欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

量子计算的优势大全11篇

时间:2024-01-03 14:42:09

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇量子计算的优势范文,希望它们能为您的写作提供参考和启发。

量子计算的优势

篇(1)

中图分类号:TP18文献标识码:A文章编号:1009-3044(2009)24-7068-03

Optimal Knowledge Distribution Based on the Quantum Genetic Algorithm

ZHANG Wei, HE Rong

(Yunnan Medical College, Kunming 650051, China)

Abstract: Researched the question about knowledge distribution of intelligent examination system, based on the theory of quantum computing, applied quantum genetic algorithm, to improve the strategy of knowledge distribution optimization for better coverage and efficiency.

Key words: quantum algorithm; genetic algorithm; intelligent optimization; test system

智能组卷是一种新型的计算机考试系统。试卷由撒布在测试区域内的考题按一定出题规则自组织而成, 这些考题具有一定的代表性,能检测出学生对考察科目知识的学习掌握情况。考试系统中,考题的分布以及组织对于提高系统的测试水平具有重要的意义。传统的考试系统知识分布有两种策略,一种是人工规划(Planning模式),另一种是大规模的随机分散(Scattering模式)。前者缺乏灵活性与多样性,且效率低下,不适宜计算机组卷等大规模考试。而后者若要取得较好的分布,就必须设置远多于实际需要的考题才能较完整地覆盖考察科目的测试区域,这与试卷中题目数量的有限性是相互矛盾的,试卷中可能存在考题不合理分布造成的测试阴影和盲区。因此考题的合理分布对智能考试系统的测试效果有重要的作用。尽管针对考试系统国内外进行大量的组卷算法研究,但对于知识点的分布优化问题研究工作还很少,很多研究运用传统遗传算法组卷[1],优化效果不尽理想。针对此问题,本文应用量子遗传算法优化知识点的分布,克服测试阴影和盲区,使考试系统更大范围地测试到更有效的学生学习信息。

1 知识覆盖问题

通过对考试科目的学习,学生学习掌握的知识储存在头脑中。由于学生个体之间的学习差异,导致每个学生大脑中储存和掌握的情况具有不确定性。考试的目的在于,通过试卷测试对学生学习情况做出相对确定的评价。科目知识是相对固定的,我们总是将科目知识当作图谱,按图索骥地构造出试卷去测试学生大脑中相关区域中知识的学习掌握情况,即是否掌握,掌握水平如何等。但在目标试卷生成以前,题库中的考题相对与目标试卷而言表现为存在或不存在两种可能形态。基于此,本文引入量子态对考题进行描述、编码和处理。

1.1 试卷分布构成

试卷覆盖是指由计算机考试系统生成一组考题集合(试卷)对测试区域各个知识点的涵盖。试卷的目的是系统地测试和评价试卷覆盖知识区域内学生的学习情况,并对这些数据进行处理,获得详尽而准确的信息,传送到需要这些信息的教师和教学管理部门。

考题是由考点以问题的形式构成的。其中考点与考试科目的相关知识点对应。因此考题的分布是考试系统获取学生学习信息的关键因素之一,其覆盖范围以及分布优化也随之成为研究领域中的重点。

1.2 试卷覆盖问题

试卷由数量有限的考题组成,每道考题包含若干有针对性的知识点所设置的考点。这些考点形成了考题的测试范围。如何组织试卷完成对目标区域的检测,就是考试系统覆盖性的问题。考题分布优化的任务就是在保持试卷结构完整的前提下,动态调整考题组成,以获得尽可能大的覆盖率,也就是使试卷能获得更广泛的信息。在保持考点充分覆盖的前提下,引入以下定义。

假设考察科目所涵盖的知识范围用集合S表示,组成每套试卷的考题用集合Q={qi,i=1,2,...,n}表示,每道考题测试的知识范围为ci,试卷的测试目标知识区域为A,(A?哿S),则理想的探测效果为。设为试卷有效覆盖知识区域的度量(考点数),d2=A为目标科目知识区域的度量(知识点数),则称ρ=d1/d2为试卷覆盖度。

覆盖性问题不仅反映了试卷所能测试的范围,而且通过合理的覆盖控制还可以使试卷中的考题组合得到优化,提高试卷的命题质量。

1.3 约束条件

我们采用以下公理化方式对知识覆盖问题进行描述(目标):在考题集合Q={q1,q2,...,qn}中求一个子集T作为试卷,使得满足以下约束条件。

① 各考题满足试卷总体约束条件;

② 试卷覆盖度ρ最大;

③ 考题数目T为最少。

3 量子遗传算法的考题分布优化

试卷的考题分布优化是一个多目标优化问题 ,需要在考题数与知识覆盖率之间达到平衡。即在保持试卷中考题数目与题型符合命题要求的情况下,尽可能增加试卷的知识覆盖度,使考题获取最广泛的测试信息。

3.1 量子遗传算法

量子遗传算法是量子计算与遗传算法相结合的产物。它以量子计算的一些概念和理论为基础,用量子比特编码来表示染色体,用量子门作用和量子门更新来完成进化搜索[2]。

我们根据考题在科目知识中的分布和权重(主要是指命题价值)按字典序编号,形成知识地图的坐标。由于题库中的考题在目标试卷生成以前具有不确定性,即在目标试卷中既可能存在,也可能不存在。这符合量子力学中的测不准原则。我们对这些编号进行量子编码,并用量子遗传算法在命题规则的约束下进行知识分布优化。

3.1.1 量子编码

1) 量子态引入

我们用Dirac算符|>和|>分别表示考题在目标试卷中表现为存在或不存在的两种可能形态。若用“1”表示存在,用“0”表示不存在。考题以叠加态的形式存在。即将一个量子比特可能处于|0>和|1>之间的中间态。可表示为:

|Ψ>=α|0>+β|1> (2)

其中α和β分别是|0>和|1>的概率幅,且满足下列归一化条件:

|α|2+|β|2=1(3)

式(3)中,|α|2表示量子比特的观测值在|0>状态的概率投影,|β|2表示量子比特的观测值在|1>状态的概率投影。

定义2.1满足式(2)和式(3)的一对实数α、β称为一个量子比特的概率幅,记为[α,β]T。

定义2.2角度ζ(ζ∈[-π/2,π/2])定义为一个量子比特的相位,即ζ=arctan(β/α)。

2) 染色体量子编码

我们从题型、章节、考题三个方面对试卷的染色体及种群进行量子编码。

其中,m为染色体的基因个体表示知识分布数量(章节数);k为每个基因的量子比特数表示每道题的属性数量。n个这样的个体构成的种群Q(t)={q1t,q2t,...,qnt}表示试卷,其中n为题型数量。

3.1.2 量子旋转门

量子旋转门是实现演化操作的执行机构。[3-5]图1为量子旋转门示意图。

其操作规律如下:

θi=k*f(αi,βi) (6)

其中k是一个与算法收敛速度有关的系数,k的取值必须合理选取,如果k的取值过大,算法搜索的网格就很大,容易出现早熟现象,算法易于收敛于局部极值点,反之,如果 k 的取值过小,则搜索速度太慢甚至会处于停滞状态。因此,本文将k视为一个变量,将k定义为一个与进化代数有关的变量,如,其中t为进化代数,max t是根据待求解的具体问题而设定的一个常数,因此k可以根据进化代数合理地调整网格大小。

函数f(αi,βi)的作用是使算法朝着最优解得方向搜索。本文采用表1的搜索策略。其原理是使当前解逐渐逼近搜索到的最佳解,从而确定量子旋转门的旋转方向。其中符号e表示α和β的乘积,即e=α*β,e的正负值代表此量子比特的相位ζ在平面坐标中所处的象限。 如果 e的值为正,则表示ζ处于第一、三象限,否则处于第二或第四象限。

在表1中,α1和β1是搜索到的最佳节的概率幅,α2和β2是当前解的概率幅,当e1,e2同时大于0时,意味着当前解和搜索到的最佳解均处于第一或第三象限。当|ζ1|>|ζ2|时,表明当前解应朝着逆时针方向旋转,其值为 +1,反之为 -1。同理可推出其他三种情况。

这样,量子门的更新过程可以描述为qjt+1=G(t)*qjt其中,上标t为进化代数,G(t)为第t代量子门,为第t代某个个体的概率幅,qjt+1为第t+1代相应个体的概率幅。

3.1.3 量子遗传算法流程(见图2)

①初始化种群,种群Q={q1,q2,...,qn},其中qj为种群中的第 j 个个体。 令种群中全部的染色体基因(αi,βi) (i=1,2,...,m)都被初始化为,这意味着一个染色体所表达的是其所有可能状态的等概率叠加。同时初始化进化代数t=0。

②量子坍塌法测量:对处于叠加态的量子位进行观测时,叠加态将因此受到干扰,并发生变化,称为坍塌。扰动使为叠加态坍缩为基本态。确定种群大小n和量子位的数目m,包含n个个体的种群通过量子坍塌,得到P(t),其中为第t代种群的第j个解(即第j个个体的测量值),表现形式为长度m为的二进制串,其中每一位为0或1。(量子坍塌即对Q进行测量,测量的步骤是生成一个[0,1] 之间的随机数,若其大于概率幅的平方,则测量结果值取1,否则取0。

③群体的适应度评价,保存最优解作为下一步演化的目标值。

④算法进入循环。首先判断是否满足算法终止条件,如果满足,则程序运行结束;否则对种群中个体实施一次测量,获得一组解及其相应的适应度。

⑤根据当前的演化目标,运用量子旋转门进行调整更新,获得子代种群。调整过程为根据式(6)计算量子旋转门的旋转角,并应用式(5)作用于种群中的所有个体的概率幅,即更新Q。

⑥群体灾变:当接连数代的最优个体为局部极值,这时就实行群体灾变操作,即对进化过程中的种群施加一个较大扰动,使其脱离局部最优点,开始新的搜索。具体操作为:只保留最优值,重新生成其余个体。

⑦迭代与终止进化代数t'=t+1,算法转至式(2)继续执行,直到算法结束。

4 仿真试验

为了验证算法的有效性,我们对传统遗传算法(CGA)与量子遗传算法(QGA)所获得的考题知识覆盖度进行仿真对比。我们将考题对考查科目所含知识的覆盖问题简化为:用12个半径为200的圆所代表的考题去覆盖一块1200×1000的二维平面内用矩形代表的知识区域;种群个体数 P = 45,量子位数目 m = 30,运行 600 代。算法运行结果对照如下。

从图3所示考题知识分布优化中覆盖度的变化特性可以看出在不同阶段的变化中,量子遗传算法优化性能高于传统遗传算法而且稳定性也更强。

5 结论

在试卷中存在考题不合理分布造成的测试阴影和盲区。通过量子遗传算法优化考题分布,使其在保证命题要求的情况下,用最少的考题取得最大的覆盖率,可以有效地消除探测区域内的阴影和盲点。仿真结果也表明,算法能够较好地完成试卷考题的分布优化,从而有效提高试卷的测试能力,对于实际的试卷命制提供了可靠的解决方案和调整依据。本文提出了创新性的考题分布的优化方法,即确立了试卷的覆盖模型,并以此为目标函数,运用量子遗传算法对考题分布进行优化。

参考文献:

[1] 张维,何蓉. 基于参数估计的遗传算法组卷研究[J]. 云南民族大学学报,2009,18(3):276-278.

[2] Donald A.Prospective Algorithms for Quantum Evolutionary Computation[C].Proc of the 2nd Quantum Interaction Symposium (QI-2008), College Publications, UK, 2008.

篇(2)

极其严格的要求

另一方面,也有一些持怀疑态度的声音,怀疑D-Wave所谓的量子计算机是否是真正意义上的量子计算机。多年以来,世界各国的科学家一直不懈努力地研发量子计算装置,但都没能够走出实验室阶段,没有获得太多实质性的进展。这是因为对于量子计算机的要求是极其严格的。首先,需要通过原子粒子的性质来制备量子位,这是量子现象发生的必要要求;其次,该系统必须从环境中隔离并冷却到几乎绝对零度,因为量子现象会受到外部影响;其三,人们必须谨慎地从外部进行干预,并分配单个量子位的初始值,触发量子力学的“纠缠”进行所需的算术运算;其四,读取结果。

到目前为止,研究人员利用单个离子或光子、原子核自旋的原子或者超导电子对作为量子位,这些已经超出了平常人的想象。而按照D-Wave的记录,他们2011年在因斯布鲁克大学通过钙离子取得14量子位的纠缠链,并于2012年在布里斯托尔大学成功分解数字21的质因数3和7,这些都是很普通的成功,是什么让D-Wave那么的与众不同?物理学界许多对D-Wave的量子计算机持怀疑态度的人猜测,D-Wave公司那个所谓量子计算机的庞大黑盒子,所使用的量子位实际上是微芯片上的超导环,通过传统的电子设备进行控制和读取。因此,批评者们质疑这个系统量子位之间有没有量子纠缠效应,或者说计算机是否真正利用量子纠缠效应进行计算,怀疑这只是一台普通的计算机。

应用范围有限

篇(3)

今年3月,谷歌也推出了自己的量子电路,并声称量子计算机的运算能力将超过普通计算机数万倍。

随着IT巨头纷纷量子计算研究成果,素来低调的量子计算机突然成为热门话题。但从已面世的量子计算机来看,不论其应用面还是单价效率,相比传统计算机都还存在差距。

这种烧钱的大块头什么时候能终结摩尔定律,并“塌缩”成我们手中的智能手机,依然是个未知数。

理论遐想

如人类学会生火一般,量子力学理论作为20世纪人类最伟大的发现,对当今世界产生了深远的影响。从核弹到电子显微镜,在支配量子理论基础上,人类创造出众多跨时代的产品。

量子计算机的构想,正是基于量子力学理论的叠加态原理而设计的。

量子计算机的理念,最早是1982年由诺贝尔奖获得者美国物理学家费曼在一次学术会议上提出。费曼的设想则是受到其好友――加州理工学院计算机教授弗雷德金的启发。当时,弗雷德金正从数理上研究一种新型处理器。

传统处理器的逻辑门(集成电路最基本的运算组件)不可逆,而弗雷德金构想的新型处理器逻辑门是可逆的,这样的好处就如同将单向车道丁字路口改为双向车道十字路口,使得信息可在线路上掉头,不必绕远。

对于传统处理器来说,“绕远”就是将电路上的信号擦除,载入新的逻辑信号。这个过程将耗费大量的能量并发热。在极高的运行速度下,处理器会因高温融化。

另外,因为量子计算机处理的量子信息是一种叠加态,而非传统计算机的0和1二进制。这就使得量子计算机在进行逻辑运算时,可一次得到多种甚至全部的运算结果。

这就相当于将高速路上的小轿车全部替换为双层巴士,极大提高了运算量。科学家们由此推论,采用新逻辑门的量子处理器优势显而易见,它比传统处理器能耗更低且速度更快。

但此时的量子计算机理论并没引起关注,因为不论从量子物理学角度还是计算机应用方面来看,量子计算机的实现过程都极其困难。

而著名的摩尔定律此时已然在科技界生效,简单、可靠的实现方法,让晶体管以百万计的超大规模集成电路形态,顺着电脑流水线进入企业和家庭,且价格越发低廉。而直到1988年费曼去世,量子计算机依旧停留在物理学家的脑海中。

机遇与争议

真正激发起人们对量子计算机的热情,源自1994年舒尔提出的量子算法。

20世纪末随着计算机和网络的普及,通信安全也成为棘手问题。而基于大素数乘积原理的RSA算法因为运算量大,难以被破解,被普遍应用于信息加密。

有盾就有矛。在贝尔实验室工作的舒尔,依据自己的算法提出用量子计算机可快速破解RSA密码。舒尔推论,当时需1000台计算机8个月才能破解的129比特位RSA密钥,一台量子计算机不到10秒就能破解。

问题在于,此时的量子计算机虽然算法理论储备丰富,但工程学上怎么才能造出一台量子计算机,仍是个难题。

直到1999年,研发实际应用量子计算机的加拿大D-WAVE公司成立,造出一台量子计算机的想法,才得以实现。

因量子计算机在密码破解上的优势理论,D-WAVE公司得到了美国中情局的支持。2011年,D-WAVE公司与洛克希德马丁公司以签署合作协议的形式,售出了世界上第一台商用量子计算机。该量子计算机售价被披露高达1000万美元。2013年,D-WAVE公司又将第二台量子计算机卖给了美国航空航天局与谷歌的联合实验室。

D-WAVE公司的两次交易均获成功,量子计算机实用化的大门似乎已向人们敞开。但对于量子计算机的争论,也由此不断出现。

虽然D-WAVE公司声称,其量子计算机比传统计算机的运算速度大约快3.55万倍。但很多研究团队在考察过后表示,D-WAVE公司的量子计算机只有5倍于传统电脑的运算速度,在某些情况下其速度甚至只有1/100。

另外,D-WAVE公司使用的模拟运算算法,也被指责不是真正意义上的量子计算机。 人们当然愿意看到传统计算机之外的新兴计算机产业发展。但量子计算机目前的成就,只能说是迈出了一小步。

只是一小步

虽然质疑声不断,但科学界还是给予D-WAVE公司的量子计算机部分肯定。毕竟它应用了量子原理来进行运算和储存,并使得量子计算机能从实验室走出来,跟传统电脑就某一领域就行比武。

但即便如此,量子计算机还是个造价昂贵的“计算器”。购买同等计算能力,量子计算机用户恐怕要多付出6000倍的价格。要终结行将失效的摩尔定律,量子计算机的产业化之路还有很长要走。

50年前,英特尔创始人之一戈登・摩尔在美国微电子杂志发表文章时预言,每过一年芯片单位面积上的晶体管数量和性能将会翻倍。

到1975年,摩尔发现一年太短,表示两年才能翻倍。如今需要的时间更长,量产芯片的关键尺寸从28纳米降到14纳米的过程,即便两年也难以完成。

IBM研究中心主管苏普拉蒂克・古哈表示,“可以肯定,摩尔定律会在未来10年内结束。”

篇(4)

当年7月,九州量子(原名“都飞通信”)正式成立,经过4年发展,九州量子不但跻身量子通信领域中国领军企业之列,更是凭借量子加密通信技术和产品长期领先于同行业的竞争优势,成为量子通信领域首个市场化全产业链公司。

2015年12月,由九州量子承建的全球第一条量子保密通信商用干线――“沪杭干线”项目启动,作为“七横七纵”量子国家干线规划的核心承建企业,九州量子同时承接了浙江省域网、长三角环网、杭州城网、乌镇城网、量子小镇(量子产业园)浙江省政务云等项目建设和运营。今年6月13日,九州量子在新三板挂牌上市,成为“量子通信第一股”。 九州量子董事长郑韶辉。

“九州量子在浙江省构建量子通信网络基础设施,提供基于量子技术的高可信安全网络运营服务,与我国现有的量子通信产业化平台一起,构成量子通信技术的完整产业链。”郑韶辉接受《财经国家周刊》记者专访时表示,九州量子致力于打造一条包含上中下游的产业链条,主攻量子手机、量子白板等量子终端产品应用,为量子通信尽早造福社会做出贡献。

中国优势

《财经国家周刊》:目前全球量子信息产业化的发展情况如何?中国的地位如何?

郑韶辉:量子信息目前有三个领域,第一个是量子计算,量子计算目前还谈不上产业化,产业化最快也要六七年之后。第二个是量子测量,我认为中国跟美国的水平差不多,美国可能更强一点。第三个是量子通信,中国在这个方面虽然不是做得最早的,但是这两年突飞猛进,特别在应用领域发展很快,“京沪干线”、“沪杭干线”、通讯卫星等,中国都处于一个较为领先的地位。

从全球来看,只用了10多年时间就在一个行业里面尤其是这种高精尖的领域领先,是非常难得的。目前各国正在展开量子通信的产业化竞赛,中国应该抓住这个窗口,抓紧把产业化推动起来。

《财经国家周刊》:你怎么看中国量子通信产业化的发展方向?

郑韶辉:在我看来,量子通信产业化未来的发展有3个3年,第一个3年是设备商的3年,这3年主要解决的问题是我国的设备要先做合格,实现工业化的生产。现在设备主要还是一些科学家在做,存在的问题是成本太高,稳定性欠佳。

要解决这个问题,不但科学家要展开技术攻关,市场也要跟得上,运用市场化的机制,可以展开一些并购,我认为3年左右时间,如果能使设备成本下降到现在的十分之一,就能为大规模的应用奠定基础。

第二个3年是运营商的3年,这3年里,要构建一个初步的量子通信网络,就像人体的毛细血管一样,在全国范围内铺开量子通信网络。

第三个3年是平台商的3年。需要打造类似阿里巴巴这样的平台服务商,它也许会对现在的BAT(百度、阿里巴巴、腾讯)形成颠覆性的挑战。

从设备商到运营商再到平台商,每个3年,拿出9年时间来塑造整个全产业链,届时中国拥抱的将是“量子+”时代的到来。

《财经国家周刊》:九州量子致力于打造行业首个全产业链高科技企业,你们的竞争力体现在哪里?

郑韶辉:在量子通信领域里面,九州量子是比较特别的一家公司,我们的团队是科学家+企业家,其他的量子通信企业都是科学家主导,他们可能有技术上的先发优势,但是我们可以形成后发优势,我们的市场经验丰富,产品开发和应用更贴近市场,也更接地气,可以更好地服务市场。

量子通信同任何新兴产业一样,在发展的早期阶段是研发驱动,但发展到今天这个阶段的时候,行业已经到了爆发周期,需要的是通过工业化的方式快速形成产业优势,在这方面我们团队是有竞争优势的。

产业化未来

《财经国家周刊》:由九州量子承建的“沪杭干线”将于近期竣工,这是全球第一条量子保密通信商用干线,这条干线能产生什么样的作用?

郑韶辉:“沪杭干线”是2014年经中科大潘建伟院士建议而建设的。它的竣工将满足周边地区各方面的需求,同时为构建全国“七横七纵”的量子通信网络打下基础,积累经验。

“沪杭干线”是一条商用干线,面向的是用户,流量非常大,市场化程度高,到目前已经与100多家金融机构已经或将要签订协议,这些企业将率先享受到“沪杭干线”的保密通信服务。

此外,我们认识到,任何一条网络通信线路,只要是单线都是有风险的,因此建设管网非常重要,这样即使是中间断了以后,还可以有备用。

举个例子,比如说“沪杭干线”,杭州连上南京,南京连上上海,成为杭州、南京、上海三线布局。一旦上海到杭州之间断了以后,那么可以信号从杭州到南京,南京再到上海,有个备用线,通讯就不会断。

在我看来,网建得越多,那么未来的用途越广泛,用户也就越多。大概今年10月底,我们会接通“沪杭干线”,但是真正运营可能会晚些时候,未来“沪杭干线”还将会和“京沪干线”接通。

按照九州量子的发展规划,明年我们还将启动浙江省网和长三角环网,从2018年开始,我们会与三大运营商合作,建设全国性的骨干网及其无线量子城域网,推动制定量子通信国家标准,在2020年,打造多行业系列化的量子应用产品,成为全球量子通信产业化的领军企业。

《财经国家周刊》:我们注意到,九州量子最近与盛洋科技、清华大学等企业和机构都达成了合作,有什么具体规划?

郑韶辉:我们是一个市场化的公司,是要把产品卖到全球去的。所以在这个产业化过程中,我们希望有更多的企业更多的力量来参与进来,我们愿意跟别人合作,一起解决发展中的难题。

8月底,我们与盛洋科技签订了战略合作协议,下一步,我们将建立联合实验室,共同研发量子卫星通信接收方面的设备和相关产品,同时合作进行相关核心量子通信产品,如量子随机数发生器、量子堡垒机、光量子交换机等的产业化生产。

最近,我们与清华大学共同筹建的量子网络联合实验室也正式揭牌。从具体业务领域来看,联合实验室将重点攻克长程量子网络中关键量子器件的研究,促成量子网络技术在产业化中的应用,重点关注量子网络关键器件的研发及量子保密通信网络方案的分析与优化。尤其在量子中继、量子密码和量子测量等当今量子信息界的重要难题方面,联合实验室的成立将起到重要推进作用。

《财经国家周刊》:按照潘建伟院士的预测,15年左右的时间,装有芯片的量子手机将会进入寻常百姓家,对这个预测,你怎么看? 通用的量子计算机技术,业内说法是15年的时间可以突破,对当下的互联网技术带来巨大冲击。

郑韶辉:我比他要激进些,我觉得这个时间可能会缩短到9到10年左右。当然这些都是预测,最终还是要取决于量子计算机技术发展。通用的量子计算机技术,业内说法是15年的时间可以突破,但我相信用不了15年,也许9年之内,量子计算机技术就会在某种特殊用途上有所突破,这会对当下的互联网技术带来巨大冲击。

《财经国家周刊》:具体而言,量子通信将来的终端产品会是什么样子?

郑韶辉:我们目前最关心的量子通信终端产品,一个是量子手机,这个产品目前我们已经有了一套技术解决方案。因为量子通讯设备太大,目前我们还做不到小型化,而且量子密钥还无法实现自动生成,我们的做法是通过机器设备实现,在设备里安放芯片,好像手机充电一样。

将来,这些设备会安置在写字楼里,你把手机放到设备里充一晚上,第二天拔掉以后,根据你的需要,就可以打量子通讯保密电话,一般可以用两个礼拜。而且除了打电话,还可以用于移动支付、接收邮件等。

这是第一代的产品,大概两三年之后,第二代就会出现,第二代产品应该更先进,可以小型化,量子密钥可以自动生成,手机里就配置了芯片,不需要再充了,使用起来更加方便。

第二个产品是量子白板,这个产品本身很成熟,在深圳、上海等地已经有很多企业在做。量子白板的使用需要两个条件,第一要有量子网络,第二是要有相关芯片,我们最近在做这个产品的开发,开发出来以后,会在公检法系统率先使用。

《财经国家周刊》:有不少观点认为,量子通信已经进入了产业化的前期,你认为往下走的话,还面临着哪些困难?

郑韶辉:我认为,目前有利的因素很多,和过去比困难少多了,应该说当前已经进入黄金时代了。国家战略上有政策支持,社会上的资本进入的意愿也非常强烈。

篇(5)

在超导体系,研究团队打破了之前由谷歌、NASA(美国国家航空航天局)和UCSB(加州大学圣塔芭芭拉分校)公开报道的9个超导量子比特的操纵,实现了目前世界上最大数目(10个)超导量子比特的纠缠,并在超导量子处理器上实现了快速求解线性方程组的量子算法。

系列成果已发表在国际权威学术期刊《自然光子学》,即将发表在《物理评论快报》上。

传统电子计算机要算15万年的难题,量子计算机只需1秒

1981年,美国物理学家费曼指出,由于量子系统具有天然的并行处理能力,用它所实现的计算机很可能会远远超越经典计算机。1994年,麻省理工学院的Peter?Shor教授提出分解大质因数的高效量子算法,量子计算引发了世界各国的强烈兴趣。

“由于量子比特是0和1的叠加态,在原理上具有超快的并行算和模拟能力,计算能力随可操纵的粒子数呈指数增长。这一特点使得量子计算可为经典计算机无法解决的大规模计算难题提供有效解决方案。”潘建伟说,“比如,300位10进制那么长数,用我们目前万亿次的传统电子计算机拿来算的话,大概需要算15万年。但如果能够造出一台量子计算机,它计算的频率也是万亿次的话,只需要1秒钟就可以算完。从这个角度上讲,量子的并行计算能力是非常强大的。”

此外,一台操纵50个微观粒子的量子计算机,对特定问题的处理能力可超过超级计算机。

那哪些算特定问题呢?

朱晓波说:“比如说大数字分解,这个是用于现在加密的一个标准的算法。那么你如果能解一个大数字分解,就能解密现在很多的加密算法。如果很多加密算法都失效了,国家金融安全、军事安全等都会受到严重影响。还有,量子计算机做到一定规模之后,很有可能实现大数据的快速搜索,以后在解决搜索问题的时候就具有巨大的优势。”

据专家介绍,根据各物理体系内在优势及其在实现多粒子相干操纵和纠缠方面的发展现状和潜力,目前,国际学术界在基于光子、超冷原子和超导线路体系的量子计算技术发展上总体较为领先。

研究仍处早期,我国计划在年底实现大约20个光量子比特的操纵

多粒子纠缠的操纵作为量子计算的核心资源,一直是国际角逐的焦点。在光子体系,潘建伟团队在多光子纠缠领域始终保持着国际领先水平,并于2016年底把纪录刷新至十光子纠缠。在此基础上,团队此次利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。

潘建伟说:“实验测试表明,该原型机的‘玻色取样’速度不仅比国际同行类似的之前所有实验加快至少2.4万倍,同时,通过和经典算法比较,也比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10~100倍。”

这是历史上第一台超越早期经典计算机的基于单光子的量子模拟机,为最终实现超越经典超级计算能力的量子计算这一国际学术界称之为“量子称霸”的目标奠定了坚实的基础。

“量子计算领域有几个大家共同努力的指标性节点:第一,展示超越首台电子计算机的计算能力;第二,展示超越商用CPU的计算能力;第三,展示超越超级计算机的计算能力。我们实现的只是其中的第一步,也是一小步,但是是重要的一步。”潘建伟说。

“朝着这个目标,我们研究团队将计划在今年年底实现大约20个光量子比特的操纵,将接近目前最好的商用CPU。”陆朝阳说。

但由于高精度量子操控技术的极端复杂性,目前量子计算研究仍处于早期发展阶段。“像经典计算机那样具有通用功能的量子计算机最终能否研制成功,对整个科学界还是个未知数。”潘建伟说。

在信息安全、医学检测、导航等方面,量子技术未来将极大地改变生活

随着大数据时代的到来,对计算能力的需求可以用一个词来形容,就叫做“贪得无厌”。同时,计算能力的强弱也对社会的发展起着至关重要的作用。当人们能够把数据里面有效的数据结果都通过计算给提取出来的话,每一个数据才会成为真正的财富。

谈到量子计算机未来的应用前景,潘建伟充满信心:“我认为量子技术领域目前主要有几个方面离实用非常近:量子通信主要是用在保密方面,它可以大大提高信息安全水平。除此之外,量子计算可能很快在某些特定计算方面超越目前传统的超级计算。这些技术在医学检测、药物设计、基因分析、各种导航等方面也将起到巨大的作用,会给我们的生活带来极大的改变。比如,我们现在的天气预报只能预报几天,因为如果要预报第六天、第七天,计算的时间可能需要100天,而100天后再来预测第六七天的天气就没什么意义了。”

据潘建伟介绍,在我国即将启动的量子通信和量子计算机的重大项目里,对光、超导、超冷原子等方向上都已经做了相应的布局。

“在以后的10到15年里,量子技术领域的竞争将是非常激烈的。比如英国启动了国家量子技术专项、欧盟启动了量子旗舰专项、美国在论证相应的计划。包括谷歌、IBM、微软等在内的一些美国公司也都介入到相关研发了。”潘建伟说。

延伸阅读

多个状态同时叠加 不可分割不可克隆 量子世界里,真的很神秘

量子是什么?量子是最小的、不可再分割的能量单位。这个概念诞生于1900年,物理学家普朗克在德国物理学会上公布了他的成果,成为量子论诞生和新物理学革命宣告开始的伟大时刻。

分子、原子、电子,其实都是量子的不同表现形式。可以说,我们的世界是由量子组成的。

中国科学技术大学教授朱晓波说,在宏观世界里,物体的位置、速度等运动规律,都可以通过牛顿力学精确地测算。但在量子微观世界里,有着与宏观世界截然不同的规则。

量子的神秘之处首先体现在它的“状态”。在宏观世界里,任何一个物体在某一时刻有着确定的状态和确定的位置。但在微观世界里,量子却同时处于多种状态和多个位置的“叠加”。

量子力学的开创者之一、奥地利物理学家薛定谔曾用一只猫来比喻量子态叠加:箱子里有一只猫,在宏观世界中它要么是活的,要么是死的。但如果在量子世界中,它同时处于生和死两种状态的叠加。

量子的状态还经不起“看”。也就是说,如果你去测量一个量子,那么它就会从多个状态、多个位置,变成一个确定的状态和一个确定的位置。如果你打开“薛定谔的箱子”,猫的叠加状态就会消失,你会看到一只活猫或一只死猫。

如果说一个量子已经很“奇怪”,那么当两个量子“纠缠”在一起,那种不确定性更强了。根据量子力学理论,如果两个量子之间形成了“纠缠态”,那么无论相隔多远,当一个量子的状态发生变化,另一个量子也会超光速“瞬间”发生如同心灵感应的变化。

虽然直至今天,人类仍然还没搞清楚量子为何如此神秘,但国际主流学界已经接受了量子这种特殊性的客观存在。更重要的是,人们可以利用量子的奇异特性开发创新型应用,比如量子通信和量子计算。

篇(6)

2016年8月16日凌晨1时40分,世界首颗量子科学实验卫星“墨子号”由我国酒泉卫星发射中心成功发射。全国人们为此欢呼雀跃,各大媒体也争相报道这一科研壮举。目前,我国已经成为世界上首个实现太空一地面量子通信的国家,然而对于普通人来说基于量子物理学发展而来的量子通信技术依然是晦涩难懂的深奥科学。那么,我们便基于量子卫星的发射来谈一谈量子卫星所涉及的基本科学问题。

1量子卫星

1.1量子卫星“墨子号”名称的由来

在我国古代,墨子先生不仅创立了墨家学说,更是在传世的《墨经》一书中提出了“光学八条”的理论。在“光学八条”中不仅描述了我国古代人民对光线的认识,也设计出了我国最早的小孔成像实验,这是我国有关光学研究的基础。为了纪念墨子先生,我国发射的全球首颗量子科学实验卫星便被命名为“墨子号”。

1.2“量子”的定义

在1900年,著名的物理学家普朗克为了解释黑体辐射现象提出了一个假设,即黑体辐射的能量只能取某一基本能量的整数倍。基于这一假设,在之后几十年的研究中,研究者们陆续发现其他物理量也表现出了不连续的量子化现象,那么这些物理量中所存在的最小的基本单位便可以称之为量子。量子理论的提出严重地冲击了古典物理学,到20世纪早期,法国物理学家德布罗意便在普朗克

爱因斯坦的光量子论和玻尔的原子论的启发下建立了量子力学理论。量子力学在现代科学技术中的多个领域中均有应用和突出贡献,而量子通信技术也是基于量子力学发展而来的,对未来科学技术和文明的进步具有重要意义。

1.3量子通信

量子通信是利用量子态和量子纠缠效应进行信息或密钥传输的新型通信方式。量子通信的主要目的便是保证信息传输过程中的无障碍传送和信息安全。而在量子通信技术研究之前,人们为了保证传输信息过程中的安全问题,便选择对所传输的信息进行加密。信息加密便是将我们要传输的信息(“明文”)转化成别人不可识别的乱码(“密文”)。在20世纪前中期,信息加密技术依然有其优越之处,也是人们普遍使用的方法。但是,电子计算机的出现使基于特定参数所建立的密钥并不再安全。随着现代电子计算技术的发展,直至量子计算机的研制成功,计算机的能力急剧加强,那么这种基于基本算法的信息加密技术在量子计算机面前形同虚设。为了保障新时代背景下的信息安全,量子通信技术得到快速发展。量子通信是基于早期的对称密码:“一次一密”。一次一密的概念在1917年由Vernam提出,然后于1949年被Shannon证明是无条件安全的。随着量子理论的发展,在1984年,科学家Bennett和Brassard首次提出了第一个实用性的量子密码的通信协议,该协议以两者的名字命名。在其后,美国科学家完成了世界上第一个量子信息传输实验,从此量子通信技术进入了蓬勃发展的时期。在1995年,我国中科院物理所在实验室内完成了试验性质的量子信息传输实验。进入21世纪之后,量子通信技术蓬勃发展,先后实现了远距离信息传输和量子密码传输。

量子通信技术在信息传输的安全性和传输能力上具有极大的优势。首先,在利用量子通信技术传输信息的过程中,由于信息的载体是光量子,而光量子的量子状态是难以截获的,因而利用量子通信传输的信息是不可能被盗取的。在现有的技术条件下,利用量子通信技术传输的信息是无条件安全的。其次,在量子通信过程中,量子态隐形传输技术可以实现无障碍通信。所谓的量子m缠态,便是两个相互纠缠的粒子,当其中一个粒子的状态发生变化时,另一个粒子的状态会立即发生相应的变化。这种无视空间距离的和即时的信息传输能力是量子通信的巨大优势。

1.4量子通信卫星

量子通信卫星是量子通信技术中的重要硬件设施。简单来说,量子通信卫星的作用就是为传输的信息分配密钥。量子通信过程中,负载信息的光量子在传输的过程中会逐渐衰减直至消失,因此光量子的传输存在着距离的限制。一般而言,当光量子在空气中传播100km时,光量子的信号已经难以检测到了。但是,量子通信卫星在太空中进行光量子传输时,光信号在到达地表之前仅仅需要经过10km左右的大气层,地面基站可以轻松地收到量子通信卫星发射的信号。量子通信卫星先向地面基站发送量子密钥,经过比对之后建立绝对不可破译的量子密钥,继而拥有相同量子密钥的两个地面基站,便可以把已经加密的信息通过传统的信息传输方式(如互联网、无线电话等)互相传输,而且所传输的信息也是绝对安全的。量子通信卫星的使用可以实现全球距离的信息传输。

2我国量子通信技术的发展

1)我国国家政策和战略布局高度重视量子通信技术的研究和发展。量子通信技术已被列入国家“十二五”科技发展规划纲要中,属于国家重点发展的具有引领新兴产业发展潜力的前沿技术。

2)我国的量子通信技术布局较早,发展较快,成果也更为显著。早在1995年,中科院物理所便在实验室内完成了我国首个的量子密钥分发实验演示。在其后,我国先后成立了中国科学技术大学量子物理与量子信息研究部、中国科学院量子技术与应用研究中心和中国科学院量子信息与量子科技前沿卓越创新中心。这些研究中学的成立将会进一步推进我国量子通信技术领域的技术进步,使我国的量子通信技术研究始终走在全球前列。

篇(7)

当今社会是一个数据化时代,计算机网络技术已经应用到社会的各个领域。对于在已知网络的各个节点的通信需求下,怎样选择计算机通信网链路的高效路由,这一受到多个条件约束的杂乱非线性规划问题,在传统的数学理论中尚未得到有效的解决方法。面对这个问题,传统的算法都存在一定的局限性,计算也比较复杂,在很多条件限制下都难以发挥其作用,无法给出满意的解决方案。本文主要是对改进量子进化算法在计算机网络路由选择上的应用进行探究。

一、计算机网络路由选择意义

传统的计算机网络路由的选择方式主要有爬山法、梯度法、模拟退算法以及列表寻优法,但其都具有很大程度上的局限性,受到的限制条件也比较多,不能有效地发挥其作用。网络路由选择的定义主要有:在已有的计算机网络拓扑和网链路通信容量以及各个节点需求的情况下,对各节点的网络路由进行确定,以最大限度缩小互联网的时延性。这种路由选择方式,可在选择过程中采取一些简化工作,假设网络通信节点的数据包完好无缺,不受通信容量影响,报文长度则以实际指数分布为基准,来进行路由选择。

二、计算机网络路由选择中改进量子进化算法的应用

(一)量子进化算法的概述及算法流程

量子进化算法是由量子计算和进化算法结合而来,其运算方式为,在确定量子矢量的情况下,用量子算法的比特编码来表示染色体,并以旋转门和量子非门来进行染色体的更新,据此让目标得到最优解答。

在进行计算中,可以采用矩形阵表示量子染色体,设其长度为m

量子进化算法流程主要有以下几个步骤:

首先,将种群Q(t)初始化,设t=0,并测量种群中的每个个体,得到种群的状态P(t);其次,对P(t)的适应度进行评估,将最佳个体状态和适应值进行记录;最后,采用

While非结束状态do,

begin

1、t=t+1;

2、对种群进行测量Q(t-1),其状态为P(t);

3、进行P(t)的适应度评估;

4、对Q(t)采用量子门进行更新换代,记录后代种群Q(t+1);

5、对每个个体的最佳状态以及适应值进行记录。

End

End

(二)旋转角的优化调整

(三)函数调整优化

采用租户优化的办法可以知道各基因间的相关性不大,基于这一特点对量子位进行定义:

表1 优化方案

分析表1的内容可以知道,这种旋转方案能够让搜索结构逐渐走向最优化,收敛速度也得到提高,在此表中只列出了第一象限内的 ,其他象限内的 情况可由此进行推断。

(四)仿真测试

以仿真实验的方式对以上的分析进行检验,与传统的量子进化算法为比较对象,证明改进量子进化算法在计算机网络路由的选择性能存在优越性。仿真实验的结果如图1;

图1 改进算法和传统算法的对比

根据此图能够看到,改进量子进化算法在寻优性和收敛性上明显优于传统的量子进化算法,在计算机网络路由选择的应用中,改进量子进化算法的综合性能也比传统的量子进化算法优秀。

结束语

计算机网络路由选择的改进量子进化算法,是在传统的量子进化算法的基础上进行改进的,通过仿真测试可以知道,经过改进的量子进化算法在寻优搜索和收敛速度上存在一定优势,很好的解决了互联网计算机路由在选择上面临的约束条件多、杂乱非线性规划等问题,很大程度上为互联网通信网链路的最佳路由选择提供了帮助。

参考文献

[1]宋明红,俞华锋,陈海燕.改进量子进化算法在计算机网络路由选择中的应用研究[J].科技通报,2014(01):170-173.

篇(8)

2.环保化:计算机性能的提高也将产生更多的能耗,无论是生产还是生活中,大量的使用计算机必定会损耗更多的电量。为了解决这个问题,在不久的将来计算机技术将会向环保型发展,通过提高计算机的效率减少能耗。例如,使用量子技术和光子技术代替原来的硅架构。

3.软件生产构件化:计算机技术应用的领域是十分广泛的,为了适计算机硬件的发展解决供需矛盾,计算机软件生产也要实现构件化。目前,对软件生产的重点是其可生产性和并行处理,在软件开发的问题上也将会以更高的水平对其进行解决。

4.智能化:在今后,计算机技术将会有更多的新技术出现。例如,第五代计算机技术,这种技术具备联想、判断和学习等智能化的功能。能够使得人从枯燥的信息处理中走出来,使得人们的学习和生活得到变革,人类的生活空间也将得到拓展。

二、计算机种类发展趋势

在计算机技术不断发展的过程中,新型计算机也将层出不穷,而且是愈加的完善和高性能化。

1.量子计算机:量子计算机是以量子力学为基础进行高速数学和逻辑运算的新型计算机。量子计算机的优势在于其能够对量子信息进行计算和处理,当计算机运行量子算法时我们可以称之为量子计算机。计算机领域中使用量子技术是一项新的研究,而量子计算机与当前的计算机相比较而言,其存储空间是巨大的,而且在进行计算时其速度也是当前计算机无法比拟的。对于量子计算机的应用,初步预测在2030年能够实现,以当前计算机技术发展的速度和趋势来看,实现量子计算机的使用的时代将很快到来。

2.分子计算机:分子生物计算机是指通过分子来处理信息的计算机。这种计算机主要是通过分子晶体运行的,其优势在于实现了高效的组织排列,而且体积小,速度快,存储时间长等。在不久的将来,当分子技术在不断的发展的时候分子计算机的出现也指日可待。

3.生物计算机:所谓生物计算机就是指通过生物芯片集成晶体管而制成的计算机。生物计算机的优势在于,耗能低,运算的速度很快且其存储空间巨大。不过,这种计算机也存在一定的缺陷,譬如从生物计算机中提取信息比较困难,因而生物计算机要得到发展以目前的计算机技术条件还无法得到广泛的应用。不过在未来计算机发展下,其缺陷会得到解决,其前景也将会是良好的。

4.神经网络计算机:该计算机是通过模仿人的大脑神经脉络制成计算机网络系统加以运行的新型计算机。和人脑运行的速度相比,电脑功能是无法达到的,在这个基础上神经网络计算机被视为巨大的机器,其要处理很多繁杂的信息。因而,在此过程中,神经网络计算机可以在判断和处理信息时得出结果。其内部的信息组要是在神经元的网络中被存储,而一旦神经元结点出现问题,该计算机还能够对原来存储的信息进行备份,确保这些信息不丢失。

三、计算机技术未来发展的建议

1.做好技术革新经济的发展促使人们对计算机技术改进有了更高的关注。在计算机技术发展的过程当中,为了更好地推进其发展就会做好创建计算机技术的相关措施,对在其发展中有可能面临的问题做出相应的处理。而要做好这点首先要对其进行全面的认识,对计算机技术的实施形成系统的了解,在开发新技术时也要遵循自然以及经济的规律,体现其科学性和实效性等等。兼顾这些在计算机技术改进和发展中才能更加的完善,为人所用。

2.增强计算机研发人员的培训实现计算机技术发展的关键在于有一批具备高素质和高技能的技术研发人员,要想计算机技术的发展能够得到保障就要依赖于这些研发人员在掌握技术要领和工作规范的基础上进行工作。同时,提高研发人员的责任意识和创新意识,拥有责任意识的员工能够确保计算机技术发展得到重视,而创新意识则是推动计算机技术革新的动力。在生产和生活中计算机技术发挥了很大的作用,要使得生活水平得到进一步的提高,就要能够确保计算机技术更为完善和顺利的发展。

篇(9)

中图分类号:P315.69 文献标识码:A文章编号:1005-5312(2011)20-0282-01

一、计算机的发展概况

1946年2月美国宾夕法尼亚大学莫尔学院制成的大型电子数字积分计算机(ENIAC),最初也专门用于火炮弹道计算,后经多次改进而成为能进行各种科学计算的通用计算机。,一直到现在,微机计算机的发展非常迅速。对于微型计算机的发展,现在普遍以字长和典型的微处理器芯片作为划分标志,将微型计算机的发展划分为五个阶段:

第一个阶段主要是字长为4位的微型机和字长为8位的低档微型机。这一阶段的典型微处理器有:世界上第一个微处理器芯片4004,以及随后的改进版4040,它们都是字长为4位的。

第二个阶段主要是字长为8位的中、高档微型机。这一阶段典型的微处理器芯片有:Intel公司的I8080、I8085。

第三个阶段主要是字长为16位的微型机。这一阶段典型的微处理器芯片有:Intel公司的8086/8088/80286。

第四个阶段主要是字长为32位的微型机。这一阶段典型的微处理器芯片有:Intel公司的80386/486/Pentium系列。

第五个阶段出现了字长为64位的微处理器芯片。主要还是面向服务器和工作站等一些高端应用场合。

二、新一代计算机: 量子计算机

近年来,如何使处理器中晶体管体积的减小成为计算机性能改进的关键所在。但是,这种不断的减小有一个极限。正如哲学里说,万物有矛盾两面。如果晶体管变得太小,将会限制它的性能。因此,看起来我们的计算机技术,会在不久的将来达到极限,它们真的会吗?在1982年,诺贝尔奖获得者――物理学家Richard Feynman想出了 “量子计算机” 的概念,那是一种利用量子机械的影响作为优势的计算机。说起Richard Feynman是本世纪诞生于美国的最伟大的物理学家,费曼于40年展了用路径积分表达量子振幅的方法,并于1948年提出量子电动力学新的理论形式、计算方法和重正化方法,从而避免了量子电动力学中的发散困难。费曼还建立了解决液态氦超流体现象的数学理论。他和莫雷盖尔曼在弱相互作用领域,做了一些奠基性工作费曼还是一位富有建设性的公众人物。1986年,挑战者号失事后,费曼做了著名的O型环演示实验,只用一杯冰水和一只橡皮环,就在国会向公众揭示了挑战者失事的根本原因-低温下橡胶失去弹性。1965年因量子电动力学方面的贡献获得诺贝尔物理奖。量子计算机概念正是Feynman这个大理论物理学家提出,从而有一段时间,“量子计算机”的想法主要仅仅停留在理论兴趣阶段,但最近的发展令这个想法引起了每一个人的注意。其中一个进步就是一种在量子计算机上计算大量数据的算法的发明,由Peter Shor(贝尔实验室)设计。

三、量子计算机与传统计算机区别

在量子计算机中,基本信息单元叫做一个量子位不同于传统计算机,并不是二进制位而是按照性质四个一组组成的单元。量子位具有这种性质的直接原因是因为它遵循了量子动力学的规律,而量子动力学从本质上说完全不同于传统物理学。量子位不仅能在相应于传统计算机位的逻辑状态0和1稳定存在,而且也能在相应于这些传统位的混合或重叠状态存在。这种现象看起来和人的直觉不符,因为在人类的日常生活中发生的现象遵循的是传统物理规律,而不是量子力学的规律,量子规律只统治原子级的世界。

四、所遇到的问题

篇(10)

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)36-0267-03

Implementation of SVG-based Quantum Circuit Design Platform

XIA Shuai,XU Yu-jia,DING Yu-wen, YU Lin, ZHOU Yang,ZHU Wei,CHEN Sai,LI Zhi-qiang

(College of Information Engineering, Yangzhou University, Yangzhou 225100, China)

Abstract: At present, automatic drawing tools which exist can meet the basic needs of users. However, the tools have many limitations such as low resolution, non vector, needing specific operating system and so on. All these make it inconvenient to create high-definiton quantum circuit. This project provides the online rendering quantum circuit diagram by using JavaScript and Jquery, EasyUI, SVG and other technical features. Once the quantum circuit TFC document was submitted and then it would be analysed and displayed. The platform would also use JavaScript to read the parameters of files and use SVG to create the corresponding schematics. Finally, drawing the HD schematics required. At the same time, the platform also provides the function of coordinating editor for team developers. Users in the same group can be able to edit the same circuit diagram and update in real time, so as to meet the needs of different users.

Key words: Quantum Circuit, SVG, TFC file, Design online, Cooperative editing

1 目研究背景

量子计算机等效量子图灵机,而量子图灵机又等价于一个量子逻辑电路,因此可通过量子逻辑门的级联与组合构成量子计算机。在量子计算、可逆计算、纳米技术、光计算及信息加密等领域中,可逆计算机已被广泛应用,人们已提出多种量子门,如NOT 门、SWAP 门、 CNOT门、Toffoli 门、 GT 门等。然而从事量子信息研究的人员无论是书写发表文章还是教学研究交流,发现仍然无法生成这些量子门以及常用的量子电路描述文件自动生成矢量图以及高清的点阵图[1]。

当前生成量子电路图的软件主要有三种:

1)Dmitri Maslov 等人开发的可逆电路绘图软件:开源软件QCViewer和非开源软件RCViewer以及其升级版RCViewer+。

2)Robert Wille等人开发可逆电路设计工具软件RevKit

3)Steve Flammia和Bryan Eastin开发的用Latex绘制量子电路的工具包Q-circuit

尽管三者用户数量庞大,但仍然有很多因素制约用户的使用:

1)三者采用C/S 的两层架构,用户必须下载客户端才能运行,且需要特定操作系统。

2)生成电路图的分辨率低,且点阵无法修改,无法生成独立图片文件。

由此带来的局限性使得许多研究人员仍然手工绘制电路图,导致工作量大、效率低下、操作不便等一系列问题。

本平台基于Web使用SVG矢量图技术自动生成量子电路图,很好地解决了以上问题。

2 基本概念

2.1 SVG

SVG 指可伸缩矢量图形,基于可拓展标记语言,以XML 的格式描述二维矢量图形。与其他诸多图像格式相比,拥有诸多优势:可读性强、可压缩性强、图像在放大时质量不变、与其他标准相兼容。

2.2 EasyUI

EasyUI 是基于JQuery的一组UI插件集合,可以帮助开发者快速开发美观的Web页面,简化JavaScript 编写细节。

本平台使用JavaScript、JQueryEasyUI、SVG 所绘制出的矢量电路图可在网页中直接拖拽,图像清晰度高,电路各项参数可读且允许修改,能够满足各期刊的要求,利用内部算法可将复杂绘图工作交给计算机自动实现。同时采用B/S架构将SVG 图形的优势带到Web端,摆脱了C/S架构的运行环境局限性。

2.3 TFC文件格式

TFC是保存量子电路信息的一种文件格式,使用它可以方便存储、读取量子电路信息。它主要分为两部分,.v、.i、.o、.c为第一部分,.i、.o分别描述电路的输入端、输出端。Begin与End之间为第二部分,每一行对应着一种量子逻辑门及其参数信息,包含受控端,控制端等。

2.4 JavaScript与JQuery操作SVG方法

利用JavaScript及JQuery来对SVG图形进行操作。在JavaScript中调用document.createElementNS()方法来创建SVG元素,如圆形、椭圆形、长方形等;调用SVG中Attribute的get和set方法来操作其属性的修改及显示,添加自定义属性以用SVG来更好地描述电路元件。最终利用JS或JQuery向指定位置追加SVG元素。

3 平台实现

3.1 绘制量子门

图1中的量子门电路是利用JS、SVG绘制而成。每个量子门电路是由不同的图形组合而成。利用SVG可以绘制出不同的图形,如线、圆形、椭圆。也可以设置他们的属性。调整Stroke-width控制线的宽度,调整rx, ry属性组合控制椭圆的形状。通过设置这些图形的位置属性就可以组合成量子电路。为每个量子门图设置点击事件来完成量子门的添加或删除功能。

3.2 绘制工具

利用EASYUI组件中的窗体、按钮组件,绘制图2所示的工具条。为其中的按钮设置单击事件,向绘图区追加SVG元素,原理与3.1大致相同。绘制窗体的组件可以自由拖动,这是EASYUI窗体组件本身具有的特性,点击右上方的图标还可以展开折叠绘制工具栏。

3.3 绘制组合量子门

单击对应的图形,再在网格区域单击,根据弹出的参数设置框,设置参数,点击确定即可添加,右击取消添加。参数设置窗口利用了EasyUI中的窗体、按钮、数值输入框等组件。数值输入框中的数值可以通过右面对应的按钮递增递减调节输入框中的值,递增递减的梯度可通过属性设置。点击确定按钮后,读取输入框中的具体参数,通过JavaScript创建对应的圆形、线条,然后组合,在Web端显示。

3.4 参数修改

参数属性窗口利用了EasyUI中的属性表格组件,点击编辑框中的量子电路元素触发事件,调用JavaScript获取对应的属性,封装成json数组,通过属性表格组件的loadData()方法显示属性,点击属性框,修改后会触发相应的事件从而修改对应的属性值。

本软件所能识别的量子逻辑门种类包括T 门、F 门、H 门、V门、V+门、P3 门、S 门、T 门以及T+门。T 类门可识别T1~T21 这21 种门,对应的端口个数分别为1~21。F 类门可识别F2,F3,F4,F5 四种门,对应的端口个数分别2个。

3.5使用JavaScript和JQuery根据TFV文件绘制电路图的算法

程序在识别TFC文件时,获取TFC文件的全部内容,使用JavaScript字符串处理函数分别得到v, i, o对应的字符数组,T1,F3等不同的量子门类型对应的参数,根据不同的量子门类型逐步创建不同的SVG元素,设置其相应的属性,并添加至根元素SVG标签中,最终在Web端呈现。

首先,读取TFC文件获取.v对应的字符数组,从而确定要绘制的量子矢量图的行数,以及电路的输入与输出标识,判断begin和end之间门的数目,判断门的类型,对应绘制不同的门。

以图5为例,读取begin和end之g的内容后,逐行绘制。绘制时根据每行对应的参数创建对应的SVG图形,图形的属性则根据默认参数设置。因为通用Toffoli 类规定最后一个参数对应的是受控制端,其他均为控制端,所以受控制端对应的SVG圆形图案颜色为白色,并嵌入十字形图案,而控制端对应的SVG圆形图案颜色为黑色。控制点半径,受控点半径,行间距,门间距等参数是默认的,但并不是不变的,绘制完成后可以在属性框中进行更改。受控制点,控制点之间要有直线相连,直线的长度由控制点和受控点的数量决定。根据begin和end之间的参数绘制完之后要绘制平行线,平行线的长度由门类型的数量决定,绘制完的量子电路图如图6所示。

事件的委托:例如 onclick、onmouseover、onmouseout等即事件,委托即让其他对象来完成原对象所需完成的实践。委托能带来性能上的优势,例如对html中每个需要添加事件的节点上添加一个或多个事件,click、mouseover等事件不仅会增加内存,增加浏览器的负担,还会降低程序运行效率。如果将事件添加到body或者其他的标签上,利用冒泡的原理,body等标签也会接收到对应的事件,再根据事件本身的参数即可进行处理。SVG图形事件的处理就是利用了这一特点。

5 结束语

平台采用B/S两层架构,使用JavaScript、JQueryEasyUI、SVG等多种语言编写。使用Web分布式技术及SVG 矢量图的绘图编程技术,在Web 平台下实现高清量子电路矢量图的自动生成及后期在线编辑操作功能;使用EasyUI、JQueryUI等JS框架实现功能丰富且美观的用户界面;基于云平台,实现用户权限管理,多用户间可协同编辑,数据实时更新。平台提供的服务适用于个人及团队工作者,其研发与实现能为相关人员绘制高质量电路图带来了极大便利。

参考文献:

[1] 王秋里,蔡松成,纪研雨,等. 基于Visio的量子电路矢量图自动绘制[J]. 电脑知识与技术,2015,11(12):237-240.

[2] 黄华梅,杨信廷,杨宝祝,等. 基于AJAX和SVG的组态软件WEB模型[J]. 计算机工程与设计,2010,31(12):2629-2633.

[3] 杨晴雯,周宇,李晓. WEB图形格式SVG及基于XML+XSL的动态生成技术[J]. 成都信息工程学院学报,2004,19(4):545-548.

篇(11)

量子计算机是大势所趋

所谓量子计算机,简单来说就是利用量子携带信息、存储数据,遵循量子算法进行高速的数学和逻辑运算的物理设备。我们熟知的传统计算机的“心脏”依赖的是硅芯片,但是一个芯片的面积总是有限的。

硅晶体管作为在芯片上传输信息、处理信息的微型开关,每年都在缩小,但是,由于硅的特性和物理原理,尺寸缩小(现已达到纳米级)将限制性能的提升。所以,对晶体管进行传统的尺寸的扩展和收缩操作,不能再产生行业已经习惯的更低功耗、更低成本、更高速度的处理器的效果。虽然英特尔的22纳米处理器已经面世,还计划于2013年推出14纳米处理器,对于10nm、7nm以及5nm的制程研发路线图也已敲定,但是,只要粒子的尺度到了10的负10次方米以下,就会明显出现量子特性,所以大部分物理学家坚持认为,摩尔定律不可能无限维持。

为了突破这道瓶颈,

IBM一直致力于研发碳纳米管芯片,其研究人员在一个硅芯片上放置了1万多个碳纳米晶体管,从而能够获得比硅质器件更快的运行速度。IBM声称这一成果有望让摩尔定律在下一个十年中继续生效。但是,如何获得高纯度的碳、如何实现完美的制造工艺又是不可避免的问题。

因为量子计算机是利用量子携带信息的,所以,传统计算机面临的挑战恰恰是量子计算机的优势所在。量子计算机中的每个数据由不同粒子的量子状态决定,根据量子力学原理,粒子的量子状态是不同量子状态的叠加。所以,量子计算机计算时采用的量子比特在同一时间内能够呈现出多种状态——既可以是1也可以是0,传统计算机在运算中采用的传统比特在特定时间内只能代表一个状态——1或者0。这就是量子计算机与传统计算机最大的不同之处。由于量子叠加状态的不确定性,量子计算可以同时进行大量运算,它的潜在应用包括搜索由非结构化信息构成的数据库,进行任务最优化和解决此前无法解答的数学问题。所以,量子计算机是大势所趋。

实现方案众多

量子计算机以其独特的运算逻辑和强大的运算性能吸引了无数研究机构和科学家对其进行研究,也相继取得了一些成果。量子计算机以处于量子状态的原子作为中央处理器和内存,所以研制量子计算机,关键在于成功操控单个量子。相信大家一定对“薛定谔的猫”这一理论并不陌生,关在密闭笼子里的猫,由于量子状态的不确定性,人们永远不知道它是活着还是死亡。所以,处于宏观世界的我们如何才能够有效操控微观世界的粒子,是极大的难题。从理论上讲,量子计算机有几十种体系,从实验上也有十几种实现方法。

阿罗什带领他的团队利用微米量级的高反射光学微腔实现了单个原子辐射光子的操作;瓦恩兰的团队则利用可结合激光冷却技术,在离子阱中实现了单个离子的囚禁;IBM的托马斯·沃森研究中心组建了一支庞大的研究团队,依赖耶鲁大学和加州大学圣巴巴拉分校过去几年在量子计算领域取得的进展,意欲基于微电子制造技术实现量子计算;美国普林斯顿大学物理副教授杰森·培塔表示,他和加州大学圣巴巴拉分校的科学家利用电子的自旋特性,寻找到了操控电子的方法;利用声波和超导材料,也可以实现量子计算机的拓展;总部位于加拿大的D-Wave公司的量子芯片使用了特殊的铌金属(元素符号Nb,一种类似于银,柔软的、可延展的金属)材料,在低温下呈超导态,其中的电流有顺时针、逆时针以及顺逆同时存在的混合状态,而这正可以用来实现量子计算。

众多方法中,最值得一提的便是阿罗什和瓦恩兰的做法。阿罗什构造了一个腔,把单个光子囚禁在光腔里,实现量子的操控,再往腔里放入单个原子,使原子和光子相互作用,通过腔的损耗来调控它们的状态。瓦恩兰捕获离子的方法,是用一系列电极营造出一个电场囚笼,离子如被装进碗里的玻璃球,而后,用激光将离子冷却,最终,最冷的一个离子安静地待在碗底。他们独立发明并优化了测量与操作单个粒子的实验方法,而且单个粒子在实验过程中还能保持量子的物理性质。

中国科学院院士郭光灿这样评价阿罗什和瓦恩兰的成就:量子计算这个领域已经取得了飞速发展,现在的技术已经超过当初的技术,但是起点是他们。我们现在关注的不是单个离子,而是多个离子的纠缠,比如两个腔怎么连在一起,这是将来要做的,此外,还会有各种各样的腔,比如光学腔、物体腔和超导腔等。现在做量子计算机,实际上就是做芯片,把很多离子纠缠在一起,分到各个区里面,如果这一步能实现,量子计算机有希望在这方面实现实质性突破。

过程艰难 但前景乐观

自“量子计算机”的概念提出到现在的30年间,科学家们纷纷涉足,不管是在理论方面,还是实践方面,都取得了一些不可忽视的成就。

近几年来,量子计算机的领域更是全面开花,量子计算机不再是人们“只闻其名,不见其形”的概念型产品。英国布里斯托尔大学等机构以奥布赖恩为领导的研究人员更是在新一期美国《科学》杂志上宣布,成功研发出一种可用于量子计算的硅芯片。奥布赖恩表示,利用这种芯片技术,10年内可能就会研制出超越传统计算机的量子计算机。

想要研制出实用的量子计算机,需要面临科学技术方面的多重挑战,其中最主要的两大障碍就是:如何让粒子长时间保持量子状态,即保持相干性;如何让尽量多的粒子实现共同计算,即实现量子纠缠。阿罗什和瓦恩兰给出的实验方法均成功地打破了这些障碍,实现了基础性的突破。近几年来,研究人员以他们的研究成果为出发点,不断探索,取得了快速进展,可谓前景乐观。

需要注意的是,量子计算机的出现会将网络安全置于非常危险的境地,给现有的社会和经济体系以及国防带来潜在威胁。目前大部分的网络保密是使用“RSA公开码”的密码技术。想要破译这种密码,就要对大数分解质因子,这是极其困难的。按照现有的理论计算,分解一个400位数的质因子,用目前最先进的巨型计算机也需要用10亿年的时间,而人类的历史才不过几百万年。然而,量子计算机能够借助其强大的运算功能瞬间完成密码破译,这严重动摇了RSA公共码的安全性。

目前,量子计算机给人们的印象不过类似于一个玩具,娱乐价值似乎更高一些,但是在不久的将来,它一定能够引领计算机世界的潮流。

相关链接

量子计算机发展简史

1982年,诺贝尔奖获得者理查德·费曼(Richard Feynman)提出“量子计算机”的概念。

1985年,英国牛津大学的D. Deutsch进一步阐述了量子计算机的概念,并且证明了量子计算机比经典图灵计算机具有更强大的功能。

1994年,贝尔实验室的专家彼得·秀尔(Peter Shor)证明量子计算机能够完成对数运算,而且速度远胜传统计算机。

2005年,世界第一台量子计算机原型机在美国诞生,它基本符合了量子力学的全部本质特性。

2007年2月,加拿大D-Wave系统公司宣布研制成功16位量子比特的超导量子计算机。

2009年,世界第一台通用编程量子计算机在美国国家标准技术研究院诞生。

2010年1月,美国哈佛大学和澳洲昆士兰大学的科学家利用量子计算机准确算出了氢分子所含的能量。