法的检测限可达到10-9g/L,石墨炉原子吸收光谱法的检测限可达到10-10~10-14g/L[7]。此种方式的优势在于:良好的选择性、较高的准确性、易于消除、干扰相对较少;缺陷则在于:无法直接对许多非金属元素加以测定,对一种元素分析之后,就需要对元素灯进行更换,对不同元素的测定,则需要对不同的元素灯进行更换,无法完成同时对各类元素的测定,若试样相对复杂,则会产生严重干扰,仪器较为昂贵。

2.2.4电感耦合等离子体光谱法

在当前应用的AES光源中,应用最为广泛的当属电感耦合等离子体光源。对比上述方法来看,这种方法具备如下优势,干扰相对较少、分析速度相对较快、较宽的线性范围,能实现多种被测元素特征光谱的同时读取,此外还可以对多种元素同时进行定量、定性分析。其缺陷在于,操作以及设备费用相对较高,就部分元素而言,也不存在显著优势。

2.2.5质谱法

通过对待测物质进行分子到带电粒子的转化,结合交变电场、稳定磁场的利用,让上述粒子可结合质量大小的顺序排序,并对此进行分离,形成具备一定规则,同时能够检测的质量谱,即为质谱法。和其他方式对比来看,这种方法具有如下优势:动态范围相对宽泛、分析精密度相对较高、可同时对多种元素进行测定,其能够精确的对同位素信息进行提供[8]。但是,这类仪器的造价相对过高,就目前而言,本方法的应用依然以研究领域为主,并且,在预处理检测样品方面,步骤相对较多,对仪器自动化带来了诸多困难。

此外,包括生物传感器、酶抑制法等相关检测方法,伴随着检测技术的逐渐发展,也在检测水环境重金属方面,发挥了越来越关键的作用。

3、结论

重金属污染能够不断富集,并最终对动植物、人体以及环境产生一定负面影响,具备潜在的危险性,因此这也是一个不容忽视的问题。工业污染是重金属污染的主要来源,企业的排放要达标,管理要严格,最为关键的是当前国家的管理机制尚未健全,仍需继续完善。在水环境监测工作方面,重金属检测工作能够为此提供一定依据。近年来,伴随着多种分析仪器的开发,重金属检测也逐步体现出准确性、灵敏度高等优势。各类检测方法都具备各自的特点以及适用的范围,如电感耦合等方法,具有较高的灵敏度,能够在几乎所有重金属检测方面运用,但就处理样品以及检测进程来看,相对复杂,因此若想实现在线、现场检测,则相对困难,不论是使用仪器、还是安装设备,都具有较高要求。

参考文献

[1]廖国礼,吴超.尾矿区重金属污染浓度预测模型及其应用[J].中南大学学报,2004,35(6).

[2]贺志鹏,宋金明,张乃星等.南黄海表层海水重金属的变化特征及影响因素[J].环境科学,2008,29(5):1153-1161.

[3]黄智伟.表层海水重金属的变化特征及影响因素[J].基础科学,2014,3(下).

[4]方惠群,于俊生,史坚.仪器分析[M].北京:科学出版社,2002,66.

[5]白燕,李素梅,周艳辉等.电分析化学进展[M].西安:西安地图出版社,1999.

[6]吴晋霞.原子荧光法测定环境空气和肺气中As、Hg、Sb、Sn国家标准制定研究[D].新疆大学,2011.

[7]杨柳.浊点萃取-火焰原子吸收光谱法测定痕量金属元素的研究[D].湘潭大学,2007.

篇(10)

基金项目:云南省应用基础研究自筹经费项目(编号:2010ZC090)资助

作者简介:吴 明(1987―),女,西南林业大学环境与科学工程系硕士研究生。

通讯作者:贝荣塔(1965―),男,广西昭平人,硕士,副教授,主要从事土壤学、环境污染及环境生态等方面的教学与研究工作。

中图分类号:X143

文献标识码:A

文章编号:16749944(2011)10009303

1 引言

自20世纪20年代以来,随着采矿、冶炼、化工、电镀、电子等行业的发展,以及民用固体废弃物不合理填埋和堆放,大量化肥、农药的施用,使得各种重金属污染物进入到生态环境当中。许多发展中和发达国家,都面临着同样严重的重金属污染问题[1]。据我国环保部门统计,从2009年至今,我国已经连续发生30多起特大重金属污染事件。从2006年甘肃徽县铅中毒事件到2010年江苏盐城大丰市儿童血铅事件;从2009年湖南娄底双峰县某公司违法转移铬渣引起铬污染事件到2011年云南省铬渣入水库事件[2],重金属污染事件的频繁发生,已经对人们的生存构成威胁,因此引起人们高度重视。

重金属是指原子密度大于5g/cm3的金属元素,大约有40种,主要包括Cd、Cr、Hg、Pb、Cu、Zn、Ag、Sn等[3]。因此,一般认为不超过一定浓度的重金属都不会对人体造成危害。但是重金属由于不能被生物降解,通过食物链的富集后进入人体。当达到一定浓度后就会对人体造成伤害[4]。实验证明铅是重金属污染中毒性较大的一种。一旦进入人体很难排除。铅不仅能直接伤害人的脑细胞,特别是胎儿的神经系统,造成先天智力低下,甚至有致癌、致突变作用[5]。镉可以导致高血压,引起心脑血管疾病,破坏骨骼和肝肾,引起肾功能衰竭。砷是砒霜的组成之一,有剧毒,会致人迅速死亡,长期少量接触,会导致慢性中毒,并有致癌性[6]。因此,加强对重金属污染治理的研究对社会的可持续发展具有重要的意义。

2 野外采样与测试分析

2.1 研究区域自然概况

东郊垃圾填埋场位于昆明市东南方向官渡区阿拉乡白水塘村,是目前昆明市主城区生活垃圾处理两大基地之一。该区域位于白水塘村东南方向,东经102°51′36″~102°52′12″,北纬24°58′48″~25°0′0″,东西宽约1 000m,南北长约500m,占地面积约为0.48km2。该区域地形复杂,平均海拔为2 000m,属低纬度高海拔地区。

本区域气候属北纬亚热带气候,夏无酷暑,冬无严寒,四季如春,分为明显的干、湿两季。平均气温14.5℃,最热月平均气温19.7℃,最冷月平均气温7.5℃。全年降水量约1 031mm,相对湿度为74%。全年无霜期近年均在240d以上。全年晴天较多,日照数年均2445.6h,日照率56%.终年太阳投射角度大,年均总辐射量达129.78kCal/cm2,其中湿季62.78kCal/cm2,干季67kCal/cm2。该区域自然土壤为红色土壤,堆填区无植被覆盖,垃圾场四周植被稀疏,多为草本植物和小灌木,乔木以低龄松树为主。

2.2 样品采集

实验材料来源于昆明市东郊垃圾填埋场的渗滤水处理厂。该处理厂采用的处理方法是利用露天过滤池对渗滤水进行过滤,同时进处理车间进行处理,然后将处理后的水排入处理后水池,最后排入环境。

在渗滤水处理厂中布点采样,布点见图1。用塑料瓶分别在各池和蓄积雨水地采集渗滤水水样。在二级未过滤水池、一级未过滤水池、原水池、处理后水池以及蓄积雨水地取的水样分别标号为1、2、3、4、0,其中1、2、3、4号水样分别取4个重复,0号水样取两个重复。水样存放于实验室内,待分析测定。

2.3 测试分析

2.3.1 水样中铜、锌、铅、镉等测定分析过程

铜、锌、铅、镉等金属的测定分析采用原子吸收分光光度法[7~8]。使用仪器是北京瑞利原子吸收分光光度计[9]。水样预处理:取50mL水样放入100mL烧杯中,加入浓硝酸5mL,在电热板上加热消解(不要沸腾)。蒸至10mL左右,加入5mL硝酸和2mL高氯酸。继续消解,直至1mL左右。如果消解不完全,再加入5mL硝酸和2mL高氯酸,再次蒸至1mL左右。取下冷却,加水溶解残渣,通过中速滤纸滤入50mL容量瓶中,用蒸馏水稀释至标线。分别在原子吸收分光光度计上测定吸光度[10]。

2.3.2 水样中砷的测定分析过程

水样中砷的测定采用二乙氨基二硫代甲酸银分光光度法[7~8]。使用的仪器是北京普析TU-1800紫外分析光度计[9]。取50mL水样放入100mL烧杯中,加入4mL浓硫酸和5mL浓硝酸。在电热板上加热消解至产生白色烟雾。如溶液不澄清,可再加5mL浓硝酸,继续加热至溶液澄清。取出冷却,定容到50mL容量瓶中。把消解液倒入砷发生器中(预先接好),加入4mL碘化钾,2mL氯化亚锡,摇匀,放置15min。取5mL吸收液置于干燥的吸收管中,插入导气管,与砷发生器中迅速放入4g无砷锌粒,并立即将导气管与发生器连接好(保证连接处不漏气),在室温下反应1h,使砷完全释出。反应完全后,用三氯甲烷将吸收液体积补足到5mL[10]。

3 结果与分析

3.1 渗滤水中主要重金属成分及含量

通过用北京普析TU-1800紫外分析光度计和北京瑞利原子吸收分光光度计分析,得到了垃圾渗滤水中的主要重金属成分及含量(表1)。

注:0.000 0代表未检出

由表1看出,昆明市东郊垃圾填埋场渗滤水处理厂中渗滤水中主要重金属包括砷、铬、铜、锌、铅、镉、锰。从平均值可以看出,重金属含量从高到低依次是铅、锰、锌、镉、砷、铬、铜。随着分级的处理,1、2、3号池中重金属砷、铬、铜、锌、锰的含量逐步降低,镉的含量有少量降低,而铅的含量有所波动。在4号池中,除了铅的含量不稳定外,各重金属的含量均是降低的。由0号水样数据可以看出,除了铅,其他重金属含量均与4号相近。由此,可以推断出东郊垃圾场渗滤水处理厂所采用的露天蒸发等处理技术对铅的去除力不明显,对其他金属的去除力较明显。

3.2 渗滤水中重金属污染状况

3.2.1 地表水环境质量

地表水环境质量标准(GB3838-88)[2]规定,依据地面水水域使用目的和保护目标将其划分为5类。该区域用水属于农业用水区及一般景观要求水域,应该执行Ⅴ类标准。本区域中地表水包括过滤池池水和蓄积雨水。根据标准限制不同,将数据分为两组,分别对比(表2)。

3.2.2 砷、铬、镉达标状况

结合图2和表2,可以看出,水样在进处理车间前,即水在过滤池内时,除铬外,其他重金属的含量均不能达到Ⅴ类标准。而蓄积雨水中,镉含量不达标,砷、铬含量达标。

3.2.3 铜、锌、锰、铅达标状况

结合图3和表2,可以看出,水样在过滤池内时,铅的含量严重超标,铜和锌含量微小,锰的含量只在原水中超标。而蓄积雨水中,除铅外,其他重金属含量均远远小于标准值。

可以得出,从重金属方面看,水样在进处理车间前,砷、镉、铅含量达不到Ⅴ类标准,其他重金属达标;在蓄积雨水中,镉、铅达不到Ⅴ类标准,其他重金属均达标。渗滤水水质达不到Ⅴ类标准,处理后也不能达到Ⅴ类标准,不能用于用水。蓄积雨水,也达不到Ⅴ类标准,可见当地地表水已被污染。

图3 铜、锰、铅、锌含量おお

3.3 渗滤水中重金属排放状况

根据污水综合排放标准(GB8978-88)[2],按地面水域使用功能要求和污水排放去向,对地面水水域和城市下水道排放的污水分别执行一、二、三级标准。该区域用水属于农业用水,对应标准中的一般保护水域,因此执行二级标准。将排放处测定值与测定标准进行比较,见表3。

表3 污染物最高允许排放浓度及测量数据比较mg/L

AsCuZnPbCdMnCr

排放处测定值0.0130.000 00.000 00.3650.096 30.098 50.884 6

第一类污染物0.51.00.11.5

第二类污染物(二级标准)1.05.05.0

结果达标达标达标达标达标达标达标

东郊垃圾场渗滤水处理厂处理后水样中7种主要重金属的含量均低于污染物最高允许排放浓度,可以排放进入环境中。从而推断出渗滤水原水必须经过处理后才能进行排放,否则会对环境造成重金属污染,因此垃圾场渗滤水处理厂的建设是非常必要的。

4 结语

昆明市东郊垃圾填埋场渗滤水处理厂中渗滤水中主要重金属包括砷、铬、铜、锌、铅、镉、锰。从平均值可以看出,重金属含量从高到低依次是铅、锰、锌、镉、砷、铬、铜。处理技术对铅的去除力不明显,其他重金属均较明显。可见该渗滤水处理厂需改进技术,加强对铅的去除能力。

从重金属方面看,水样在进处理车间前,砷、镉、铅含量达不到Ⅴ类标准,其他重金属达标;在蓄积雨水中,镉、铅达不到Ⅴ类标准,其他重金属均达标。

(1)渗滤水中含有多种重金属污染物,对于难去除的重金属应该特别对待,建议在露天蒸发过程中应对过滤池进行防渗处理。

(2)昆明在雨季时,降雨量较大,此时应该对渗滤池进行保护,以防正在进行过滤的渗滤水溢出,进入河水或者水库,污染更多水体。

(3)建议相关政府部门加强对垃圾场环境的宣传及管理工作,发动周边群众一起监督垃圾场的工作。

参考文献:

[1]

吕艳春.重金属急性毒性研究进展[J].科技信息,2009(32):329~330.

[2] 周建民.重金属污染现状[J].金属世界,2010(3):25~26.

[3] 王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005(3):596~605.

[4] 许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1996.

[5] 贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20(1):39~42.

[6] 陈静生.环境地球化学[M].北京.海洋出版社,1989.

[7] 奚旦立,孙裕生,刘秀英.环境监测(修订版)[M].北京:高等教育出版社,2004.

[8] 国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.

[9] 贝荣塔,李丰伟,马 叶,等.污染河流悬沙与铜、锌污染相关性研究[J].环境科技,2009,22(4):4~6.

[10] 奚旦立,陆雍森,蒋展鹏.环境工程手册-环境监测卷[M].北京:高等教育出版社,1998.

Study on Current Situation of Heavy Metal Pollution in Landfill Leakage Water in Eastern Suburbs of Kunming City

Wu Ming,Bei Rongta,Li Jing

篇(11)

中图分类号:X825 文献标识码:A

随着交通运输业的发展,居民对交通的依赖程度越来越高,车辆流通量也随之迅猛增加.但是交通运输给居民生活带来方便的同时也产生了很多环境问题,成为城市土壤污染的主要来源之一[1-2].Bergbck等发现交通工具为高速公路土壤重金属污染主要来源,其中Cd,Cu,Cr,Pb和Zn分别占90%,40%,99%,85%和80%[3].主要来源于交通工具的燃油、刹车、轮胎、离合器、发动机及触媒转换器等[4].通过大气干沉积或湿沉降沉积在公路两侧土壤中.

2013年第68届联合国大会决议通过了每年的12月5日为世界土壤日,并宣布2015年为“国际土壤年”,以国际社会对土壤安全问题的高度重视.土壤重金属污染不仅可使土壤的肥力下降,降低农作物产量,且其不易降解而在生物体内传递,并通过食物链最终累积于人体中,当其达到一定浓度后将对人体产生毒害作用[5].土壤作为重金属的沉积池,可通过风力和降雨进入大气环境和周围水域,而对周围环境和人体健康产生二次污染.因此,研究高速公路对路域土壤的重金属污染现状对公路旁土壤重金属污染的防治和公路旁土地合理利用、规划和管理提供依据,具有重要的现实意义.

健康风险评价(Health Risk Assessment)是对暴露在污染物中的人群可能产生的伤害、疾病或者死亡的可能性进行的定性或定量的评价,作为污染物防治的辅助工具已经得到国际上的广泛认可.近年来,学者们纷纷对高速公路两侧路尘的重金属污染进行健康风险评价[6-7],但对高速公路路域土壤重金属健康风险的研究很少.健康风险评价是根据不同的吸收途径和每日暴露剂量来估算有毒重金属对人体的健康风险进行评价.因此,高速公路土壤重金属健康风险评价对居民和政府缓解有毒重金属污染及对居民采取有效保护措施具有十分重要的意义.

1材料及分析方法

1.1采样点概况及样品采集

2014年湖南全省高速公路完成投资390亿元,通车总里程达到5 493 km,位居全国第五.其中京港澳高速(G4)和沪昆高速公路(G60)属于中国高速公路网的“五纵七横”主骨架网,相交于湖南湘潭市岳塘区的殷家坳,为湖南省交通承东启西、南联北进的代表.因此,本文以这两条高速公路展开调查研究.

本研究根据不同的开通时间和交通量,选取了3个采样路段分别为G4高速公路的临长段(LC)和长潭段(CT),G60高速公路的潭邵段(TS),具体采样位置见图1.每个采样地段根据与高速公路垂直距离(5 m,10 m,15 m,40 m 和 80 m),用采样器采取0~10 cm的土壤1 kg,每个采样点设3个平行样,总共采取45个土壤样品.采取的土壤样品在实验室进行自然风干,研磨后过筛网,储存于聚丙烯容器内,并将容器存放于4 ℃的冰箱内等待进一步检测.

2分析与讨论

2.1土壤特性、重金属浓度及其与距离的关系

高速公路路边土壤中的重金属浓度受土壤特性、交通量和气象条件的影响[22].本研究中的土壤样品的物理化学特性的分析结果见表3.土壤粒径分级显示本研究土壤样品的粒径较粗,特别是TS的土样.黏土含量为12.76%~34.13%,且越靠近高速公路的土样的黏土含量越少.可能是因为公路建设时填入的建筑材料的影响,如沙子,砾石.pH值表明本研究区域的土壤为酸性,LC,CT和TS的土壤pH值分别为4.14~6.53,4.42~4.98和5.06~6.45.表3显示,pH值和有机物含量随离高速公路的距离的增加而减少,可能是高速公路建设时在路边填入的石灰等碱性材料和路面缺少植被等原因造成.

重金属浓度的平均值、标准偏差见表4.大体上,此5种重金属的浓度随距离的增加而降低,显示其与交通的相关性.它们在LC,CT和TS路段的浓度梯度分别为Cr > Zn > Pb > Cu > Cd, Cr > Zn > Pb > Cu > Cd和Zn>Cr> Pb > Cu > Cd,此结果与孔德秀等人对衡枣高速公路的研究一致[23].

表3中显示LC和TS的运行年限都为13a,但是LC段的交通量为70 903 veh/d远大于TS段49 601 veh/d的交通量.LC段所研究的5种重金属的浓度大于TS段(表4),表明重金属的浓度与交通量成正比.再一次说明研究的5种重金属与交通状况的相关性.

由表4可见,5种重金属除了Cd和距离高速公路5 m处Cr的浓度外,其它重金属的浓度都低于中华人民共和国土壤标准值.重金属Cd在LC,CT和TS的浓度分别为0.2~1.0 mg/kg,0.3~1.4 mg/kg和0.1~1.0 mg/kg.其中距离高速公路5 m处Cd的浓度几乎是土壤标准值的4~5倍.可能的原因有:第一,高速公路来往车辆磨损并长期的积累.第二,中华人民共和国的土壤标准值是很早以前制定的,比其它国际的标准值都小,从而增大了比值.比如,在美国,其土壤污染等级划分为:0~1 mg/kg,无污染;1~3 mg/kg,轻度污染;3~10 mg/kg,重度污染[24].柏林的Cd的土壤背景值为1.05 mg/kg[25].

LC,CT和TS路段距离高速公路5 m处Zn的浓度分别为122.09 mg/kg,102.37 mg/kg和143.86 mg/kg,其它在37~75 mg/kg之间波动.Zn的浓度在5~10 m之间急剧减少表明其与交通工具的正相关性.有研究显示,Zn以锌氧化物添加在车轮中,它是橡胶硫化的重要反应物.Cr在LC段距离公路5 m处的浓度最大,为135.99 mg/kg,其它研究区的浓度在30~90 mg/kg之间波动.Pb和Cu的浓度稍微偏低,分别为25~61 mg/kg和15~25 mg/kg.

重金属的浓度结合表3中的交通量和运行年限,可以看出重金属Cd,Pb和Cu与交通量及运行年限成正相关.Othman等人也发现了高速公路路域土壤中Pb浓度和交通量这种正相关的关系[26].Zn和Cr与交通量及运行年限的关系并不明显.

2.2重金属的污染程度评估

地积累指数(Igeo)评估结果见表4.重金属Cd的Igeo值最大,距离高速公路5 m处的Igeo>3,表明该区域的Cd为重度污染.其污染程度随距离的增加而降低,但是远到距离高速公路80 m处仍有轻度污染.Cu的Igeo都小于零,表明其无污染.其它3种重金属(Pb,Zn和Cr)分别在5 m处显示了轻度污染,其它地方都为无污染.

5种重金属的潜在生态风险评估结果见图2.它们的潜在生态风险指数梯度为Cd>Pb>Cu>Cr>Zn.其数值随着与高速公路的垂直距离的增加而减小.表中显示除了Cd其它重金属的单项重金属潜在生态风险指数都小于40,表明都对当地的土壤系统无潜在危害.因此,研究区域土壤环境主要的污染物为Cd.其在距离高速公路5 m处的Eir>320,表明其生态风险危害程度高.且其在80 m处仍为轻微的生态风险.

在研究的3个路段中,潜在生态风险指数的大小为CT > LC > TS.3个研究路段距离高速公路5 m处的RI值都大于300,表明都有中度的生态风险.

从以上的讨论可以看出,地积累指数和潜在生态风险指数两种重金属污染程度评价存在一些分歧.比如,按地积累指数评价法重金属Pb几乎是无污染的,但是由于其高毒性,按潜在生态风险指数法为低污染程度.翟云波等也发现它们存在一些分歧[27].但是,根据定义,地积累指数侧重于单项的金属污染程度,但并没有考虑单项重金属的毒性.而潜在生态风险指数更注重评价的重金属的综合污染程度.因此,为了获得更全面的和精确的评价结果,本文采用了2种评价方法.

2.3健康风险评价

图3和图4分别给出了消化道、皮肤接触和呼吸(空气)3种暴露途径下生活在高速公路路域的成年人和未成年人的非致癌风险商数.整体而言,未成年人的非致癌风险商数要大于成年人的.5种重金属通过呼吸道,皮肤接触和呼吸3种暴露途径的非致癌风险商数的大小为:Cr>Pb>Cd>Cu>Zn,Cr>Cd>Pb>Cu>Zn 和Cr>Pb>Cd>Cu>Zn.

3种暴露途径的非致癌风险商数之和为非致癌污染指数.5种重金属的非致癌污染指数见图5.从图中可以看出,Cr的非致癌污染指数是最大的,其次分别是Cd,Pb,Cu和Zn,且随高速公路的距离的增加而降低.根据美国环保局的健康风险评估条例[28]:如评价的单项重金属的HQ或者HI1,则其对周围的居民存在慢性的健康危害风险.不难看出,图5 Cd和Cr的非致癌污染指数超过了1,且对于未成年人,3个研究路段80 m处,Cd和Pb的非致癌污染指数也超过了1,表明它们对周围居民有潜在的健康风险危害.有研究显示,过量摄入Cr,可能会触发肺癌和胃癌.在3个研究路段非致癌污染主要来源于皮肤接触,其次是经口摄入被消化道吸收.因此,周围的居民应注意饮食摄入,最好不要让皮肤直接接触土壤,且最好居住于距离高速公路80 m 以外.

另一个健康分析评价的重要参数是致癌风险.3个研究路段中重金属对成年人和未成年人的致癌风险值见图6.由于缺少Pb,Cu和Zn的致癌坡度因子,本文只讨论了Cd和Cr的致癌风险.显然,Cr的致癌风险要大于Cd,且二者的致癌风险随距离高速公路的距离的增加而降低.根据Fryer等人的评估[29],CR>1×10 4,则其致癌风险是不能接受的,CR值在10 6~10 4之间,则表示存在致癌风险,但在可容忍的范围内.从图6可以看出,重金属Cr对未成年人的致癌风险在10 6~10 4之间,属于可以接受的范围,但也存在轻微的致癌风险.其致癌风险随高速公路距离的增加而降低,LC和CT远在80 m处仍明显大于10 6,TS段80 m处降至接近10 6.对于成年人,两种重金属Cr和Cd的致癌风险都在安全范围内.

综上所述,高速公路G4和G60的3个研究路段(LC,CT和TS)的健康风险评价结果表明,5种重金属对周围居民的健康危害风险随与高速公路距离的增加而降低.其中Cr,Cd和Pb对周围的居民存在潜在的健康危害风险.Cr的致癌风险要大于Cd,且Cr对未成年人有轻微的致癌风险.但总体而言,致癌风险都在安全范围内.非致癌污染指数和致癌风险指数表明高速公路周围的居民应居住在距离高速公路80 m之外.

3结论

受交通运输的影响,G4和G60高速公路路域土壤中所研究的5种重金属的浓度较高,靠近高速公路的采样点中Cd和Cr浓度超过了土壤环境二级标准.重金属浓度随离公路的距离的增加而降低,且与高速公路的交通量成正比.所检测的5种重金属的污染状况是Cd>Pb>Cr>Zn>Cu,其中Cd超过了国家土壤质量标准值的3~4倍,为重度污染,存在严重生态风险.在CT路段远到80 m处Cd仍显示轻微的污染.其它重金属为轻度污染或者无污染.健康风险评价表明,所研究的5种重金属对未成年人的非致癌伤害大于成年人的.其中Cd,Cr和Pb对周围的居民存在潜在的非致癌污染.3个研究路段80 m处,Cr和Cd对未成年人有轻微的致癌风险,但在可接受的范围内.因此,周围的居民应注意饮食摄入,最好不要让皮肤直接接触路域土壤,且应居住于高速公路80 m之外.

参考文献

[1]CARRERO J A,ARRIZABALAGA I,BUSTAMANTE J,et al. Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of trafficrelated elements[J]. Science of the Total Environment,2013,458/460: 427-434.

[2]胡晓荣,查红平. 成渝高速公路旁土壤铅污染分布及评价[J]. 四川师范大学学报:自然科学版,2007,3(2): 228-231.

HU Xiaorong,ZHA Hongping. Lead pollution distribution and evaluation in soil along Chengyu highways[J].Journal of Sichuan Normal University:Natural Science,2007,3(2):228-231.(In Chinese)

[3]BERGBCK B,JOHANSSON K,MOHLANDER U. Urban metal flowsA case study of stockholm review and conclusions[J]. Water,Air and Soil Pollution: Focus,2001, 1(3/4): 3-24.

[4]曾经,付晶. 长株潭地区公路两侧土壤重金属污染特性[J]. 长沙理工大学学报:自然科学版,2011,8(2): 81-85.

ZENG Jing,FU Jing. Heavy metal pollution characteristic in roadside soil in ChangshaZhuzhouXiangtan Area[J].Journal of Changsha University of Science and Technology:Natural Science,2011,8(2):81-85. (In Chinese)

[5]WERKENTHIN M,KLUGE B,WESSOLEK G. Metals in european roadside soils and soil solutionA review[J]. Environmental Pollution, 2014,189:98-110.

[6]WEI X,GAO B,WANG P,et al. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing,China[J]. Ecotoxicology and Environmental Safety,2015,112:186-192.

[7]BIAN B,LIN C,WU H S. Contamination and risk assessment of metals in roaddeposited sediments in a mediumsized city of China[J]. Ecotoxicology and Environmental Safety,2015,112:87-95.

[8]ZHANG G L,GONG Z T. Laboratory analysis method for soil investigation[M]. Beijing:Science Press,2012.

[9]MLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal 2,1969,108-118.

[10]HAKANSON L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research,1980,14(8): 975-1001.

[11]张颖,周军,张宝杰,等. 松花江表层沉积物有毒重金属污染评价[J]. 湖南大学学报:自然科学版, 2015, 42(6): 113-118.

ZHANG Ying,ZHOU Jun,ZHANG Baojie,et al. Toxic heavy metal pollution evaluation in the surface sediment of Songhua river[J]. Journal of Hunan University:Natural Science,2015,42(6):113-118.(In Chinese)

[12]USEPA.Risk assessment guidance for superfund:Volume IIIPart A,process for conducting probabilistic risk assessment [R].Washington:Office of Emergency and Remedial Response U.S. Environmental Protection Agency,2001.

[13]LI Z,MA Z,VAN DER KUIJP T J,et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment,2014,468/469:843-853.

[14]MARI M,NADAL M,SCHUHMACHER M,et al. Exposure to heavy metals and PCDD/Fs by the population living in the vicinity of a hazardous waste landfill in Catalonia,Spain: Health risk assessment[J]. Environment International,2009,35(7): 1034-1039.

[15]李飞,王晓钰,李雪. 土壤重金属的健康风险评价及其参数不确定性的量化研究[J]. 湖南大学学报:自然科学版,2015,42(6): 119-126.

LI Fei,WANG Xiaoyu,LI Xue. Health risk assessment for heavy metals in soils and qualititative study of parameter uncertainty [J]. Journal of Hunan University:Natural Science,2015,42(6): 119-126. (In Chinese)

[16]李飞,黄瑾辉,曾光明. 基于MonteCarlo模拟的土壤环境重金属污染评价法与实例研究[J]. 湖南大学学报:自然科学版,2013,40(9): 103-108.

LI Fei,HUANG Jinhui,ZENG Guangming,et al. Probabilistic enviromental quality assessment method and case study of soil heavy metals based on MonteCarlo simulotion[J]. Journal of Hunan University:Natural Science,2013,40(9): 103-108. (In Chinese)

[17]USEPA.Risk assessment guidance for superfund volume I:human health evaluation manual (Part E,supplemental guidance for dermal risk assessment) [R]. Washington:Office of Superfund Remediation and Technology Innovation Environmental Protection Agency,2004.

[18]SMITH R L. Use of monte carlo simulation for human Exposure assessment at a superfund site[J]. Risk Analysis,1994,14(4): 433-439.

[19]中华人民共和国国家环境保护标准[S]. 北京:中国环境科学出版社,2014:25-38.

Environmental protection department of the People's Republic of China.The state environmental protection standards of the People's Republic of China [S].Beijing:China Environmental Science Press,2014:25-38.(In Chinese)

[20]FINLEY B L,SCOTT P K,MAYHALL D A. Development of a standard soiltoskin adherence probability density function for use in monte carlo analyses of dermal exposure[J]. Risk Analysis,1994,14(4): 555-569.

[21]USEPA.Risk assessment guidance for superfund volume I: human health evaluation manual (Part F,supplemental guidance for inhalation risk aassessment)[R].Washington:Office of Superfund Remediation and Technology Innovation Environmental Protection Agency,2009.

[22]陈长林,李晓所,张勤,等. 公路交通对土壤重金属污染的研究[J]. 公共卫生与预防医学,2006,17(6): 19-21.

CHEN Changlin,LI Xiaosuo,ZHANG Qin,et al. Heavy metal pollution along the highway area with the method of geoaccumulation index[J]. Journal of Public Health and Previence Medicine,2006,17(6): 19-21.(In Chinese)

[23]孔德秀,姜守俊. 衡枣高速公路两侧土壤重金属的污染状况[J]. 城市环境与城市生态,2008,21(3): 34-37.

KONG Dexiu,JIANG Shoujun. Heavy metals pollution in roadside soil along Hengzao highway[J].Urban Environment and Urban Ecology,2008, 21(3): 34-37.(In Chinese)

[24]ALLOWAY B J. Heavy metals in soils[M]. 2nd ed. London: Blackie Academic & Professional,1995.

[25]AKBAR K F,HALE W H G,HEADLEY A D,et al. Heavy metal contamination of roadside soils of northern england[J]. Soil & Water Res,2006,4: 158-163.

[26]OTHMAN I,AL OUDAT M,AL MASRI M S. Lead levels in roadside soils and vegetation of damascus city[J]. Science of the Total Environment,1997,207(1): 43-48.