欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

辐射防护与安全原则大全11篇

时间:2023-12-14 11:46:25

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇辐射防护与安全原则范文,希望它们能为您的写作提供参考和启发。

辐射防护与安全原则

篇(1)

中图分类号:TM623 文献标识码:A 文章编号:1007-3973(2013)006-064-02

1 引言

随着我国核电事业的发展,做好对核电站的剂量控制已经提到议事日程。集体剂量作为最优化分析的控制量,在核电站的辐射防护设计、管理和运行过程中对核电站ALARA原则的实现和贯彻起着至关重要的作用。与国外一些先进电站相比,国内许多电站在大修周期、大修近岛人次、检修计划安排、辐射防护职责划分、工作许可证管理等方面都有优化空间。本文将从人员参与、人员培训工作实施三个方面,并结合国外辐射防护管理的先进经验,探讨核电站大修集体剂量控制管理工作。

2 核电站集体剂量控制

2.1 降低集体剂量需要全员参与

加强核电站检修人员的辐射防护职责。降低集体剂量同时提升机组年平均负荷因子的重要措施之一就是缩短大修周期。在大修期间在权衡提高工作质量和缩短工作时间过程中,辐射防护人员由于受到检修工作细节事项的不了解的局限,可能造成辐射防护工作过于保守或偏差,从而延长检修时间。当将制定辐射防护计划、辐射防护监督的责任应直接赋予维修人员直至工作执行班组而不是辐射防护人员时,防护与实际进行的工作就更接近,而且也顺畅了方方面面的交流与沟通,从而减少时间浪费。因此将辐射防护责任压到一线管理人员直至执行班组肩上是开展核电厂辐射防护“全员参与”重要工作。辐射防护人员对工作过程的参与主要在提供作业现场的辐射条件、承包商和防护材料的选择中的经验反馈以及对工作程序的ALARA审查方面。

成立核电站最优化委员会。委员会成员包括电站和承包商相关单位的管理人员,并以辐射防护所在处室处长为协调员。委员会定期召开会议,推进、指导、评估和协调辐射防护最优化的实施。对于一些对辐射防护有重要影响的工作项目或具有高辐射风险的重要活动,应成立ALARA工作组。工作组主要由检修专业工程师组成,组长一般由项目或活动的负责人担任,由辐射防护工程师为协调员。工作组负责项目或活动的防护方案的制定、辐射风险分析、工作准备和实施过程中的接口协调,以及项目或活动结束后的工作总结和经验反馈等。

2.2 全体与大修相关的人员都应接受培训

2.2.1 核电站管理层培训

培训必须与受训工作人员的工作类型以及他们所承担的责任相适应。在给管理层上的专项培训课,可讲述实施ALARA大纲的重要性和正当性、ALARA大纲的基本原则以及评价该大纲实施效果的程序方法。

2.2.2 核电站业主工作人员培训

对于辐射防护基层专业人员的培训,主要有:基本的ALARA原则、辐射防护的管理方法、工作人员承担的责任、基层辐射防护专业人员作为其他部门和工作人员的助手与参谋的特殊职能。维修与运行人员必须清楚与其工作相关的辐射防护技术。在培训和教育中,还应包括在工作中发生意外事件时所应采取的应急行动。

2.2.3 核电站检修承包商培训

一个受过良好培训且有经验的核电行业检修人员能够比一个普通检修人员在更短的时间内,以更高的工作质量完成同一项工作任务。承包商培训一般包括检修专项培训及辐射防护培训。检修培训包括:基本技术教育、技能培训、工作中培训、工作的专项培训;辐射防护培训包括:ALARA管理工具的培训、放射性条件下的普通工作、防护用品穿戴、模拟设备训练。

2.3 大修计划、实施、总结方面的管理

2.3.1 计划及准备

为降低核电站集体剂量,应实施紧凑的工期计划:

(1)如果可能,尽量推迟或者取消影响工期的项目。

(2)选择对电站的安全及可靠运行必要的工作。

(3)为避免返工,严格遵照程序开展大修工作,做到工作紧凑但不抢时间。

(4)制定工作计划时,充分吸取先前工作中的以及其他电站经验反馈。

在工作项目的筛选方面,欧洲一些核电站在缩短大修工期方面处于全球领先地位,在芬兰的Loviisa核电站(两台PWR机组),年度的短大修工期是三周,而所谓的长大修工期也仅六到八周。许多美国的核电公司已学习了欧洲的大修管理策略。目前由美国西屋公司设计的AP1000(PWR)预计的大修工期仅为18天。

为降低核电站集体剂量,应合理安排大修项目:

(1)工作应尽可能的在系统、管道、容器或其他设备的充水阶段进行。由于水的屏蔽作用,管道、阀门或泵表面的剂量率,在充水时比排空时低得多。

(2)在允许情况下,对系统的冲洗会降低剂量,可将热粒子或活化沉积物冲走。国内一些核电站所做的“主管道反冲洗实验”已证明了这一点。

(3)对于参与人数较多、工作时间较长的工作,如果不要求其在大修一开始就实施,则应把它安排在后面。大修收尾阶段的剂量率会比大修开始时要低。冷却剂的净化以及放射性的自然衰变均会使得剂量率下降。

(4)在安排工作时应利用其他将要开始、正在进行或已经结束的工作项目的现场条件。

(5)工作计划人员应将工作区域划分为网格,使得各领域人员能够直观地看到每个网格中的工作项目。以避免一项工作给邻近的其他作业班组成员带来辐射和沾污问题,防止因工作交叉、现场拥挤带来的工作效率降低、安全性下降。

2.3.2 实施

工作过程控制对于良好计划的换料大修的圆满成功至关重要。辐射防护人员的关键作用是向工作人员提供辐射防护建议和相关技术支持。对于有重大辐射风险的工作项目,应指派一名辐射防护工程师专门监督。为防止非计划性大剂量照射,应设立各个组织级别的集体剂量限值及个人剂量限值。为了解决工作中遇到的问题,各部门之间的信息交流必须快捷有效,应指定专人负责协调信息并向大修组织机构报告。每日的大修例会是十分必要的,工作负责人、辐射防护人员、负责计划准备的人员及承包商管理人员都应参加。

工作许可证系统应在剂量控制方面充分使用。对于一项检修工作应根据检修步骤分别办理许可证,而对于一项需要由几个班组交接完成的检修项目,还应分班组办理许可证。许可证严格控制人数及工作时间,为以后大修工作的优化提供数据支持,从而降低集体剂量。为保证检修工作的“零接口”或“负接口”,可在计划开工时间前一至两个小时开启工作许可证。具体时间应根据各电站的工作环境及工作方式而定。

2.3.3 实施全面地工作总结是保证集体剂量目标持续提升的关键

(1)大修报告总结辐射防护工作。集体剂量总和、用工人时总数、超过或低于预期的集体剂量与用工人时数的百分比、对与大修目标的偏差之原因的分析、改进意见、以及“良好实践”的确认等内容。

(2)大修期间在检修部门及承包商中广泛开展降低照射的各种建议的收集。并建立起激励机制。

(3)要使工作管理成为一个闭合环路,必须具有保证工作反馈意见得以落实执行的机制。“ALARA委员会”或“大修分析组”组织各方面专业人员参加大修分析的会议,确定需落实的后续行动井指定人员负责完成改进行动。

(4)集体剂量跟踪小组应常年存在。并改变其职能从大修的跟踪到下次大修来临前的制定大修集体剂量控制计划。

(5)制定核电站集体剂量远景目标。并制定满足这一目标的降低照射的计划。

3 结束语

从技术管理的角度分析国内部分核电站在集体剂量控制中存在问题的解决方法,可以归纳为两个方面:核电站集体剂量控制需要各检修部门、运行部门、计划部门、安全部门通力配合;在工项目筛选、计划安排、方案制定、人员培训、工作准备、实施和总结过程中全面开展。

参考文献:

[1] 王川.压水堆核电站辐射防护规范化管理研究[D].上海交通大学,2007.

[2] 杨茂春,陈德淦.大亚湾核电站大修中职业照射控制的实践与经验[J].辐射防护,2004(Z1).

[3] 陈德淦,贺禹,杨茂春,等.大亚湾核电站辐射防护和最优化(ALARA)管理体系十年的实践和经验[J].辐射防护,2004(Z1).

篇(2)

中图分类号:D631 文献标识码:A 文章编号:1009-2374(2012)26-0146-02

随着核技术的发展,我国核电及其相关产业发展迅速,放射性物质被更广泛地应用于各行各业和人们的日常生活中。截止到2011年,我国已经有6个投入运营的核电站、12个在建的核电站、25个筹建中的核电站;辐射与同位素技术在食品加工、消毒灭菌、无损探伤、物件在线检测、医学诊断及治疗等领域得到广泛应用,已形成较大市场规模;医用加速器及医用影像设备已经形成标准化系列产品;医用微型反应堆技术已经成熟并即将投放市场;等离子体技术已经广泛应用于集成电路生产、环保、化工及加工制造业;核电发展除直接带动核燃料产业链外,还带动了相关的原材料工业、加工制造业、仪器仪表业等。如此大规模的核技术应用,必然导致核辐射事故发生几率逐渐增大,严重威胁人民群众的生命财产安全和生态环境,影响社会稳定。面对如此严峻的核与辐射形势,作为处置各类灾害事故主力军的公安消防队伍如何面对这种挑战,如何提升自身的应急处突能力,已成为刻不容缓、急需解决的课题。

1 核与辐射事故的特点

1.1 危害性大

人体组织吸收辐射后,除了与组织烧伤有关的并发症外,白细胞的破坏会使受到辐射的人失去免疫力;辐射会对遗传密码造成影响,突变的生殖细胞有可能把畸形染色体遗传给后代;如果在怀孕期间受到辐射,胎儿某些细胞的染色体就会受到伤害,有产生畸形胎儿的危险。

1.2 隐蔽性强

核事故的危害主要是由放射性物质对人体细胞、组织、器官和机体的辐射照射引起的,而辐射无色、无嗅、无味,听不见、摸不着,这些放射性物质只有借助专门的仪器才能够检测得到,直接影响到人们采取防护的针对性和时效性,放射性伤害后果可能在受照几小时、几天、几星期,甚至几年后表现出来,所以它的破坏作用具有很强的隐蔽性。

1.3 社会影响大

通过国外发生的几次重大核事故对公众的社会心理影响及其所致后果的综合分析,充分证明核事故对人群的社会心理影响很大,不仅影响身心健康,还可对政治、经济、社会生活等造成严重干扰和破坏。由它造成的公众社会心理影响所引起的健康危害和在政治、经济等方面的损失,远比核辐射所致的危害和造成的损失要大。核与辐射事故严重影响人们的心理和身体健康,破坏正常的生产和生活秩序,造成社会混乱,对政治方面及国家政权造成严重的冲击和破坏,造成重大的直接和间接经济损失。

2 核与辐射事故的类型

2.1 核突发事故

核突发事故是指核电站或其他核设施(如铀富集设施,铀、钚加工厂与燃料制造设施、研究堆,核燃料后处理厂,放射性废物管理设施等)发生的意外事故,造成放射性物质外泄,致使工作人员、公众受到超过或相当于规定限值的照射,亦即为核泄漏事故。

2.2 放射突发事故

放射突发事故包括,由于操作失误或设备故障,使放射源丧失屏障,导致工作人员或公众受到意外照射;放射性物质的意外泄漏、外溢或释放,使人员和环境受到污染及人员受照;放射源或放射性同位素被误放、丢失或被盗,捡拾或盗窃放射源者将装源容器拆卸,使放射源失去屏障,造成其本人和他人受照。

2.3 核恐怖事件

当今国际形势复杂多变、跌宕起伏,我国在谋求社会经济高速发展的情况下,各种矛盾亦纷至沓来,接踵出现。因此,在国际国内环境影响下,我国近年来各种恐怖事件也明显增加,恐怖分子有可能通过制造放射性扩散装置、袭击核设施、制造核武器的方式制造恐怖事件,可以说这些事件一旦发生其危害和影响是非常深远的,因此,我们应当做好防范和处置核与辐射恐怖事件的准备。

3 核与辐射事故处置中的防护

3.1 辐射防护的目的

辐射防护的目的就是要保护救援人员及公众的健康。辐射防护的出发点是,确定性效应是有阈的,应避免发生,而随机性效应是无阈的,要限制到可接受的水平。因此可以说,辐射防护的目的就是要防止有害的确定性效应的发生,限制随机效应的发生率,使之达到可接受的水平。

3.2 辐射防护的原则

3.2.1 辐射实践的正当化原则。在进行涉及辐射的任何实践活动之前,必须先权衡其利弊得失,只有当这一实践活动对人群和环境可能产生的危害远远小于个人和社会从中获得的利益时,才能认为具有值得进行的正当理由;反之,不应该采取这种实践。

3.2.2 辐射防护的最优化原则。最优化原则也称可合理达到尽可能低的原则,即在考虑到经济和社会因素的条件下,所有辐射照射都应该保持在可合理达到尽可能低的水平。但是过于要求低的辐射,必将提高防护费用,而带来好处的只不过把已经很低的随机性效应的发生率再降低一点,这样不能认为是合理的。从最优化原则出发,应该这样选择,首先把辐射降低到一点水平以下,然后在有可能做到的情况下把必须的照射降到尽可能低的水平,一直到为降低单位集体剂量当量所花费的代价抵不上因减少危害所带来的好处为止。

3.3 辐射防护方法

辐射对人体的作用主要是外照射和内照射两种方式。外照射是体外的辐射源对人体的照射,主要是γ射线的照射。内照射是放射性核素进入人体内而造成的照射,主要是食入、吸入或通过皮肤吸收进入人体内的α核素和β核素。照射方式不同,其防护方法也不同。

3.4 辐射防护装备

核辐射的危害巨大,因此在处置此类事故时我们应进行严格的防护。对于处于安全区域的救援人员以及疏散出来的群众,可以佩戴防尘口罩防止吸入放射性粉尘;对于处于轻危区的救援人员可佩戴过滤式防毒面具、口罩、护目镜、轻型防化服、铅服等,防止放射性粉尘从呼吸道、眼睛、皮肤进入人体内;对于处于重危区参与事故处置的人员应着空气呼吸器、铅服、全套防核服、核生化防护服等防护装备。

4 核与辐射的监测

消防部队到场处置核与辐射事故时,首先要进行侦察,通过询问知情人员,了解放射源的性质、用途、事故原因以及现场周围单位情况等,成立侦察小组,做好充分的个人防护,携带相应的仪器,在技术人员的带领下深入现场侦察情况。

5 结语

面对日趋繁重的应急救援任务,作为应急救援专业力量的消防部队,需制订核与辐射事故有效的应对处置程序,加强核与辐射应急救援专业人才的培养,强化核辐射救援装备的配备,完善核与辐射恐怖事件处置预案,开展相应的专业训练及演练,提高处置核生化恐怖事件的组织指挥水平和处置能力。

参考文献

[1] 潘自强,陈竹舟,叶长青.核和辐射恐怖事件后果的防护及其防范[J].核科学与工程,2005,25(1):1-13.

[2] 王善强.核与辐射恐怖事件及其应对策略[J].核电子学与探测技术,2004,24(1):97-103.

篇(3)

项目位于某山地地形中,整个玻璃固化项目的生产工艺厂房包括玻璃固化厂房、分析实验楼、产品容器暂存库、生产运行楼,整个建筑群通过交通廊联系起来。产品容器暂存库属于其中的一个子项,建筑位于台地之上,通过转运通道与玻璃固化厂房连接,主要用于接收贮存主厂房生产产品。产品容器暂存库占地面积1148.44m2,建筑面积1638.06m2。建筑物地上部分最长处为54.45m,最宽处为19.60m,高13.10m,深-12.50m。建筑对外设一个人员出入口,一个物料出口,两个应急疏散口,此外地面一层有用于接收来自主厂房的转运通道,地上二层有参观连廊与其他子项连接。建筑为混合层次的工业厂房,一侧主要是单层大空间的吊车大厅及地下产品容器贮存室,另一侧主要是多层小空间的各辅助工种用房,小空间部分地上两层、地下两层。辐射防护分区现阶段全部启用房间有白、绿、红三区,将来全部启用时有橙区房间。但红区房间不进人,将来启用的橙区房间也极少。所以目前包括长时期内整个产品容器暂存库主要进人的房间放射性剂量都并不高,分区设置相对简单。

1.2用房布置的一般规律

暂存库属于核化工厂房,原则上看必须遵循一般的核工业放射性厂房的设计原则和设计规律。由于核工业体系的功能特殊性,核化工建筑一般都要满足辐射防护、消防安全、安全保卫等基本要求,由此带来的辐射防护和安全疏散问题再加上特殊的功能需求导致了复杂的流线需求。要想实现合理的流线布置,平面布置应当从前述三个方面入手。本文将功能需求、安全疏散、辐射防护归纳为核化工放射性建筑用房布置(平面设计)的三个要素。

1.2.1用房布置的三要素及相互关系

功能需求、防火疏散、辐射防护,三者之间相互影响、相互制约,设计的深入开展必须抓住主要矛盾沿着一条主线向下进行。比较这三个要素,功能需求是建筑设计的本质问题之一,既是设计的根本目的也是设计的出发点;防火疏散是建筑设计要考虑的重要问题,防火疏散主要涉及人身安全,一旦发生火情,其紧迫性急迫性是不言而喻的。本工程中的放射性剂量并不高,对于这样放射性不高的工程,防火疏散权重更大;在实际设计中,前两个要素的设计常常会涵盖第三个要素,对于核工业建筑设计辐射防护分区常常是伴随着功能分区形成的,防火疏散从一般疏散角度布置好后较容易通过多种手段满足辐射防护的要求。对于放射性剂量不高,辐射防护分区较简单的厂房而言,其房间布置的一般流程可以总结如下:分析工艺及相关用房的功能需求→调整方案满足消防疏散要求→最后通过细节处理等各种建筑手段满足辐射防护要求。

1.2.2工艺流程及用房需求分析

工艺的功能需求是建筑方案设计的出发点,由这些功能需求可以归纳出主要的功能房间。转运热室、产品容器贮存为红区,操作前室为橙区,维修间和地面上的车大厅为绿区,可以看到工艺的功能需求和辐射防护要求是基本一致的,放射性较强的房间基本相邻。这一点符合辐射防护分区的要求:相同辐射防护分区用房尽量集中布置,也证明了前面的分析———功能需求要素涵盖了辐射防护要素。在上面基础上加入其他工种用房需求,配电、热引入需在一层对外开门,故放在一层;进风、排风用房需要相同的大空间,放在建筑物一侧一、二层相同的位置上,排风噪声相对较大且为绿区放在一层绿区相对集中的位置,进风为白区放在二层白区;水槽间和监测间需放在地下一层;通信用房为白区放在二层白区。接着考虑疏散楼梯和次入口布置。防火疏散是建筑设计的基本要求之一,也是重要的功能需求,在方案设计阶段主要从安全疏散的角度给予考虑:1)防火分区的设置。本工程属于较为重要的核化工建筑,可以参照GB50016-2006建筑设计防火规范,对于耐火等级一、二级的建筑,防火分区最大允许建筑面积2500m。整个厂房占地面积1148.44m2,地下部分有两处,这样整个建筑物可以划分三个防火分区,即地下两个防火分区,地上一个防火分区。2)安全出口、疏散楼梯的布置。由前述可知,本工程采用集中式布局、走道为单内廊式布置,按照耐火等级一、二级考虑,位于袋形走道两侧或尽端的疏散门至最近安全出口(疏散楼梯)的最大距离不超过22m考虑,本建筑一侧为大空间单层厂房,地下部分只有维修间进人且面积不足50m2可设置一部疏散楼梯,利用地上临近的物料出口作为疏散口;另一侧小房间较为集中,走廊最长处长度约为20m,并且房间布置不规则,需要按两部楼梯考虑。最后,要考虑已完成的房间布置、安全疏散是否满足辐射防护分区的要求。各房间的辐射防护分区基本能满足相同放射性水平房间集中布置的要求,右侧的疏散楼梯和疏散口可以满足防火疏散和辐射防护疏散的要求。左侧用房集中的部位有白、绿两区,两部疏散楼梯可以分别作为白、绿两区的疏散楼梯,为满足地下防火分区两部疏散楼梯和对外疏散口的要求,绿区疏散楼梯在一层设对外应急疏散口,白区楼梯间相邻的淋浴水槽间墙体上设固定窗(旁边附太平斧),有火情时可用太平斧打破玻璃,将白区楼梯作为应急疏散楼梯。

1.2.3小结

核工业放射性厂房房间布置(平面设计)中存在功能需求、防火疏散、辐射防护三个要素,三要素之间相互影响、相互制约,对于玻璃固化暂存库这种放射性剂量不太高,辐射防护分区不太复杂的放射性废物贮存厂房而言,其房间布置的思路可以依照下面的流程进行:1)从功能需求出发,以主工艺用房为基本框架,加入辅助工种用房和相关配套辅助用房,得到房间的基本构成;2)在房间基本构成确定的基础上,参考既定面积、走廊长度考虑需要多少疏散楼梯和疏散口,依据规范要求在合适的位置加入疏散楼梯和疏散口;3)从辐射防护分区的角度检查一下各个房间的布置是否符合辐射防护分区的要求,分区是否合理,各分区是否有合理的疏散口和疏散楼梯。不合适的可以通过调整房间布置、增加应急门或固定窗的手段满足辐射防护分区的疏散要求。

1.3特殊问题和解决方式

本工程用房布置存在一个特殊的问题,在功能上主要是用来贮存玻璃固化主厂房生产的高放产品的,这些产品大约贮存一个较长的时间段(当时考虑暂定50年,根据实际生产情况可能会有变化),之后这些产品会通过工艺的特殊用房处理后运出建筑物送到别处处理。这些工艺的特殊用房在贮存时期内并不使用,只是在最后启用时方才使用,如果现阶段就将未来所需房间的装修、管道设备的设计安装等问题考虑到位,房间设备不但长期不能有效利用,且会带来设施陈旧浪费的问题,而且贮存期后也有可能出现新的更先进的相关技术,为此我们对相关房间做如下考虑:1)房间处理。将需要的房间集中留出大空间,现阶段作为结构空间考虑,将来可以按照实际需求进行详细布置。2)疏散考虑。对将来可能进人的空间预留疏散口,洞口可用砖墙封堵,将来启用时拆除,根据需要设门。3)装修考虑。一切装修暂时均不予考虑,将来启用时,可根据当时的工艺要求和技术水平进行详细设计。4)预留洞口高度。由于暂时不考虑装修,预留洞口可适当留高,将楼地面面层的余量留出来。

篇(4)

doi:10.14033/ki.cfmr.2016.32.087 文献标识码 B 文章编号 1674-6805(2016)32-0152-02

随着医学影像技术的迅速发展,医学直线加速器作为一种治疗肿瘤的设备,亦被广泛应用于手术放射治疗中。但因医学直线加速器能量输出大,而且辐射力强,在提高手术质量的同时也带来了负面的影响,其中最为严重的是手术室X射线辐射污染的问题[1]。研究显示,X射线可通过电离辐射的方式对人体正常组织细胞造成各种不同程度的损伤,可诱导多种严重疾病发生,严重危害人们的生命健康[2-3]。近年来,有关手术室X射线辐射污染和辐射防护的问题受到人们的广泛关注[4]。同时,合理使用医学直线加速器、加强手术室X射线辐射防护和避免或减少辐射伤害也成了手术室护理管理的重点工作[5]。本文通过探讨手术室中的辐射防护和护理管理,旨在提高医务人员的工作效率和增强其辐射防护的意识,避免或减少医务人员的辐射损害,现报道如下。

1 资料与方法

1.1 一般资料

选取2014年6月-2015年8月笔者所在医院行放疗的手术室,占地面积36.8 m2,选用蔡司intrabeam系统的医学直线加速器,射线种类为X射线,管电压:40或50 kV,管电流为5~40 μA,治疗剂量率为10 Gy/min,摆位时间10 min,治疗时间15~30 min,所有资料和数据均完整获得且真实可靠。

1.2 方法

在常规放疗治疗实施手术室中实施辐射防护和护理管理干预,测定手术室周围房间医用电子直线加速器的X线辐射水平,统计分析干预前后的X线辐射水平,具体如下。

1.2.1 辐射防护和护理管理干预 加强辐射防护培训,提高防护意识,医院管理部门应加强对从事手术室放疗工作的医务人员仪器技能和辐射防护的统一培训,手术室护理管理干预定期对护理人员进行辐射防护培训,培训内容主要包括:辐射时间防护原则(熟悉医用电子直线加速器的性能和操作技能,充分掌握曝光的条件,在保证治疗质量的前提下,尽量缩短射线曝光的时间和次数等)、辐射距离防护原则(应尽量远离X射线源,避免或减少X射线辐射对机体不必要的损伤等)、辐射屏蔽防护原则(正确配备铅衣、铅围脖、铅眼镜和铅帽和使用辐射防护用品等防护设备来减轻对医务人员自身的照射等);应用合格的医用电子直线加速器且进行不定时检修,购置低剂量且安全性能强的医用电子直线加速器,不定时对医用电子直线加速器M行维修、保养和调试,并进行实际测试,确保证医用电子直线加速器的安全运行;健全辐射防护配套措施,购置高品质、足够质量的防护用品和设备,手术室四周墙壁、感应门和窗户玻璃等应用铅或有相当铅当量的铁析、硫酸钡混凝土等高原子序数的材料,保证手术室工作环境的安全和避免医务人员的辐射损伤;辐射防护用品均放置在离辐射源近的物品准备间。健全手术室管理制度,科学合理排班,尽量减少每位医务人员的X射线辐射总照射量,建立医务人员个人剂量及健康监测档案,按时对医务人员进行剂量监测和健康体检,凡健康体检不合格或妊娠期、哺乳期的医务人员不准予有参与手术室放射治疗工作的安排,确保医务人员的身体健康,以此降低X射线辐射超量照射的风险。

1.2.2 指标观察和测量 本次测量均利用Radiagem 2000探测、SG-2R辐射检测仪进行X射线辐射测量,监测点分别设为医生所在处(手术间外)、手术间外监护仪处、手术室门外、手术室门内共4个点,仪器参数为: 测量范围:1 nSv/h~100 μSv / h,能量响应:48~6Me V相对响应之差

1.3 统计学处理

采用SPSS 20.0统计软件处理数据,计量资料以(x±s)表示,采用t检验,计数资料以率(%)表示,采用字2检验,P

2 结果

干预后手术室周围房间医用电子直线加速器的X线辐射水平明显低于干预前,差异有统计学意义(P

3 讨论

3.1 医用电子直线加速器X射线的特性

篇(5)

辐射是一种无形、无色、无味、无声,即是看不见,摸不着、闻不到、听不见的,与人们生活关系密切的无形物质。如果不对辐射的知识有所了解,对辐射的污染加以防护,将对我们的身体造成伤害。随着放射性同位素、射线装置和电波技术、射频电子设备应用日益广泛,加强辐射防护研究,提高辐射污染防治水平是一个永恒的课题。

一、辐射的概念及其分类

辐射分为电离辐射和电磁辐射(非电离辐射)两种。

电离辐射是作用于物质能使其发生电离现象,它具有波的特性和穿透能力。按照辐射的来源将它们分为天然辐射和人工辐射。天然辐射来自自然界的宇宙射线、宇生放射性核素(是指宇宙射线与大气层中的核素相互作用产生的放射性核素,如3H、7Be、14C和22Na)和原生放射性核素(地球上生来就有的核素,如232Th系、238U系、235U系、40K、87Rb、138La等)。人工辐射源来自矿物开采、核动力生产、核武器爆炸、放射性同位素的应用、射线装置和医疗照射等。

电磁辐射是电磁能量以电磁波的形式通过空间传播的现象,它的传播速度即为人们通常所说的光速。电磁辐射可按其波长、频率排列成若干频率段,形成电磁波谱。频率越高该辐射的量子能量越大,其生物学作用也越强。电磁辐射源可分为自然电磁辐射源和人为电磁辐射源。雷电、太阳黑子活动、宇宙射线等都产生电磁辐射,这是自然电磁辐射源;移动通信、微波通信广播电视和雷达等无线电设备也产生电磁辐射,这类辐射源通常称为人为电磁辐射源。

二、辐射的危害

辐射危害大致可以分为客观健康危害和其他危害两大类。

电离辐射的客观健康危害指的是对受照者本人及其后代健康的有害影响。对受照者本人的影响称为躯体效应,对后代的影响称为遗传效应。辐射对健康的危害既有现时的损伤,也有潜在的危险。当受照者接受某特定水平的辐射照射时,就会遭受某种形式的辐射损伤,如皮肤烧伤、眼晶体白内障、造血障碍、由于性细胞的损伤而引起的生育能力低下等。这些效应的严重程度随受照剂量的增加而增大,是辐射的非随机效应。对于这种效应,存在一个剂量阈值,当所接受的剂量低于这个阈值时,就不会发生这种效应,或者效应极为轻微,根本无法察觉。电离辐射的另一种效应,如辐射诱发的癌症和辐射的遗传效应等,是辐射产生的随机效应,这种效应发生的概率(而非严重程度)随受照剂量的增加而增大。

除了客观健康危害之外,电离辐射还可能造成对环境的污染,如核电站及其他生产、使用、操作放射性物质的单位排放的放射性气体、气溶胶和液体可能污染周围的环境,放射性物质的海洋倾倒可能污染海洋环境,放射废物的地下埋藏可能污染地下水,核企业发生重大事故时释放放射性物质可能造成较大面积的环境污染。环境的放射性污染不仅可能对污染区居民的健康造成不利影响,而且还可能造成经济损失或给人们带来不便。

超过一定限度的电磁辐射也有危害,首先表现为工业干扰方面,造成对有用信号的破坏,特别是广播电视的干扰;其次是超过安全限值的高频辐射对人体健康会产生不良影响,主要作用是引起中枢神经的机能障碍和以交感神经疲乏紧张为主的植物神经紧张失调。临床症状主要表现为神经衰弱症候群,以头昏、头胀、失眠多梦、疲劳无力、记忆力减退、心悸等最为严重;还有较突出的是头痛、四肢酸软、食欲不振、脱发、体重下降、多汗等等症状,部分女工还会发生月经周期紊乱现象,少数人员指颤、易激动。

三、辐射的防护

辐射危害随辐射物剂量或电场强度、功率密度的增加而增大。辐射防护的目的就是在保证对伴随辐射照射的有益实践造成过度限制的情况下为人类提供合适的保护,即是要防止有害的确定效应(非随机性效应),限制随机性效应的发生率,使之合理达到尽可能是低的水平。辐射防护要遵守辐射防护“三原则”(辐射实践正当性、辐射防护最优化、个人剂量当量限值),从外照射防护和内照射防护上,落实各项技术措施、管理措施。

(一)、电离辐射防护

1、外照射防护

外照射防护的基本原则就是尽量减少或避免射线从外部对人体的照射,使之所受辐照不超过国家规定的剂量限值。

外照射防护要从时间防护、距离防护、屏蔽防护着手。累积剂量与时间成正比,要充分减少受照时间;在辐射为点源(对任何形态的源,当考察点与源距离比辐射源本身的最大尺寸大于5倍以上时,可将该放射源视为点源)的情况下,剂量率与距离的平方成反比,要远距离操作,任何源不能用手操作。屏蔽防护中,根据辐射源的类型、射线能量、活度,选择适当的材料和相应的厚度进行屏蔽。

2、内照射防护

进行非密封放射性物质工作时,除了考虑缩短操作时间、增大与源距离和设置防护屏障外,防止射线对人体过量外照外,还应考虑防止放射性物质进入人体所造成的内照射危害。一般采取如下措施:

(1)包容:操作过程中,将放射性物质封闭起来。

(2)隔离:将工作场所进行分隔、分区管理。

(3)净化:采用吸附、过滤、除尘、凝聚沉淀、离子交换、蒸发、贮存衰变等方法,尽量降低空气、水中放射性物质浓度,降低物质表面放射性污染水平。

(4)稀释:在合理控制下利用干净的空气或水使空气或水中的放射性浓度降低到控制水平以下。

篇(6)

Abstract: based on X-ray medical application and relevant state radiation prevention design rules and regulations, X-ray protection on architectural design of the basic requirements have radiation-proof function of the material and the construction practice in such aspects as the point of view of architects from a preliminary study, and for building a safe, convenient and comfortable the diagnosis and treatment of space radiation provide one beneficial enlightenment.

Keywords: X-ray application, the radiation, material and structure

中图分类号:S611文献标识码:A 文章编号:

随着科技的日新月异,X光射线和同位素等在医学诊断和治疗中的运用越来越广,放射科和核医学科的诊断治疗设备更新得越来越快。但是这些放射性的诊断和治疗是一种损伤性的手段,为了减少对环境和他人的危害,必须对这些科室根据设备的不同要求,采取相应的防护措施。辐射防护是一个边缘的学科,本文只是从建筑师的角度去探讨X光射线的辐射防护问题。

X射线的医学应用

在1895年伦琴发现X射线不久,X射线就用于疾病的诊断和治疗,至今已有100多年。现已广泛应用于医疗领域,成为现代医疗的支柱之一,是影像诊断的主要手段。近几年随着科学技术的发展,X射线诊断技术和放射设备发生了深刻的变化,特别是计算机和信息技术的应用,为X射线在医学上的广泛开展开拓了广阔的前景。

医院的诊疗设备应用X射线的有:拍片、透视、CT室、ECT室、CR、消化道钡餐、中深部治疗机室、DSA室、碎石机室、模拟机室、钴60室、后装机室等。

国家有关防辐射设计的相关规范规定

X射线在医疗卫生行业中应用最早,使用最广。X射线对人体的照射,一方面能对人体进行疾病的诊断和治疗,另一方面会对人体产生一定程度的损伤,必须注重X射线对人们不必要的伤害。注重X射线的安全和防护是使用X线机的日常任务之一。

监督机构和监督员对医用诊断X射线防护工作进行监督管理的依据是国家颁布的有关法规和标准。主要有以下几项:《放射线同位素与射线装置放射防护条例》是实施防护监督的基本依据;《放射工作人员健康管理规定》是对放射线工作人员进行个人剂量监督的依据;《医用诊断X射线防护标准》是对医用诊断X射线工作进行防护监督检测的主要依据。

《综合医院建筑设计规范》JGJ49-88第3.7.3条规定,对X光诊断室、治疗室的墙身、楼地面、门窗、防护屏障、洞口、嵌入体和缝隙等所采用的材料厚度、构造均应按设备要求和防护专门规定,设置安全可靠的防护措施。其中防护专门规定包括《放射性同位素与射线装置放射防护条例》等。该条例规定:未进行放射防护设施设计审查或者审查不合格,擅自施工的;未进行放射防护设施竣工验收或者验收不合格,擅自投入运行或者使用的;放射防护设施未与主体工程同时运行或者使用的,处五千元以上三万元以下罚款,情节严重的,责令停产停业。中(高)能加速器、进口放射治疗装置、γ照等大型辐射装置的建设项目,应当提交由国家级检测机构出具的放射防护效果评价审查意见。

三、X射线防护对建筑设计的基本要求

搞好医用诊断X射线的防护是为了保障X射线工作者、被检者和广大群众的健康安全,促进X射线更好地为人类服务。X射线机房的建筑不仅要考虑周围环境的安全,还要考虑有利于工作人员与被检查者的防护,X射线机房以设在建筑物底层的一端为宜。机房的整体布局应遵循安全、方便、卫生的原则。根据医院放射科规模的大小和X射线机房的多少,采取不同的形式进行布局。机房必须与控制室分开,机房应有足够的使用面积,以便于X射线机应分别有各自的单独机房。国家防护标准规定100mA以下的X射线机房不应小于24平方米;200mA以上的X射线机房不应小于36平方米;多管头X射线机房应酌情扩大。对CT射线机的机房面积国家没有规定标准,从工作实际考虑不应小于40平方米;牙科X线机应有单独房间。

如同一工程项目,拟建多个X射线机房,安装多台X光设备,那么在方便诊治,便于管理的同时,应将相关X射线机房安排在同一区块内,并尽量使各X射线机房相邻设置,充分利用屏蔽防护墙体作为相邻设备用房的隔墙,以提高建筑面积的利用率,并降低造价(如图一)。

《医用诊断X射线防护标准》中规定,X射线机房中有用束朝向的墙壁,应有2mm铅当量的防护厚度,其它侧墙、顶棚、地面应有1mm铅当量的防护厚度。机房的门窗设置要安全合理,同样要有合适铅当量的防护厚度。位于楼底层的X射线机房,其窗下缘离地面不宜小于2m。窗的防护厚度在无直射线束朝向和窗外无人停留的情况下有0.25-0.30mm的铅当量即可。机房门的防护厚度,视情况不同而定:直射线束未直接对门照射,无患者固定候诊的走廊,机房门有0.3的铅当量即可;机房门外为患者固定候诊区,机房门应有不小于0.5铅当量防护厚度。

图一日本筑波大学附属医院影像部平面

具有防辐射功能的材料及其构造做法

X光机处于工作状态时,在X光辐射场中有三种射线,即从X线管窗出的有用射线,从X线管套射出的漏射线,以及这些射线经过散射体后产生的散射线。所谓X光的防辐射防护实际上就是防止漏射线及散射线对人体的伤害。

X光射线机房的防护设计,必须遵守放射防护最优化的原则,即采用合理的布局、适当的防护厚度,使工作人员、受检查者及毗邻房间和上、下楼层房间的工作人员与公众成员的受照剂量保持在可以达到的最低水平,不超过国家规定的剂量限值。

构造技术是辐射防护设计的重要环节。四周墙体、地面、顶棚的防护材料主要有铅板、重晶石砂浆、重晶石混凝土等。铅能吸收放射性射线,可作X光射线仪器设备和医疗辐射防护材料,铅板主要是采用含铅量为99.994%的1#电解铅,经浇铸,压延成板材,挤压成管材,铅是最软的重金属,具有高密度、良好的抗蚀性、熔点低、柔软、易加工等特性。

重晶石砂浆是一种容重较大、对X射线有阻隔作用的砂浆,一般要求采用水化热低的硅酸盐水泥,常用的水泥∶重晶石粉∶重晶石砂∶粗砂配的配合比为1∶0.25∶2.5∶1。

篇(7)

中图分类号:TL75 文献标识码:A 文章编号:1672-3791(2017)06(c)-0110-03

Abstract: 303 hot cell is a class a radioactive laboratory engaged in the examination of irradiation reactor materials, fuel. In order to ensure the operation and use of 303 hot cell meet the requirements of radiation protection, after safety technology reform, 303 hot cell formed a set of complete and effective radiation protection system based on the original. This article mainly introduced the radiation protection system of the 303 hot cell, including: the zoning of the radiation workplace, radiation monitoring system, dose control and waste management, etC.

Key Words: Radiation Protection; Radiation monitoring; Dose

303崾沂20世纪70年入使用的反应堆材料辐照后检验热室,主要进行反应堆乏燃料、堆内构件等强放射性物质的检验。于2010年完成包括辐射监测系统和流出物监测系统改造在内的安全技术改造项目。依据相关要求和实际情况制定了详细的辐射防护管理制度。近几年科研生产和运行情况以及各项辐射监测数据表明,改造后的辐射防护系统能保证303热室的安全运行和使用。

1 辐射工作场所的分区

303热室放射性核素日等效最大操作量>4×109 Bq,属于甲级非密封源工作场所。根据源项分布情况,按照《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)[1],把辐射工作场所分为监督区和控制区,其中控制区又分为控制Ⅰ区、控制Ⅱ区。监督区包括热室操作区、卫生出入口等,控制Ⅰ区包括热室维修区、汽车通道、低放废液暂存间、中放废液储罐间和吊装大厅等,控制Ⅱ区为各热室。依据GB 18871-2002规定,结合303热室放射性操作工艺及源项,各分区辐射水平和表面污染控制水平分别按表1、表2进行控制。

为减少工作人员受照剂量,防止放射性污染扩散,在控制区边界设置了卫生出入口,严格控制工作人员进出控制区,并规划了独立的人流和物流路线,避免交叉污染。

2 辐射监测

为保障工作人员及周围环境的辐射安全,303热室设置有辐射监测系统,监测内容包括工作场所辐射监测、流出物监测和个人剂量监测[2]。

2.1 工作场所辐射监测

303热室的工作场所辐射监测分为工作场所γ监测、放射性气溶胶取样监测和表面污染水平监测。

2.1.1 工作场所γ监测

为对工作场所γ辐射水平进行实时监测,设置有辐射监测系统,其工作示意图如图1。

辐射监测系统由上位机、固定式γ监测仪和区域辐射报警仪组成。固定式γ监测仪采用电离室探测器分别对热室内γ辐射水平进行监测,可根据具体操作源项设置不同的报警值,同时提供监测数据就地显示和声光报警。区域辐射报警仪采用GM管探测器对各工作区域内环境γ辐射水平进行监测并提供声光报警。所有固定式γ监测仪和区域辐射报警仪均接入辐射监测系统上位机。上位机集通信控制站、数据处理显示报警、数据库服务器为一体,是整个辐射监测系统的核心,其主要功能是实时显示、打印现场监测设备的测量数据和报警状态,并将数据进一步分析处理存入数据库,存档备查。

另外还配备有便携式长杆γ剂量率用于现场监测。

2.1.2 放射性气溶胶取样监测

303热室设1套多通道气溶胶取样系统,样品送至实验室进行测量分析。气溶胶取样系统包括真空泵、流量调节阀、电磁阀、取样盒、取样嘴等构成,如图2。

气溶胶取样系统包含多个取样支路,每个取样支路由取样嘴、取样盒和电磁阀组成。各个取样支路的电磁阀之间互锁,以实现对各取样点位扫描取样。获得的样品送实验室测量,通过计算得出取样位置的放射性气溶胶浓度。

此系统接入303热室PLC自动控制系统,实现远程控制。

另外还配备有移动式气溶胶取样泵,定期对监督区取样分析。

2.1.3 表面污染水平监测

定期工作场所墙壁、地面、工作台面、设备等表面进行放射性污染水平取样测量,防止污染扩散。

2.2 流出物监测

2.2.1 中低放废液放射性浓度测量

中低放废液排放、储存和转运前,均进行测量。对中低放废液取样、制样后测量α、β放射性活度,最后根据其活度值确定其排放渠道。

2.2.2 气载流出物测量

303热室的气载流出物经排风塔高架排放。在排风塔上设有取样口,由气体流出物监测设备对烟囱排出物进行连续取样监测,监测内容包括放射性气溶胶、碘和惰性气体。

2.3 个人剂量监测

个人剂量监测包括外照射监测、内照射监测、体表污染监测等。

2.3.1 外照射O测

303热室为每位放射性工作人员配置一个热释光个人剂量计,由原子能院按季度统一对个人外照射剂量进行测量和评价,并建立个人剂量档案。另外还配置了一定数量公用电子剂量报警仪。

2.3.2 内照射监测

除监测工作场所气溶胶放射性浓度估算待积有效剂量外,还由原子能院按年度统一对放射性工作人员进行全身计数测量以评价内照射受照情况。

2.3.3 体表污染监测

控制区卫生出入口设置1台全身污染监测仪,对退出控制区的工作人员进行全身表面污染监测。监督区出口设置1台手脚污染监测仪,供退出操作区的人员使用。另外还配备有便携式表面污染监测仪,用于现场监督监测。

3 剂量控制

根据GB 18871-2002[1]规定,工作人员连续5年的年平均有效剂量不超过20 mSv,任何一年份内不超过50 mSv。根据303热室的实际情况,考虑辐射防护最优化原则,将个人剂量约束值定为10 mSv/a,管理目标值为5 mSv/a。

表3给出了近3年303热室放射性工作人员受照剂量数据。

近3年,303热室进行了秦山乏燃料棒检验、田湾监督管检验和大亚湾乏燃料棒检验等项目,由表3可知,工作人员的集体剂量和平均个人有效剂量均处于合理范围内,最高个人有效剂量未超过管理目标值,工作人员受照情况处于可控状态。

4 三废管理

303热室主要操作对象为乏燃料棒、堆内构件等放射性材料,放射性三废主要来自于工艺试验、设备检修和放射性去污等操作。为了减少放射性废物的产生,降低对环境的影响,制定了相应的放射性操作规程和放射性废物管理制度。

4.1 气态放射性废物

303热室设有独立的通风系统,并合理安排各分区负压和换气次数,控制气流由监督区流向控制区,由低污染区流向高污染区,保证放射性物质的有效包容。通风系统设有初效、高效和除碘过滤器,废气经三级过滤后由40 m高的排风塔向大气高架排放。

4.2 液体放射性废物

液体放射性废物的分级严格执行《放射性废物的分类》(GB 9133-1995)[3]的规定,废液经取样分析后,根据其放射性浓度,排入低放废液暂存槽或中放废液暂存罐中,在热室运行过程中严格杜绝高放废液的产生。当低放废液储量到达一定量时,通过原子能院地下低放管网输送至原子能院放射性废物处理设施,中放废液则由槽车转运。303热室每年产生约0.5 m3中放废液和5 m3低放废液。

4.3 固体放射性废物

通过对工艺试验操作的严格控制,杜绝高放固体废物的产生。根据固体废物的放射性水平,对中、低放固体废物进行分类收集、整备,然后装入200 L标准废物桶,中放、低放分区存放。废物桶张贴标签注明内容物和辐射水平,待积存一定量后通过汽车房转运通道运送至原子能院放射性废物处理设施。303热室的固体放射性废物产生量约4 m3/a。

5 结语

安全升级改造后的303热室,对辐射防护系统进行了升级改造,建立健全了较为完善和有效的辐射监测手段,严格执行《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)及相关的法律法规和管理制度,加强了对工作场所和人员的监测,有效地控制了工作人员的受照剂量和放射性废物产生量。在近几年的运行过程中,个人有效剂量未超过5 mSv,工作人员受照情况处于可控状态,放射性三废的产生符合最小化原则,提高了303热室运行的安全性。

参考文献

篇(8)

(1)发射光子(3种)。

(2)适合闪烁成像的光子能量为140.5kev(98.6%)。

(3)物理半减期6.02h。

(4)钼-锝发生器生产。

(5)空气中产生的辐射剂量率3.31×10-5mSv/h/MBq。

1.218F的性能。

(1)发射正电子,与周围组织中负电子结合,形成湮灭辐射,产生一对方向相反,能量相等的光子,能量为511kev。

(2)物理半减期111min。

(3)小型回旋加速器生产。(4)剂量率18.79×10-5mSv/h/Mbq(空气)。

1.3131I的性能

(1)发射多能量光子(9种)与多能量电子(5种)。

(2)适合闪烁成像的光子能量(份额)为364.5kev(84.5%);最大的电子能量为606kev(90.4%)。

(3)物理半减期8d,反应堆生产。

(4)空气中剂量率9.31×10-5mSv/h/MBq。

2技术员可能接受的辐射剂量

2.1常规SPECT检查

(1)注射药物环节、心血池显像及MIBI运动心肌显像可对技术员产生较高的当量剂量1.5~2μSv/h。

(2)甲状腺显像仅产生0.2-0.4μSv/h的当量剂量。

(3)年当量剂量约为2mSv/y(<20mSv)。

2.2常规PET检查

(1)每次注射可导致接受当量剂量为3μSv。

(2)每个为4.1μSv(11nSv/MBq)。

(3)年当量剂量约为3mSv/y(<20mSv)。由于18F的高辐射性能,防护器材很有用。

3放射性辐射防护要点

核医学科环境的特殊性决定了核医学科布局有严格安排要求,由于病人检查时必须使用放射性核素,病人注射后成为一个流动的放射源,因此,科学合理布局流程成为了辐射防护第一关,设置流程简言之即保证注射放射性核素后的病人不能再返回到注射前的任何一处为主流。受辐射剂量大小,取决于防护手段是否齐全到位,需确保从业者在进行放射性药物操作时和接触注射后病人时必须进行个人辐射防护(铅帽、铅眼镜、铅衣必要时戴铅手套操作),包括在注射时使用注射器屏蔽套,同时辐射计量监测设备的运用是量化受线的唯一手段,这是辐射防护第二关。

3.1外照射个人监测

CBSS规定,任何放射工作单位都应根据其从事的时间和源的具体情况负责安排职业照射监测和评价。监测类型:常规监测一般为1mo,最长不超过3mo;任务相关监测:用于特定操作提供的管理方面的决策支持数据的一类监测,可以证明操作是否在最佳状态。特殊监测:在界定问题发生后提供即时资料;使用能量鉴别式个人剂量计测定个人剂量当量是多种成分r和X测定,已知单一成分的已知能量r和X测定可用无能量鉴别功能的普通个人剂量计测定个人剂量当量。

(1)佩戴个人剂量计的标准:在高活性室进行放射性药物制备时,辐射主要来自前方,剂量计应佩戴在人体躯干前方中部位置,一般在左胸前;当辐射主要来自人体背面时,剂量计应佩戴在背部中间。

(2)在工作中穿戴铅围裙的场合,通常应将剂量计佩戴在围裙里面躯干中部,以便估算工作人员的实际有效剂量,当受照剂量可能比较大时例如:为甲状腺癌的病人口服大剂量131I时,则还需在围裙外面衣领上另外佩戴一个剂量计以估算人体未被屏蔽部分的剂量,只有当受照射剂量很小且个人监测仅是为了获得剂量上限值得,剂量计才可佩戴在围裙外面胸前位置.;进行放射性药物操作后要进行皮肤污染的监测。

(3)对于短期工作和临时进入放射工作场所的人员(包括参观人员、检修人员)也应佩戴直读式个人剂量计,并按规定记录和保存他们的剂量资。

(4)当上级主管部门开展质量保证活动发放质量控制个人剂量计时,放射从业者有义务按要求将其与常规监测的个人剂量计同时佩戴在同一位置。

(5)要定期进行校准依照国家或国际标准。

(6)在预期外照射剂量大大超过剂量限值的情况下,除佩戴个人剂量计还应佩戴报警式个人剂量计或事故剂量计。例如处理有可能发生临界事故风险或应急操作的。

3.2内照射的监测

对于在控制区内工作并可能有放射性核素显著摄入的工作人员(尤其针对开展肺通气试验的)应进行个人常规监测.但如果经验证明放射性核素年摄入量产生的待积有效剂量不可能超过1msv时,一般可以不进行个人监测。剂量计由预防保健部定时监测和及时反馈基层管理者及从业者。使工作人员了解自己的受照情况,并促使从业者特别注意减少自己的照射可能;根据监测数据分析,评价和改进操作规程并为辐射损伤的诊断和治疗提供依据。

3.3剂量评价一般原则

当从业人员年受照射剂量小于5mSv时只需记录个人监测的剂量结果,当放射年受照射达到或超过5mSv时除应记录个人监测结果外还应进一步进行调查,当大于20mSv时除应记录个人监测结果外,还应估算人员主要受照射器官或组织的当量剂量;必要时,尚需估算人员的有效剂量,以进行安全评价,并查明原因改进防护措施。

篇(9)

介入放射工作不同于普通的X射线隔室操作,它属于床边操作,即介入操作者在X射线机下的诊疗床边操作,第1术者一般距床边辐射区不到0.5m,身体完全暴露于辐射场内。

1.2累计曝光时间长

由于病种不同,手术复杂程度不一,因此每台介入手术的累计曝光时间也不相同,一般为20~30min左右,最短者为3min左右,最长者可达几小时。

1.3射线工作条件高

由于很多介入手术的部位是实质性脏器,所以使用射线工作条件(管电压、管电流、曝光时间)相对高于普通的透视或摄影。

1.4辐射屏蔽防护难

由于射线装置本身固有防护设施少,在进行放射介入操作时,操作者必须使用铅衣、铅帽、铅围脖、铅眼镜等物品进行屏蔽防护,但由于防护用品过重,手术时间较长,对介入手术者是个挑战。

1.5受照剂量大

由于介入治疗比传统X射线诊断复杂,难度大,因此患者和操作者受到的皮肤剂量和全身有效剂量比传统X射线诊断的大。

2国外介入放射学放射防护控制措施

2.1受照剂量现状调查研究

部分介入治疗手术中,受到辐射照射的皮肤和眼晶体可以接近或达到的剂量水平:白内障达到1Gy以上,皮肤脱毛、红斑达到5Gy以上,皮肤水泡达到10Gy以上,皮肤二次水泡、坏死、溃疡达到20Gy以上。ICRP85号报告中建议:当患者皮肤最大累积剂量在1Gy左右(多次重复操作)或3Gy左右(单一操作)时,应记录其剂量值、照射部位和照射范围;同时还对所有预计皮肤累积剂量最大达到3Gy以上的应随访10~14d[4]。美国的Miller等[5]称,部分介入操作中有6%患者的辐射累积剂量超过5Gy(有潜在临床意义的辐射剂量)。Mooney等[6]报道,颅内动静脉畸形(AVM)手术时患者皮肤剂量高达4.6Gy。有些人曾报道过一次介入放射学操作患者皮肤剂量最高达到43Gy[7-8]。比利时的Deierckx等[9]报道,经皮冠状动脉腔内血管成形术(PTCA)患者皮肤剂量高达12.86Gy,肝动脉造影术患者皮肤剂量高达108.26Gy。

2.2介入放射学辐射防护控制措施研究

国外推荐的防护措施有:①质量保证。包括设备质量控制、对患者和操作者应有剂量监测措施,并保证操作人员的剂量值在约定的管理目标值以内。②降低剂量技术。有报道称,使用改进的持针器装置和一次性灭菌无铅手术悬垂帘均使介入操作者手部的受照剂量显著减少[10-11]。Nicholson等[12]报道,在对图像质量影响不大的情况下,使用0.35mm厚的铜做滤线器可使患者的皮肤剂量下降58%。Nikolic等[13]使用脉冲透视后使20例子宫动脉栓塞术的患者的卵巢吸收剂量和皮肤吸收剂量比连续透视分别减少了1/2和1/3。Mooney等[14]采用数字荧光透视设备和影像冻结技术使患者剂量下降30%。Pecher等[15]使用路图和保留透视的最终图像技术,可使1208例血管性介入操作者剂量下降61%,患者剂量下降17%。Xu等[16]在不降低图像质量的情况下,使用ROI透视技术可降低患者和操作人员的剂量。Miller等[17]通过剂量分散技术使患者皮肤表面最高剂量(PSD)下降的同时也缩小受到最大剂量照射的皮肤面积。

3国内介入放射学放射防护控制措施

3.1受照剂量现状调查研究

我国介入放射学起步晚,介入手术的工作量约为国外的20%。但随着介入放射学适应证的不断扩大,介入放射学工作人员受到的照射剂量不断增加。余宁乐等[18]报道,省级介入手术者的年均工作量为355例,单次介入手术者防护服外胸腹部的最大剂量值为0.35mSv,则预计年剂量最大值为124.25mSv。宣志强等[19]报告的介入操作者年有效剂量平均值是普通放射工作者的6.38倍。赵智慧等[20]报道的介入手术中患者受到的照射剂量最大为1097.00mSv。赵红胜等[21]通过介入设备自带的剂量监测系统发现36例患者中有1例患者累计曝光时间为2h,入射体表总剂量达到11Gy,患者的平均受照剂量值为1.86Gy。黄润玲[22]报道的36名介入放射操作人员防护服外剂量均值为630μSv/次;指部剂量均值达752μSv/次;经皮胆道引流术和肝动脉栓塞造影2项手术操作人员的辐射剂量均值分别为1098、1027μSv/次。有报道称,有多数介入操作者在操作时不戴铅眼镜,直接裸眼操作,造成放射性白内障[23]。综合上述,介入操作者和患者的放射防护已成为一个刻不容缓、亟需解决的重要问题。

3.2放射防护存在的问题

我国目前至少6万多名医务人员从事介入放射工作,每年有上百万患者接受介入治疗。由于对法律法规认知不足,不重视放射工作人员的放射防护,有些单位没有把从事介入工作的人员纳入放射工作人员管理,更谈不上辐射防护。存在问题有以下几个:①介入操作者放射防护意识淡漠,甚至空白,医院对放射防护管理不重视。有些医院对介入诊疗的放射防护的重要性认识不足,对介入操作者的防护不到位,对患者的防护更置之不理,错误地认为虽然每次患者受照射剂量较高,但因接触次数少而没有必要对患者进行防护。很多医院的介入操作者并未被当成放射工作人员对待,更谈不上辐射防护控制措施。②设备良莠不齐。我国介入放射学的设备有胃肠造影X射线机和数字减影(DSA)X射线机两种,而数字减影X射线机才是介入放射学专用设备,部分市县级医院目前还在用胃肠造影X射线机来进行介入放射诊疗,导致介入放射学诊治患者受到较高剂量照射。③专用防护设备和设施配备不足。受经济利益驱动,一些单位在介入治疗条件不成熟的情况下开展介入诊疗活动,个别医院未采用专业的介入手术等影像设备进行介入诊疗操作,没有给操作者和患者配备足够的防护用品等。④介入放射工作者的放射专业和防护知识缺乏。介入放射学从业人员来自临床各个科室,医学影像专业知识缺乏,更谈不上对电离辐射存在的危害和防护原则了解。⑤预防性监督管理不到位,存在较多的防护问题。个别介入诊疗单位在新建、改建、扩建介入诊疗项目时由于不知或不及时申报审批,致使预防性监督管理未到位,错过设计介入诊疗项目辐射防护最优化的时机,致使选址、布局、屏蔽设计等防护措施达不到国家相关标准的要求,存在较多的辐射防护安全问题;机房内无关的其它杂物随意堆放较多见,造成机房使用面积变少,无形中增加了室内散杂射线对人员的受照剂量。

3.3介入放射学放射防护控制措施

我国介入放射学辐射防护控制措施研究具体如下。张良安[24]对介入辐射防护提出的建议有:①制定介入放射学辐射防护的标准、规范;②对进行较复杂的介入手术患者尽可能给予剂量监测,至少应详细记录能进行溯源剂量估算的信息。③建立培训和资格制度,对进行介入操作的人员进行技术培训,只有当他们具备了相关的辐射防护知识并考核通过后方可上岗。对如何做好介入操作者的防护,胡益斌等[25]就介入操作者的辐射防护有如下建议:①严格操作规程。②充分利用设备的自有防护设施。③充分利用辅助防护用品,操作者必须要穿好铅防护衣、围好铅防护颈套,戴好铅防护帽和铅防护眼镜,不图一时的轻松和方便而损害自身健康;张继勉等[26]称使用防护用品和防护设施对射线衰减很高,铅衣为88.6%~91.1%,固定防护设施床上铅屏为96.0%,床侧铅帘为97.0%。④选用合适合理的曝光模式。⑤尽可能使用低的管电压、管电流和小照射野的面积。⑥提高插管操作技术和诊断水平。⑦建立个人职业健康档案。对介入放射学的防护,张志兴等[27]提出的对策有:①加大监管力度。②使用专用的介入设备。③使用防护效果好的防护装置和个人防护用品。④加强患者防护,减少不必要的医疗照射。⑤加强放射卫生法律、法规和放射防护知识培训。郭锐等[28]提出的介入放射学的管理建议有:①资格准入制度与学科定位。②病房建设与操作技术。介入科室必须向市级以上环保和卫生行政部门申请办理许可手续,对防护性能差且没有带影像增强器的X射线机、数字减影装置等设备应不予许可;缩短诊疗时间和提高操作技术均能减少放射剂量。③职业归类与安全培训。介入操作者应归类于放射工作人员管理范畴,上岗前必须经过放射防护的培训和职业健康检查,取得放射工作人员证才可从事该项工作。④监督管理与职业健康监护。熊中奎等[29]提出了一种在高等医学院校专业学习为主,职业进修培训为辅的放射卫生防护和安全教育体系模式。

篇(10)

【摘要】 目的 监测大剂量131I治疗后病房及病区内环境γ射线的辐射剂量率水平,评价医疗活动过程的辐射安全性,明确大剂量131I治疗后对环境的影响。方法 分别用γ辐射仪测量的17次患者治疗后24 h病房内距离患者1 m处及病区环境的γ辐射剂量率水平。结果 γ辐射仪测得的病房内距离患者1 m处γ辐射剂量率水平最大为21.71 μSv/h,根据我国《电离辐射防护与辐射源安全基本标准》计算,笔者所在科室工作人员每日可在此辐射环境下工作3.8小时;病区环境中走廊剂量率水平最大为0.58μSv/h,计算得一般公众每日可在此辐射环境下停留7.17小时。结论 实施大剂量131I治疗后,采取恰当防护措施,完全能保证核医学科工作者处于电离辐射容许剂量范围之内,病区环境电离辐射水平相对安全。

【关键词】 分化型甲状腺癌; 放射性碘; 辐射安全性

A Study on radiation safety of ward environment during 131I ablation therapy for thyroid cancer JIA Qiang,HE Ya-jing,MENG Zhao-wei,ZHANG Gui-zhi,TAN Jian.Tianjin Medical University General Hospital,Tianjin 300052,China

【Abstract】 Objective Monitoring the level of γ-ray's radiation dose rate of our ward and area after therapy with large dose 131I, evaluate the safety of treatment process and identify the influence to the environment.Methods To analyze the γ radiation dose rate level which were detected with γ-radiometer in where the ward one meter from the patients and the environment of our department 24 hour after therapy of 17 group patients.Results The maximum γ radiation dose rate level is 21.71 μSv/h in the ward, the staff can work 3.8 hours per day in this radiation environment according to the 《Basic standards for protection against ionizing radiation and for the safety of radiation sources》of our country. The maximum γ radiation dose rate level is 0.58 μSv/h in the walkway of our department, the common public can stay here about 7.17 hours.Conclusion It can guarantee our nuclear medicine staff's ionization radiation level in the permitted dosage range thoroughly if take appropriate protective measures after 131I ablative therapy, while the ionization radiation level of our department's environment is relative safety.

【Key words】 Differentiated thyroid carcinoma; Radioactive iodine; Radiation safety

关于服用大剂量131I治疗后病房内环境辐射安全性问题报道罕见[1]。通过收集笔者所在科室应用大剂量131I清甲治疗前后患者病房内环境γ射线的辐射剂量率水平等资料,并进行全面的分析和研究,对应用大剂量131I治疗后病房内环境辐射安全性,用于指导以后临床工作。

1 资料和方法

1.1 一般资料 收集本科自2006年7月~2009年9月实施首次大剂量131I清甲且资料完整的分化型甲状腺癌(DTC)术后住院患者46例,男性13例,女性33例;所有患者均经手术病理证实,其中状癌38例,滤泡状癌8例;患者年龄25~73岁,平均(46.26±11.71)岁;服用131I剂量为80~200 mCi,平均(122.72±23.71) mCi具体详见表1。

1.2 主要仪器 核工业总公司上海电子仪器厂生产的3007K-A型袖珍辐射γ辐射仪测量辐射剂量率。

1.3 方法 本科131I治疗病房每间10~15 m2,安置病床2~

表1 DTC术后患者一般资料情况(x±s)

3张,病床之间用铅屏风屏蔽防护。患者住院行131I清甲治疗后24 h,随机对17批次接受治疗的患者,用γ辐射仪测量病房内距离患者1 m的γ辐射剂量水平,测量3次取平均值,对照放射性工作人员的允许剂量水平,评价医疗活动过程的辐射安全性。每次测量病房内患者辐射剂量水平的同时,监测病房外走廊、医师办公室和护理站的γ辐射剂量水平,亦测量3次取平均值,以明确大剂量131I治疗后对环境的影响。

1.4 统计学处理 用SPSS 13.0统计软件进行统计学分析,单因素分析中符合正态分布的计量资料以x±s表示,行Levene's方差齐性检验,方差齐者应用两组独立样本资料t检验,方差不齐者应用t'检验,非正态分布资料采用秩和检验,计数资料分析行χ2检验或采用Fisher's确切概率法。

2 结果

2.1 病房内环境辐射剂量率水平及与服131I剂量关联性分析 γ辐射仪测得的病房内距离患者1 m处γ辐射剂量率水平最大为21.71 μSv/h,最小为6.29 μSv/h,平均为11.12 μSv/h,对患者服131I剂量时与服131I后24 h病房内距离患者1 m处的γ辐射剂量水平绘制散点图(图1),行Pearson相关分析两者存在显著正相关关系(r0.962,P0.000

2.2 病区内环境辐射剂量率水平与当地本地(院外辐射剂量率水平)水平比较 γ辐射仪测得的病房外环境(走廊、医师值班室、护理站)辐射剂量率水平,同时监测本地(院外)辐射剂量率水平进行比较。具体见表2。

表2 病房外环境与本地剂量率水平比较

不同环境辐射剂量率比较,其差别有高度统计学意义(P0.05),走廊与本地比较有高度统计学意义(P0.000

2.3 病房内外环境辐射安全性分析 根据我国《电离辐射防护与辐射源安全基本标准》GB18871-2002规定,对射线工作人员规定连续5年的年平均有效剂量20 mSv(2 rem),任何一年不超过50 mSv(5 rem);公众中有关关键人群组的成员受到的平均剂量估计值不超过下述限值:(1)年有效剂量1 mSv(0.1 rem)。(2)特殊情况下,如果5个连续年的年平均剂量不超过1 mSv(0.1 rem),则某一年份的有效剂量可提高到5 mSv(0.5 rem)。

根据上述我国现行标准,结合本科实际工作情况,一年按12个月计算,每月4周,每周工作5天,每天工作7小时,按以下公式计算本科核医学工作人员于病房工作日允许剂量、小时允许剂量及日允许工作时间:

日允许剂量83.33(μSv) (公式1)

小时允许剂量11.9(μSv) (公式2)

日允许工作时量 (公式3)

按γ辐射剂量率水平最大值21.71 μSv/h计算每日可于此辐射环境下连续工作3.8小时。同法可计算出一般公众(包括本科非核医学工作人员、相邻检验科室工作人员等)在本科非病房区域活动日允许小时数。由于医师值班室及护理站与本地比较其辐射剂量率水平无明显区别,而走廊辐射剂量率水平高于本地,按走廊剂量率水平最大值0.58μSv/h计算得每日可于此辐射环境下停留7.17小时。

3 讨论

3.1 医务人员在病房工作安全性的探讨 DTC术后患者服用大剂量131I治疗后,医务人员需要对其发射出的γ射线进行防护[3,4]。笔者随机对17批次接受治疗的患者于治疗后24小时用γ辐射仪测量病房内距离患者1 m的γ辐射剂量率水平,相关分析示服131I剂量与测得的剂量率水平存在显著正相关关系(r0.962,P0.000

3.2 病区环境的辐射安全性探讨 本组资料显示医师值班室及护理站辐射剂量率水平与当地本地比较均无统计学意义(P0.062,0.510>0.05),可认为其内环境电离辐射水平安全。而走廊与本地比较有高度统计学意义(P0.000

实施大剂量131I治疗后,采取恰当防护措施,完全能保证核医学科工作者处于电离辐射容许剂量范围之内,病区环境电离辐射水平相对安全。应用131I治疗DTC辐射防护,国际辐射防护委员会(ICRP)第60号出版物指出辐射防护的目的是“防止有害的确定性效应,并把随机效应的发生率限制到可以接受的水平”,附加目的是“伴有辐射照射的实践,确实具有正当的理由”。因此,应基于职业照射、医疗照射和公众照射三类照射建立的防护体系,按照实践正当性、防护最优化以及个人剂量限值的通用原则来评价防护措施。放射性核素131I现已广泛应用于DTC患者术后清甲及转移灶的治疗,患者服用大剂量131I后,其放射性也会对医务人员产生辐射危害,其防护也应引起医务人员、医院及卫生行政部门的重视。人体内131I的监测有两种手段,一是直接测量,主要测量方法有:(1)用甲功仪直接测量甲状腺中131I的放射性计数,并推测其活度;(2)用整体测量仪测量全身的131I的活度;二是排泄物样品测量,主要测量方法有:测定尿中131I的比活度及总量,根据131I在尿中的排泄规律推算体内的活度。前者更灵敏、简便、快捷,并容易被受检者所接受,但缺点是表面污染物(如:人员体表及工作服等表面污染等)对测量结果干扰大,因此,测量时要求被检测者体表无其他放射性污染。张志东等[3]报道按照时间、距离防护和屏蔽防护的原则在不同时间、不同距离和采用屏蔽的方式分别应用γ辐射仪检测医务人员的受照剂量率水平,检测结果显示,采用上述防护措施后医务人员的受照剂量明显降低。

参 考 文 献

[1] 管昌田.利用131I诊断和治疗甲状腺癌转移.国外医学放射医学核医学分册,1997,11:164.

篇(11)

X线从一发现就被用于医学检查。在计算机技术和射线探测器件飞速发展今天,X线影像检查设备日新月异。隔室摇控透视、胶片摄影、计算机断层摄影(CT)、计算机射线摄影(CR)、直接数字射线摄影(DR)、数字减影(DSA)介入手术检查等,都已成为医生临床诊断离不开的有效检查手段。与药物治疗会有副作用一样,接受放射线检查时,被X线照射到的组织器官细胞,也会受到一定程度的伤害,但这种损害没有立竿见影的自我感觉。如果损伤轻微,人体自身的新陈代谢能将其修复,致病的可能性就很小。如果射线损伤较重,机体组织不能将其完全修复,就会导致致死性癌症或遗传性疾病的发生。严重的X线损伤还会导致急性放射病的发生。

人体各种组织器官对射线损伤的敏感程度不一样。其敏感程度由大到小的排序如下:胚胎、肠道、性腺、乳腺、眼晶体、甲状腺、肝、肾、脑、肌肉。

国际辐射防护委员会(JCRP)研究证实,辐射致癌及遗传性疾患是剂量线性无阔的。也就是说受放射线照射次数越多,患致死性癌症及遗传性疾患的可能性越大。ICRP提出,辐射防护应遵循三项原则:使用辐射正当化、防护最优化和个人剂量限值。我国采纳了ICRP的建议,并由主管部门制定了一系列辐射防护法规、标准,以保障职业人员、受检者和公众的放射卫生安全。

避免非正当放射线检查

可以说,使用X线作医学检查是正当的。但不能说医生开单让患者接受的每项X线检查都是正当的。这要看该检查是否符合卫生部标准“WS/T-1996医用X线诊断的合理应用原则”。

受检者首先要明白,CT扫描对人体的损伤比拍片要高出100多倍,做一次CT全身扫描体检,会使受检者辐射致癌的危险性增加8%。

截止到2004年底,没有一个经济发达国家的主管部门,批准计算机摄影(CR)用于乳腺疾病临床诊断,更不能用于乳腺癌普查。

转院时,同级医院互不认可的再检查,甚至本院门诊部与住院部之间互不认可的再检查等,均属非正当性检查。

还有,两个小孩打架,头上被打了一拳的孩子家长,非要对方作CT检查不可。这属于无知造成的非正当检查。

接诊医生有义务告诉患者,X线检查的利与弊、有无其它可替代的方法,在征得病人的同意后再开单,尤其是对孕妇、婴幼儿患者,更应慎重。患者也应该拒绝一切不正当的X线检查。

配合医生、技师作到防护最优化

接受正当X线检查,尽快获得明确诊断以便对症治疗,这是X线检查的利,受到一定程度的X线的损伤是其弊。如何把弊降到最低,是医生或技师的职责。医生或技师应遵守“尽可能合理达到低水平”X线照射的原则,这也需得到患者和陪诊家属的配合与支持,尽量避免重照、重拍,而加大损伤。

要制作一张诊断价值高的胸片,患者上身越裸越好,以免内衣扣、胸罩钩、项链等挡住病变部位。给婴幼儿检查时,最难的是固定婴儿的,家长千万别舍不得孩子啼哭而不让捆绑固定,否则你的宝宝将受到不必要的全身照射,你也得陪着孩子接受一次X线伤害。非检查部位,特别是射线敏感器官应尽量远离照射野。例如,拍上肢(手)、下肢(足)片时,将手臂、腿伸直,甲状腺、、性腺,远离照射野。这些都是患者应该主动配合的。

如果住院病房内有人拍片时,其它患者最好离开房间。若行动不便,可要求医生提供防护用品。如相隔两米以上,则不需要专门防护。

另外,患者最好不要接受采用暗室荧光屏透视方法的健康体检,因为这种方法对人体的伤害至少是隔室遥控电视透视的两倍。