欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

垃圾渗滤液处理前景大全11篇

时间:2023-12-27 14:44:47

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇垃圾渗滤液处理前景范文,希望它们能为您的写作提供参考和启发。

垃圾渗滤液处理前景

篇(1)

垃圾处理常见的方法包括卫生填埋、焚烧、堆肥和综合利用等。卫生填埋法由于运输管理方便、处理费用低、技术成熟,因而成为我国处理垃圾的主要方式。但在垃圾填埋过程中产生的渗滤液是一种危害较大的高浓度的有机废水,对周边环境及填埋场场底土层污染严重,且污染持续时间长,造成严重的二次污染,因而对渗滤液进行有效的收集和处理已成为城市环境中亟待解决的问题,垃圾渗滤液的处理技术是国际上的研究热点问题之一。

1 垃圾填埋场渗滤液的产生及其水质特征

垃圾填埋后,在微生物作用下,垃圾中有机物经过好氧反应和厌氧反应发生降解。垃圾中溶解的氧气较少,好氧反应速度快,因而好氧反应很快终止而进入厌氧环境。垃圾中有机物的降解主要由厌氧反应承担。垃圾降解产生低分子有机物以及垃圾中的可溶性有机物进入垃圾渗沥液中,使得渗沥液中氨氮等有机物含量较高。且垃圾降解产生的CO2溶入垃圾渗沥液中使其程微酸性,这种酸性环境加剧了垃圾中不溶于水的碳酸盐、金属及其金属氧化物等发生溶解,因此渗沥液中含有较高浓度的金属离子。由于影响渗沥液水质成分的因素很多,包括水分供给情况、填埋场表面状况、垃圾性质、填埋场底部情况、填埋场操作运行方式、填埋时间等,因而渗沥液中污染物的种类、浓度变化范围很大。所以针对不同的垃圾渗沥液应采取适合的处理方法。

2 垃圾渗滤液处理方法

目前垃圾渗滤液处理方法主要有生物法和物化法,当垃圾渗滤液的BOD/COD大于0.3时,渗滤液的可生化性较好,可以使用生物处理法;对BOD/COD比值较小(0.07~0.2)、难以生物处理的垃圾渗滤液,以及生物法很难去除的相对分子量较小的有机成分,物化处理效果更好。

2.1 生物法

垃圾渗沥液的生物处理主要是指依靠处理系统中的微生物的新陈代谢作用以及微生物絮体对污染物的吸附作用来去除渗沥液中的有机污染物的废水处理方法,可分为厌氧和好氧处理两种。

2.1.1 预处理

渗滤液中污染物的成分变化很大,COD最大可达70000mg/L,BOD也可达到38000mg/L,而氨氮的质量浓度可达1700mg/L,甚至更高,重金属中则以Fe,Pb等的浓度最高。渗滤液中高浓度的氨氮会对微生物的活性有强烈的抑制作用,因此通过对渗滤液的预处理,去除一部分氨氮,对后续生物处理的顺利进行具有重要意义。

目前关于渗滤液预处理的研究有用空气自由吹脱和加石灰吹脱预处理方法,效果良好,此外还有化学沉淀和吸附的方法去除氨氮,都取得了不同程度的去除效果。

北方地区垃圾成分以无机物为主,垃圾自身含水率较低,渗沥液的产生主要来自于降水,渗沥液的产量及浓度受季节变化影响较大。常用的方法是设置渗沥液调节池,雨季时加大处理量,旱季时通过自然蒸发及渗沥液回灌等措施减少处理量,节省能耗。由于渗沥液主要来自于降雨,因此其有机物浓度较低。

2.1.2 好氧处理

好氧处理最普遍的方法包括延时曝气、曝气稳定塘等,这些方法对降低垃圾渗沥液中的BOD5、COD和氨氮都取得一定的效果,还可以去处另一些污染物如铁、锰等金属离子。好氧生物处理工艺较为成熟。目前,主要的厌氧生物处理工艺有曝气稳定塘、传统活性污泥法和生物膜法等。

2.1.3 厌氧处理

厌氧法包括厌氧污泥床、厌氧式生物滤池、混合反应器及厌氧塘等,它具有能耗少、操作简单、投资及运行费用低等优点。利用间歇式厌氧反应器将原液中83%的COD转化成甲烷气体;使用间歇和连续上流式厌氧污泥床处理垃圾渗滤液,使反应器有机负荷率在0.6~19.7g(L•d)的条件下操作,间歇上流式厌氧污泥床去除COD的效率在71%~92%之间,对于连续上流式厌氧污泥床反应器,COD去除效率保持在77%~91%范围内。

2.1.4 好氧与厌氧结合处理法

对高浓度的垃圾渗滤液,采用厌氧、好氧结合处理工艺经济合理,处理效率也较高。采用氨吹脱-厌氧生物滤池-SBR工艺对某填埋场的渗滤液进行了研究,渗滤液中COD,BOD5,NH3-N和TN的去除率分别达到95%,99%,99.5%和97%。此外,利用厌氧-好氧反应系统来处理“年轻”的渗滤液中有机物和含氮化合物,脱氮作用和甲烷生成均可在厌氧反应器中进行,有机物去除和硝化作用在好氧反应器中进行,效果良好。

由于生物法操作简便,运行费用较低,且技术成熟,因而具有广泛的应用前景,但是对于可生化性低、难降解的有机物,以及毒性高的废水,生物法处理效果较差,但物化法可弥补该方面的不足。

2.2 物理化学法

常见的物理化学法包括光催化氧化、吸附法、化学沉淀、膜过滤、土地处理等。

2.2.1 光催化氧化

光催化氧化是一种刚刚兴起的新型现代水处理技术,具有工艺简单、能耗低、易操作、无二次污染等特点,尤其对一些特殊的污染物比其他氧化法更具显著的优势,但目前国内外关于光催化降解有机物的研究尚处于理论探索阶段。。

2.2.2 膜处理法

膜处理法是用各种隔膜使溶剂同溶质和微粒分离的一种水处理方法,根据溶质或溶剂通过膜的推动力的大小,膜分离法可分为反渗透法、超滤、微孔过滤等。在韩国,为处理“年老”的渗滤液中难降解的有机物和高浓度的氨氮,使用综合膜处理工艺,包括一个膜生物反应器和反渗透装置。处理效果为COD去除率97%,总氮的去除率91%,运行成本仅为传统处理方法的60%。利用反渗透法处理不同的渗滤液,发现来自于普通填埋场渗滤液和含有可生物降解废物填埋场渗滤液的处理效果很好,COD和氨氮去除率超过98%,并发现透水量和传导性之间有显著线性的关系。膜处理的最大问题是膜污垢,会堵塞膜孔,对处理效率有很大影响。此外膜过滤技术费用昂贵,因此国内膜技术无法得到广泛应用。

2.2.3 化学沉淀法

混凝技术是一种重要的化学沉淀法,常常作为预处理并结合其他方法处理垃圾渗滤液,效果显著,但易受pH值等条件的限制。利用混凝-絮凝法作为反渗透法的预处理,可以解决膜污垢的问题。

2.2.4 渗滤液回灌技术

篇(2)

前言:

垃圾渗滤液,通俗来说就是指经过了垃圾处理之后经过一系列的化学反应物理反应,再加之降水污水排放等其他外部的来水的渗疏作用和淋溶作用下,产生的一种高浓度的污水,它也是一种高浓度的有机废水。通常有以下几各方面是影响垃圾渗滤液的关键因素:降水量、蒸发量、地面流失、地下水渗入、垃圾的特性、地下层结构、表层覆土以及下层排水设施情况。垃圾渗滤液中含有众多的高污染因素,存在大量的有毒物质,对环境的危害难以表述,一旦垃圾渗滤液不经过处理就排放到江河湖泊,将会产生难以估量的污染后果。会对动植物以及人体的健康产生严重的影响。所以对于垃圾渗滤液的处理是非常必要的,能够帮助我们拥有一个良好健康的生存环境。但是由于诸多因素,垃圾渗滤液的处理极具复杂性,垃圾渗滤液的处理已经成为一个较困难的难题。

1 垃圾渗滤液的处理难点

1.1垃圾渗滤液所具有的特点

垃圾渗滤液的特点基本上就决定了其处理的难度性。垃圾渗滤液的水质波动大,渗滤液的成分复杂,很难对症下药。而且垃圾渗滤液的成分并不是一成不变的,它会随着填埋时间的长短逐渐变化,这其中有众多的因素影响着它的变化,垃圾所含有的内含物质,降水对于土壤的渗透,填埋时间的长短,填埋时期的专业技术的人才的素质问题,填埋场地防渗透技术,填埋场中具体的操作细节,填埋场的运营状况等,特别是降水渗透量和填埋时间长短是两个关键的影响因素,甚至可以说,这两个因素已经决定了垃圾渗滤液的成分的复杂性特征。并且我们要看到所有这些变化都是不可控的,这也是一个垃圾渗滤液处理困难的一部分原因。另外,COD 和氨氮的浓度高,众所周知,氨氮过多会是水体产生恶臭,对人体的伤害是很大的,其中还含有很多的致癌物质,一旦不小心排放到环境,对我们的生存环境的恶劣影响可想而知。还有重金属的含量也是一个巨大的数字,艳丽的颜色中同样含着恶臭,对环境的污染极其严重。

1.2 垃圾渗滤液的处理现状

与城市污水一同处理。这种处理方式简单明了,它可以节约了处理城市废水和垃圾渗滤液的双重费用,降低了处理成本,基本上算是一种较为可行的方案。但是有的时候还是存在着一定的问题,比如一般城市污水处理工厂往往和垃圾填埋厂的距离很远,这样对于两者的共同处理的方便性提出了挑战。同时运输也会增加一定的经济成本和处理费用,垃圾渗滤液的水质特点和城市污水完全不在一个层次上,从某种程度上来说,是对污水处理厂的重负荷。还有一种处理方式就是运用渗滤液回灌技术,回灌技术是近年来发展起来的一种专门运用于垃圾渗滤液的处理的技术,它依靠简单的技术设备,操作简单,经济成本也相对较低,但是同样存在着问题,一方面产生大量可挥发的恶臭气体,这存在很大的安全隐患。最后一种方式是现场建立渗滤液处理厂进行处理,这是一项相对较为先进的技术,主要在发达国家和地区使用,就目前中国的现状而言,有一部分大城市也有这样的渗滤液处理厂,它需要坚实的技术支持,运用的范围现在还有待开发。其技术核心总结而言就是对污水处理的一种模仿。

1.3 垃圾渗滤液的处理难点

垃圾渗滤液的处理难点主要有以下几个方面:单一的处理方法无法满足排放标准,因为垃圾渗滤液的成分复杂,含有的物质水溶性差,难以分解,这就造成了在垃圾渗滤液处理过程中仅仅靠一项处理程序很难达到达标排放的标准,另外的垃圾渗滤液中的水质也存在很大的差异,单单靠一项处理技术对其进行处理不能实现对多种水质的处理;有较高氨氮浓度的垃圾渗滤液难以处理,垃圾渗滤液中重金属等有毒有害物质的处理难题,随着近现代技术的不断发展成熟,重金属对人体的危害已经成为大街小巷中的常识性问题,由于重金属的特殊性,只要有少量的重金属物质进入人体就可能造成严重的影响,出现畸形等各种生理变异,所以对于垃圾渗滤液的处理越来越严格,以确保不会在排放后对人体产生负面的影响。

2 针对垃圾渗滤液的处理难点所采取的应对措施

2.1 增强对垃圾渗滤液的全过程监控

全过程监控是指对于垃圾渗滤液整体性的一个把握,对于降低经济成本和节约不必要的开支,能加大对与垃圾渗滤液处理技术的投入,同时全过程包括在开始阶段,过程阶段,结束阶段都能都有一个好的监控,首先是开始阶段,开始阶段就是垃圾渗滤液的源头,控制源头能够取得很好的效果,一方面能够减少工作量,另一方面是能够培养人们对于垃圾再回收利用的意识。在过程阶段,注意对于技术的创新和新技术的应用,加大对于研究的力度,发展出更加有效的方式对待垃圾渗滤液;同时在过程阶段,应该严格对待每一项垃圾渗滤液的处理,不能马虎过关,严肃对待处理的每一项环节,保持高达标排放的效率。

2.2 加强对新技术和新设备的研发和利用

增强对于新技术的利用和研发对于垃圾渗滤液的处理相当于就是质的飞跃,只有有一项可观的技术支持,众多的垃圾渗滤液的问题都能迎刃而解,所以对与新技术的投资不仅仅是迫于形势,而且是必要的,能够给我们将来处理垃圾渗滤液带来很好的效果和发展前景。对于现在较为先进的技术设备要注意加大资金进行推广其使用范围,增强这项技术设备的使用效度,给垃圾渗滤液的处理带来更多实际的效果。实现一项新的技术设备的产业化结构,使之能够在垃圾渗滤液的处理行业中发展壮大,这是很有必要的,是符合市场现实需求的体现。

2.3 对于重点技术的运用

微电解处理工艺,主要原理是通过金属的腐蚀原理,通过物理沉淀和相关的化学反应来实现对垃圾渗滤液中的物质的吸附和处理,这个方法主要对于污水处理的模仿,但是对于垃圾渗滤液同样具有良好的效果;氧化沟处理工艺,是一种主要正针对垃圾渗滤液填埋的技术处理,这种工艺具有超强的耐冲击负荷、良好的脱氮效果,另外一个广受人们欢迎的特点是它有能够在一定程度上对产泥率进行有效的降低,近几年来得到了很好的推广和使用;砂滤处理工艺,主要是对于水中的杂质的处理,使用过滤层过滤掉垃圾渗滤液中的悬浮杂质,它能够一定程度上使水质澄清。

3 结语

总而言之,垃圾渗滤液已经成为了一种社会共同应对的问题和技术难题,不断有学者在孜孜不倦的进行着研究和创新,相信在未来垃圾渗滤液能够得到很好的处理。同时对于现有的各种技术应该加大对于它们的技术处理和管理,使之能够真正的有所作用,能够真正在垃圾渗滤液的处理中发挥正确的作用。

篇(3)

在国家产业政策大力扶持和处理标准趋严的双重刺激下,我国垃圾渗滤液处理行业快速发展,市场规模不断扩大,但绝大多数企业规模偏小、产品技术含量较低、无自主知识产权。真正能够从事渗滤液处理工程一体化服务的更是寥寥无几。

作为垃圾渗滤液处理行业中的龙头企业,维尔利目前拥有环保工程专业承包二级资质和环境污染治理运营甲级资质,并依托分体式膜生化反应器及其衍生工艺等高效渗滤液处理工艺,主要为客户提供垃圾渗滤液处理系统综合解决方案。维尔利是第一个在国内采用“MBR+纳滤”工艺处理渗滤液的公司,目前在内渗滤液企业中总处理规模排名第一。在渗滤液处理行业的市场占有率约10%。公司自成立以来已先后承接38个渗滤液处理项目,在总处理规模和大中型渗滤液处理项目(渗滤液处理量500 吨/日以上)数量上取得了“双第一”的业绩。其中处理规模超过500 吨/日的渗滤液处理项目8个,项目包括广州李坑、佛山高明等多个项目。

公司近几年处于高速发展态势。2008-2010年,公司实现营业收入分别为4939.82万元、1.12亿元和2.10亿元,成长性十分突出。公司的快速成长得益于垃圾渗滤液处理行业的蓬勃发展,以及公司自成立以来逐步建立的品牌、技术创新、管理团队、服务模式等竞争优势。

竞争优势较为明显

在引进、消化和吸收国外先进技术基础上,针对我国渗滤液的特点,维尔利创新出一整套符合我国渗滤液处理的产品、技术和工艺。2003年公司率先采用“MBR+纳滤”工艺,建成了国内首座运用膜生化反应器及其衍生工艺的渗滤液处理厂,处理水量达到设计规模,出水水质优于设计标准,开创了我国膜生化反应器及其衍生工艺在渗滤液处理行业应用且达标排放的先河。公司力争实现“生产一代、研发一代、储备一代”的目标,在膜处理设施的系列化、标准化、集成模块化设备设计和应用上,亦位于同行业领先地位。

公司视研发为推动自身发展的源动力,并已建立较为完善的技术创新体系,配套相应的研发经费投入与核算、研发人员绩效考核等制度。公司目前拥有10项专利,2项专利申请获受理,1项独占使用的发明专利,以及德国WWAG和WUG拥有的MBR相关专利、商标和技术等在中国大陆的20 年独家使用权。

通过多年的项目实践,公司积累了非常丰富的项目经验,并建立了我国渗滤液水质数据库。基于数据库丰富精确的经验数据,公司在渗滤液处理过程中进行工艺选择和参数设定等时更加准确和快捷,进一步提升了公司的服务质量并有效缩短了项目时间,节约了人力成本和资金成本,为公司今后承接并顺利开展更多的项目奠定了坚实基础。

篇(4)

1 城市生活垃圾卫生填埋处理现状及困境

城市生活垃圾卫生填埋处置方式由于具有技术可靠,工艺简单,管理方便;投资相对较省,运行费用低;适用范围广,对生活垃圾成分无严格要求,能完全消纳进场垃圾等一系列优点,在许多地区和国家都得到了广泛的运用。如1993年美国填埋处理量占垃圾总处理量的69.24%[1],英国1999年垃圾填埋处理占垃圾总处理量的67%,1991在德国年垃圾填埋处理量占垃圾总处理量的60%,在西班牙占75%,而我国在2001年统计结果显示垃圾填埋处理量占垃圾总处理量的80%。尽管垃圾卫生填埋处理技术拥有以上一系列的优点和得到了广泛的运用,然而现行传统的“式”(Dry Tomb)卫生填埋技术要求填埋过程中实行单元填埋、每日覆土、中场覆土,封场时再用自然土和粘土甚至土工膜组成最终覆盖层,严格按照上述要求施工的填埋场封场后就成了一个垃圾的“干墓穴”,由于湿度减少,微生物的活性减弱甚至停止,场内垃圾的生物降解是一个无任何控制的自然降解过程,封场后很长一段时间(数十年)内垃圾保持不变或者变化很小。此时的垃圾填埋场是一个潜在的污染源,一旦填埋场的覆盖层和防渗层部分功能失效,其污染特性必将暴露无疑。这种垃圾填埋形式实际上人为制造了一个定时炸弹,其实质只是将当代人产生的垃圾这一污染源转移给了下一代或后几代,这不符合可持续发展战略要求。现行的垃圾卫生填埋技术存在占地面积大的缺点之外,还存在如下几个无法避免的缺陷,由此严重的制约了垃圾卫生填埋技术的进一步推广和运用。

1.1 传统填埋场渗滤液水质、水量波动较大,处理难度大

现行垃圾填埋场渗滤液产量直接受进入场内的大气降水量的影响,一般填埋场运营期间渗滤液产量大,封场后渗滤液量相应减少;雨季渗滤液产量大,旱季渗滤液量则较少。受垃圾组分,大气降雨量的影响,填埋场渗滤液水质水量季节性波动显著;受填埋垃圾分解阶段的影响,填埋初期渗滤液有机污染物浓度特别高,垃圾填埋后期污染物浓度则逐渐降低。由于一般填埋场据城市污水处理厂距离较远,即使较近大量高污染物特征的渗滤液也会对城市污水处理系统的正常运行带来冲击,故一般填埋场都建设有独立渗滤液处理系统。但包括物理、化学、生物处理法等工艺在内的渗滤液处理系统都无法适应不断变化的渗滤液水质和水量的要求,经常要求随季节以及填埋阶段的不同改建渗滤液处理系统或对系统的有关运行参数进行调整。

1.2 传统填埋场渗滤液污染强度高,二次污染严重

传统填埋场渗滤液不仅污染种类繁多,成分复杂,同时污染物浓度极高。部分填埋场渗滤液COD可能高达近十万mg/L,氨氮浓度也可能高达近万mg/L,要使组分复杂,污染物浓度高的渗滤液排放前达到有关排放标准的要求,必须对其进行深度处理。深度处理费用之高,令很多填埋场的运行管理者望而止步。2001年7月国家环保总局下发了《关于开展生活垃圾处理设施环境影响调查和监测的通知》(环办[2001]72号),对全国垃圾处理设施的污染排放情况及其对周围环境的影响展开调查,调查结果显示,我国垃圾卫生填埋场渗滤液排放、地下水水质及无组织排放等无一家达到《生活垃圾填埋场污染控制标准》(GB 16887-1997)之规定,且二次污染程度较高[2]。

1.3 传统填埋场封场后维护监管期长、风险大、费用高、不利于场地及时复用

尽管传统填埋场不时有雨水进入,但受季节影响进入水量分布不均、受填埋场所布设的覆盖层影响使进入场内水分分布地点不均,因而填埋垃圾得不到均匀的、快速的降解,垃圾体的污染特征长期存在。美国EPA要求填埋场封场后监管30年,但有专家认为现行部分垃圾填埋场封场100年后还有大量垃圾未得到有效降解,仍对周围环境构成潜在威胁。长时间填埋场监管期不仅增加渗滤液处理、监测以及其他系统的维护费用,还增大了渗滤液收集系统、防渗层等系统失效的可能,从而增加了潜在的二次污染风险。

1.4 传统填埋场产气期滞后且历时较长,产气量小,资源化率低

传统填埋场进入甲烷化阶段所需时间长,还因渗滤液连续排放而损失大量可转化为甲烷气体的有机物,从而降低填埋场甲烷气体总产量;由于产气期较长而降低了产甲烷速率,使填埋场在甲烷总量减少的同时还延长了回收甲烷气体所需时间,因而降低了回收甲烷气体作为能源的经济效益。目前,除杭州、广州和深圳已在利用填埋场气体发电外,其余100多个填埋场都将填埋气体在燃烧后排放或直接排放,造成资源的严重浪费和对环境的负面影响。

1.5 传统填埋场垃圾处理费用高

由于传统填埋场的以上不足之处,自然就直接导致较高的单位垃圾填埋处理处置费用,不利于这一垃圾处置方式在更大范围的推广和运用。

2 生活垃圾生物反应器填埋技术

2.1 技术优势[3~6]

鉴于传统垃圾填埋技术以上一系列不足之处和生物技术在环境保护中的广泛运用,二十世纪后期欧美及日本等国家开始另一种改进的填埋场方式即生物反应器填埋技术的研究。生物反应器填埋技术根据填埋垃圾被微生物降解的机理和过程,利用填埋场这一天然的微生物活动场所,通过一系列手段优化填埋场内部环境使其成为一个可控生物反应器,为微生物大量繁殖提供一个最优的生存空间。生物反应器填埋技术不仅对填埋场产生的渗滤液能实现很大程度的场内就地净化,还为填埋场的提前稳定创造了良好条件,同时还增加了填埋气体回收利用的经济效益,明显提高垃圾的生物降解速度和效率,从而提高垃圾的资源化、无害化水平。生活垃圾生物反应器填埋技术较现行垃圾卫生填埋技术的主要优势:(1)通过渗滤液回灌,让渗滤液进一步参与生物反应,降低其污染物浓度,从而降低渗滤液的处理难度和处理费用;(2)加速生活垃圾的微生物降解过程,从而增加填埋场的有效容积;(3)通过控制填埋场内部的温度和湿度等条件,提高填埋气体的产气率和产气量,从而提高生活垃圾的资源化率;(4)加速填埋垃圾的稳定过程,从而降低填埋场的运行维护费用,并进一步降低对周围环境的二次污染风险等。由此可见生物反应器填埋技术具有传统卫生填埋技术不可比拟的优点。现如今生物反应器填埋技术在世界各国得到了广泛的运用,如美国EPA已着手修改现有的垃圾管理法规以推广这一新型的垃圾填埋技术。同样在1979年,生活垃圾半好氧生物反应器填埋技术被由日本健康福利部颁布的废物最终处置导则采用,该工艺还在马来西亚、印尼、菲律宾及巴西等国被广泛运用,同时该技术的培训课程也在亚太地区逐步开展。

2.2 生活垃圾生物反应器填埋技术的不同形式及其特点

生活垃圾生物反应器填埋技术根据填埋工艺不同可分为好氧、厌氧、好氧-厌氧及半好氧四种生物反应器填埋技术。与传统的卫生填埋技术相比较,四种生物反应器填埋技术都有各自的特点。

2.2.1 好氧生物反应器填埋技术

好氧生物反应器填埋技术是将渗滤液、其他液体及空气等根据场内垃圾生物降解需要,通过一种可控的方式加入至填埋场,概念图见图1。这样不仅大大地加快填埋垃圾生物降解和稳定速率,减少危害最大的温室气体——甲烷的排放,同时降低渗滤液污染强度和处理费用。国外研究表明,好氧生物反应器填埋场的生活垃圾达到稳定的时间在2~4年左右,温室气体减少50%~90%。由于需要强制通风供氧、渗滤液回灌及其他控制形式,故单位时间内运行费用很高。由于运行维护时间大大缩短,故总的运行维护费用同传统的卫生填埋技术相比,相差不大。

2.2.2 厌氧生物反应器填埋技术

厌氧生物反应器填埋技术是通过向填埋垃圾体回灌渗滤液和注入其他的液体以保持填埋场内最佳的湿度条件,可生物降解垃圾在缺氧的条件下进行厌氧降解,同时快速产生富含CH4的填埋气体,概念图见图2。它具有加速填埋垃圾降解和稳定,减轻渗滤液有机污染强度,增大甲烷气体产量、产生速率,进而提高甲烷气体回收利用效益等优势,资源化率高,垃圾达到稳定化时间在4~10年左右,CH4气体产量增加约200%~250%,运行维护费用较低。缺点是渗滤液氨氮浓度长期偏高,不利于渗滤液的生物处理。

2.2.3 好氧-厌氧生物反应器填埋技术

好氧—厌氧生物反应器填埋技术是对上层新填埋垃圾进行强制通风供氧,下层垃圾仍按厌氧方式运行,概念图见图3。主要目的在于降低新填埋垃圾中易降解物酸化后对厌氧垃圾层的危害,同时向场内的湿度和其他环境条件进行控制,以实现填埋垃圾的无害化和资源化。垃圾达到稳定化时间和运行维护费用间于好氧和厌氧生物反应器填埋技术之间。

2.2.4 半好氧生物反应器填埋技术[7]

半好氧型生物反应器填埋场利用填埋场内外气体压力差,通过自然进风方式维持渗滤液收集管、排气管及中间覆土周围一定区域垃圾层的好氧状态,使部分垃圾实现好氧降解,同时向场内回灌渗滤液和其他液体,概念图见图4。其兼具好氧生物反应器填埋场的部分优点,同时建设成本和运行费用同传统的卫生填埋技术相比差别不大,二次污染程度低。

转贴于

3 我国城市生活垃圾处理现状分析

2000年统计结果显示我国垃圾产量已经达到了1.4亿t,然而能达到真正意义上的、符合环境卫生要求处理的垃圾只有3%左右[8],大部分垃圾仍是通过简单的“堆填”来消纳。垃圾的“堆填”实际上是垃圾在某处的“存放”,它通常既不设防衬层,也无渗滤液收集处理和填埋气利用设施,因而,并没有改变垃圾对环境的污染状况。由于我国环保资金投入和垃圾焚烧技术等方面的限制,尤其在我国中西部地区,垃圾低位热值低,含水率高等特点,要大力推广垃圾焚烧处理还有很长一条路要走。同时我国未实现垃圾分类收集、运输和处理,垃圾堆肥处理中仍有许多问题还未解决,导致堆肥产品肥效低,产品中含有大量的玻璃粹渣,农民用户对此反应强烈,市场前景黯淡。有关媒体对四川省第一批利用国债建设的近十个垃圾综合处理厂(堆肥+焚烧或者堆肥+填埋)进行了调查,结果显示仅有个别垃圾处理厂能正常运行,究其原因之一是堆肥产品质量达不到预期的效果,市场受挫,垃圾厂变成了堆放垃圾的垃圾场,造成财力、物力和人力资源的巨大浪费。而我国地幅辽远,自然条件千变万化,有许多地方具备了建设填埋场的天然地理条件。2000年建设部、国家环保总局、科技部联合制定了《城市生活垃圾处理及污染防治技术政策》,其总则指出填埋处理是垃圾处理必不可少地最终处置手段,也是现阶段乃至今后相当长一段时间内的一种主要垃圾处理处置模式。

4 结束语

随着生物技术的不断进步和完善以及人们能源与环境意识的加强,世界垃圾填埋技术已从传统的以贮留垃圾为主向多功能方向发展,即一个垃圾填埋场应同时具有贮留垃圾、隔断污染、生物降解和资源恢复等多个功能。我国也应紧跟世界垃圾填埋技术的发展新趋势,大力研发生活垃圾生物反应器填埋技术。鉴于我国现有生活垃圾处理处置技术现有水平和基本国情,考虑到经济性和可操作性,我国当前应在回灌型生物反应器填埋技术方面加大研发和运用力度。笔者认为当前研究的重点应放在:(1)日覆盖层和中间覆盖层材料的选择,确保适当的透气性和水利渗透系数;(2)不同回灌形式(表面喷洒、水平管/沟回灌、竖井回灌以及混合回灌等)各自的适用条件和每种回灌形式的定量计算;(3)渗滤液回灌量、时间、频率的确定;(4)由于渗滤液回灌可能导致场内产酸细菌的大量繁殖,产生大量的有机酸,造成环境酸的大量积累,从而抑止产甲烷细菌的生长繁殖,因此还需解决如何有效调节场内pH值的问题;(5)由于垃圾填埋技术涉及到水力学、微生物学、环境工程学等多个学科,研发过程中应运用系统工程学的原理和方法,确定最佳计方案和运行方式,使生物反应器填埋技术在满足环境保护的前提下,实现单位垃圾建设成本和运行成本最低。

参考文献

1 建设部标准定额研究所编.城市生活垃圾处理工程项目建设标准与技术规范宣贯教材.北京:中国计划出版社,2002.7

2 李国刚.我国城市生活垃圾处理处置的现状和问题.环境保护,2002,(4):26~28

3 Mostafa W.Bioreactor landfills:experimental and field results.Waste Management,2002,22:7~17

4 Debra R.Reinhart,PhD,PE The bioreactor landfill:its status and future.Waste manage Res.,2002,20:172~186

5 EPA530-F-97-001.Landfill Reclamation,1997

篇(5)

中图分类号: X703 文献标识码:A 文章编号:1674-098X(2014)03(b)-0049-01

随着城镇生活垃圾的增多,垃圾渗滤液处理设备逐步向着城镇方向深入,污染物的排放标准趋于严格。本文结合工程实例,着重探讨两级DTRO在规模较小的垃圾渗滤液项目中的处理方法及应用优势。

1 小规模垃圾渗滤液的水质特点

(1)色度。垃圾渗滤液的色度较大,通常在200-4000倍间及其以上,并具有高毒性,通常呈暗褐色、茶色或深褐色,味具浓烈的腐化臭味。

(2)渗滤液前、后期水质变化大。渗滤液的水质变化幅度很大,它不仅体现在同一年内各个季节水质差别很大,浓度变幅可高达几倍,并且随着填埋年限的增加,水质特征也在不断发生变化。

(3)重金属。因垃圾分类收集及填埋场的分捡不力,导致众多重金属废物残留于此,增加了渗滤液内部的重金属量。

(4)生物降解特性。垃圾填埋场初始阶段BOD/COD的值维持在0.4-0.5之间,此时的生物降解性能较佳;中、后期阶段,因BOD及COD浓度的降速各异,BOD/COD的值逐步下降到0.05-0.2。并存在未被生物降解的富里酸及腐殖酸,使生物降解特性每况愈下。

(5)氨氮浓度。由于大部分填埋场为厌氧填埋,堆体内的厌氧环境造成渗滤中氨氮浓度极高,并且随着填埋年限的增加而不断升高,有时可高达1000~3000mg/l。当采用生物处理系统时,需采用很长的停留时间,以避免氨氮或其氧化衍生物对微生物的毒害作用。

(6)电导率。渗滤液的电导率持续偏高,一般在30000~60000μs/cm间。

2 工艺设计案例

(1)预处理系统

渗滤液的pH值随环境、场龄等各类条件的变化而改变,其成分异常复杂,包含各类硅、钙、镁、钡等难溶解盐,这些难溶的无机盐透过反渗系统之后,便被高倍浓缩,当其自身浓度高于该状况下的溶解度时,就会在膜外表产生结垢。而调节原水的pH值可抵抗碳酸盐无机盐的结垢,因此,在透过反渗系统之前,要调节原水的pH值。调节池原水通过提升泵进入反渗系统的原水罐内,在原水罐内调节pH值,并掺入酸性物,在原水泵压力增大的状态下,原水罐的出水进入到石英砂过滤器中,其过滤精度为50 μm。砂滤出水之后进入到芯式过滤器中,针对渗滤液级系统而言,因原水内钙、钡及镁等结垢离子及硅酸盐量较高,通过DT膜高倍浓缩之后,这一系列硅酸盐极易在浓缩液一端呈现过饱和态,因此,依照水质状况,在芯式过滤器前掺入固定量的阻垢剂,避免硅酸盐结垢,掺入量需根据原水的水质状况加以明确。

(2)两级DTRO系统

①一级反渗透。经由芯式过滤器的渗滤液直接入至高压柱塞泵内,DT膜系统的每台柱塞泵后端均设有一减震设备,主要用途在于抵消高压泵所产生的压力脉冲,并为反渗透膜柱提供稳压力。经高压泵后端的出水进至膜柱或在线泵,因高压泵的有限流量无法为膜柱提供水源,因此,经在线泵把膜柱出口的一批浓缩液回流到在线泵的入口处,借以确保膜外表拥有充分的流动速度及流量,有效地杜绝膜污染。

②二级反渗透。二级DT膜系统实质上是对一级DT膜系统的继续处理,通过一级DT膜系统处理之后的渗滤液不必掺入任何药剂即可被送至二级DT膜系统的高压泵内。二级高压泵设有频率变化控制设备,其输出的具体流量及运行频率可依照一级渗滤液流量传感仪器的反馈值自行配合完成,二级高压泵的入口管理处配备浓缩液自补偿装备,避免一级系统所生成的水量影响到二级系统的常态运行。二级浓缩液一侧配有一台伺服电机调控阀门,其作用是严控膜组内压及回收率,当透过液进至脱气塔时,以吹脱的方式可去除CO2等诸气体,使PH的值稳定在6~9间,实现达标排放。

③系统的清洗及冲洗。膜系统的清洗包含化学清洗及一般冲洗,目的在于维持膜片的高效,有效杜绝污染物质在膜片外表残余。化学清洗一般由电子计算机系统自行控制,能在计算机界面上设置清洗的具体参数,清洗时长通常控制在1~2 h,清洗中的残留液体要排放到调节池内。清洗的周期通常取决于进水污染物质的实际浓度,当进入条件恒定不变时,若膜系统的透过液量下降10%~15%,则要开展清洗,清洗的时长根据清洗方式的不同而各异。在系统常态运行的过程中,如若停机,可选用冲洗后再停机的模式;如若发生系统出现故障而停机,则需执行具体的冲洗流程。

3 工艺特征

(1)组件养护较容易,运行相对灵活 DTRO组件通常采用标准化设计工艺,方便拆卸养护,组件一经开启即可查看膜片及其余配件,维修较简易,当零配件数目不足时,组件可安装少量的导流盘及膜片而对其使用不构成妨碍,这也是其余样式的膜组件所不可比拟的优势。DTRO系统的开启速度快,运行较灵敏,可持续或间歇性地运行,也可尽快完成系统串并联方式的调整,并同另外的工艺搭配使用,以达到水质水量的规范要求。

(2)防污性能高。DTRO系统可对SDI指数达15~20倍的进水开展有序处理,且膜的防污抗结垢的性能依然维持在较佳的状态。

(3)系统出水稳定,受外界因素制约较小。DTRO系统不受渗滤液的碳氨比及可生化性等诸要素的制约,可更好地适应各填埋时期的渗滤液水质,对于处理北方严寒地区及老垃圾场的渗滤液具有显著的优势,系统出水的水质较平稳。

(4)占地面积较小。DTRO系统属一类集成系统,其结构相对紧凑,附属设施均为型号较小的构筑物体,占地面积较小。

4 结语

DTRO系统开启时长较短暂,可满足我国北方严寒区域的需求及特征。实践表明,规模较小的垃圾渗滤液处理采用该工艺模式,均能合乎国家排放要求,并为工程创造可观的经济效益和市场发展前景。

参考文献

篇(6)

一、引言

集中卫生填埋是我国现阶段城市生活垃圾处理的主要方式,针对垃圾渗滤液对人类以及环境的危害,为了防止生活垃圾填埋造成的二次污染,各个国家针对国情分别制定的垃圾渗滤液排放标准,用来解决渗滤液排放问题。

浓缩液由于含有严重污染物,直接排放可能会对土壤、地表水、海洋等产生污染;若排入市政污水处理系统,过高的总溶解性固体对活性污泥的生长也不利。因此对于减少浓缩液的产量、浓缩液继续处理的研究很有必要,相关技术的开发研究也是渗滤液处理技术中的一个热点。

二、渗滤液处理浓缩液特点

浓缩液中的主要成分是甲苯、N,N一二甲基甲酰胺、2,4一二甲基一苯甲醛、2,4一二(1,1一二甲基乙基)苯酚、三(2一氯乙基)磷酸、邻苯二甲酸环己基甲基丁基醚、邻苯二甲酸二丁酯、3,5-二叔丁基一4一羟苯基丙酸、乙酰胺、正十六酸、~t-A硫二烯酸,以及少量的十八烷到二十五烷之间的正烷烃等有机物。从这些有机物的特点来看,基本不能作为营养源参与生物反应。

根据我国几家采用反渗透工艺的项目运行经验分析,要保证反渗透出水的各项指标达标,浓缩液的产量非常大,一般会占到进水量的25% 一45%。浓缩液中的COD主要成分是难降解有机物,一般随地域和当地居民饮食习惯的差异,浓缩液的COD浓度在1 000 mg/L一5000 mg/L之间,其中的有机物很难作为营养源参与微生物代谢。根据对不同地区渗滤液处理项目发现,浓缩液中的总氮含量在100 mg/L一1 000 mg/L。浓缩液的色度一般在500倍~1 500倍之间,并且生色团和助色团相对物质量越高,色度越高。根据反渗透截流性的特点,100%的二价以上的无机盐离子、85%~90% 的一价盐离子、30% 左右的硝态氮、亚硝态氮都会存在于浓缩液中。通过数倍浓缩后,浓缩液中的氯离子浓度约为10 000 mg/L一50 000mg/L之间,TDS为20000~60000mg/L,电导率为40000~50 000 0μs/cm,这些含极难降解,且含盐度极高的浓缩液成为了所有渗滤液处理中的一道难题。

三、目前常用处理方法

处置浓缩液是整个渗滤液处理工艺膜系统设计过程中不可缺少的重要部分。如何处置垃圾渗滤液深度处理反渗透及纳滤浓缩液,取决于浓缩液的水量、水质以及处置地点的地理环境和对水源、土壤的潜在影响。浓缩液处置的典型方法有回灌、膜蒸馏、蒸发、高级氧化等。

3.1回灌

回灌工艺是指将垃圾渗滤液通过膜深度处理产生的浓缩液回运到垃圾填埋场再通过人工技术喷灌如垃圾堆体的渗流处理技术,回灌实质是把填埋场做为一个以垃圾为填料的生物滤床,回灌的浓缩液在自上而下流经垃圾填埋层的过程中,其中的有机污染物被垃圾中的微生物所降解。

从1986年开始,浓缩液回灌就作为反渗透法处理垃圾渗滤液的一个有机组成部分而被广泛采用。实践证实:在充分考虑相关填埋场的特征设计基础上,长期采用回灌处理浓缩液的系统,填埋场排出的渗滤液中主要污染物质浓度没有显著变化。然而,回灌对地下水污染的可能性增加,水流可形成短路,使填埋层含水率增加,浓缩液直接回灌也有可能导致垃圾场含盐量增加。

3.2 蒸发技术

蒸发是一个把挥发性组分与非挥发性组分分离的物理过程,由2部分组成:加热溶液使水沸腾气化和不断除去气化的水蒸气。垃圾渗滤液蒸发处理时,水分从渗滤液中沸出,污染物残留在浓缩液中。所有重金属和无机物以及大部分有机物的挥发性均比水弱,因此会保留在浓缩液中,只有部分挥发性烃、挥发性有机酸和氨等污染物会进入蒸气,最终存在于冷凝液中。

浓缩液的低能耗蒸发工艺是在传统的废水蒸发处理技术的基础上的改良和发展。传统的蒸发技术是一个把挥发性组分与非挥发性组分分离的物理过程,通过加热溶液使水沸腾气化和不断除去气化的水蒸气。垃圾渗滤液蒸发处理时,水分从浓缩液中沸出,而污染物会残留在浓缩液中。浓缩液低能耗蒸发工艺利用蒸汽的特性,当蒸汽被机械压缩机压缩时,其压力升高,同时温度也得到提升,为重新利用再生蒸汽作为蒸发热源提供了可能。通过能源循环利用技术,将浓缩液蒸发处置运行成本降到最低。目前市场上的主流材料都很难满足反渗透浓缩液蒸发装置的防腐等级要求。根据目前国内正在运行的采用浓缩液蒸发系统的项目的实际情况看,蒸发装置的主材必须是采用Ti材以上的耐腐蚀材料,造价昂贵以及后期不菲的维养费用。

3.3 组合处理工艺

目前采用的较多的组合处理工艺是生化一强化氧化一混凝沉淀工艺。其中Fenton氧化法是一种高级氧化技术。其原理是通过培养适合在高TDS下生存在菌种,保证生化处理通过传统A/O+MBR工艺对浓缩液生物脱氮。然后在强化氧化段投加遴选的氧化剂和催化剂(双氧水和铁盐),通过1号自由基反应机理对COD和TN进行去除,强氧化段COD去除率为75%,TN去除率为90%。最后通过混凝沉淀工艺对出水的ss进行去除。其核心工艺仍是传统的高级氧化技术。

篇(7)

中图分类号 X705 文献标识码 A 文章编号 1007-7731(2015)13-75-04

Environmental Problems of Municipal Solid Waste Landfill and its Management

Li Jing et al.

(Nanjing Research Institute of Environmental Protection,Nanjing 210013,China)

Abstract:The number of municipal solid waste landfill was increasing as the pushing of urbanization process,and the landfill gas and leachate caused different levels of pollution from surrounding ecological environment. The management and recovery had become important content of ecological environment protection.In this thesis,firstly,the situation of Chinese municipal solid waste treatment was outlined;secondly,the harm of landfill gas and leachate to ecological environment and its control measures were discussed;finally,the technologies and their trend of development of Chinese municipal solid waste landfill pollution management were summarized.

Key words:Municipal solid waste landfill;Landfill gas;Leachate;Management and recovery

随着居民生活消费水平的提高和城市化进程的加快,城市生活垃圾产生量的增长速度十分迅速,全球城市垃圾产生量年平均增长速率为8.4%,我国城市垃圾产生量年增长速率达10%,超过世界平均增长速度[1]。据中国人民大学国家发展与战略研究院2015年的《中国城市生活垃圾管理状况评估研究报告》显示,近年来中国人均生活垃圾日清运量平均为1.12kg,处于较高水平,根据城市化水平推算,2030年和2050年我国将分别产生城市生活垃圾4.09亿t和5.28亿t[2]。随着城市生活垃圾产生量的剧增,出现了一系列的问题,如土地占用,土壤污染、水污染、大气污染等生态问题,并引发了一些社会问题和经济环境问题。因此,对城市生活垃圾进行合理的处置刻不容缓。一般来讲,城市生活垃圾的处理方式主要包括填埋法、堆肥法、焚烧法等[3],而就我国国情而言,填埋法具有投资少、容量大、见效快等优势。相关研究表明,我国生活垃圾大约有70%以上被运送到填埋场进行填埋处置[4],因此填埋法是目前我国处理生活垃圾的主要手段。

1 我国城市生活垃圾填埋处理现状及主要类型

我国城市生活垃圾的卫生填埋技术发展较晚。20世纪80年代初,我国城市生活垃圾填埋场大部分为简易填埋场,场内没有设置渗滤液防渗和填埋气体的回收利用系统,并且欠缺填埋场附近的环保措施,致使填埋场区垃圾泛滥、臭气熏天。此外,城市生活垃圾填埋场还时有爆炸事故发生,这不仅影响了周围的生态环境,还会对人体造成一定危害[5]。20世纪80年代中后期,随着城市经济的快速发展,各级政府开始规划筹建比较规范的生活垃圾填埋场。截至2009年,中国大约有50%~60%的城市和10%的县级市修建了卫生填埋场[6]。例如,杭州市天子岭垃圾填埋场填、上海老港垃圾填埋场、北京阿苏卫垃圾填埋场、深圳下坪垃圾填埋场以及重庆长生桥垃圾填埋场等。

根据地形和地质条件,目前我国城市生活垃圾填埋形式主要有3种类型,即山谷填埋型、平原填埋型、滨海填埋型。(1)山谷型填埋场,利用城市附近的山谷填埋生活垃圾,在中国比较常见。这种利用三面环山的谷地和山谷周围斜坡的自然地形修建的填埋场可以填埋到较高的高度,具有较大的填埋容量,如杭州的天子岭垃圾填埋场;(2)平原型填埋场,利用天然洼地填埋城市生活垃圾,常用于平原地区。这种填埋场规模一般比较小,服务年限也较短,如北京的阿苏卫垃圾填埋场;(3)滨海型填埋场,利用海边滩涂进行垃圾填埋,适用于滨海城市固体废弃物的处理,如上海的老港垃圾填埋场。

2 城市生活垃圾填埋场的环境问题

垃圾填埋法具有处理量大、操作工艺简单、费用低廉等优点,从而成为各个国家和地区的主要固体废弃物处理方法。然而,填埋的垃圾在漫长的稳定化过程中会产生大量的填埋气和垃圾渗滤液,填埋气和渗滤液从填埋场内的释放与渗漏后,已导致大气、地表水、地下水污染,加剧温室效应,以及填埋场塌陷等环境问题,不可避免地对人们生存的环境和人们的身体健康产生不良影响。因此,生活垃圾填埋过程中需要采取一定的措施来解决这些生态问题。总体来说,城市生活垃圾填埋主要从以下3个方面带来生态环境问题:

2.1 垃圾填埋气的环境问题 生活垃圾集中填埋后,填埋场的大部分有机垃圾可以被微生物厌氧降解为气态产物,即填埋气,它的产量一般与填埋垃圾的组成、含水量和压缩程度以及外部的气候因素等有关。填埋气的主要成分为甲烷和二氧化碳,其余部分为一些痕量气体,如硫化氢、氢气以及挥发性有机物等。填埋气会在一定程度上影响和破坏我们的生存环境,大致集中在以下几个方面:

2.1.1 加剧温室效应,促进全球变暖 甲烷和二氧化碳是重要的温室气体。据研究,垃圾填埋场每年释放的甲烷占全球年甲烷排放总量的8%~15%,因此,垃圾填埋场释放的甲烷和二氧化碳在全球温室效应中扮演着重要角色。现阶段,许多国家己经进行了大量的相关研究,研发减少填埋场温室气体排放的各种措施[7]。

2.1.2 释放恶臭气体和挥发性有机物,污染大气环境 垃圾填埋场释放大量的挥发性有机物和具有难闻气味的成分,如硫化氢、有机硫化物、烷基苯等,这些挥发性有机物和散发异味的气体成分具有一定的毒性。此外,填埋气中还含有其它痕量气体成分,当这些痕量气体的浓度超过一定的浓度水平后,导致大气环境质量下降,影响当地居民的生活质量,具有潜在的危害[8]。

2.1.3 释放有害气体,破坏周围植被 填埋场周边地区植被的根际氧气被填埋场释放的填埋气替换,可以导致植物窒息死亡。此外,填埋气中的有毒微量气体成分也会影响植物的正常生长,从而破坏填埋场周围的植被[9]。

2.1.4 其它环境危害 填埋气中含有大量的挥发性有机污染物,它们可以随着填埋气体的扩散作用进入地下水,污染地下水资源[9];甲烷除了是一种温室气体外,还是一种易燃气体,当填埋场的排气系统不畅时,甲烷在填埋场的空气中积累,当甲烷的体积比达到5%~15%时,填埋场就可能发生爆炸和火灾[5],对周边环境造成严重的危害。

2.2 垃圾填埋场渗滤液的环境问题 生活垃圾填埋以后,垃圾中某些组分以溶解态或悬浮状态的形式存在于渗滤液中,伴随着水分运动发生淋滤作用形成垃圾渗滤液,它是垃圾填埋场伴生的二次污染物,所需的水分主要来源于降水和垃圾本身的内含水。由于液体在流动过程中受到各种物理因素、化学因素以及生物因素的影响,所以渗滤液的组分在一个相当大的范围内变动,是一种成分复杂的高浓度废水。垃圾渗滤液泄露后不仅严重威胁周边的水源,还严重影响附近的土壤环境,具体有以下几个方面:

2.2.1 有机污染物含量高 渗滤液中有机污染物组分复杂,且浓度含量高,COD高达60 000mg/L,其中以烷烃、芳烃类较多,还存在着一些酸类、酯类、醇类、酚类等。其中许多成分是过去自然界从未出现过的人工合成有机化合物,具有不同程度的生物毒性和生物富集性,长期污染会产生严重的环境安全问题[10-11]。

2.2.2 氨氮含量高 渗滤液中氨氮含量高,可达1 000mg/L以上,高浓度的铵离子具有生物急性毒性效应,如果氨离子超标就会影响附近生物的正常生长发育[12]。

2.2.3 含有多种重金属元素 渗滤液中含有多种重金属,如Zn、Cu、Cd、Pb、Ni、Cr和Hg等重金属,尤其是当生活垃圾与工业垃圾混合填埋时渗滤液中重金属种类更多、含量更高。一旦发生溢漏或渗漏,渗滤液将不可避免地污染饮用水资源,对下游的生态系统产生毒害作用[13]。

2.2.4 含有丰富的微生物 渗滤液中含有丰富的微生物,其中含有大量的致病菌和病原微生物,它们一旦进入饮用水源,将诱发各种生理疾病,严重危害附近居民的身体健康。

2.3 垃圾填埋场的地面沉降问题 垃圾填埋后,如果垃圾在填埋时如果没有被彻底、均匀地压缩,加上垃圾的某些组分在不断的降解和淋溶损失,填埋场在漫长的稳定化过程中通常会出现不同程度的沉降现象。这一行为会破坏填埋场的顶部覆盖层、底部防渗层和边坡防渗隔离层,导致垃圾渗滤液和填埋气的溢漏,污染周边环境[14-15],如果逸出的填埋气中甲烷浓度超过其极限,还可能发生爆炸[5]。此外,填埋场的不规则沉降也不利于填埋场的生态恢复和重新开发利用。

3 城市生活垃圾填埋场的治理与恢复

垃圾填埋场在运行过程或封场后,一直都存在着上述的各种生态安全隐患。因此,采取有效措施治理与恢复填埋场的生态环境,具有重要的生态意义和经济意义。现阶段,国内外开展的有关垃圾填埋场的治理与恢复工作,主要涉及填埋场的填埋气治理、渗滤液治理、场地恢复等3个方面。

3.1 填埋气的治理

3.1.1 建立导排气系统,减少填埋气产生量 在垃圾填埋场建立合理的导排气系统,减少填埋气的产生量和累积量,能有效防止填埋场发生火灾、爆炸的风险,降低填埋气的温室效应,减少填埋场的臭味,减少气体污染。一般来讲,规模较大的填埋场可以铺设专用收集管道,收集填埋气用作燃料,用于生活或工业供热;规模较小的填埋场,在填埋气不足以作为燃料的情况下,为了严防发生爆炸,必须安装填埋气的收集系统并进行火炬燃烧[16-17]。

3.1.2 填埋场的恶臭防治技术 生活垃圾填埋场恶臭污染防治的传统技术主要包括物理法、化学法和生物法,3种方法在处理填埋场恶臭过程中各有优缺点。其中,物理法操作简单、见效快,但处理恶臭浓度偏低、处理范围较小,且成本高,存在二次污染现象;化学法效率高、适用范围广,但处理持续时间短,成本高;生物法工艺简单、操作方便,且无二次污染,但筛选和培养菌种难、见效慢[8]。因此,在实际应用中应根据填埋场恶臭的特性和除臭要求等选用合适的治理方法或联合工艺,以最大程度地减少恶臭。近年来,以生物法为基础的生物除臭剂法和原位控制技术得到了快速的发展,其运行费用极低、除臭效果好、操作方便,具有巨大的发展潜力,是未来垃圾填埋场除臭的主导技术[18]。

3.2 渗滤液的治理 填埋场渗滤液的处理及排放是生活垃圾卫生填埋法面临的主要环境问题之一。到目前为止,垃圾渗滤液的处理方法主要有两大类,物理-化学处理法和生物学处理法。由于垃圾渗滤液的组分及其浓度具有很大的不稳定性,因此在选择合适的处理方法时具有很多困难。

3.2.1 设置有效的填埋场顶部防渗盖和底部防渗层,控制渗滤液产生量和释放量 填埋场渗滤液主要来源于降水和垃圾本身的内含水,其中以降水为主。因此,控制渗滤液污染,首先要设置有效的顶部防渗层,避免和减少降水的渗入,使渗滤液的形成量尽可能的小;其次是设置防渗能力强的底部防渗层和边坡防渗隔离层,避免发生渗滤液渗漏现象[13]。

3.2.2 物理-化学法处理渗滤液 物理-化学法是利用物理化学原理设计的处理工艺处理渗滤液的方法,一般作为渗滤液的预处理或深度处理工艺,但成本较高。主要处理方法有吸附法、化学沉淀法、吹脱法、高级氧化技术、膜分离处理技术等[19-20]。吸附法是通过各种不同类型吸附剂去除渗滤液的色度、金属离子和难降解有机物污染物等,处理效率高但成本也较高[21];化学沉淀法是通过加入某种化学沉淀剂发生化学反应将渗滤液中溶解性离子转化成不溶性固体,以去除渗滤液中难降解有机物和重金属等[22];吹脱法是对渗滤液的一种预处理,能有效去除渗滤液中的氨氮,调整其C/N比,有利于后续的生化处理,但易造成二次污染[23];高级氧化技术是通过羟基将难降解有机污染物氧化成小分子有机污染物以去除渗滤液有机污染物的方法,主要有光催化氧化法、电化学氧化法、Fenton氧化法等;膜分离处理技术主要包括反渗透、超滤及微孔过滤等,膜分离技术已逐渐被国内外发达地区采用处理垃圾的渗滤液[24]。

3.2.3 生物学法处理渗滤液 生物学处理法是利用微生物的新陈代谢作用吸附降解作用去除渗滤液中污染物的方法,一般分为好氧生物处理、厌氧生物处理和兼性生物处理3种。好氧生物处理主要是利用好氧微生物降解渗滤液中的有机物,有效去除COD、BOD5和重金属,具有良好的运行效能,主要处理方法有活性污泥法[25]、稳定塘[26]和序批式反应器、生物转盘[27]等方法;厌氧生物处理主要是利用厌氧细菌降解、稳定渗滤液中的有机物,具有操作简单,运行费用低等优点,其处理处理工艺主要包括:厌氧序批式反应器[23]、上流式厌氧污泥床[28]、上流式厌氧过滤器[29]、厌氧折流板反应器[30]等;兼性生物处理,即采用厌氧-好氧生物相结合处理渗滤液,处理效果较好,且操作简单,运行费用低,具有广泛的应用前景[25]。

3.2.4 人工湿地处理渗滤液 人工湿地含有多种微生物,它们可以与渗滤液中有机物、氮磷及重金属等污染物发生生化反应,降解污染物,具有成本低、管理方便、处理效果好等优点[31]。人工湿地处理填埋场渗滤液在我国许多地区具有一定的适用性。

3.3 填埋场的生态恢复 按照我国《生活垃圾卫生填埋场封场技术规程》(CJJ112-2007)规定,填埋场停止使用后必须进行相关的生态恢复,实施封场工程。同时,我国土地资源紧缺,生态恢复效果合格的填埋场,可用来兴建各类厂房、停车场、公园等,有利于进一步提高土地的利用价值,实现土地的合理利用。垃圾填埋场生态恢复的整体原则可以参考《生活垃圾卫生填埋场封场技术规程》(CJJ112-2007)。首先,建立完整的封场覆盖系统。其次,要保证场地的绿化工程与周围景观相协调,并根据场地覆盖层土壤的性质和当地气候条件配置合理的植物群落,不易选用根系穿透力强的树种。再次,还应及时对填埋垃圾进行压实处理并设置完善的填埋气导排设施,预防产生场地沉降和填埋气爆炸,避免发生危险[32]。

4 结语

卫生填埋技术是目前我国生活垃圾处理的主要手段。但与此同时,由于垃圾填埋产生的大量填埋气和渗滤液,对周边生态环境造成了严重的危害。虽然现阶段针对填埋气和渗滤液的处理方法较多,但这些方法均具有不同程度的缺陷,如何选择最佳的处理技术方法,降低运行成本,提高处理效果,改善填埋场的生态环境,是目前急需要解决的关键问题。因此,在未来的工作中,应借鉴发达国家的先进经验,结合中国国情,切合当地垃圾填埋场的特点,在遵循生态经济原则和国家相关政策下,因地制宜的开展垃圾填埋场的治理和生态修复工作,促进我国生态与经济的可持续发展。

参考文献

[1]中华人民共和国住房和城乡建设部.城市、县城和村镇建设统计公报[M].2008.

[2]董锁成,曲鸿敏.城市生活垃圾资源潜力与产业化对策[J].资源科学,2001,23(2):13-16,25.

[3]韩怀芬,金漫彤,迟春娟,等.适合我国国情的城市生活垃圾处理方法[J].环境污染与防治,2000,22(6):40-41.

[4]赵由才.城市生活垃圾卫生填埋场技术与管理手册[M].北京:化学工业出版社,1999:125-139.

[5]王炜,张小梅,刘茂.垃圾填埋场火灾爆炸风险分析[J].环境卫生工程,2005,13(5):41-44,47.

[6]杭正芳.邻避设施的区位选择与社会影响研究以西安市垃圾填埋场为例[D].西安:西北大学,2013:20-23.

[7]李海玲.我国典型城市生活垃圾填埋场温室气体甲烷排放特征研究―以北京市某大型生活垃圾填埋场为例[D].兰州:兰州大学,2014.

[8]胡斌.垃圾填埋场恶臭污染解析与控制技术研究[D].杭州:浙江大学,2013.

[9]陈鹏远.垃圾填埋的生态环境问题及治理途径[J].中国高新技术企业,2015,18:93-94.

[10]anic compounds in municipal landfill leachates[J].Water Science and Technology,2000,42(7-8):323-323.

[11]Sakakibara Y,KurodaM.Electric promptingand control of denitrification[J].Biotechnology and Bioengineering,1993,42(4):535-537.

[12]赵宗升,刘鸿亮,李炳伟,等.垃圾填埋场渗滤液污染的控制技术[J].中国给水排水,2000,16(6):20-23.

[13]赵勇胜,洪梅,董军.城市垃圾填埋场地下环境污染及控制对策[J].长春工业大学学报(自然科学版),2007,28(增刊):136-141.

[14]Daniel D.E.,Koerner R M,Bonaparte R,et al.Slope stability of geosynthetic clay liner test plots[J].Journal of geotechnical and geoenvironmental engineering,1998,124(7):628-637.

[15]冯国建,城市生活垃圾填埋场降解及沉降模型研究[D].重庆:重庆大学,2010.

[16]Fokion E.Landfill gas as an alternative fuel for pollution prevention and energy productio[D].California:University of Southern California,1998.

[17]黄婷,庄毅璇,林楚娟.垃圾填埋气体处理和利用的可行性研究[J].当代化工,2012,41(3):298-301.

[18]石磊,边炳鑫,赵由才,等.城市生活垃圾卫生填埋场恶臭的防治技术进展[J].环境污染治理技术与设备,2005,6(2):6-9.

[19]张贺.垃圾填埋场渗滤液处理技术研究[D].武汉:华中师范大学,2014.

[20]张胜利.基于垃圾渗滤液中有机污染物特征的预处理研究[D].成都:西南交通大学,2010.

[21]Aziz H.A.,Adlan M.N.,Zahari M.S.M.et al.Removal of ammoniacal-nitrogen(N-NH3)from municipal solid waste leachate by using activated carbon and limestone[J].Waste Management and reserch,2004,22(5):371-375.

[22]Tatsi A.A.,Zouboulis A.I.,Matis K.A.,et al.Coagulation-flocculation pretreatment of sanitary landfill leachate[J].Chemosphere,2003,53(7):737-744.

[23]刘静,刘强.垃圾填埋场渗滤液对生态环境的污染影响及其治理[J].北方环境,2012,24(1):8-89.

[24]杨宪平,牛瑞胜.一种垃圾渗滤液的处理技术[J].安全与环境工程,2011,18(2):49-51.

[25]徐迪民,陈绍伟,宋伟如,等.低氧-好氧两段活性污泥法处理垃圾填埋场渗滤水的研究[J].中国环境科学,1989,9(4):311-315.

[26]吴荻,熊向阳,孙蔚F,等.三级稳定塘在垃圾渗滤液处理系统后续处理中的应用[J].信阳农业高等专科学校学报,2005,15(1):33-35.

[27]Henderson J.P..Besler DA,Atwater J.et al.Treatment of methanogenic landfill leachate to remove ammonia using a rotating biological contactor(RBC)and a sequencing batch reactor(SBR)[J].Environmental Technology,1997,18(7):687-698.

[28]徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究[J].中国沼气,2002,20(2):12-15.

[29]李军,王宝贞,王淑宝,等.生活垃圾渗滤液处理中试研究[J].中国给水排水,2002,18(3):1-6.

[30]刘启东,王玉珍.厌氧折流板反应器处理垃圾渗滤液工艺设计[J].工业水处理,2008.28(8):75-76.

篇(8)

中图分类号: TF341.2文献标识码: A

引言:随着我国经济的快速发展,城市化的进程也越来越快。 但随着城市人口的增加,如何处理日渐增多的城市生活垃圾是摆在我们面前的突出问题之一。 目前,我国有三分之一的城市有垃圾围城之势,并且垃圾清运的数量还在以每年 3%的速度在不断增长。 如果对垃圾处理不当,会对我们生存的环境造成巨大的危害。如:空气质量恶化、地下水源和土壤受到污染、传播疾病、影响环境卫生和人身健康。目前城市垃圾处理方式有三种:填埋、焚烧发电和堆肥。焚烧法与填埋和堆肥相比,具有较大优势。主要体现在:可有效减少垃圾容量 75%以上,节约土地,不会对土壤和地下水造成污染,垃圾焚烧产生的热量可以用来供热和发电。由于垃圾焚烧发电具有“无害化,减量化和资源化”的优势,有望逐渐成为未来垃圾处理的主要方式。

1、垃圾焚烧发电工艺流程

1.1 垃圾储存

对城市生活垃圾应剔除有毒有害的废弃物及不可燃烧物。 进场过磅后,首先送进垃圾储池,垃圾储池可储存 5~7 d 的垃圾处理量。 在储池内对垃圾进行搅拌、混合和倒垛等处理,并收集垃圾渗滤液。

1.2 垃圾焚烧

垃圾沿下料装置下落到给料装置平台,给料装置将垃圾推送至焚烧炉进行焚烧,垃圾在焚烧炉燃烧后排出炉渣。 垃圾焚烧炉的种类主要分为循环流化床炉和炉排炉两大类。 垃圾焚烧工艺也因炉型的不同而有所区别。

1.3 余热发电

垃圾焚烧炉配套余热锅炉和汽轮发电机组。 垃圾燃烧产生的热量通过余热锅炉产生蒸汽,蒸汽提供给汽轮机组发电。

1.4 烟气净化与处理

生活垃圾焚烧过程中产生许多有害气体和物质,如烟尘、酸性气体、重金属及二恶英等污染物。如何对这些污染物进行无害化处理,以免对环境造成二次污染,是在垃圾焚烧中应该特别引起重视的一个问题。 烟气净化与处理工艺一般分为半干式反应塔+袋式除尘器、干式反应塔+袋式除尘器、湿式反应塔+袋式除尘器三种形式。湿式洗涤法虽然对酸性气体的去除好于其它两种形式,但是湿式洗涤法存在污水处理的问题,其系统设备的投资费用约为半干法的两倍。

1.5 垃圾渗滤液的处理

放置于垃圾储池内的垃圾腐烂发酵以后,排出垃圾渗滤液。 垃圾渗滤液的特点是臭味较重、氨氮和重金属含量高,有机物污染浓度高,水质变化大,渗滤液一般占垃圾重量的 10%左右。 在垃圾发电的厂区内建有污水处理站,通过对渗滤液处理达标后才能排放。 目前,对垃圾渗滤液更严格的处理标准(GB16889-2008)的实施,将为以 MBR(膜生物反应器)为代表的新兴技术带来增长契机。 MBR 装置由生化和超滤系统组成,采用膜生物反应器工艺处理垃圾焚烧发电厂渗滤液可有效的实现达标排放。

1.6 炉渣、炉灰的处理

垃圾焚烧以后产生的炉渣约占垃圾总重量的15%左右。 炉渣经过加工处理后进行再利用,可以作为制砖、道路的辅助材料。 另外经过布袋除尘器回收下来的飞灰,约占垃圾总重量的 3%左右,飞灰没有利用价值,要经过无害化处理后进行填埋。

2、垃圾焚烧发电污染物控制与处理

2.1 从源头控制

针对焚烧垃圾所产生的二次污染,首先要进行的就是分类与收集,增强资源利用率,再分选除去垃圾中的含氯成分高的物质及金属催化剂;其次垃圾储仓要全密封,在垃圾卸料口装电动卷帘门,加装气膜封闭,用风机将储仓内气体抽吸的气体送入锅炉中助燃、脱臭;储仓中垃圾渗沥水收集到污水坑内,用泵送到炉膛内焚烧、裂解。

2.2 恶臭的防治

垃圾堆放会发出恶臭,应该避免其扩散到大气中造成空气污染。具体措施如下:建立全密闭的垃圾储仓;在垃圾卸料口装电动卷帘门,加装气幕密闭;用风机将储仓内抽成负压,把抽出的恶臭气体送到锅炉中助燃,进行燃烧脱臭。同时加强垃圾储坑的操作管理,利用抓斗不断地对垃圾进行搅拌翻动,不仅可以使进炉垃圾热值均匀,且可避免垃圾的厌氧发酵,减少恶臭的发生。

2.3 酸性废气的处理对垃圾焚烧尾气中 SO2、HCl 等酸性气体的处理方法,有干式、半干式和湿式洗气技术。

2.4 粉尘的处理

粉尘的处理在当前得到普遍应用的是静电除尘器和布袋除尘器。一般 CFB 锅炉采用静电除尘器就可达到粉尘排放要求、垃圾焚烧 CFB 锅炉配备静电除尘器或布袋除尘器都能除小于 1 mm的细小粉尘,除尘效率静电除尘器可达 99 %,布袋除尘器超过 99 %。但对重金属物质,静电除尘器去除效率较差,因为尾气进入静电除尘器温度较高,重金属物质无法充分凝结,且其与飞灰间接触时间不足,无法充分发挥飞灰的吸附作用。当布袋除尘器与半干式洗气塔合并使用时,未完全反应的Ca(OH)2粉尘附着于滤布袋上,当废气经过时,因增加表面接触时间,可提高废气中酸性气体的去除效率。、

2.5 二噁英的控制技术

垃圾焚烧过程能够产生二噁英,影响二噁英产生的原因是十分复杂的,主要有碳源、氯源、温度、催化剂、飞灰和氧源等。目前对于二噁英的控制技术主要是在垃圾焚烧过程中控制二噁英的生成,主要依据二噁英生成的影响因素来采取相应的措施。根据二噁英的生成机理,可以考虑从以下三个方面来控制二噁英的生成。(1)控制氯源。垃圾焚烧时加入脱氯物质(如含钙化合物、氨等)。可在烟气中喷入 NH3以控制前驱物的产生,或喷入 CaO以吸收 HCl,这两种方法已被证实去除二噁英有相当大的效能。在锅炉管束前喷入氨后,一方面氨与氯的结合能力比二噁英前驱物与氯的结合能力强,减少了前驱物与氯结合而生成二噁英;另一方面飞灰中的 Cu 等重金属是前驱物合成二噁英的催化剂,在前驱物合成中起决定作用,而胺和氨对 Cu 等重金属催化剂是最有效的催化毒化物,可使 Cu 等重金属催化剂失去催化作用,从而减少二噁英的生成。(2)提高燃烧技术。目前,关于二噁英分解普遍的看法是850 ℃左右、在炉膛中停留时间到达 2 s,或是 1000 ℃左右在炉膛里停留 1 s,或是 1200 ℃左右停留几微妙被认为二噁英可以完全分解。若是温度控制在 1200 ℃以上,生成物中将不包含二噁英前驱物,大大降低后期的重新合成几率。高温分解是我们控制二噁英排放的主要过程,由于在很多的垃圾中本身就含有二噁英,高温分解区域是除去原有的和产生的二噁英的一个比较理想的区域。(3)燃烧后合成的控制。当排烟温度冷却到 300~500 ℃时,在 CuCl2、FeCl3催化下,C6H5Cl 和 C6H4ClOH 类前驱物会重新组合生成二噁英。为了尽可能减少二噁英合成几率,一般采用控制烟气温度的办法。通常是当具有一定温度的(此时温度不低于 500 ℃为宜)焚烧烟气从锅炉排出后采用急冷技术使烟气在内急速冷却到200 ℃以下(通常为 100 ℃左右), 从而跃过二噁英易生成的温度区。

2.6 垃圾渗滤液的处理

垃圾渗滤液主要产生在垃圾贮坑,成分十分复杂、污染物浓度较高。由于垃圾渗滤液是一种成分复杂的高浓度有机废水,不同的填埋场、同一填埋场的不同时间段,渗滤液的水量水质都有着不同的特点,处理难度较大。目前,渗滤液的处理方案可以分为场内处理和场外处理两大类,具体有 4 种方案:(1)直接排入城市污水处理厂合并处理;(2)预处理后汇入城市污水处理厂合并处理;(3)向填埋场的循环喷洒处理;(4)建设污水处理系统进行独立处理。垃圾渗滤液的处理方法包括物理化学法和生物法。

3.结语

总之,垃圾焚烧发电加快了城市垃圾处理的步伐,提高了垃圾处理的质量,改善了城市生态环境,促进了国民经济的持续、稳定、健康发展。随着城市燃气率的提高,特别是“西气东输”工程的建设,垃圾的热值普遍增加,城市经济实力的加强,垃圾焚烧发电的条件日趋成熟,从长远看,垃圾发电在我国具有广泛的发展前景。

参考文献:

篇(9)

Abstract:A study on electrolytic oxidation process was made for advanced treatment of landfill leachate. The result shows that in the process of electrolytic oxidation,removal of NH3-N is preferential to that of COD,and the performance of the process by using SPR as anode is superior to that by using DSA and graphite.COD and NH3-N can be removed more effectively in acidic environment than in basic one.High concentration of Cl- is beneficial to the removal of COD and NH3-N.As obtained from the test,the suitable condition for the technology is:pH4,Cl- concentration of 5 000 mg/L,electrical density 10A/dm2,anode used for SPR,and electrolytic period 4 h.At COD concentration of 693 mg/L and NH3-N 263 mg/L,90.6% and 100% can be achieved respectively for the removal of COD and NH3-N.

Keywords:landfill leachate;electrolytic oxidation;advanced treatment

垃圾的卫生填埋是我国城市垃圾的主要处理方式之一,由此而产生的垃圾渗滤液是一种难处理的的高浓度有机废水,其水质水量变化大,成分复杂且随“场龄”变化。一般,垃圾渗滤液经生物处理后,其残留的COD仍较高,有的高达600~800 mg/L,且很难再处理。笔者采用电解氧化法对垃圾渗滤液进行深度处理,并对其工艺条件进行了研究,从而为工业化应用提供了理论基础。

1 材料及方法

试验装置采用10 cm×10 cm×10 cm的电解槽两个,详见图1。电极材料:三元电极材料,SPR(RuO2-IrO2-TiO2),6 cm×8 cm;二元电极材料,DSA(RuO2-TiO2),6 cm×8 cm;石墨电极材料,6 cm×8 cm;不锈钢电极材料,6 cm×8 cm。

污水取自广州大田山垃圾填埋场,包括渗滤液原水和经过SBR生物处理后的出水,水质成分见表1。

表1垃圾渗滤液和SBR出水水质 水样 BOD5(mg/L) CODCr(mg/L) NH3-N(mg/L) 色度(倍) 电导率(μs/cm) pH Cl-(mg/L) 原水 4800 62000 2160 8000 20.5 7.62 3100 SBR出水 65.4 693 263 200 12.5 7.85 1650

分析方法:COD、BOD采用标准方法进行;pH采用PHS—2型酸度计测定;色度采用稀释倍数法;Cl-采用硝酸银滴定法;NH3-N采用纳氏比色法;余氯采用碘量法。

2 电极氧化机理

电极氧化机理可分为两个部分,即直接氧化和间接氧化。直接氧化作用是指溶液中·OH基团的氧化作用,它是由水通过电化学作用产生的,该基团具有很强的氧化活性,对作用物几乎无选择性。直接氧化的电极反应如下:

2H2O2·OH+2H++2e-

有机物+·OHCO2+H2O

2NH3+6·OHN2 +6H2O

2·OHH2O+1/2O2

若废水中含有高浓度的Cl-时,Cl-在阳极放出电子,形成Cl2,进一步在溶液中形成ClO-,溶液中的Cl2/ClO-的氧化作用能有效去除废水中的COD及NH3-N。这种氧化作用即为间接氧化,反应如下:

阳极:4OH-2H2O+O2+4e-

2Cl-Cl2+2e-

溶液中:Cl2+H2OClO-+H++Cl-

有机物+ClO-CO2+H2O

3 结果与讨论

3.1 不同电极的影响

不同电极材料的电解氧化性能不同,对目前国内烧碱行业用得较多的两种电极材料DSA(二元电极)和SPR(三元电极)以及石墨电极作了比较。分别以它们作阳极,取SBR反应器出水500 mL,电流密度10A/dm2,补充Cl-浓度至5 000 mg/L,电解4 h,电解效果如表2。

表2三种不同阳极材料处理渗滤液的效果 电极材料 石墨电极 二元电极DSA 三元电极SPR COD去除率(%) 43.0 76.2 82.0 NH3-N去除率(%) 35.1 99.2 未检出

从表2中可以看出,COD和NH3-N的去除率以三元电极SPR为最高。电极材料中的高价金属离子(Ru4+、Ir4+、Ti4+)的存在有利于溶液中产生Cl2/ClO-,从而促进了对污染物的间接氧化作用,其中尤以SPR三元电极更为突出。图2为三种电极电解过程中余氯的变化。

图2表明,随着时间的变化,溶液中的余氯因电极种类的不同而不同,其中三元电极SPR对余氯的释放最为有利。它同时也表明,间接氧化在电解氧化过程中起着重要的作用。

3.2 pH的影响

以三元电极SPR为阳极材料,电流密度为10A/dm2,Cl-浓度为2 000 mg/L,以SBR反应器出水为试验水样,调节溶液的pH值分别为4和8,电解试验结果见图3。

图3表明,酸性条件下的电解反应更有利于对COD的去除。一般,电解氧化过程中有大量的CO2产生,在水溶液中达到水解平衡,生成CO32-和HCO3-,而它们与·OH基团的反应速度要高于·OH基团氧化溶液中有机物的速度。酸性条件下,化学平衡的移动不利于溶液中CO32-和HCO3-的存在,从而间接促进了电解反应对COD的去除。从图3中还可看出,COD被去除60%以后,氧化速度呈减缓趋势,这是由于渗滤液中易氧化物质被先行氧化而导致后阶段氧化速度放慢。

3.3 Cl-浓度的影响

由于电极氧化过程中间接氧化起了很重要的作用,Cl-浓度的影响就成了不可忽略的因素。以三元电极SPR为阳极材料,电流密度为10A/dm2,以SBR反应器出水为试验水样,溶液的pH值为8,Cl-浓度分别为2 500、5 000和10 000 mg/L时的COD和NH3-N的电解去除结果分别见图4和图5。

由图4和图5的结果可见,Cl-的存在对COD及NH3-N的去除影响明显,随着Cl-浓度的增加去除率也明显增加,这说明间接氧化作用在COD及NH3-N的去除过程中起着主要作用。比较图4和图5发现,NH3-N的去除主要发生在电解氧化反应的前1 h,该时段内COD仅有约30%被去除。图解同时也说明COD的组分中约70%是相对难降解的,而直到NH3-N被去除后,此部分COD的去除才迅速增加。由此可见,电解过程中的高浓度NH3-N必会影响到COD的去除效率,如能在处理前通过其他方法(如吹脱)去除NH3-N,则有利于COD的去除,同时也会大大节约电能。

34电流密度的影响

合适的电流密度对电解氧化反应效率的影响是显而易见的,而过高的电流密度会导致能源浪费。以SPR为电极材料,电流密度为5、7.5、10、12.5A/dm2,以SBR反应器出水为处理对象,对照了未补充和补充Cl-浓度至5 000 mg/L时的处理结果,见图6、图7。

图6表明,低Cl-浓度时,电流密度对COD及NH3-N的去除影响不大;电流密度为2.5A/dm2时,阳极表面出现棕色沉淀物,这可能是由于有机物在较弱的氧化作用下发生了聚合作用而形成的聚合物。图7表明,高Cl-浓度时,COD及NH3-N的去除率随电流密度的增加而增加,这是由于电流密度高时,阳极的电极电位也高,相应的电解氧化反应也越强。这同时也进一步表明,间接氧化在电解氧化过程中起主导作用。实际操作时,应结合运行费用和处理效果综合考虑。

3.5 适宜条件下的电解效果

经SBR处理后的渗滤液,调节pH值为4,Cl-浓度为5 000 mg/L,选择电流密度为10 A/dm2,SPR三元电极为阳极,电解时间为4 h,处理结果如表3。

表3 SBR处理后的渗滤液电解效果 项目 COD(mg/L) NH3-N(mg/L) 色度(倍) 处理前 693 263 200 处理后 65 未检出 ≤30 去除率(%) 90.6 100 85

4 结论

电解氧化法对垃圾渗滤液的深度处理具有较好的应用前景。电解氧化过程中,NH3-N被优先去除,其次是COD;电解氧化反应在一定浓度Cl-存在时,以间接氧化为主,与直接氧化作用并存;SPR三元电极的处理效果优于DSA二元电极和石墨电极;酸性条件比碱性条件更有利于电解氧化作用对COD及NH3-N的去除;Cl-浓度高时,氧化去除COD及NH3-N的效果好;电流密度高时,有利于间接氧化作用的发生。适宜的电解氧化条件是:pH值为4,Cl-浓度为5 000 mg/L,电流密度为10A/dm2,SPR三元电极为阳极,电解时间4 h。COD及NH3-N浓度分别为693 mg/L和263 mg/L时,COD去除率为90.6%,NH3-N的去除率为100%。

参考文献

[1]Robinson H D.Leachate collection,treatment and disposal[J].Water Environment and Management,1992,6(3):321-332.

[2]张兰英,韩静磊,安胜姬,等.垃圾渗滤液中有机污染物的污染及去除[J].中国环境科学,1998,18(2):184-188.

[3]沈耀良,杨铨大,王宝贞.垃圾渗滤液的混凝—吸附处理研究[J].中国给水排水,1999,1

5(11):10-14.

篇(10)

1. 前言

(1)莱西市位于山东半岛中部,是胶东半岛的交通枢纽,是中国农村综合实力百强县市之一,目前生活垃圾产量为280吨/天。

(2)2003年以前受经济实力等因素制约,市区生活垃圾一直沿用简易填埋的方式进行处理,未考虑垃圾渗滤液及填埋气体控制措施,对周围大气、地下水都造成较严重的污染,对周边居民和生态环境会造成潜在的危害。随着城市建设的发展,城市规模不断扩大,生活垃圾产出量逐渐增加,由此带来的污染问题日益严重,原有的垃圾处理方式、处理设施已满足不了城市垃圾处理的需要,为了满足生活垃圾无害化处理的需要,给城乡居民创造一个清洁健康的生存和工作环境,提高城市环境质量 ,改善投资环境、创建国家环保模范城市,真正把莱西建设成为青岛的“后花园”,2003年初,莱西市委、市政府决定规划建设莱西市绿野生态园生活垃圾填埋场。

2. 莱西市生活垃圾填埋场的现状

莱西市生活垃圾填埋场位于莱西市姜山镇东部,距离市区 17.5公里,共占地302亩,其中生活垃圾填埋区217亩,该项目于2003年8月开工建设,2004年9月投入使用,总投资3681万元,设计使用年限20.5年。分三期建设:一期工程投资2700万元,设计日填埋量为237吨,共可填埋垃圾70.6万吨,使用年限为4.5年;二期设计日填埋量为306吨,共可填埋垃圾104.5万吨 ,使用年限为9.5年;三期设计日填埋量为410吨,共可填埋垃圾64.1万吨,使用年限为6.5年。各项自然环境指标符合建设部颁发的《城市生活垃圾填埋技术规范》等有关标准,具有较大的环境效益、社会效益。

2.1莱西市城市生活垃圾特征:居民生活水平和消费结构的改变不仅影响城市垃圾的产量,也影响城市垃圾的成分,尤其近十年来,居民收入不断增加,包装产品的消费以及废纸、塑料、玻璃、金属、织物等可回收物的消费不断增加,一次性的商品完成消费后就作为废弃物,成为垃圾,大大增加了垃圾的产量,根据莱西市环卫处提供的资料,莱西市城市生活垃圾成分见表1。

2.2莱西市生活垃圾的收集:目前,生活垃圾收集方式主要有以下几种:

(1)容器式。主要表现为街道的两侧和公共场所设置的固定的铁制方箱或塑料桶。

(2)构筑物式。即垃圾中转站,能提高垃圾收集运输的效率和质量。

(3)垃圾道收集。多表现为已简称的多层或高层住宅楼中,不过这种方式不便于对垃圾收集的管理和控制以及推行分类收集等缺点,将逐步被淘汰。

2.3莱西市生活垃圾填埋工艺:莱西市生活垃圾填埋处理工艺是采用单层1.5毫米后的HDPE膜为主要防渗,双层有纺、无纺土工布和粘土矿物相结合的复合系统进行辅助防渗,并在场底防渗膜上安装高密度聚乙烯花管网,收集渗滤液到流至场外的污水池处理,沼气通过石笼引出排放或综合利用,从而达到保护环境的效果。填埋场污水主要包括垃圾渗滤液、生产污水和生活污水等,污水处理站出水排放标准执行《中华人民共和国生活垃圾填埋污染控制标准》(GB16889-2008)中的最高标准,处理达标后通过市政管网排入莱西市姜山污水处理场进行深处理。

(1)填埋分层 。垃圾层以0.7米左右的虚铺垃圾作为一碾压层碾压,压实后层厚不大于0.4米,每单元垃圾层累计厚度为2.8米,每隔2.8米垃圾层覆以0.2米的粘土压实,并做到当日覆盖;中间覆盖层还可采用厚度为0.5毫米的绿色HDPE膜,有利于未被污染的雨水导出,填埋作业达到设计标高后,进行终场覆盖,种植植物,进行生态恢复,填埋体边坡为1:3。

(2)防渗系统。适合采用HDPE膜水平防渗方式。渗滤液大部分汇集于垂直收集系统,并下渗到水平收集系统,经水平收集系统排至污水调节池。

(3)气体导排系统。垃圾填埋后要进行一系列复杂的生物反应,会产生大量的填埋气体,主要成分是甲烷和二氧化碳。由于该垃圾场日填埋量为400吨左右,产气量比较少,利用价值不高,因此填埋气体经过导气石笼导出后,经移动式气体燃烧器燃烧后达标排放。

(4)雨污分流系统。每一期填埋区分为二区作业,沿分区作业边界处设分区坝,使雨水尽可能进入分区处,用泵将雨水提到雨水沟后排出填埋区外,达到清污分流的目的。

(5)污水处理方案。在填埋场内建污水处理站,污水处理后,用管道将处理后的渗滤液排入莱西市姜山污水处理厂深度处理。

3. 城市生活垃圾处理存在的问题

3.1管理体制。同市场脱节的计划经济管理体制,制约生活垃圾处理事业发展。主要表现为:

(1)管理体制上政企不分,完全靠政府投入,缺乏自身活力。

(2)由于政府投入不足,垃圾处理缺乏资金来源,处理率低 ,处理效果差。

3.2填埋处理技术。填埋场渗滤液收集系统往往在若干年后失去收集作用,场底导渗管发生堵塞,往往从侧面覆盖体渗出,严重影响堆体的稳定性和环境质量。

3.3填埋场缺乏规范的运营管理,缺乏监督。生活垃圾填埋场的运营需要综合的管理技术,填埋场的污染控制很大程度上取决于管理水平的好坏,对填埋场的运营管理要形成完整的体系,不仅要对填埋区的垃圾进行规范的作业,逐步实现对垃圾种类、垃圾数量,对地表水、地下水,渗滤液的数量、位置,对噪声、飘尘,对填埋场气体的数量、特征等项目实现计算机的辅助管理。

4. 城市生活垃圾处理对策

4.1卫生填埋处理的应用前景。

4.1.1填埋处理作为垃圾最终处置手段,一直占有重要地位,具有操作设备简单,适应性和灵活性强特点,但理想的垃圾填埋场越来越少,下降原因有三条:

(1)旧填埋场逐渐达到饱和。

(2)新填埋场选址困难。

(3)由于环保标准不断提高,一些不符和环保要求的被迫关闭。

4.1.2垃圾填埋场污染控制得到逐步加强。采用双层人工防渗层,提高垃圾防渗水平;加强渗滤液收集和处理,防止水污染;对填埋气体回收利用,保障填埋场安全,减轻大气污染并实现资源回收。

4.1.3由于填埋的卫生技术标准不断提高,填埋场的投资费用和运行成本也不断提高,因而新垃圾填埋场应向减量化、资源化、无害化发展。

4.1.4为充分利用填埋空间,节约使用土地,应建设垃圾焚烧发电系统,并在源头进行垃圾分类收集,能回收的尽可能回收利用,厨余垃圾进行堆肥处理,其余垃圾进行焚烧,残渣入填埋场卫生填埋,提高填埋场使用寿命。

4.2垃圾处理的目标与原则。生活垃圾的管理应实现可持续发展的目标体系。首先尽可能避免垃圾产生,如果垃圾必须产生,产出量要少;其次对产生的垃圾要尽可能进行回收利用;最后的处理目标是 进行有利于环境的保护。

4.3城市垃圾处理的对策及措施。

(1)明确目标,落实责任,加快垃圾处理设施建设,提高处理水平。垃圾处理场的建设,必须严格执行国家颁发的技术标准,防止造成二次污染;要提高垃圾填埋的无害化水平,切实解决渗滤液处理的技术问题。

篇(11)

2反渗透技术在环境工程当中的应用

根据上文对反渗透相关原理以及模型的详细介绍,可以对其主要的技术有着一个较为初步的了解和掌握,下文将根据反渗透技术在实际当中的应用进行深入的探究,帮助在实际的使用和操作过程当中有着更加准确的应用。反渗透技术由于其分离率较高,同时操作上比较便捷、能耗较低、运行的费用较低等特点,在环境工程当中有着极为广泛的运用,且取得了非常好的效果。

2.1重金属废水处理

在反渗透的相关环境工程应用当中,对于重金属的废水处理是比较重要的1个部分。通过采用超低压的反渗透膜分离以及稀释溶液当中的铜离子、铬离子等等,测试的结果表示,在进行了相关的反渗透处理之后,截留率随着进料压力的不断增加而增加,而当压力进一步地增加至某一值时,对于铜离子以及铬离子的截留率达到了百分之九十九以上,效果极为明显,为环境工程的具体建设和应用做出了重大的贡献[1]。现今,国外很多地区的电镀厂已经采用了膜分离渗透技术,对其排出的污水进行处理,在进行了相关的研究之后发现,在压强差大于一定数值且温度处于20℃~25℃之间的时候,可以使料液的浓缩度达到原有的10倍以上,而采用了低压复合反渗透膜技术进行相关的处理之后,可以发现其中的铜离子以及铬离子的脱除率会进一步地提升。在韩国的某公司的实际操作当中,运用反渗透进行高导电率的二次处理废水的相关工作,成功地将其中的单价离子以及二价离子进行去除,而根据相关的报道,使用反渗透的相关技术,运用到环境工程当中,可以使废液当中的Pb、Cu、Cr、As、Se、Hg等离子的脱除率高达95%以上,有的甚至能达到99%以上,实际处理和应用效果非常显著,为环境工程的相关建设作出了极大的贡献。

2.2城市垃圾的渗滤液处理

在城市的垃圾渗滤液当中,其主要的性质为水质比较复杂,且水量变化较大,有害的污染物质浓度较高,氨氮含量以及金属的含量很高。一般地来讲,中国城市渗滤液使用的处理技术是生物处理技术,但是由于反渗透技术能够更加高效地截留污水当中存在的溶解态的无机污染物质以及有机污染物质,所以在近几年当中得到了广泛的运用和发展,前景较好。在意大利的某城市垃圾渗滤液的处理当中,通过反渗透技术的相关设备和技术的运用,将垃圾填埋场当中的渗透滤液进行了一系列的测试和处理,而实验的结果表明,当渗滤液的浓度逐渐地增加的时候,渗透量大大地降低,而当操作当中的压力进一步加大时,COD的去除率则可以上升至98%,达到了非常好的使用效果。另外,在中国北京房山区垃圾填埋场当中,运用反渗透的相关理论和技术手段,对其中的渗滤液进行了实际的实验处理,其结果同样表明,通过相关的反渗透技术的使用,可以对进水的水质进行有效的处理,完全可以使排放出的水质达到污染控制的一级标准,而随着高压反渗透相关技术的出现以及实践当中不断地应用加强,其在环境工程当中发挥的作用将更加明显[2]。

2.3印染废水的处理

在印染的相关工业当中,其排出的废水有着极大的污染,含有染料、助剂、无机盐以及纤维杂质、酸碱等等,其染料当中的硝基以及胺类化合物对环境有着较大的污染,同时其中还含有一系列的重金属元素离子,直接进行排放的话会对环境造成很大程度的破坏[3]。而通过反渗透技术的相关运用,在印染行业当中,可以对其排放的污水进行极为有效的处理,根据相关的报道以及文献资料,反渗透技术非常适合使用在染色槽当中的离子以及大分子的处理之上,在使用了一系列的技术手段之后,第一级苦咸水用膜可以有超过96%的脱除率,颜色脱除率可以达到90%以上,总碳脱除率可以达到85%以上,第二级脱除率可以达到98%以上,实际的使用效果非常明显,对于环境工程来讲有着非常重大的贡献。