绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数学概念教学论文范文,希望它们能为您的写作提供参考和启发。
数学概念是构成数学知识的基础。概念教学在整个数学教学中起着举足轻重的功能。笔者在三年的实验探究中,从概念创造性教学的教学目标、教学原则和教学方法这三方面进行了一些探索。本文就在进行概念的创造性教学时,所要遵循的创造性教学的教学原则,可以采用的创造性教学的教学方法和要完成的创造性教学的教学目标作一简要论述。
小学数学概念的创造性教学是指教师结合所要教学的数学概念,遵循创造性教学原则,运用创造性教学方法,以激发学生的创造动机,发挥学生的创造潜能,培养学生的创造性思维能力为目的而进行的教学活动。下面就小学数学概念创造性教学的教学目标、教学原则和教学方法谈点儿自己的看法和做法。
一、小学数学概念创造性教学的教学目标
教学目标是教学工作的目标,是教学的根本。进行小学数学概念的创造性教学首先要完成一般的教学目标,如使学生能正确地理解概念、牢固地把握概念、正确地运用概念等一些有关基础知识、基本技能的教学目标,完成这些基本的教学目标是实现创造性教学的首要前提。在此基础上,还要完成以下几项教学目标摘要:
1.培养学生的发现能力
概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物或形的本质属性或规律。发现是创造的一种重要形式。现代闻名心理学家布鲁纳认为摘要:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,小学生用自己的头脑去亲自获得知识也是一种发现。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思索空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力。
2.培养学生的创新精神
创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的办法。一个人的创造力能被开发到什么程度,能否为社会做出创造性的贡献,在很大程度上取决于他是否具备创新精神。假如一个人不想去创造,即使他的智力水平再高,创造力再高,一切也都等于零;而假如他具有愿意为科学和人类进步献身的高尚品德,那就会给他的创造力发展提供巨大的精神动力,他就可能会为社会做出创造性的贡献。因此,在进行数学概念的创造性教学时,要非凡注重对学生创新精神的培养。例如可以通过多媒体手段进行教学,使学生对要学的新概念、新知识感喜好,以激发学生的求知欲和好奇心;通过有效的激励手段,鼓励学生大胆质疑问难,大胆进行联想和猜测,以培养学生的挑战性和冒险性;通过思想教育,使学生树立为社会进步做出贡献的远大理想,培养学生爱祖国、爱人民的优良品质等。
3.培养学生的实践能力
创造是一种实践活动。实践为创造提供要求,为创造提供成功的可能,为检验创造成功和否提供检验的标准,因此可以说实践是创造的基础和源泉。只有积极参和实践,才能发现新新问题,提出新见解、新思想、新方法,才能把握创造的机会进行成功的创造,提高创造能力。同样,创造力的提高,会促使一个人把新的思想、新的见解落实到实际中去,在创造活动中养成实践的习惯,进一步提高创造能力。由此可以看出,培养学生的实践能力对于提高学生的创造力起着至关重要的功能。这就要求在教学过程中,教师必须要抓住一切机会去培养学生的实践能力,从而达到提高学生创造力的目的。例如可以引导学生从已有的知识出发去探究新的数学知识;可以让学生通过实际操作发现新概念;可以让学生用学到的数学概念解决日常生活中的实际新问题等。
以上各教学目标不是孤立的,而是互相联系、相辅相成、不可分割的。基础知识、基本技能是创造性教学的基础,创造性教学的目标则是双基目标发展的结果。因此在概念的创造性教学中,除了要确定双基目标外,还要确定培养创造力的目标,做到在打基础中学创造,在学创造中巩固基础,提高创造力。
二、小学数学概念创造性教学的教学原则
教学原则是教学工作中必须遵循的基本要求。进行概念的创造性教学首先必须要遵循基本的教学原则,如科学性和思想性统一的原则、面向全体和因材施教的原则、传授知识和发展智力相结合的原则等,这是因为它们是指导教师开展有效的教学工作,提高教学质量的一般性原则。其次还要遵循以下几项教学原则摘要:
1.主体性原则
主体性原则,就是要尊重学生的主体地位,发挥教师的主导功能,在创造性教学过程中充分发挥教师和学生各自的主体精神和主体功能,教师创造性地教,学生创造性地学,使教、学的主体共同参和整个教学过程。教学是师生双方的共同活动,从知识水平、学生的思想品德教育、对学生心理特征的把握和教学规律的运用来说,教师是教的主体;从教学是为了实现学生知识、能力、思想品德的转化来说,学生是学的主体。教学中假如没有学生主动的感知、思维,单凭教师的灌输,学生的熟悉无法实现;假如只有学生主动的感知、思维,而没有教师的引导,学生的熟悉同样无法实现。因此在进行创造性教学时必须遵循主体性原则,因为它是实现创造性教学的的前提。实施主体性原则要注重摘要:教师要尽量控制自己的活动量,尽可能多地为学生提供独立活动的机会、时间和空间;要鼓励学生积极参和,激发学生创造性学习的主动性和积极性;要尊重学生的人格,唤起学生的主体意识,强化学生的自主精神,是学生真正成为学习的主人,进而使学生潜在的创造力得到发展。
2.探索性原则
探索性原则,就是教师要努力使教学活动富有探索性,为学生创设进行观察、探索、发现的学习环境,鼓励学生质疑问难,大胆联想,激发学生的学习喜好和创造喜好,引导学生通过亲身体验获取新知,把教学过程转化为学生自觉进行探索新知的过程,使学生积极主动地在学习中体验探索的乐趣。探索性原则是创造教育培养创造型人才的根本目的决定的。这是因为,传统的教学活动以传授为主,以“告诉”的方式让学生“占有”人类已有的知识经验,造成了置学生于被动地位,只能形成对讲授传播的依靠性和被动性,无法经历探索发现的过程,没有求异思维、驰骋想象的机会,抹杀了学生在求知过程中主动探索、积极思维的潜在能力。而儿童本身存在着创造潜能,需要亲历大胆怀疑、多方设想、探索发现、独立分析和解决新问题的过程,才能将创造潜能转化成现实的创造能力。实施探索性原则要注重摘要:教师要精心设计新问题,引导学生进行观察、实验、讨论、发现;要给予学生充分的思索时间,重视学生的思维过程;要鼓励学生大胆进行联想和猜测,发展学生的直觉思维。
3.实践性原则
实践性原则,就是在教学中要重视理论联系实际,要结合实例进行教学,鼓励学生动口、动脑、动手,让学生参和到数学概念的形成过程;要组织有效的练习,引导学生运用所学到的知识去解决实际新问题,使学生获得运用知识的能力。实践性原则是创造性教学的目的所决定的。创造性教学是为了培养学生的创造力,而创造力是和实践活动密不可分的,创造力在实践活动中得以表现,在实践活动中得到发展。只有积极参和实践,才能提高自己的创造力。实施实践性原则要注重摘要:在教学中要把所讲授的数学概念同学生的生活和社会实际结合起来,引导学生联系实际的去理解和把握概念,引导学生运用所学到的知识去解决实际新问题;在教学过程中,要想方设法给学生提供实践的机会,鼓励学生观察、思索、质疑、想象、动手;非凡要注重,凡是学生能自己想出来的、能讲出来的、能做出来的,教师决不能包办代替。
4.激励性原则
激励性原则,就是要帮助学生实现成功,让学生在学和做中能经常感受到成功的喜悦和愉悦,熟悉到自身的价值,以此来激励学生的求知欲和成就感,从而培养学生的自尊心和自信心,增强学生的创造动机和创造热情,使学生能不断地追求新知,积极进取,勇于创新。成功是一个人的基本需要之一。对小学生来讲,成功对他树立自信心是非常重要的。心理学实验表明摘要:“一个人只要体验一次成功的欣慰,便会激起多次追求成功的欲望。”教学中经常激励学生并帮助他们经常体验成功,能使他们形成积极进取的心态,激发他们的创造热情,坚定他们的创新意志,进而形成稳定的创造动机。这也是在进行概念的创造性教学时要遵循激励性原则的原因。实施激励性原则要注重摘要:教师要积极寻找学生的成功和进步,发现其闪光点,并及时给予鼓励;对学生的不足之处,要采取宽容态度,不要过多指责;要容忍学生幼稚的或不成熟的想法,尊重并激励学生的创新精神;要创造机会使学生能经常体验成功,使学生熟悉到自己的创造潜能。
以上各教学原则是一个密切联系的统一的整体。在创造性教学过程中,一定要深刻理解这些教学原则的内在涵义,结合学生和教材的特征,互相配合,发挥这些原则的整体功能。
三、小学数学概念创造性教学的教学方法
(一)引入概念的教学
概念的引入是概念教学的第一步,它是形成概念的基础。引入这个环节设计、组织的好,后面的教学活动就能顺利展开,学生就会对教师所提供的感性材料进行分析、比较,继而顺利地形成概念。
1.引入概念的方法
(1)实例引入
实例引入是指利用学生的生活实际和所熟悉的事物及实例,从具体的感知引出概念。数学是对客观世界数量关系和空间关系的一种抽象,因此在教学中要尽可能的使抽象的数学概念用学生所接触过的、恰当的实例进行引入。如教学“分数的意义”时,由于这个概念比较抽象,因此不能直接给出“分数”的定义,必须从具体到抽象帮助学生逐步形成“分数”的概念。教学时,可以通过列举大量的、学生所熟悉的日常生活中平均分配物品的实例,如平分一张纸、一个圆、一条线段、4个苹果、6面小旗等,来说明“单位1”和“平均分”,然后再用“单位1”和“平均分”引出“分数”这个概念。
(2)旧知引入
旧知引入是指利用学生已把握的概念引出新概念。数学概念之间有着非常密切的联系,许多新概念是建立在已有概念的基础上,是旧概念的延伸和发展。利用学生已有概念引申、推导出新概念,可以强化新旧知识间的内在联系,帮助学生弄清知识的来龙去脉和前因后果,帮助学生建立概念体系,使学生学到的知识是系统的、完整的。利用这种方法引入,还能充分调动学生学习的积极性、主动性。如讲小数乘以整数或分数乘以整数的意义时,可以从整数乘法的意义引入;讲公约数、最大公约数的概念时,可以从约数这个已有概念引入。
(3)计算引入
计算引入是指通过计算发现新问题,通过计算引出概念。教材中有些概念既不便用实例引入,又和已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质特征,揭示数量或形的本质属性,达到引出概念的目的。如教学“倒数的熟悉”时,可以先给出几个乘积是1的两个数相乘的算式,如“3/8×8/37/15×15/73×1/31/80×80”,让学生计算出结果,再观察、分析,从中发现规律,继而引出“倒数”定义。
(4)联想引入
联想引入是指依据客观事物之间的相互联系,由一事物想到另一事物的引入方法。由于数学知识间存在着类似、平行、递进、对比、从属、因果等关系,这就使学生的大脑能将两个看似互不相及的知识联系起来,使学生的思维像展翅的雄鹰在知识的天空中翱翔。教学中启发学生展开丰富的想象,引发多端的联想,会使学生的创造性思维能力在自由联想的天地中获得最大发展。如在教学“百分数”时,上课伊始就给学生提出这节课要学习“百分数”,要求学生根据课题进行联想,学生依据自己的直觉大胆想到“百分数和分数有关”、“百分数和百有关”、“百分数可能是一种非凡的分数”等,然后再引导学生学习新课。这样引入,既可提高学生的学习喜好,又能使学生的创造性思维得到发展。
2.引入概念的教学中应注重的新问题
(1)引入概念不能局限于某一种方法,要依据教材的内容特征和学生的认知规律,选择适当的引入方法。引入概念,它的任务并非是单一的,所起的功能也不是唯一的,因此在教学中所采用的引入方法往往是各种方法的协调运用。如教学“分数的基本性质”,既可以用“旧知引入”,即根据除法和分数之间的关系,利用“商不变的规律”引入;也可以用“计算引入”,即让分数的分子和分母都乘以或都除以相同的数(零除外),通过计算,发现分数的大小不变,从而达到引入的目的;又可利用“联想引入”,让学生对课题展开联想,引入新课;还可以先采用“联想引入”,再采用“旧知引入”。
(2)要适当的运用变式。变式就是变换概念的非本质属性,突出本质属性,从而促进学生对概念的正确理解。在进行概念的引入教学时,往往由于教师所提供的感性材料的某些片面性,会使学生忽略对事物本质属性的熟悉,影响学生数学概念的形成。这就要求教师在举例或使用教具时,要适当的运用变式。如使用角、三角形、平行四边形、长方形、正方形、梯形、长方体、正方体、圆柱体、圆锥体等教具时,不能总是固定在一般位置上,而要采取变式的方法,变换教具的方位,然后再引导学生分析不同事物的各种性质,找出同类事物的共同的本质特征,这样学生才能不受事物的非本质属性(方位不同)的影响,正确的理解和把握概念。
(二)形成概念的教学
形成概念的教学是整个概念教学过程中至关重要的一步。概念的形成是通过对具体事物的感知、辨别而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。
1.形成概念的方法
(1)比较发现
比较发现是指通过比较事物之间的相同点和不同点,从而总结出本质属性或规律。这种方法是针对事物之间的异同点进行探索,能提供对事物较为全面的熟悉,是一种重要的科学发现方法。运用这种方法可以使学生正确熟悉数学知识间的异同和关系,防止知识间的割裂和混淆,使学生更好的理解和把握数学概念。
如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特征,总结出“质数”和“合数”的定义。
(2)类比发现
类比发现是指根据两个或两类事物在某些属性上都相同或相似,联想或猜想它们的其他属性也可能相同或相似,继而得到新的结论。它是依据客观事物或对象之间存在的普遍联系━━相似性,进行猜测得到结论的发现方法,它可以使学生明确知识间的联系,建立概念系统。教学中适当地对学生进行“类比发现”的练习,是培养学生创造性思维的一种重要手段。
例如摘要:教学“比的基本性质”时,引导学生根据比和分数和除法之间的关系,即比的前项相当于分数的分子或除法中的被除数,比号相当于分数线或除号,后项相当于分母或除数,比值相当于分数值或商;再根据学习分数时学到了分数的基本性质和除法中有商不变的规律,大胆进行猜测,在“比”这部分知识中是不是也有一个比值不变的规律;最后通过验证,得到“比的基本性质”。
(3)归纳发现
归纳发现是指引导学生对大量的个别材料进行观察、分析、比较、总结,从非凡中归纳出一般的带有普遍性的规律或结论。归纳发现是一种不完全归纳,但它仍能从非凡事例中发现该类事物的一般规律,因此这种方法也是一种具有创造性的发现方法。教学中可以引导学生通过对具体实例的直接观察,进行归纳推理,得出结论;也可以让学生对实际例子进行分析,归纳出结论。
例如在讲“乘法分配律”时,先让学生计算摘要:
①(32+25)×432×4+25×4
②(64+12)×364×3+12×3
计算后很轻易发现每组中两个算式的结果相同。再引导学生观察、分析,可以看出左边算式是两个数的和和一个数相乘,右边算式是两个加数分别和这个数相乘,再把两个积相加。虽然两个算式不同,但结果相同,然后就可以引导学生归纳总结出“乘法分配律”。
(4)操作发现
操作发现是指讲授新的知识前,教师要求学生制作或给学生提供学具,上课时学生按照教师的要求进行操作、实验,使学生主动地、独立地发现事物的本质属性或规律。操作是一个眼、手、脑等多种器官协调的活动。让学生动手操作去发现概念,可以开发学生的右脑功能,使学生的左脑和右脑协调发展;利用操作发现还能充分体现以学生为主体,教师为主导的教学思想;能使学生经历知识产生和发展的过程,使学生经过亲身实践,在探求知识的过程中揭示规律,建立概念,把握新知。
如讲解“三角形的面积计算公式”时,让学生那出课前预备好的不同的三角形(任意三角形、直角三角形、直角等腰三角形等),分组进行实验操作,拼摆出平行四边形、长方形或者正方形,然后找出原来三角形和所拼成图形各部分之间的关系,再根据它们的关系和所拼成图形的面积计算公式,就可以推导出“三角形的面积计算公式”。
(5)尝试发现
尝试发现是指在教学过程中,教师不直接把现成的结论告诉学生,而是在教师的指导下,让学生进行尝试活动,使学生在尝试中学习,在尝试中发现,在尝试中成功。尝试是人们熟悉客观事物尤其是未知事物的一种方式。许多发明创造都是通过尝试而成功的。教学中让学生尝试着去进行发现,成功了可以使学生了解知识的产生发展过程,更好的理解和把握概念;假如失败,则可引导学生发现自己的错误,使学生了解错误产生的根源,为下一步的尝试成功打下基础。
如教学“带分数乘法”时,出示“”,让学生进行尝试计算,学生运用已有知识做出了以下几种解答摘要:
然后让学生对几种方法进行评价,发现每种方法的优点及不足,最后总结出一般的带分数乘法的计算法则。
2.形成概念的教学中应注重的新问题
(1)要适当运用对比。对于轻易混淆的新旧概念,要通过分析、对比找出它们的异同点,既要找到它们的内在联系,又要找到它们的根本区别。例如,在学习“反比例”的意义时,“正比例”的意义往往影响学生对“反比例”意义的理解;也可能出现学生学习了“反比例”的意义后,而干扰学生对“正比例”的理解和把握。这就需要及时地引导学生对这两个概念进行对比,找出两个概念的相同点(它们都是表示两个数量之间的一种关系),以及它们的不同点(“正比例”是在比值一定的情况下两个数量之间的关系,“反比例”则是在积一定的情况下两个数量之间的关系),这样学生就能清楚地建立“反比例”的概念,而不会和“正比例”产生混淆。
(2)要及时作出言语概括。数学中的有些概念是给予了科学的定义,而有些概念则不给定义,是通过描述或举例说明的方法给出的。在形成概念的教学过程中,需要把所学概念准确、精炼、及时地概括出来,使其条理化,便于学生记忆。在进行言语概括时,注重要让学生动脑总结,教师不要包办代替;总结准确的要加以肯定,予以表扬,不准确的要及时纠正,予以鼓励。进行言语概括还要注重适时,要根据知识的内在联系和学生的认知水平,在学生丰富了感性熟悉后,顺水推舟地揭示概念,如过早地概括出概念,学生就会对概念死记硬背,使概念的把握流于形式;过晚就起不到组织、整理概念的功能,达不到传授知识、培养能力的目的。
(三)运用概念的教学
概念的形成是一个由个别到一般的过程,而概念的运用则是一个由一般到个别的过程,它们是学生把握概念的两个阶段。通过运用概念解决实际新问题,可以加深、丰富和巩固学生对数学概念的把握,并且在概念运用过程中也有利于培养学生思维的深刻性、灵活性、灵敏性、批判性和独创性等等,同时也有利于培养学生的实践能力。
1.运用概念的方法
(1)复述概念或根据概念填空。例如摘要:
①什么叫做比的基本性质?(复述比的基本性质)
②把单位“1”()分成若干份,表示()的数,叫做分数。(填语)
(2)运用概念进行判定。例如摘要:
①判定正误摘要:
a.含有未知数的式子叫做方程。
b.“32+X=69”是方程。
②选择摘要:下面哪些方程,哪些不是方程?为什么?
4+3X=106+2X7-X%26gt;3
17-8=98X=018÷X=2
(3)运用概念进行推理。例如摘要:
①填空摘要:
a.假如a和b的最小公倍数是ab,那么a和b是()。
b.奇数+奇数=()奇数×奇数=()
奇数+偶数=()奇数×偶数=()
偶数+偶数=()偶数×偶数=()
②判定摘要:
a.假如ab=7,那么a和b成反比例。
b.一个自然数,不是质数就是合数。
2.运用概念的教学中应注重的新问题
教学中主要是通过练习达到运用概念的目的的。练习是使学生把握基础知识和技能,培养和发展学生思维能力的重要手段。练习时需要注重以下几点摘要:
(1)练习的目的要明确。在练习时必须明确每项练习的目的,使每项练习都突出重点,充分体现练习的意图,做到有的放矢,使练习真正有助于学生理解新学概念,有利于发展学生的思维。如为了帮助学生巩固新学概念和形成基本技能,可以设计针对性练习;为了帮助学生克服定式的干扰,进一步明确概念的内涵和外延,可以设计变式练习;为了帮助学生分清轻易混淆的概念,可以设计对比练习;为了帮助学生扩展知识的应用范围,加深学生对新学概念的理解,培养学生的创造性思维,可以设计开放性练习;为了帮助学生沟通新学概念和其他知识的横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。
(2)练习的层次要清楚。小学生熟悉事物不能一次完成,需要一个逐步深化和提高的过程。因此练习时要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“商不变的规律”后,可以布置以下三个层次的练习摘要:
a.90÷30=(90×)÷(30×2)15600÷1300=156÷
这一层是基本练习,它是刚学完新课之后的单项的、带有模拟性的练习,它可以帮助学生巩固知识,形成正确的认知结构。
b.根据72÷9=8,说出下面各题的结果摘要:
720÷90=7200÷900=72000÷9000=
这一层是发展练习,它是在学生已基本把握了概念和初步形成一定的技能之后的练习,它可以帮助学生形成熟练的技能技巧。
c.填空摘要:
(1200×4)÷(400×)=3
(1200÷5)÷(400)=3
(1200)÷(400)=3
这一层是综合练习,它可以使学生进一步深化概念,提高解题的灵活性,培养学生的数学思维能力,实现由技能到能力的转化。
(3)要注重引导学生形成概念系统。数学是一门结构性很强的学科,任何一个数学概念都存在于一定的系统之中,并和其它有关概念有着区别和联系。因此在进行运用概念的教学时,要注重引导学生将所获得的每一新概念及时地纳入相应的概念系统,这样新旧概念才能融会贯通,才能真正透彻地理解新概念,才能使相关联的概念形成概念系统。这样做也有利于学生所获得的概念的保持和运用,有利于学生概念系统的形成,有利于学生认知系统结构的形成。如在学过圆柱体体积计算公式后,可以通过练习,联系以前学过的长方体、正方体等形体的体积计算公式,通过对比,可以发现这些形体的体积计算公式可概括为“底面积×高”。这样就沟通了知识间的内在联系,巩固了这一类概念的系统知识。
教学方法是教师为完成教学任务所采用的手段。在进行概念的创造性教学时,要善于综合使用各种方法,把它们有机地结合起来,使课堂上有讲有练,有问有答,既有教师的启发、引导、讲解、演示,又有学生的看书、质疑、讨论、操作。这样才能使学生主动地、创造性地学习,真正的培养学生的创造力。
以上是笔者参加创造教育实验以来所得到的一点心得,不当之处敬请各位专家批评指导。内容提要
数学概念是构成数学知识的基础。概念教学在整个数学教学中起着举足轻重的功能。笔者在三年的实验探究中,从概念创造性教学的教学目标、教学原则和教学方法这三方面进行了一些探索。本文就在进行概念的创造性教学时,所要遵循的创造性教学的教学原则,可以采用的创造性教学的教学方法和要完成的创造性教学的教学目标作一简要论述。
小学数学概念的创造性教学是指教师结合所要教学的数学概念,遵循创造性教学原则,运用创造性教学方法,以激发学生的创造动机,发挥学生的创造潜能,培养学生的创造性思维能力为目的而进行的教学活动。下面就小学数学概念创造性教学的教学目标、教学原则和教学方法谈点儿自己的看法和做法。
一、小学数学概念创造性教学的教学目标
教学目标是教学工作的目标,是教学的根本。进行小学数学概念的创造性教学首先要完成一般的教学目标,如使学生能正确地理解概念、牢固地把握概念、正确地运用概念等一些有关基础知识、基本技能的教学目标,完成这些基本的教学目标是实现创造性教学的首要前提。在此基础上,还要完成以下几项教学目标摘要:
1.培养学生的发现能力
概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物或形的本质属性或规律。发现是创造的一种重要形式。现代闻名心理学家布鲁纳认为摘要:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,小学生用自己的头脑去亲自获得知识也是一种发现。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思索空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力。
2.培养学生的创新精神
创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的办法。一个人的创造力能被开发到什么程度,能否为社会做出创造性的贡献,在很大程度上取决于他是否具备创新精神。假如一个人不想去创造,即使他的智力水平再高,创造力再高,一切也都等于零;而假如他具有愿意为科学和人类进步献身的高尚品德,那就会给他的创造力发展提供巨大的精神动力,他就可能会为社会做出创造性的贡献。因此,在进行数学概念的创造性教学时,要非凡注重对学生创新精神的培养。例如可以通过多媒体手段进行教学,使学生对要学的新概念、新知识感喜好,以激发学生的求知欲和好奇心;通过有效的激励手段,鼓励学生大胆质疑问难,大胆进行联想和猜测,以培养学生的挑战性和冒险性;通过思想教育,使学生树立为社会进步做出贡献的远大理想,培养学生爱祖国、爱人民的优良品质等。
3.培养学生的实践能力
创造是一种实践活动。实践为创造提供要求,为创造提供成功的可能,为检验创造成功和否提供检验的标准,因此可以说实践是创造的基础和源泉。只有积极参和实践,才能发现新新问题,提出新见解、新思想、新方法,才能把握创造的机会进行成功的创造,提高创造能力。同样,创造力的提高,会促使一个人把新的思想、新的见解落实到实际中去,在创造活动中养成实践的习惯,进一步提高创造能力。由此可以看出,培养学生的实践能力对于提高学生的创造力起着至关重要的功能。这就要求在教学过程中,教师必须要抓住一切机会去培养学生的实践能力,从而达到提高学生创造力的目的。例如可以引导学生从已有的知识出发去探究新的数学知识;可以让学生通过实际操作发现新概念;可以让学生用学到的数学概念解决日常生活中的实际新问题等。
以上各教学目标不是孤立的,而是互相联系、相辅相成、不可分割的。基础知识、基本技能是创造性教学的基础,创造性教学的目标则是双基目标发展的结果。因此在概念的创造性教学中,除了要确定双基目标外,还要确定培养创造力的目标,做到在打基础中学创造,在学创造中巩固基础,提高创造力。
二、小学数学概念创造性教学的教学原则
教学原则是教学工作中必须遵循的基本要求。进行概念的创造性教学首先必须要遵循基本的教学原则,如科学性和思想性统一的原则、面向全体和因材施教的原则、传授知识和发展智力相结合的原则等,这是因为它们是指导教师开展有效的教学工作,提高教学质量的一般性原则。其次还要遵循以下几项教学原则摘要:
1.主体性原则
主体性原则,就是要尊重学生的主体地位,发挥教师的主导功能,在创造性教学过程中充分发挥教师和学生各自的主体精神和主体功能,教师创造性地教,学生创造性地学,使教、学的主体共同参和整个教学过程。教学是师生双方的共同活动,从知识水平、学生的思想品德教育、对学生心理特征的把握和教学规律的运用来说,教师是教的主体;从教学是为了实现学生知识、能力、思想品德的转化来说,学生是学的主体。教学中假如没有学生主动的感知、思维,单凭教师的灌输,学生的熟悉无法实现;假如只有学生主动的感知、思维,而没有教师的引导,学生的熟悉同样无法实现。因此在进行创造性教学时必须遵循主体性原则,因为它是实现创造性教学的的前提。实施主体性原则要注重摘要:教师要尽量控制自己的活动量,尽可能多地为学生提供独立活动的机会、时间和空间;要鼓励学生积极参和,激发学生创造性学习的主动性和积极性;要尊重学生的人格,唤起学生的主体意识,强化学生的自主精神,是学生真正成为学习的主人,进而使学生潜在的创造力得到发展。
2.探索性原则
二、创设有效的课堂教学情境
教师在课堂教学中要尽量设计各种各样生动有趣的教学情境,如问题情境、故事情境、竞争情境等。如在学习“分数的认识”时,当学生已认识了1/2、1/3这两个分数后,教师可以问学生:“你觉得还可能有哪些分数呢?谁来大胆地猜一猜。”学生稍加思考后,就会立即回答:“1/4、1/5、3/4、2/5……”此时,教师可以问:“同学们,的确有这些分数,你能借助课前准备好的材料把1/4表示出来吗?我们来比一比,看谁表示的方法多?”问题一经提出,学生就积极思考并操作起来。之后,大家积极展示、争先恐后地发表着自己的意见。有的学生说:“我把一个长方形对折再对折,打开后平均分成了四份,每份就是它的1/4。”有的学生说:“我把一个圆形对折两次,打开后也平均分成了四份,每份也是它的1/4。”教师通过情境的创设,不仅使学生兴趣浓厚,而且也使学生感受了数学与生活的密切关系,借助旧知迁移使学生很好地掌握了知识。
三、注重练习,促使学生的学习能力快速提高
(一)多方面练习
小学生好奇心比较重,在课堂上好动,在思维方面以具体形象思维为主,而抽象逻辑思维能力比较弱,持续注意力较差。他们对具体形象的事物比较感兴趣,因此,在教学中教师应引导学生动手、动口、动眼、动脑,让他们在学习过程中多方面进行练习。教师要引导学生利用旧概念去认识新概念,应用曾经学习过的公式、定律去解决新的问题,通过温故知新促进学生学习能力的发展。
(二)练习要有针对性,使学生掌握计算规律
多练虽然是提高学生计算能力的重要方法,但如果教师只是注重练习数量,有时会损伤学生的积极性,因此,练习也要有针对性。教师要让学生针对那些易错、易混的题目进行练习,以此提高学生的计算能力。教师可以选择教材中的重点和难点题型,也可以选择大多数学生共同出现的错误题型,还可以用不同题型设计计算题,让学生进行针对性练习。通过不同题型的练习,学生既能提高计算能力,也能灵活掌握所学知识。学生掌握了一些计算题的规律,既能够提高计算准确率、节省计算时间,又能培养逻辑思维能力。
四、重视动手操作,提高实践能力传统的数学课堂教学
形象思维以表象和想象为基本形式,以观察、实验、联想、类比、猜想等为基本方法。在数学概念引入时,教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,训练学生的形象思维。
例如“面积”的概念,可通过引导学生观察黑板、桌子、课本等实物的面引入,还可以引导学生用小刀剖开萝卜观察它的截面,让学生亲眼看一看,亲手摸一摸引入。通过多种感官的协同活动,使面积的具体形象在学生头脑中得到全面的反映。
又如教学“除法的初步认识”,一位教师先让学生分小棒:每人拿出8根小棒,把它们分成两排,看有几种分法。教师适时把他们的不同分法展示出来:
附图{图}
然后启发学生观察比较:这四种分法有什么相同?有什么不同?从而引出“平均分”。
这样引入概念,符合小学生掌握概念的认知规律:即从外部的感知开始,通过一系列外部操作活动和内部智力活动,把感性材料和生活经验化为概念。
二、在概念的形成中训练学生的抽象思维
抽象思维是用抽象的方式对事物进行概括,并凭借抽象材料进行的思维活动。它以概念、判断、推理为基本形式,以分析与综合,比较与分类,抽象与概括、归纳与演绎为基本方法。数学抽象思维能力指的是理解、掌握和运用数学概念与原理的能力。
在小学数学概念形成过程中,要及时把概念从具体引向抽象,抓住实质,排除个别实例对全面理解和运用概念的干扰,使学生充分了解概念的内涵和外延。
例如,一位教师教学“长方体和正方体的认识”时,在指导学生给不同形体的实物分类引入“长方体”和“正方体”的概念后,及时引导学生先把“长方体”或“正方体”的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫“棱”?什么叫“顶点”,然后,指导学生分组填好领料单,根据领料单领取“顶点”和“棱”,制作“长方体”或“正方体”的模型,边观察边讨论,长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出“长方体”和“正方体”的特征。从而使学生充分了解“长方体”和“正方体”这两个概念的内涵和外延。这样,既使学生掌握了“长方体”、“正方体”概念的本质属性,又训练了抽象思维。
三、在深化概念中训练学生思维的深刻性
学生数学思维的深刻性集中表现在善于全面地、深入地思考问题,能运用逻辑思维方法,思考与问题有关的所有条件,抓住问题的实质,正确、简捷地解决问题。在深化概念的教学中,可从以下两方面训练学生思维的深刻性。
一是在学生理解和形成概念之后,要引导他们对学过的有关概念进行比较、归类。既要注意概念间的相同点和内在联系,把有关概念沟通起来,使其系统化,又要注意概念之间的不同点,把有关概念区分开来。从而使学生逐步加深对概念内涵和外延的认识,深入理解概念。例如学习了“比”的概念后,可设计下表引导学生弄清“比”、“除法”、“分数”这三个概念之间的联系与区别。名称举例相互关系区别
比2:3前项:(比号)后项比值两个数的关系除法2÷3被除数÷(除号)除数商一种运算分数2/3分子──(分数线)分母分数值一个数
二是在运用数学概念解决问题的过程中,要引导学生识别数学概念的各种变式,从变化中抓概念的本质。例如,学生认识了“直角”后,教师,出示不同位置的直角(如下图),让学生判断:
的确,数学概念的形成过程是一个由具体到抽象的过程,学生对于数学概念的认识和理解是一个从感性认识向理性认识过渡的过程。对于一个数学概念,学生要先认识其特殊、具体的形式,从具体、感性的认识逐步过渡到对概念的本质的认识。然后再运用概念解决问题,达到巩固和应用。但是对这个问题的理解和认识,不应该局限在某一节概念教学课上,也不应该孤立地看待教学过程的各个环节,而是应该用整体的观点,把一个(或一组)具有完整意义的概念作为一个整体,从整体上认识其形成的规律和教学中所应采取的对策,这就要求我们教师应从总体上把握教学目标,从整体上设计教学方法。下面结合“分数意义”的教学谈一谈对这个问题的认识。
一、总体把握概念的教学目标
概念教学的目标要与小学数学教学的总目标一致,应该包括知识、能力、思想教育等几个方面的内容。但这并不是说在每一节课上都简单地考虑这几个方面的目标,面面俱到地完成各项要求,而是应该在具体设计教学目标时,要从总体上全面把握大纲中所规定的各项目标。具体的落实到某一部分内容的教学时,就要在整体思考的前提下,分清层次,逐项落实。“分数意义”这部分内容的教学,从总体上看,作为一个单元教学的内容,应该达到使学生建立准确的分数概念,培养学生比较、分析、抽象概括等逻辑思维能力,认识分数与整数、小数等知识的联系,以及对学生进行包括学习目的、实践的观点、学习的习惯等方面内容的思想品德教育等。这就较为充分地体现了教学目的的完整性和全面性。在对这一单元教学内容进行研究和分析时,就要充分考虑这些教学目的,每一节课也都应该围绕这些总目标来设计。这些目标构成了一个相互联系、相互制约的整体。设计教学时,只有从总体上把握教学目标,才能使教学大纲中规定的总的教学目的得到落实。而具体一节课的教学目标既要服从于总体的目标,又应该具有一定的特殊性和差异性。要把总体设计的教学目标具体化,落实到每一节课之中,一节课教学目标就应该是有所侧重,即应突出某一个方面的内容。在“分数意义”教学中,开始认识分数意义时,重点是使学生通过具体问题,从具体到抽象认识什么是分数,分数是来自于生活和生产实践的,以后逐步使学生运用分数概念分析解决问题,了解分数与其他数学知识之间的联系,逐步达到灵活地运用和系统化。
二、整体设计概念的教学方法
概念教学方法,一般来说要经过感知、理解、巩固、应用、系统化等几个不同的阶段。但这也并不是说每一节课都要经过这样几个阶段,而是要从学生形成数学概念全过程的整体上看应该经过这样几个阶段。因此在设计概念教学方法时,就要从整体上思考,按照学生形成数学概念的不同阶段设计不同的教学方法。从整体上保证学生经历建立数学概念的几个阶段,才能很好地完成概念教学的任务,实现概念教学的总体目标。在整体思考的前提下,要按照教学内容的进度,根据学生对具体概念的理解和掌握的情况,按照不同的层次,组织概念教学。一节课可能只是概念教学全过程中的一个或几个阶段。在具体的教学中,要把概念的全过程看作是一个整体,把学生对于概念的形成过程看作是一个连续的,但又相对独立的一些课堂学习内容组成的整体。按照这样一个思考,具体地设计一个单元的概念教学时,就要做到整体设计、重点突出、前后联系、逐步深入。
1.整体设计。就是把每一节课都看作是整个概念教学的一个组成部分,从整体上设计教学的内容和方法,保证概念教学的总体目标的实现。在“分数意义”教学中,总体的目标是使学生形成完整、系统的关于分数的概念。这应该包括对概念的初步理解,对概念的深入理解,对概念的进一步巩固,以及概念的系统化等几个环节。这些任务不可能在一节课里完成,在设计时要把这些任务科学地安排分散到各节课的教学中。如第一课的主要任务是引导学生在对具体事物感知的基础上,形成分数的概念,用恰当的语言概括出什么是分数,以及认识分数各部分名称。而分数概念的巩固、应用和系统化的任务则要安排在后面各节课中来完成。
2.重点突出。就是在每一节课中重点体现和落实概念教学中的一项或几项具体的任务。这是设计每一节课所必须考虑的问题。每一节课都有一个重点内容。
小学数学教学的主要任务之一是使学生掌握一定的数学基础知识。而概念是数学基础知识中最基础的知识,对它的理解和掌握,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力和对学习数学的兴趣。新课标指出,我们要让学生经历观察、实验、猜想、证明等数学活动,发展推理能力和初步的演绎推理能力。学习数学知识的过程就是一个不断地运用已有的数学概念进行比较、分析、综合、概括、判断、推理的思维过程。要掌握正确、清晰、完整的数学概念,既依赖于学生的数学认知状况,又依赖于教师的教学措施。只有加强概念教学,才能使学生在获取数学知识的同时,进一步培养各种数学能力。在教学实践中,我在吸收同行先进经验的基础上,采用下列教学方法,取得了较好的教学效果。
一、用直观材料引入新概念
用学生在日常生活中所接触到的事物或教材中的实际问题以及模型、图形、图表等作为直观感性的材料,引导学生通过观察、分析、比较、归纳和概括去获取概念。
例如,在学习"平行线"的概念时,我让学生观察一些熟悉的实例,像黑板的上下边缘、桌子、门框的上下两条边、铁轨等,然后根据各例的属性,从中找出共同的本质属性。黑板可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出桌子、门框和铁轨的属性。通过比较可以发现,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离处处相等;两条直线没有公共点等,最后抽象出本质属性,得到平行线的定义:在同一平面内,永不相交的两条直线叫平行线,平行线是相互平行的。以感性材料为基础引入新概念,是用概念形成的方式去进行教学的,因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。
二、使用学具促进学生数学概念的形成
心理学研究表明,儿童认识规律是"感知--表象--概念",而操作学具符合这一规律,能变学生被动地听为主动地学,充分调动学生的各种感官参与教学活动,去感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。
如在教学"平均分"这个概念时,我让学生用自己手里的学具(有的是用小棒,有的用图片,有的用橡皮泥做的小动物)把10个东西分成两份,通过分学具,出现五种结果:一人得1个,另一得9个;一人得2个,另一人得8个;一人得3个,另一人得7个;一人得4个,另一人得6个;两个人各得5个。然后引导学生观察讨论:第五种分法与前四种分法相比有什么不同?学生通过讨论,知道第五种分法每人分得的个数"同样多",从而引出了"平均分"的概念。这样通过学生分一分、摆一摆的实践活动,把抽象的数学概念和形象的实物图片有机地结合起来,使概念具体化,使学生悟出"平均分"这一概念的本质特征--每份"同样多",并形成数学概念。
三、以实践操作加深概念的理解
在讲圆锥体积时,我学习一个同行的做法,先用纸做了三个圆锥体和一圆柱体。其中一个圆锥体和圆柱等底等高;圆柱等底不等高;一个和圆柱等高不等底。然后把圆锥里盛满沙子(每个圆锥盛三次)倒入圆柱。这样学生就清楚地看到:三个圆锥体中,只有那个和圆柱体等底等高的圆锥体里的沙子三次正好填满圆柱体,其余两个不合适。
接着再让学生思考,找圆柱和圆锥之间的关系,在学生理解的基础上,动用已学过的圆柱体积的公式,推导出圆锥体积的计算方法。最后,给学生小结,圆锥的体积,等于和它等底等高圆柱体积的三分之一。经过这样由浅入深的直观演示和讲解,既复习了圆柱体积的计算公式,又学会了计算圆锥体积的方法,效果很好。
四、以新、旧概念之间的关系导入新概念
如果新、旧概念之间存在某种关系,如相容关系、不相容关系等,那么新概念的导入就可以充分地利用这种关系去进行。
概念表象指的是学生们以前所学过的概念在脑中再现的形象。表象并不是一种简单的再现,它属于感性认识,是一种从感性知觉到思维,由印象到概念的过渡环节。例如在复习“分数的意义”时,当学生看到便会在脑海中建立这样的一个形象:“把一个物体平均分成4份表示这样的1份”。当学生们在信中睡起这样的一个表象后,就能够更加容易的理解分数的意义“表示把一个物体平均分成几份表示这样一份的数”这一句话时就会更加的容易了。
(二)帮助学生再现概念形成与同化的过程
概念的形成,其指的是人们对于同类事物中的不同例子,在进行感知、分析、比较与抽象后,对这类事物的属性进行概括,从而形成概念的方式。概念同化是一种概念学习的方式。它是在教学的过程中,利用学生现有的知识经验,通过定义的方式直接提出概念,同时再揭示概念的本质属性,由学生主动的地与原认知结构中的有关概念相联系去学习和掌握概念的方式。因此在数学的概念复习的过程中,必须要为学生们再现概念的形成与同化的过程,以此来加深概念在学生心中的印象,让学生们能够知其然再知其所以然。例如在复习“平面图形面积”时,首先,先让学生们自己回忆到底学过多少中平面图形,让回让他们回忆这些平面图形的面积公式是如何来的,并让他们用自己的语言来描述这些面积公式得来的过程,并发现自己是否还有什么不理解的地方。这个过程就是一个概念的再一次形成与同化过程。在这一个过程中教师需要从其中发现学生们所掌握的知识是否还存在缺陷,并引导他们进行改进。
二、帮助学生形成一个系统的概念系
这里的概念系指的是在个体头脑中所形成的一个概念网络,在这个网络中的概念相互之间都存在着一些联系。对于概念的学习就必须要理清概念之间的相互联系,只有这样才能够更加牢固的掌握概念。
(一)为学生提供探究素材,理清概念之间的相互关系
例如在复习“量与计量单位”时,我们可以设计这样的一个教学过程:在课前让学生自己整理、了解量与计量单位的相关概念,以及相互之间的概念;进行转换摸底,了解学生对这两者的概念的掌握程度;通过教学突出量与计量单位这两者概念之间的关系,让学生自己形成一个系统的模式。例如帮助学生认清长度单位、面积单位和体积单位之间的关系,整合长度、面积、体积单位的进率和各自进率的联系。
(二)联系现实,让学生触类旁通
概念的复习其重点应该帮助学生去努力的建立起关系体系,而不是鼓励他们成为一个方法的熟练操作者。概念的复习是为了让学生们更好的掌握概念。通过这训练,让学生们对分数、比例的概念已经它们之间的关系了解的更加的深刻,同时让学生们学会在进行概念的复习的时候要举一反三,并能够触类旁通。
三、帮助学生对一些概念的等价定义形成知识网络
在概念复习的过程中,要帮助学生对那些概念的多个等价定义在头脑中形成一个个完整的知识网络。
(一)帮助学生加强对相似概念的辨析
在小学数学中,有一些概念,他们含义接近,但是在具体的本质上却又有一些区别。对于这些概念,学生们背诵了、记住了字面意思,并不等于他们就真正的理解了概念了。教师们必须要痛实例来突出这些概念的特征,帮助学生们真正的理解概念的内涵,区分这些概念的区别,以此来加强对概念的掌握。例如在复习“小数的性质”时,可以让学生去判断“0.40,0.03,20.020,2.800,10.404,5.000”这一组数中的那些“0”可以去掉,哪些“0”不能去掉?为什么能去掉(或不能去掉)?利用这种练习来让学生们对小数的性质有更加深刻的理解。再例如奇数与质数,偶数与合数,化简比与求比值,时间与时刻,质数与质因数,周长与面积等等这些概念有很多都是那种乍看上去都很相似,但实际上却又有很多的不同之处,这类概念学生们在学习的时候很容易产生混淆,从而影响到他们后面的数学学习,因此必须要及时的让他们区分这些概念,以避免相互干扰
(二)加强变式,帮助学生掌握概念的本质特征
在学习概念的时候,小学生有一个显著的特点,那就是对某一个概念的内涵不是很清楚,掌握的也不全面,常常将一些非本质的特征来作为概念的本质特征。例如,有一些学生存在着这样的一种认识,那就是只有水平放置的长方形才叫长方形,斜着放的长方形就不知道叫什么了。为此在进行复习的时候,我们应该将概念的叙述或者表达方式进行一定变化,让学生们从各个侧面去理解概念,其主要目的是让学生从变式中去理解概念的本质属性,以便于排除各种非本质属性的干扰。
四、帮助学生构建完善的概念网
概念以及各种陈述性的知识,都是关于事物及其关系的知识,或者说是关于“是什么”的知识,包括对事实、规则、事件等信息的表达。它们主要是通过网络化与结构性来表示观念之间的各种联系。因此,我们必须要在复习的过程中,帮助学生们构建一个完善的概念网。这个过程教师只能够引导,因为这张“网”必须要根据学生的知识掌握程度,来构建他们自己的知识链、知识网及知识存放的序。
(一)帮助学生找接点
每周一节的班会课是班主任进行思想教育的主阵地。过去,我大多采取满堂灌的方式,或表扬好人好事,或批评不良现象,或讲一些空洞的道理,尽管我讲得辛苦,但效果并不理想。于是,我有意识地尝试把语文知识、技能引入班会课,在轻松愉快的语文训练中达到思想教育的目的。
1.成语中学做人。我首先布置学生把有关为人处事方面的成语分褒贬两方面精选出来,每人至少一条,全班共列举了30多条。褒的如:老老实实、宽大为怀、光明磊落、能屈能伸、披肝沥胆;贬的如:华而不实、趋炎附势、阿谀奉承、求全责备、朋比为奸。尔后,联系社会实际和学生思想实际,引导学生分清是非,正确处理人与人的关系,培养正直、善良、忠诚等做人的品格,学会做人的道理。
2.寓言中学思考。古代不少的寓言既包含生动的语言艺术又包含深刻的辩证法因素,如《自相矛盾》、《盲人摸象》、《刻舟求剑》、《守株待兔》等。班会课,我让学生先讲述寓言故事,然后联系实际评析,引导学生全面、动态、联系地观察事物,反对孤立、静止、片面地看问题,从而学会正确的思维方法。
3.古诗中学科学。我常常选择一些包含着科学因素的古诗句集中在班会课上赏析。学习《明月几时有》,我让学生明白了“高处不胜寒”的天体常识;学习《惠崇春江晚景》,我引导学生领略了“春江水暖鸭先知”一句把科学知识融于鸭子恣意戏水情景的自然与妥帖;学习《枫桥夜泊》,我启发学生理解“夜半钟声到客船”所体现的声学原理。这样的班会课,使学生在艺术美的陶冶中受到了爱科学、学科学、用科学的教育,从而培养了他们严谨的治学态度。
二、用语文去美化学习环境和生活环境
教室是学生学习的主要场所,人们喜欢贴上一些名言警句加以美化。我觉得,名言警句固然对学生有激励作用,但未必能最大限度地调动学生的积极性和创造性。我尝试这样的方法:首先向学生征集格言,指导学生将自己对人生、社会、学习、生活的种种感悟,精练准确地概括成句;然后评选若干佳句,让学生工工整整地写好、裱好,贴在教室里。这样,既可以鼓励学生广开视野、感悟生活,又锻炼了他们的思维能力和语言概括能力,而且使他们享受到了成功的喜悦。
下面是部分学生最近撰写的格言:1.浪费一分时间,就失去一份财富。2.青春,纵之则短,珍之则长。3.付出必有回报,耕耘定能收获。4.刀子不磨会生锈,人不动脑会落后。5.耸天的大树是一枝一杈组合起来的;渊博的知识是一点一滴积累起来的。
我还在教室里挂上一块小黑板,开辟了“每日成语”栏目,布置科代表每日写一个成语并加上注解,然后每周一早读课对上周刊出的成语进行小测试,每学期进行一次大测试。日积月累,学生理解运用成语的水平大大提高,并由此激发好积累词语的积极性。每个学生都备有一个精美的本子,把刊出的成语记下,然后还写上了一段对这条成语的理解与感悟。教室的学习专栏,开辟了“每期古诗”、“每期名言”、“名人学语文话语文”等小栏目,使学生积累了不少古诗、名言、名人故事等,这对丰富他们的写作材料帮助很大。
寝室是学生主要的生活环境,我也要求学生利用语文去布置它、美化它。学生们有的在寝室一角开辟了文学小书库;有的把语文书里的插图临摹下来贴在床头;有的则抄一首小诗、一句名言、一则小故事或小幽默挂在墙上……每当我走进他们的寝室,就仿佛置身于一个语文小世界。
三、让语文智慧的火花去点亮学生的心灵
班主任的思想工作面对的是学生丰富多彩的心灵世界,教师若能巧妙地将语文的睿智之花、情感之花与学生的心灵世界发生碰撞,思想工作往往能收到意想不到的效果。
记得有一次,学校图书馆窗户的玻璃被人打破了,有人反映到我这里,说是我班里的学生干的。我没急于展开调查,而是利用语文课,与学生一起回忆学过的《皇帝的新装》一课,并着重引导学生讨论课文中“小孩子”的形象,让学生理解“童心”的可贵、“讲真话”的可贵。第二天,学校图书馆的玻璃窗换上了一块崭新的玻璃。该周的周记里,有一位男同学主动承认了错误――原来是他踢球时不小心而为。他在周记里诚恳地写道:“是《皇帝的新装》里的小孩子唤回了我的童心。”
中图分类号:G623.5文献标识码:B文章编号:1672-1578(2017)04-0116-01
学习数学最忌讳的就是一味地死记硬背。在数学教学中在学生没有掌握概念的情况下,天天算题,回家看参考书或去辅导班,按学生的学习量来看,都成为了数学优等生了。而现实却并非如此,数学合格率很底。之所以产生这种现象,我认为主要是在数学教学中没有注重概念也没有认识到过程的重要性,不知道概念就盲目算题等于空中楼阁。在现实教学中作为老师的我们也未必非常清楚每个数学概念,那么要使我们成为一名合格的小学数学老师一定要熟知小学数学中的每个概念。通过死记硬背,短期内固然可以明显提升数学成绩,但就长期来看,这种做法会使数学学习变的乏味,使学生久而久之就不愿意学习数学了,最终形成恶性循环。
1.目前小学数学概念教学中存在的问题:
1.1概念教学脱离现实背景,在小学数学课堂上,一些老师在进行概念教学时会要求学生先把概念背诵下来,然后布置练习题强化,这种方式会使学生对概念似懂非懂,不能理解其真正含义,只会机械式的练习,碰到其他情况就会无措。
1.2概念的归纳过于仓促不断建构和解构的反复过程是形成数学概念的必要过程,教师在形成概念这一步有时候过于仓促,在学生还处于在初步建立时已经开始M行归纳总结的步骤了。在进行数学教学时,要考虑到小学生的认识新事物往往注重直观形象,不善于抽象思维,在记忆方面也习惯用形象记忆,特别是低年级的学生在记忆概念时一般采取的是背诵方式,这样就没完全吸收,难以灵活运用,教师应该针对他们的这些特征合理安排教学内容,教学活动一定要确立以学生为主题。
2.小学数学概念教学应对的策略:
小学生在学习时需要有一段准备过程,这一过程就是要引入教学内容的时候,良好的引入能够吸引小学生的注意力,有利于学生的主动学习和主动理解有效提高教学质量。
2.1生活实例引入,从生活实例引入数学概念,能够给学生带来一种熟悉感,拉近数学与学生之间的距离,在进行"直线与线段"的教学中,可以在课堂上拿出一些图片引导学生观察。
2.2旧知识的迁移引入,数学概念之间的联系是十分紧密的,中高年级的概念学习可以通过之前的基础知识引入,在学习"质数与合数"这一概念时可以通过回忆约数的概念来教学,让学生观察1、2、6、7、8、11、12、15的所有约数,给出一个分类,从而引出质数与合数。
2.3情景设疑引入,小学生思维活跃,对有兴趣的问题会积极思考,利用这一方面,教师可以建立情景然后提出疑问引导学生对所学概念有初步认识。例如,"体积"概念的学习,可以拿来一满杯水,然后往杯子里扔个石子,让学生思考为什么石子丢入杯子中会有水溢出。
2.4强化感知。在教学活动中为学生提供丰富的感知材料来辅导小学生理解。数学概念的建立不像物与物之间的传递那么简单,也不是靠对大脑的直接灌输,儿童掌握概念是一个主动、复杂的知识再创造过程。小学生整处在由具体形象思维逐步向抽象逻辑思维过渡的阶段,所以我们在教学中要让学生强化感知。通过直观为学生提供丰富、典型的感性材料,在感性认识的基础上使学生逐步抽象内化成概念。如教学圆锥体的体积是,可以先出示一个等底等高的圆锥体和圆柱体,然后用圆锥体装满沙土倒入圆柱体内,倒3次刚好将圆柱体盛满,这个实验,得出圆锥体的体积等于与它同底等高的圆柱体体积的1\3。
二、高中数学教育中的概念图教学实践
1.分析教学的目标,准备备课的笔记
教学活动开始之前教师要对整门课程以及教学单元进行分析,从而在宏观上对教学目标进行把握,对教学结构进行分析,有助于数学概念图的准确确立.教师要做好备课的笔记,这样在进行概念图构建的时候,对知识点容易连接,并且可以有重点地进行突出,这样教师在讲课时,就可以将概念图画得一目了然,有助于学生对于数学概念图的掌握.例如,我们在进行人教版高一数学第一单元“集合”的学习的时候,教师可以根据“集合”在整个高中数学知识点间的作用等进行分析,确立集合是高中数学学习的重要基础,对于函数学习有着重要的意义.然后根据“集合”整个章节的特点制定小的目标,并且构建合理的概念图.如,第二节课“集合的基本关系”这节课,教师通过研究教材合理的构建交集、并集、全集、补集之间关系的概念图.
2.创设问题情境,启发学生学习
根据奥苏贝尔的意义学习的心理学理论,创设问题情境,启发学生学习是一个很有效的学习方法.因此教师在课堂上可以利用数学概念图不断地创设问题情境,让同学们自发地进行学习,自发地将不同的知识点进行整理,可以促进学生对于知识点进行意义的建构,这样最后形成一个整体,对于高中数学的学习有着重要的意义.例如,教师在教授高中数学新课程的时候,教师引入数学概念图可以让学生更加形象、直观地理解数学知识.我们在学习高中数学人教版“函数的单调性”的时候,同学们很容易将不同函数的图形特点等混淆,这时候,教师就可以运用数学概念图,创设问题情境,启发学生对于不同函数单调性进行意义的建构,这样只有建立起一个完整的意义建构,学生对于这些知识点的混淆程度就会降低,有助于高中生对于“函数单调性”知识点的学习.
3.明确问题,学生自主绘制数学概念图
教师引导学生归根到底是为了让学生自己掌握数学概念图的绘制方法并且应用到学生的学习当中去.因此,教师对学生在宏观上对于知识点进行引导完毕后,可以要求学生,自己查阅资料,明确问题,绘制数学概念图.学生通过查阅资料自己绘制数学概念图就可以自己将有关的知识点进行连接,这有助于学生对于知识点的综合把握,以及对于不同知识点之间的联系进行意义建构,从而促进学生从宏观上和微观上综合把握数学知识点,提高学生的数学能力.
4.小组合作,完善数学概念图
合作的学习模式能够使得小组之间不同的社会成员就自己的理解进行交流,对于数学概念图不断地进行完善.“人无完人”,小组之内的不同成员的交流,不同思想的碰撞,就容易解决在学习的道路上碰到的疑难问题,从而不断地对数学概念图进行改进,使其更加科学,更加成熟,更加全面.
在实际教学过程中,教师们不注意结合生活实际,忽视学生们心理特点,不爱分析事物的本质,教授数学概念的时候照本宣科,讲解枯燥无味,缺乏生动的讲述和形象的比喻,忽略对概念本质的讲解。学生们不易理解书中所写的概念的深层涵义,常常是一知半解就去实行题海战术,题目做不出来,逐渐产生厌烦心理;对概念理解不到位,记忆不深刻,过一段时间再去做题又不会做了,长此以往,导致教学质量停滞不前。
(二)学生不注重课后复习
中学生课业内容繁重,而且年龄较小,自制力不强,在学校结束一天的学习之后,课后往往只是机械的完成老师的作业就不再继续了。数学概念本身就难以理解,如果在课后还不加紧复习巩固,难免会出现遗忘的现象;并且数学概念复杂抽象,中学教学过程中可能有很多相似的概念出现,如果不在课下进行巩固复习,很容易就会混淆。教师要依据这一特点及时督促学生对以前学过的知识进行记忆加深,先复习概念再解答题目,这样就起到了很好的复习效果。
(三)课堂氛围沉闷
数学概念本就是抽象又难以理解的,教学氛围如果枯燥无味的话,对于激发学生们学习理解数学概念的能力更加不利。在数学教学中,教师们注重抓教学质量,往往疏忽了调动课堂范围。强调课堂纪律严肃认真,也大大的限制了同学的积极性和主动性。学习的数学概念难以理解,学生们本就接受困难,课堂再毫无生趣,那还谈何学习效率?没有学习的和谐氛围就没有学习的激情,接受新事物慢是必然的,所以课堂氛围沉闷也是阻碍学生们深入理解数学概念的一个重要因素。
二、解决概念教学的有效方法
概念属于理性认识中的一种,概念的形成依赖于感性认识,中学生正值青春期阶段,心理特点大部分都是容易接受和理解感性认知的,所以针对这一特点,笔者提出了以下几点建议:
(一)将数学概念引入生活
任何知识都是源于生活,作为中学最基础也最重要的学科,数学当然也不例外,学习数学是为了更好的运用于生活。数学知识都很灵活,教师们把数学概念融入生活,对于学生们来说,更有利于他们理解掌握吸收运用。创设一个合理的、熟悉的情境来学习数学概念,不仅加深了他们对概念的记忆,也能激起他们学习数学的欲望。这样的联系,无形中就降低了理解数学概念的难度,提升了学习数学的效率及教学质量。
(二)教师重视概念教学
许多老师都认为数学概念不重要,往往教学时一带而过;有的老师对概念轻描淡写;有的老师讲解了概念也不透彻。学生们死记硬背、生搬硬套,看似记住了概念,遇到了新题型又不能灵活应对,只是机械的埋头进行题海战术。要想更新数学理念,提高教学效率,一定要重视数学概念的教学。教师课前认真备课,找例子进行说明和讲解概念的本质,时刻注意学生们的接受效果,实现以学生为本,考虑学生感受,激发学生们的学习热情,加强理解。
(三)教学内容贴近生活
中职数学教学论文题目1、线性方程的叠加原理及其应用
2、作为函数的含参积分的分析性质研究
3、周期函数初等复合的周期性研究
4、“高等代数”知识在几何中的应用
5、矩阵初等变换的应用
6、“高等代数”中的思想方法
7、中职数学教学中的数学思想和方法
8、任N个自然数的N级排列的逆序数
9、“高等代数”中多项式的值,根概念及性质的推广
10、线性变换“可对角化”的条件及“对角化”方法
11、数域概念的等价说法及其应用
12、中职数学教学与能力培养
13、数学能力培养的重要性及途径
14、论数学中的基本定理与基本方法
15、论电脑、人脑与数学
16、论数学中的收敛与发散
17、论小概率事件的发生
18、论高等数学与初等数学教学的关系
19、论数学教学中公式的教学
20、数学教学中学生应用能力的培养
21、数学教与学的心理探究
22、论数学思想方法的教与学
23、论数学家与数学
24、对称思想在解题中的应用
25、复数在中学数学中应用
26、复变函数论思想方法在中学数学教学中的应用
27、复变函数论思想方法在中学数学竞赛中的应用
28、代数学基本定理的几种证明
29、复变函数的洛必达法则
30、复函数与实函数的级数理论综述
31、微积分学与哲学
32、实数完备性理论综述
33、微积分学中辅助函数的构造
34、闭区间上连续函数性质的推广
35、培养学生的数学创新能力
36、教师对学生互动性学习的影响
37、学生数学应用意识的培养
38、数学解题中的逆向思维的应用
39、数学直觉思维的培养
40、数学教学中对学生心理素质的培养
41、用心理学理论指导数学教学
42、开展数学活动课的理论和实践探索
43、《数学课程标准》解读
44、数学思想在数学教学中的应用,学生思维品质的培养
45、数形结合思想在中学数学中的应用
46、运用化归思想,探索解题途径
47、谈谈构造法解题
48、高等数学在中学数学中的应用
49、解决问题的策略思想--等价与非等价转化
50、挖掘题中的隐含条件解题
51、向量在几何证题中的运用
52、数学概念教学初探
53、数学教育中的问题解决及其教学途径
54、分类思想在数学教学中的作用
55、“联想”在数学中的作用研究
56、利用习题变换,培养学生的思维能力
57、中学数学学习中“学习困难生”研究
58、数学概念教学研究
59、反例在数学教学中的作用研究
60、中学生数学问题解决能力培养研究
61、数学教育评价研究
62、传统中学数学教学模式革新研究
63、数学研究性学习设计
64、数学开放题拟以及教学
65、数学课堂文化建设研究
66、中职数学教学设计及典型课例分析
67、数学课程标准的新增内容的尝试教学研究
68、数学课堂教学安全采集与研究
69、中职数学选修课教学的实话及效果分析
70、常微分方程与初等数学
71、由递推式求数列的通项及和向量代数在中学中的应用
72、浅谈划归思想在数学中的应用
73、初等函数的极值
74、行列式的计算方法
75、数学竟赛中的不等式问题
76、直觉思维在中学数学中的应用
77、常微分方程各种解的定义,关系及判定方法
78、高等数学在中学数学中的应用
79、常微分方程的发展及应用
80、充分挖掘例题的数学价值和智力开发功能
小学数学教学论文题目参考1、小学数学教师几何知识掌握状况的调查研究
2、小学数学教师教材知识发展情况研究
3、中日小学数学“数与代数”领域比较研究
4、浙江省Y县县域内小学数学教学质量差异研究
5、小学数学教师教科书解读的影响因素及调控策略研究
6、中国、新加坡小学数学新课程的比较研究
7、小学数学探究式教学的实践研究
8、基于教育游戏的小学数学教学设计研究
9、小学数学教学中创设有效问题情境的策略研究
10、小学数学生活化教学的研究
11、数字故事在小学数学课堂教学中的应用研究
12、小学数学教师专业发展研究
13、中美小学数学“统计与概率”内容比较研究
14、数学文化在小学数学教学中的价值及其课程论分析
15、小学数学教师培训内容有效性的研究
16、小学数学课堂师生对话的特征分析
17、小学数学优质课堂的特征分析
18、小学数学解决问题方法多样化的研究
19、我国小学数学新教材中例题编写特点研究
20、小学数学问题解决能力培养的研究
21、渗透数学思想方法
提高学生思维素质
22、引导学生参与教学过程
发挥学生的主体作用
23、优化数学课堂练习设计的探索与实践
24、实施“开放性”教学促进学生主体参与
25、数学练习要有趣味性和开放性
26、开发生活资源,体现数学价值
27、对构建简洁数学课堂的几点认识和做法
28、刍议“怎样简便就怎样算”中的“二指技能”现象
29、立足现实起点,提高课堂效率
30、宁缺毋滥--也谈课堂教学中有效情境的创设
31、如何让“生活味”的数学课堂多一点“数学味”
32、有效教学,让数学课堂更精彩
33、提高数学课堂教学效率之我见
34、为学生营造一片探究学习的天地
35、和谐课堂,让预设与生成共精彩
36、走近学生,恰当提问--谈数学课堂提问语的优化策略
37、谈小学数学课堂教学中教师对学生的评价
38、课堂有效提问的初步探究
39、浅谈小学数学研究性学习的途径
40、能说会道,为严谨课堂添彩
41、小学数学教学中的情感教育
42、小学数学学困生的转化策略
43、新课标下提高日常数学课堂效率的探索
44、让学生参与课堂教学
45、浅谈新课程理念下如何优化数学课堂教学
46、数学与生活的和谐之美
47、运用结构观点分析教学小学应用题
48、构建自主探究课堂,促进学生有效发展
49、精心设计课堂结尾 巩固提高教学效果
50、浅谈数学课堂提问艺术
51、浅谈发式教学在小学数学教学中的运用
52、浅谈数学课堂中学生问题意识的培养
53、巧用信息技术,优化数学课堂教学
54、新课改下小学复式教学有感
55、让“对话”在数学课堂中焕发生命的精彩
56、小学几何教学的几点做法
初中数学教学论文题目1、翻转课堂教学模式在初中数学教学中的应用研究
2、数形结合思想在初中数学教学中的实践研究
3、基于翻转课堂教学模式的初中数学教学设计研究
4、初中数学新教材知识结构研究
5、初中数学中的研究性学习案例开发实施研究
6、学案导学教学模式在初中数学教学中的实践与研究
7、从两种初中数学教材的比较看初中数学课程改革
8、信息技术与初中数学教学整合问题研究
9、初中数学学习困难学生学业情绪及其影响因素研究
10、初中数学习题教学研究
11、初中数学教材分析方法的研究
12、初中数学教师课堂教学目标设计的调查研究
13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究
14、初中数学教师数学教学知识的发展研究
15、数学史融入初中数学教科书的现状研究
16、初中数学教师课堂有效教学行为研究
17、数学史与初中数学教学整合的现状研究
18、数学史融入初中数学教育的研究
19、初中数学教材中数学文化内容编排比较研究
20、渗透数学基本思想的初中数学课堂教学实践研究
21、初中数学教师错误分析能力研究
22、初中数学优秀课教学设计研究
23、初中数学课堂教学有效性的研究
24、初中数学数形结合思想教学研究与案例分析
25、新课程下初中数学教科书的习题比较研究
26、中美初中数学教材难度的比较研究
27、数学史融入初中数学教育的实践探索
28、初中数学课堂教学小组合作学习存在的问题及对策研究
29、初中数学教师数学观现状的调查研究
30、初中数学学困生的成因及对策研究
31、“几何画板”在初中数学教学中的应用研究
32、数学素养视角下的初中数学教科书评价
33、北师大版初中数学教材中数形结合思想研究
34、初中数学微课程的设计与应用研究
35、初中数学教学生成性资源利用研究
36、基于问题学习的初中数学情境教学模式探究
37、学案式教学在初中数学教学中的实验研究
38、数学文化视野下的初中数学问题情境研究
39、中美初中数学教材中习题的对比研究
40、基于人教版初中数学教材中数学史专题的教学探索
41、初中数学教学应重视学生直觉思维能力的培养
42、七年级学生学习情况的调研
43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考
44、新课程背景下学生数学学习发展性评价的构建
45、初中数学学生学法辅导之探究
46、合理运用数学情境教学
47、让学生在自信、兴趣和成功的体验中学习数学
48、创设有效问题情景,培养探究合作能力
49、重视数学教学中的生成展示过程,培养学生创新思维能力
50、从一道中考题的剖析谈梯形中面积的求解方法
51、浅谈课堂教学中的教学机智
52、从《确定位置》的教学谈体验教学
53、谈主体性数学课堂交流活动实施策略
54、对数学例题教学的一些看法
55、新课程标准下数学教学新方式
56、举反例的两点技巧
57、数学课堂教学中分层教学的实践与探索
58、新课程中数学情境创设的思考