绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇化学工程研究方向范文,希望它们能为您的写作提供参考和启发。
[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2016)08-0052-03
“卓越工程师培养计划”(以下简称“卓越计划”)是《国家中长期教育改革与发展规划纲要(2010-2020年)》组织实施的一个重大项目。[1]郑州轻工业学院是一所以工科为主、多学科协调发展的全日制普通本科院校,是国家第二批“卓越计划”试点学校。烟草工程专业(方向)是郑州轻工业学院的一个特色专业,主要培养具备烟草生产与加工、卷烟配方、烟草质量检测、香精香料等方面的基本理论、知识和技能,并掌握一定的烟草原料生产和卷烟加工技术,能从事烟草生产、管理、科研等工作的专门技术人才。
烟草工程专业(方向)作为郑州轻工业学院入选教育部“卓越计划”的试点专业之一,于2011年开始实施“卓越计划”。[2] [3]烟草工程系通过不断的探索和实践,科学制定了烟草工程专业(方向)“卓越工程师”人才培养方案,采取“3+1”培养模式进行人才培养,在课程体系建设、教学内容优化、教学方法改革、教材建设、实践教学等方面取得了显著成效。
一、明确培养目标
郑州轻工业学院烟草工程系根据“卓越计划”的特点,结合国内外烟草企业对烟草工程技术人才的需求,科学制定了《烟草工程“卓越计划”人才培养方案》,进一步明确了烟草工程专业(方向)的培养目标。
烟草工程专业(方向)的培养目标是面向我国烟草加工制造行业,根据烟草行业对烟草工程技术人才的需要,培养德、智、体、美全面发展,掌握自然科学和人文社科基本知识、烟草工程专业(方向)基础理论及基本技能,具备从事卷烟产品设计与开发、卷烟加工工艺技术研究、卷烟生产管理等方面工作的基本能力,具有创新意识、团队合作精神和良好的职业道德的应用型工程技术人才。
二、构建课程体系
“卓越计划”要求改革课程结构,优化课程体系。[4] [5]郑州轻工业学院烟草工程系根据烟草工程专业(方向)的人才培养目标,构建和优化课程体系。课程体系由理论课程和实践课程(环节)两部分构成。理论课程分为通识教育基础课、专业基础课和专业课等三种类型,每类课程又分为必修课和选修课;实践环节分为集中实践、拓展与创新实践两个模块,实践环节课程均为必修课。
三、优化教学内容
烟草工程专业(方向)实施“卓越计划”后,由于实践教学内容和学时增加,客观上造成了理论教学学时的减少。加上有些课程的部分教学内容重复,经常会出现同一个知识点被不同教师在课堂上大篇幅、反复讲述的情况,这在一定程度上会影响了教学效率的提高。
烟草工程系组织有关专家对此进行研讨,确定了工程制图、机械工程基础、分析化学、有机化学、物理化学、生物化学等16门课程为烟草工程专业(方向)本科生的主干课程,同时对烟草原料学、烟草化学、卷烟工艺学、卷烟产品设计、卷烟机械概论等8门核心专业课程进行教学内容优化,同时及时修订了教学大纲。[6]
通过合理优化教学内容,在一定程度上消除了部分课程重叠、内容重复等不合理现象,使教师能较好地完成教学任务,以达到提高教学效率的目的。这样不但没有增加学生的学习负担,而且不影响理论课的教学质量,还可以给学生留出更多的时间参加工程实践活动,提高了学生的实践能力。
四、教学方法改革
教教学方法是完成教学任务的必要条件,也是提高教学质量的重要保证。[7]烟草工程系重视教学方法的改革,根据“卓越计划”的特点,不断探索教学方法,深化课程教学方法改革。树立以教师为主导,以学生为主体的教学观,在教学过程中以学生为中心组织教学活动。[8]专业课任课教师团结协作开展教学,以小班授课、分组讨论、小组合作等多种形式组织教学。
创新教学方法,强化综合设计训练,充分调动学生的学习积极性,发挥学生的主观能动性,大力推行启发式教学、讨论式教学、探究式教学、参与式教学、案例式教学等教学方法,培养学生提出问题、解决问题的能力,引导学生从继承性学习走向探究发现性学习。
任课教师充分利用网络教学平台,进行网络辅助教学。[9]烟草工程系创建了烟草化学、烟草原料学等课程网站,鼓励和引导学生课下利用网络资源进行学习。这种方法突破了教学的时空限制,将课堂教学延伸到了课外,使课堂教学与网络教学有机地结合起来,达到激发学生的学习兴趣、培养学生的自主学习能力的目的。
五、考核方式改革
在烟草工程专业(方向)实施“卓越计划”过程中,烟草工程系任课教师不断探索有关课程的考核方式,并进行了考核方式的改革。实施复合式考核方法,引导教师从考核“学习成绩”向评价“学习成效”转变,引导学生从注重“考试结果”向注重“学习过程”转变,增强学生的学习主动性,着重提高学生的创新能力和工程实践能力。[10]
根据不同的课程,采取有针对性的考核评价方式。对不含实验的理论课程,采取考试成绩、平时考勤和作业完成情况相结合的考核方式;对含实验的理论课程,采取考试成绩、实验成绩和平时考勤相结合的考核方式;对实验课程,采取实验操作情况和实验报告相结合的考核方式;对实践课程,根据学生的实践表现、实践报告和实践汇报相结合进行考核。
对于理论课程的考核,适当提高平时考勤成绩(或实验成绩)的比重,克服了将期末考试成绩作为唯一的考核方式,这在一定程度上避免了学生“临时突击”、“死记硬背”等现象。实践(或实验)课程的考核,将学生的实践表现(或实验操作情况)作为考核成绩的标准之一,并适当提高实践表现(或实验操作)成绩的比重,克服了将实践(或实验)报告作为唯一的考核标准造成的部分学生“抄袭报告”、“报告成绩高而实际实践能力弱”等弊端,使学生重视实践教学、自觉加强课外学习,从而促进学生综合素质和工程实践能力的提高。
六、加强师资队伍建设
建设一支教学水平高、工程实践经验丰富和科研创新能力强的教师队伍,是保证“卓越工程师”培养质量的关键。[11]烟草工程系十分重视师资队伍建设,造就了一支“双师型”师资队伍。
烟草工程系遴选了教学科研水平高、工程实践能力强的教师作为“卓越计划”的专任教师,专任教师均有工程实践经历。为提高专任教师的教学水平,烟草工程系积极组织教师参加全国高校教师网络培训中心和学校现代教育中心组织的教育教学技能培训,并组织教师参加教学观摩和讲课比赛;鼓励专任教师积极参加专业实践,并有计划地选派青年教师到河南中烟工业有限责任公司等烟草企业相应工程岗位实践1年以上。通过学习不断积累实践经验,达到理论与实践相结合,使青年教师的工程实践能力和教学水平得到了一定的提高。
对于从烟草企业聘请的专业水平高、实践经验丰富的企业兼职教师,除了让他们承担学生的专业课程、参与指导学生的生产实践外,企业兼职教师可以在学校进行科研、进修和攻读学位,使其水平有所提升。
七、加强教材建设
教材与教师、教法是教学成功与否的三大决定因素。教材建设是课程建设的核心,是进行教学工作、稳定教学秩序和提高教学质量的重要保证。
烟草工程系非常重视教材建设。近年来,烟草工程系先后出版了《烟草原料学》、《卷烟工艺学》等多部教材,特别是烟草工程专业(方向)实施“卓越计划”以来,先后修订出版了《卷烟烟气化学》、《烟草专业英语》、《烟叶生产实习指导书》[12]等教材,为相关课程的理论教学和实践教学工作提供了重要保障。
八、强化实践教学
实施“卓越计划”的目的是培养卓越工程师后备人才,强化学生的动手能力,而动手能力的培养主要依靠实践环节。
烟草工程系十分重视实践教学[13] [14],通过整合教学资源来加强校内实践教学平台建设,积极与卷烟企业、烟草公司、烟草科研院所联系,在校外建立了稳定的教学实践基地,并与河南中烟工业公司技术中心联合建立了国家级烟草工程教育实践中心。
烟草工程系注重理论与生产实践相结合,选派部分学生到烟草企业、烟草科研院所进行毕业设计,企业导师指导学生进行相关研究。为提高实践教学的质量,烟草工程系完善了指导教师的选拔、实践教学的组织、实践教学的过程管理、实践教学的考核等相关制度,避免了部分学生实践过程中“玩失踪”、“搭便车”的现象。实践过程严格按照实践计划和相关制度的要求进行,以提高学生的工程实践能力和创新能力。
九、开展教学研究
教学研究在教学改革和发展中具有重要作用,是促进教学改革的动力,是教育创新、提高教学质量的要求。通过教学研究,可以促进教育观念的转变,从而不断深化教学改革。
烟草工程系历来重视教学研究,定期组织教师参加教学研讨活动,让教师相互交流教学经验和教学心得,鼓励教师申报、参加教学研究项目,并及时总结教学研究经验,将教学研究成果运用到教学实践中,不断提高教学质量。
郑州轻工业学院烟草工程系根据“卓越计划”要求,积极探索适合烟草工程专业(方向)的教学方法、教学模式和组织形式。其通过构建课程体系,优化教学内容,改革教学方法和考核方式,加强师资队伍建设,加强教材建设,强化实践教学,积极开展教学改革,取得了显著的效果,为烟草工程专业(方向)“卓越计划”条件下的教育教学提供了重要参考。这对烟草行业“卓越工程师”的培养、全面提升烟草工程教育质量具有十分重要的示范意义和指导作用。
[ 参 考 文 献 ]
[1] 林健.谈实施“卓越工程师培养计划”引发的若干变革[J].中国高等教育,2010(17):30-32.
[2] 刘春奎,王建民,杨靖,等.烟草工程专业(方向)“卓越工程师”人才培养研究与探讨[J].教育教学论坛,2013(52):206-207.
[3] 阮世敏.“卓越计划”实践教学平台建设探索[J].中国轻工教育,2012(4):45-47.
[4] 孙健.论“卓越计划”实施背景下高等工程教育课程体系设计[J].高等理科教育,2012(1):41-45.
[5] 林健.“卓越工程师教育培养计划”专业培养方案研究[J].清华大学教育研究,2011(2):47-55.
[6] 刘春奎,王建民,刘艳芳,等.烟草工程专业(方向)《烟草原料学》课程体系的构建和优化[J].课程教育研究,2014(1):249.
[7] 李宝峰.教学技能理论与实践[M].北京:华文出版社,2008:23-63.
[8] 刘春奎,王建民,王海涛,等.基于“卓越计划”的《烟草原料学》课程教学改革研究[J].大学教育,2014(8):97-98.
[9] 齐继阳.“机械制造工艺学”教学模式的探索[J].中国大学教学,2012(2):42-44.
[10] 周英.落实卓越工程师教育培养计划,大力培养工程科技创新人才[J].中国大学教学,2011(8):11-13.
[11] 梁德全,陈钦勇.关于高校师资队伍建设的几点思考[J].教育与职业,2011(8):67-69.
管山,(1969.11-),男,天津,天津工业大学环境与化学工程学院,研究方向:化学工程。
卢素敏,(1967.07-),女,河北,天津工业大学环境与化学工程学院,研究方向:化学工程。
郭玉高,(1976.04-),男,河北,天津工业大学环境与化学工程学院,研究方向:化学工程。
卞希慧,(1983.11-),女,山东,天津工业大学环境与化学工程学院,研究方向:化学工程。
摘要:《化工原理》普通高校化工及相关专业的重要专业基础课,通过长期教学实践,从培养学生兴趣、利用多媒体教学、加强实验教学等角度探讨提高化工原理教学效果的方法与途径。
关键词:化工原理;课程教学
《化工原理》是高等院校化工、制药、材料和环境专业的一门必修专业基础课,也是很多高校的考研课程。《化工原理》课程多在大二春季学期后开设。在这个阶段,学生们已经系统学习了高等数学、大学物理以及无机化学、有机化学、物理化学和分析化学等基础知识。而化工原理的主要内容是利用数学、物理和化学等自然科学原理,研究和总结实际化工过程中的客观规律,并运用规律进行过程设计、工艺计算、设备的构造和选型等。从培养化工工程师的角度来看,化工原理在自然科学和解决化工实际工程问题间起着承上启下的关键作用。从多年的教学实践和学生的反馈来看,特别是对于初学者,化工原理公式繁多,理论抽象,枯燥、难于理解,即使学完原理,做题还是摸不到头脑。.如何利用有限的学时,提高教学效果,是值得探讨的问题[1-3]。笔者从自身的教学实践出发,谈谈提高化工原理教学效果的体会。
1. 激发和培养学生的学习兴趣
“兴趣才是最好的老师”是爱因斯坦的名言。兴趣,是认知需要的心理表现,是人对某些事物优先给予注意,是带有积极情绪色彩的认识倾向,兴趣可分为直接兴趣和间接兴趣。化工原理是一门实践性很强的课程,不但与化工生产而且和很多生活中的实例密切相关。教学过程中,可以从这些生活实例出发,培养学生的直接兴趣和间接兴趣,激发学生学习热情,形成学生的主动学习。学习过程中,由于学生对生活实例比较熟悉,可采用讨论式教学法。在问和答的过程中,可有效强化师生的互动作用,使师生共处在动态合作的教学环境中,教学信息的传递和反馈得以及时进行。随着讨论问题的深入并不断的解决的过程,可以充分调动学生的积极思维活动,提高学生提出问题、分析问题、解决问题的能力,可以极大地增强学生学好化工原理的信心和提高学生的学习兴趣。
2. 合理的使用多媒体技术
当今社会的信息化速度日趋加快,随着教育改革的不断深化,化工原理教学已经离不开多媒体课件。学生在获取知识的过程中,由于同学们的阅历、理解力等方面的原因,很多化工设备学生们从未接触过进而增加了理解的难度,例如板式精馏塔和填料吸收塔的主要部件和附件。对设备流程的不理解,也导致了对原理概念感觉抽象而难以理解。采用多媒体技术授课,教师可以从黑板的局限中解脱出来,全面照顾每一位学生。它以其直观的画面、形象的声音,使抽象的内容变得直观形象,能帮助学生更好地突破学习中的难点。多媒体能直观形象地表达动态的过程,教师和学生处于主动的人机对话的学习状态,易于唤起学生的学习兴趣。多媒体技术的超级连接和随意置换使教师可以灵活控制前后内容之间的衔接,既可单独讲解某个知识点,又可串起来前后连贯学习,使学生获得连贯、系统知识。在教学实践中发现,由于化工原理课程公式多的特点,如果一味的采用多媒体课件,学生的理解速度很难跟上公式播放的速度,导致学生对讲授内容注意力下降,甚至放弃听讲。因此多媒体教学作为一种较新的教学模式,也有它的不足。在实际教学过程中板书和多媒体要相辅相成,发挥各自的长处,相得益彰才能收到较好的教学效果。
3. 注重实验教学环节
实验教学是教学过程中重要的一环。通过对实验设备的认知与操作,学生不但可以深入了解课上所学的理论内容,而且对工程实践中如何实现原理有更深刻的认识,这对培养学生解决工程问题思维大有裨益。此外,通过实验,可以强化化工设备的操作方法。例如离心泵和旋涡泵的操作和流量调节各有什么样的特点。这些设备的操作和条件对化工类专业同学的职业发展,是十分重要的。在教学过程中发现,很多的化工教学实验装置已经是高度集成的装置,有的装置甚至已经实现了实验数据的实时自动采集。有的同学也反映,化工原理实验就是按照老师的指示,动某个阀门,记录相应的数据,整个过程比较枯燥。这对化工原理教师提出了更高的要求。在指导实验过程中,要严格要求学生的实验预习、实验操作以及实验数据的处理过程,在实验过程中强化学生对实验流程,设备结构的认知和了解,强化对实验中各种现象的观察和记录,养成良好的实验习惯。在期末考核过程中,增加对实验部分的考核,从课程管理的角度引导学生重视实验,从而提高整个课程的教学效果。
以上总结的是我们化工原理教学中的几点实践经验。通过以上环节的实施,我们认为可以培养学生主动思考习惯以及应用知识的实践意识。这几个环节具有内在的统一性,在教学实践中认真实行这些环节,并不断拓新,以期使化工原理课程的教学效果更上一层楼。(作者单位:天津工业大学环境与化学工程学院)
参考文献:
中图分类号:TQ021.8 文献标识码: A 文章编号: 1674-0432(2014)-15-96-1
化学工程是一门将一系列化学有关的知识进行深研究的化学或物理过程的知识学科,它还包括对原有化学设备进行改革,以化学思想为基础将理论和实际工程知识糅合。具体工作可包括研发新产品、设计、模拟、操作实验来强化装备等硬件设施。化学工程领域包括范围广泛,其中有机化学、无机化学、石油化工等领域,因此化学工程是国民经济建设从而推动社会进步重要的工程领域。目前化学工程技术的发展方向是逐渐趋向连续化、集约化、自动化、高效化和自动化、精密化。由于化学工程技术被广泛运用到生活领域所以对其的研究是十分有必要的。
1 化学工程技术的新热点
1.1化学超临界反应技术
超临界的化学反应技术是指反应过程中的温度和压力都在临界点之上,这样的状态往往是液体和气体之间。这样形式的存在被广泛运用到生物化工、食品、医药等领域,已经显示出很好的效益,发展前景很好,但近年来的探究和发展阶段仍处于初级,待进一步深入研究。
1.2绿色化学研究技术
绿色化学由于能够有效避免对环境的污染,近年来备受推崇。绿色化学就是指利用化学反应技术来充分利用资源、减少污染物的产生来起到对环境的保护。比如,它可以对产生污染物的相关溶剂和废料进行处理,利用原子技术或高选择性的化学反应生产处对环境有利的产品,这不仅能够增加经济效益而且带来可观的社会效益。
1.3分离技术的新研究
首先,分离技术强调对生产设备的强化,其次是生产技术。总结来说就是将设备更新,将生产率提高的技术都属于化学分离技术的结果。古老的分离技术方法是利用各种材料沸点不同将其分离然后做研究。随着科学技术的发展和各领域研究合作分工改变为分离技术新发展提供了广阔的前景。比如近年来,在力学的传递以及多相流方面,采用信息技术发生分离,还有分子的模拟就很大的提高了预测热力学平衡的水平,对分子的人为设计加速了分离等等。因此进一步研究高效的分离技术有着深远的意义。
2 传热过程新的研究发展方向
2.1传热学中细微尺度的研究进展
细微尺度是指从时间尺度和空间尺度进行更细微的研究的热学范畴,如今它在热学中已经形成了一个分支,具有广阔的发展前景。当一个物体的尺寸远大于其载体时,这样的情况会存在,但是由于尺寸的更加细微,原来的假设影响因素也会发生相应变化。目前纳米技术已经取得显著的成绩,很多领域都是围绕传热学中的细微尺度技术进行研究的,近年来取得了高集成电路、多空介质流等新成果,产生了巨大的经济效益。
2.2传热设备的研究进展
近些年来,利用翘片来强化传热,管外的翘片强化传热原理包括有前缘效应和非稳定性扰动以及减薄边界层等几种。常用的片是冲缝片和百叶窗。将来对此的研究应该将分布参数和场地模拟相结合,来优化传热装置结构的参数,实现管翘式的传热针设计。
2.3与计算机技术的相结合
计算机技术的不断进步是化学中大量的技术问题能够得到有效的解决。同时节约了大量的人力物力财力,也增加了数据和相关机械的精密度。计算机的主要贡献表现在计算流体力学、数值传热力学、采用计算机技术进行统计、计算有利于将数据更直观的表现出来,表现形式更加多样,能够有效分析大量实验数据。
2.4与材料科学和信息工程相结合
科学的进步和新技术的研究涌现就为化学工程的研究提出了新的机遇。如何形成优质的服务体系和完整地理论作为研发支撑成为化学工程面临的问题。所以它必将进入一个新的发展阶段,在发展中应注重与多学科的交叉,更多的研究应该包括信息和化学应用、生物与化学以及能源环境与化学相结合的学科,这都为化学工程的发展提供了新的研究方向。由于信息技术不断深入各个行业,为此通过信息技术可以将大量的信息收集、整理进行数据统计分析,得出的结论可以为化学工程发展研究提供新的方向。
3结语
综上所述,伴随科学技术的发展,专业人员对化学工程研究已经从单一走向研究领域与多学科相结合的多元化方向发展,随着时代的需要,科学技术的发展,新的发展热点的出现,化学工程的发展方向也是多元化的。化学工程技术多元的发展给社会带来的也将是全新的面貌,推动整个社会向前的步伐。
参考文献
[1]韩钢,宋.化学工程技术中微化工技术的应用研究.[J].中国科技博览,2012(34).
二、加强化学工程与技术学科研究生创新能力培养的实施
(一)加强研究生导师队伍建设,是培养研究生创新能力的前提
在以“创新和服务”为主题的第三届中外大学校长论坛上,来自全球的140多位校长普遍认为:教师是创新型大学的基础。加强化学工程与技术学科研究生能力的培养,研究生导师首先需要以培养创新型人才为己任,在人才培养中真正发挥“导”的作用,这就要求研究生导师自觉提高专业水平和专业素养。只有导师具备扎实的专业功底和广阔的学术视角,能够站在化学工程与技术学科发展的前沿,关注社会发展对学科发展和人才培养的新要求,才能真正引导学生在科研工作的过程中创新性思维,激发学生科研的兴趣,营造有利于学生独立思考、自由探索、勇于创新的良好环境和氛围。据有关统计,诺贝尔奖显示出明显的“集中性”特征,全世界约4%的科研机构占了22%的诺贝尔奖的获奖份额。如德国马普学会有17个获奖者,英国贝尔实验室有11个获奖者,日本东京大学有10位获奖者,英国卡文迪许实验室有7位获奖者。另一方面,诺贝尔奖获得者具有“传承性”。如1909年德国的奥斯特瓦尔德,他的学生能斯脱,能斯脱的学生米里肯,米里肯的学生安德森,安德森的学生格拉塞都是诺贝尔奖获得者。诺贝尔奖获得的集中性和传承性说明,科研的创新一方面需要一种好的氛围,另一方面导师处于科学前沿至关重要。我校化学工程与技术学科研究生的科研成果显示,研究生在国际化学工程与技术领域前三位期刊上发表的优秀论文,60%以上出自同一科研团队。这些数据表明,导师能够把握学术前沿,并能及时将学生们带入前沿,在学科前沿从事自己的科学研究,是培养研究生创新能力的前提。若研究生导师自身道德修养、探索创新能力、对专业知识的精通和把握难以发挥楷模和导向作用,则培养有创新能力的研究生就是一句空话。
(二)打造针对化学工程与技术学科专业特点的研究生立体化创新性培养平台,是培养研究生创新能力的重要条件
为研究生学术工作搭建交流的立体化平台,开拓研究视野,是培养研究生的创新能力的重要保障。我校化学工程泰山学者实验室针对化学工程与技术学科研究生的专业特点,为研究生学术交流搭建了包括研究生学术报告轮讲平台、国内外学术会议平台、校企合作工程化实施平台在内的立体化平台,积极拓展教育研究和创新能力培养的环境。研究生学术报告轮讲平台包括研究生每月一次的学术专题汇报,报告内容可以是自己的科研内容,也可以是对当今世界最新的研究进展的追踪;一年一度的齐鲁研究生学术论坛-化学与化工技术发展分论坛则是整个齐鲁大地化学工程与技术研究生的华山论剑;每月一期的研究生论坛则是邀请外校、外国的教师以及学术名流来校开展专题讲座;鼓励研究生参加化学工程与技术领域各种国际或国内的学会和年会;根据项目合作与人才培养需要,直接从具有科研创新实力和先进生产能力企业聘请高级研究人员任教,把最先进的应用技术传授给学生,并不定期地带学生走进大型化工企业学习,强化工程能力的培养。上述立体化研究生创新平台建设,一方面使学生能够把握各自领域和相关领域的最新进展,拓宽研究生的研究视野,挖掘研究生的学习潜力和研究能力,为研究生创新能力的培养提供了学术平台保障。
(三)结合化学工程与技术学科发展正确选题,是培养化学工程与技术研究生创新能力的重要环节
关键词:
绿色化学工程;工艺;化学工业节能;促进作用
在环境污染程度不断加重、生态系统破坏越来越严重的新形势下,加大环保保护力度、提高各种资源与能源的有效利用率,对于促进人类、经济、环境等可持续发展有着重要意义。因此,深入了解绿色化学工程与工艺对化学工业节能的促进作用,是降低化工生产污染程度和减少资源浪费的重要途径。
1绿色化学工程与工艺的合理开发
根据当前绿色化学工程与工艺的开况来看,其主要包括如下几种:
1.1绿色化学原料的合理运用在化学生产工艺和相关流程中,化学生产原料的合理选用,在降低化学生产污染程度和减少资源浪费量上发挥着很总要的作用。一般情况下,化学工程中的原料都是不可再生的资源,如果大量使用,不但会加剧不可再生资源的消耗量,还会大大提高污染物的排放量,从而加重环境污染、资源浪费。因此,绿色化学原料的合理运用,是绿色化学工程的重要研究方向之一,通过使用自然物质、绿色化学物质、可再生化学原料等,如苞米杆、芦苇、纤维植物,可以有效生产出各种化学产品。与此同时,在整个生产过程中,绿色化学原料产生的气体一般是氢气,不会给环境、人体带来伤害,在保证生态系统平衡发展上有着极大作用。
1.2化学反应选择性的有效增强在化学物质发生反应的过程中,化学反应是非常重要的组成部门,通常情况下,化学原料的转化都必须经过化学反应才能完成。因此,在化学工程总,注重化学反应选择性的有效增强,有利于提高化学工程的生产效率、质量等。在实践过程中,化学反应的影响因素有时间、环境、原料等,如在氧化反应中会产生大量热能,致使化学原料发生变质情况,从而影响化学品的生产质量。所以,在注重新型反应形式的合理应用,是绿色化学工程的重要组成部分之一,不但能提高催化物的催化能力,还能大大增加物质的反应时间,从而获得更好的产生效果。
1.3无毒无害催化原料的利用在化学工业快速发展的情况下,化学反应在化学生产中的合理应用,对于促进化学工业可持续发展有着重要影响。而在化学反应的整个过程中,催化剂是重要的催化物质,需要注重无毒无害催化原料的合理利用,才能更好的改善催化物的效用,从而达到提高化学反应效率、节能和降低环境污染程度的目的。
2绿色化学工程与工艺对化学工业节能的促进作用
2.1清洁生产技术的合理应用目前,清洁生产技术的价值非常高,在对化工原料进行无毒、无害和无废处理以后,原料的有效利用率可以得到大大提高,从而达到提高化学工程生产质量的目的。目前,最常用的清洁生产技术是脱硝技术和脱硫技术,在对生活垃圾、具有严重污染的化学物质等进行绿色处理之后,生活垃圾很多都会被转化为沼气。与此同时,自然发电技术的合理应用,如风能、太阳能等清洁生产技术的研发,特别是生物工程中各种清洁生产技术的不断推广,在提高环境质量、降低环境污染程度和实现资源与能源的最有效利用上有着重要作用。
2.2生物技术的有机结合在化工生产中,比较常用的生物技术是生物化工、化学仿生学两个部分,如生物酶的合理应用,与绿色化工工程与工艺相结合,可以是再生资源得到最有效利用,并生产出绿色化学品。目前,绿色化学工程与工艺中,工业酶、自然界中的酶等是非常重要的催化剂,有着无污染反应条件好、产物性质好等多种有点,在促进生态系统循环发展上有着重要影响。
2.3环境友好型产品的合理生产通过生产各种环境友好型产品,可以起到很好的环保作用,如磷洗衣粉、清洁汽油等,是绿色化学工程与工艺不断发展的重要研究方向之一。因此,在人们生活、工作的过程中,各种绿色产品的使用和推广,是降低环境污染程度、促进社会和谐发展和推动经济可持续发展的重要途径。
3结语
综上所述,在加大环境保护力度和提高能源与资源有效利用率的过程中,绿色化学工程与工艺的研究,不但能减少染污物的排放量,还能改善人们的生活环境质量。因此,加大绿色化学工程与工艺的投入力度,对于实现化学工业节能、促进化学工业更长远发展有着重要意义。
参考文献:
[1]刘森,罗泽鹏,都颖,刘思乐.绿色化学工程工艺对化学工程节能的促进作用分析[J].黑龙江科技信息,2016,02:75.
前言:
伴随科学技术的发展,专业人员对化学工程研究已经从单一走向研究领域与多学科相结合的多元化方向发展,随着时代的需要,科学技术的发展,新的发展热点的出现,化学工程的发展方向也是多元化的。化学工程技术多元的发展给社会带来的也将是全新的面貌,推动整个社会向前的步伐。
1化学工程技术的概述
化学工程技术主要研究化学生产过程中产品的研究开发,同时也需要设计和管理反应装置,因此它是一门集合理论和实际操作的综合性技术。在化学生产中运用化学工程生产技术,可以显著提高生产效率,缩短生产时间,同时还可以大幅提高产品的质量,减少成本和原材料的消耗,对于产品的开发以及技术的改进都具有非常重要的作用。
近几年我国的科学水平不断进步,化学工程技术越来越来越广泛地被应用在化学生产中。化学生产关系着全社会对化工产品呢的需求,也影响着我国其他产业的生产发展。化学工程技术在化学生产中的应用十分必要,对于维持人们的正常生活和社会的稳定都有重要作用,因此,其应用也越来越受到人们的重视。
2化学工程中的新型反应技术
2.1绿色化学反应技术
环境问题在当今社会的发展中尤为重要,而绿色化学就是指不会污染环境的,可以保护环境的化学技术。这种技术主要采用化学方法和技术来减少甚至消除潜在污染源,比如那些妨碍社会安全、对人类健康有害、影响生态环境的原材料都可以通过这种技术加以治理,从而减少环境污染,达到保护环境的目的。而且绿色化学技术可以将污染从源头就加以消除和治理,因此,对环境治理非常彻底。
2.2超临界化学反应技术
所谓的超临界液体就是指具有液体和气体双重性质的物质。当压力和温度都位于临界点之上时,其状态也位于气体和液体间。这种超临界流体的应用十分广泛,在生物化工、化学工业、医药工业以及食品工业等表现出巨大的研究价值,具有十分光明的发展前景。我国目前的超临界化学技术虽然已经取得巨大的进步,但是有些方面还不够成熟,仍然具有非常广阔的提升空间,需要继续努力开发。
2.3新分离技术
传统的分离技术是利用沸点不同,使不同的组分从分离塔中先后分离出来。首先是对设备的强化,随着科学水平的进步,分离技术也在不断地更新和改进,但是任然存在很多不足的地方。而信息技术的发展,给分离技术带来一个崭新的局面,人们将信息技术引进到分离技术的开发研究中,取得了非常明显的进步。比如在热力学的传递性质和多相流的研究过程中,就是引入信息技术,并使之发挥功效,进而达到分离的目的,此方法已经成为成熟的分离技术。再如分子模拟可以提高预测平衡性质的水平,进而加速分离分子,可以用于开发新型的高效分离剂。因此,信息技术的引入对于深入和促进分离技术的深入具有重要作用,并且还能显著提高工作效率。
3化学工程技术在化学生产中的应用新方向研究
3.1传热过程的强化
此研究主要是改进换热器的设备,通过这种方法来提高传热效率,并且使设备可以持续放热。要达到这个目的,就必须改进原来的设计工艺,开发新型传热材料,这样才能不断优化传热技术。
3.2微细尺度传热学
微细尺度是传热学中一个热点的分支学科,具有非常广阔的发展前景。当物体尺寸大于连续介质时,由于尺度微细,原来的影响因子也会发生变化,这样就导致了传入和流动规律的变化。目前的纳米和微米科学都取得了明显进步,也衍生了很多以微细尺度传热学为基础的研究领域,并取得了丰硕的成果,比如微型热管、多空介质流动传热、高集成度电子设备等多项研究成果。
3.3传热理论
一直以来,人们都在研究液体核态沸腾的原因。但是由于沸腾复杂多变,研究过程中无法进行准确的计算。目前的研究方法存在的严重缺陷是计算的准确率过低,而且必须以大量实验做为基础保障。因此我们必须从新角度来和研究问题,根据基本理论,找出新的计算方法和模型,不断深入研究传热理论。
3.4传热学中细微尺度的研究进展
细微尺度是指从时间尺度和空间尺度进行更细微的研究的热学范畴,如今它在热学中已经形成了一个分支,具有广阔的发展前景。当一个物体的尺寸远大于其载体时,这样的情况会存在,但是由于尺寸的更加细微,原来的假设影响因素也会发生相应变化。目前纳米技术已经取得显著的成绩,很多领域都是围绕传热学中的细微尺度技术进行研究的,近年来取得了高集成电路、多空介质流等新成果,产生了巨大的经济效益。
3.5传热设备的研究进展
近些年来,利用翘片来强化传热,管外的翘片强化传热原理包括有前缘效应和非稳定性扰动以及减薄边界层等几种。常用的片是冲缝片和百叶窗。将来对此的研究应该将分布参数和场地模拟相结合,来优化传热装置结构的参数,实现管翘式的传热针设计。
3.6与计算机技术的相结合
计算机技术的不断进步是化学中大量的技术问题能够得到有效的解决。同时节约了大量的人力物力财力,也增加了数据和相关机械的精密度。计算机的主要贡献表现在计算流体力学、数值传热力学、采用计算机技术进行统计、计算有利于将数据更直观的表现出来,表现形式更加多样,能够有效分析大量实验数据。
3.7与材料科学和信息工程相结合
科学的进步和新技术的研究涌现就为化学工程的研究提出了新的机遇。如何形成优质的服务体系和完整地理论作为研发支撑成为化学工程面临的问题。
所以它必将进入一个新的发展阶段,在发展中应注重与多学科的交叉,更多的研究应该包括信息和化学应用、生物与化学以及能源环境与化学相结合的学科,这都为化学工程的发展提供了新的研究方向。由于信息技术不断深入各个行业,为此通过信息技术可以将大量的信息收集、整理进行数据统计分析,得出结论可以为化学工程发展研究提供新的方向。
3.8做好人才工程的建设
21世纪国际社会的竞争实质上就是以科技实力为基础的综合国力的竞争,谁在科技上遥遥领先谁就掌握了国民经济发展制高点。科学技术的竞争说到底是人才的竞争,人才是科学技术发展的动力。而化学工程技术也同样需要优秀的人才,因此,我们要加强化学工程的教育,培养出更多的优秀化学人才。另外,还要提高化学工程待遇,加强国内外的学术交流。目前化学工程技术正处在飞越发展期,随着化学技术的不断加大,化学工程技术必将以全新的面貌展现在我们面前。
4结束语
综上所述,化学工程技术在化学生产中具有非常重要的作用,其应用大大提高了生产效率,节约了能源和原材料,而且还提高了产品的质量,为满足人们的日常需求和社会稳定作出重大贡献。
本文主要概述了化学工程技术,并对其中的一些核心技术和研究进展进行了阐述,比如绿色化学反应技术、超临界液体技术和新分离技术等,希望可以更好地促进化学工程技术的发展,不断改进理论和技术,进一步扩大其应用范围,使它发挥更大的作用,为人类提供更好的生活,同时促进社会的不断进步和发展。
参考文献:
[1]张杨.浅谈化学工程技术在化学生产中的应用[J].科技创新与应用.2014(08).
[2]陈伟.浅析化学工程技术在化工生产中的应用[J].科学专论.2013(01).
能源化学工程专业是研究利用化学与化工的理论和技术来解决能量转换、能量储存及能量传输问题的战略性专业。能源的高效、清洁利用将是21世纪化学科学与工程的前沿性课题,也是当前社会急需的具有广泛发展前景的新兴产业。我国于2010年开始设置了能源化学工程战略新型专业,并于2011年进行试点招生。目前针对能源化学工程专业并结合学校实际情况,对能源化学工程专业的培养模式进行了有益的探索。例如:
(1)东北石油大学对能源化学工程专业课程体系进行了构建,专业按照“通识教育+学科专业基础+专业教育+实践教学”四个层面对课程体系进行了设置[1];
(2)沈阳工程学院对能源化学工程专业学生的实践能力的培养进行了教学探讨,制定了一系列实践教学的相关规章制度,如《实验室开放制度》《实验室守则》《校内外实习管理办法》《课程设计、毕业设计管理办法》等实践教学的规章制度[2];
(3)北京化工大学对能源化学工程专业人才的培养注重学科发展的国际化交流与合作。每年邀请国际上著名的学者到能源化学工程实验室进行访问和交流,通过学术报告和互动交流,拓宽学生的国际化视野。并与多所国际著名大学建立了密切的科研合作关系和联合培养学生机制,为学生搭建了国际交流平台[3];
(4)哈尔滨工业大学能源化学工程专业教学主要侧重于学科研究方向的改革,主要包括太阳能电池材料的制备及性能研究,功能晶体材料的制备,生物质能源的开发,生物质能源与化工原料的转化研究,多晶硅高效回收新技术,发光二极管(LED)用荧光粉的研制,LED新型散热器材料的合成及LED封装材料等研究方向[4]。菏泽学院是一个应用型的地方本科院校,2012年菏泽学院化学化工系紧扣菏泽市煤炭石油资源丰富和能源化工基地建设的需要,成功地申请了能源化学工程专业,并于2013年开始招生。构建一个适应社会发展需求、具有地方特色的人才培养模式,是能源化学工程专业健康发展的基础。在高等教育大众化的背景下,应用型本科人才成为高等教育的重要对象,并占据了主导地位[5]。近年来,菏泽学院根据地方资源特点、经济发展需求和学校的师资结构特点对应用型本科能源化工专业的人才培养模式进行了构建。主要从人才培养规格、理论课程体系构建、教学方式方法革新、实践教学和学生科技创新体系的完善、考核评价方式的改进、师资队伍建设等方面进行了探索。
1人才培养规格的建构
人才培养规格是教学的前提和基础。《国家中长期教育改革和发展规划纲要(2010-2020)》明确提出:要遵循教育规律和人才成长规律,深化教育教学改革,创新教育教学方法,探索多种培养方式,形成各类人才辈出、拔尖创新人才不断涌现的局面[6]。为此应构建以学生为主体、以创新应用人才为核心,以学生全面发展为中心的多规格本科人才培养模式。为制定切合实际的应用型人才培养规格,我系深入菏泽市及周边地市各个能源化工企业进行调研,与人力资源招聘部门进行接触、对已毕业的学生进行调查反馈等,多方收集相关信息,并结合菏泽学院化学化工系师资结构特点,对我们的人才培养规格进行了定位。在调查过程中,我们发现:社会对能源化工专业的人才需求有三种类型:科研创新性,动手操作技术性和管理经营性人才。考虑到我系师资力量和学校发展目标,我们把能源化学工程的人才培养目标定为培养动手操作技术性和能源化工企业管理经营性人才。采用“一个专业两个方向”进行培养,实行“5+3”分流培养方式,即前5个学期在一起上通识课和专业基础课,后3个学期按照学生的意愿进行分开培养,主要开设专业课。同时对经营管理型的学生聘请经济系的老师开设经济管理型方面的课程。
2课程培养体系的构建
课程体系直接关系到培养人才的质量。能源化学工程是一门内容丰富而又广泛的科学,是涵盖能源、化工、环境和材料的交叉学科。课程体系按照“通识教育+学科专业基础+专业教育+实践课”四个模块设置,注意学科前沿和知识体系的完整性,构建具有地方特色的厚基础、宽口径、重视学科交叉的课程体系。应用型人才培养必须重视实践课的建设。在课程体系构建中,我们十分重视实践课的比例,规定不少于总课时的20%。课程除了基础课程实验、专业课程实验、暑假实习、毕业实习、生产实习,毕业论文设计外,还应增加大学生挑战杯竞赛、大学生科研基金项目、大学生创业计划项目、开放实验室等项目。教学是基础,是传授知识;科研是创造知识,是教学的延伸和发展[7]。组织学生积极参加全国大学生化工设计竞赛、数学建模竞赛、机械设计竞赛、结构设计竞赛、大学生挑战杯赛等竞赛项目。其目的是以竞赛为载体,把探索精神、创新技能、动手能力、合作能力、针对具体实际问题提出解决方案的能力作为培养目标。这些竞赛对于培养我国本科生的科研实践能力和创新精神起到了积极作用[18],加强了学生应用型能力的培养。
3教学方式方法的革新
紧密结合人才培养目标,构建全方位的教学改革模式。在教学方法上,根据“多元智力理论”和应用创新型人才成长规律,进行教学方式的改革,结合企业生产实例,采用范例教学改革模式,使学生在实践体验中感受应用创新型人才成长的过程,倡导“做中学”,使学生在小组合作比赛中体会自己的成长。在教学实践中可采用“项目活动法”,在项目设计过程中,教师仅起指导作用,学生可以自主查阅资料并开展与项目有关的研究性活动和合作学习。
4实践教学和科技创新体系的完善
实践教学和学生科技创新是培养应用创新型人才的重要环节。构建多层次的包括校内实验、实训、课程设计、参加科技创新竞赛、毕业设计,校外工厂见习、项目合作导师制、校外实习的“双导师”制以及校企合作协同培养制度,切实加强学生实践能力和科技创新能力的培养[9]。“双导师”制是指学生的实习过程中,由学校教师和企业老师共同指导,使学生对工厂实际生产的流程和工艺有一个全面清楚的认识,培养学生运用所学知识分析工程问题和工程实践应用能力。现在我们已与菏泽市的玉皇化工集团、洪业化工集团、多友科技等企业合作建立了10多处校外实习基地。双导师制的实行,加强了校企结合,有力地培养了学生解决工程问题的能力,避免了学生“所学”和企业“所需”脱节的问题,实现了学校培养和企业所需人才的对接。
5考核评价方式的改进
评价是学科教学的指挥棒。在能源化学工程专业课程评价过程中,采用过程评价与终结性评价相结合的评价方式[8]。对于通识课和专业基础课程,采取以闭卷考试(70%)和平时成绩(作业、小论文、实践报告)相结合为主;对于专业课,可采用闭卷考试、开卷考试和设计(论文)相结合的方式进行考核;对于选修课,采取教师自主考核与院系抽查相结合的方式;对于实习和实践课程,结合“双导师制”,采用化学化工系与企业共同考核的方式;对于实践课程,采取小组提交实践报告并答辩的方式进行评价。变单一评价为多元评价,从而调动学生的学习积极性。
6“双师型”师资队伍的建设
教师的“复合”能力(高深的专业理论和丰富的工业实践操作技能)是培养学生应用创新能力的前提和基础。为培养学生的实践创新能力,结合专业发展实际,构建“外引+内培+实践锻炼”相结合多渠道的“双师型”教师的培养方式,加强与高校、科研院所和企业的联系,切实提高教师的业务水平。近三年来,我系派出4位教师到能源化工企业进行业界锻炼,培养教师的工程实践能力,使教师明确企业对人才规格的需求,同时加强与企业之间的科研合作。我们还聘请企业的业务骨干为我们的兼职教师,不定期地给学生开设讲座和实践课。同时,我们鼓励年轻教师考取化工安全评价师、化工工程师、设备设计工程师等相关专业的职业资格证书。这些措施有力地培养了教师的工程实践应用能力,加强了“双师型”师资队伍的建设。总之,根据社会发展对能源化学工程人才的需求和菏泽学院建设应用型地方特色明显建设的目标,化学化工系根据师资结构特点,对能源化工人才培养模式进行了探索和改革,目前取得了一定的经验。而对如何更高效的进行校企合作,建设产学研联合协同创新体系,打造有能源化学工程专业特色的培养模式和体系,是我们继续努力和探索的目标。
参考文献
[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(6):209-210.
[2]赵海,刘瑾,董颖男,等.应用型本科能源化学工程专业建设的实践与思考[J].沈阳工程学院学报(社会科学版),2015,11(4):547-550.
[3]北京化工大学能源化学工程[EB/OL].
[4]哈尔滨工业大学能源化学工程专业介绍[EB/OL].
[5]邵波.论应用型本科人才[J].中国大学教学,2014(5):30-34.
[6]董泽芳.高校人才培养模式的概念界定与要素解析[J].大学教学科学,2012(3):30-36.
[7]任成龙.论科研实践与大学生创新能力的提高[J].南京工程学院学报(社会科学版),2010,10(1):48-51.
关键词 化工专业;“油类”课程群; 教学改革;课程群平台
中图分类号:G642 文献标识码:A 文章编号:1671-0568(2015)14-0049-02
作者简介:程丽华,女,教授,研究方向:化学工程与工艺专业;施永军,男,实验师,研究方向:计算机应用;洪晓瑛,女,实验师,研究方向:化工专业实验教学和石油化工产品分析;王琪,女,讲师,研究方向:油气储运专业; 谢颖,女,教授,研究方向:化学工程与工艺专业。
基金项目:本文系2013年广东省高等学校教学改革项目“立足‘卓越计划’的‘油类’课程群教学模式的探索与实践”(编号:GDUP201209)的研究成果。
石化产业是国家十大振兴产业之一,是广东三大支柱产业之一。随着石油化工行业的迅速发展,石化企业中新技术和新设备不断涌现,而且自动化程度和管理水平越来越高,属于高度自动化,技术密集型现代化企业,这必将导致对石油化工急需人才的要求越来越高。因而,项目组根据学校发展定位、围绕化工专业培养目标以及石油化工行业对人才的需求,提出立足“卓越计划”的“油类”课程群教学模式的探索与实践的研究课题,探索以石油炼制工程省精品资源课程为引领,打破学科界限构建“油类”课程群,以校企协同管理课程、协同培养人才为指导,面向石化企业发展需求,创新课程群教学模式,有效地培养石油化工应用型工程技术人才,满足我省及周边地区对石油化工紧缺人才的需求。
一、以省精品资源课程为引领,构建“油类”课程群
课程群建设是近年来高等院校课程建设实践中出现的一项新的课程开发技术。我校化学工程与工艺专业(石油化工方向)具有雄厚的专业基础、特有的石油化工特色,2009年被国家批准为国家级特色专业建设点,2011年被列为卓越工程师培养计划试点专业,为我国石化行业输送了大批高素质的应用型人才。该专业长期以来以彰显石化特色的《石油炼制工程》专业主干课程为抓手进行专业课程的建设与改革。它是培养未来石油化工工程师的思维方式和工作方式的关键载体,也是理论联系实际的重要桥梁,肩负着为服务广东及周边地区石油化工行业提供高级应用型人才的重任,2013年被列为广东省精品资源共享课。为此我们以省精品资源共享课为引领,在深入对突出学校办学特色的“油类”课程进行调研和分析基础上,通过梳理各课程内容和课程间的关联性,在对相关课程的内容进行优化整合的基础上,组织校企专业课程建设委员会对“油类”课程群的知识内容进行进一步的研讨,最后选择满足“卓越计划”培养目标要求的《石油炼制工程》(含化工专业实验)、《石油化工概论》、《石油化工工艺学》、《石油储运基础》等4门课程构建化学工程与工艺专业(简称化工专业)“油类”课程群。
二、以校企协同管理专业课程为原则,树立课程群建设新理念
2011年化工专业被列为“卓越计划”试点专业,这对课程建设尤其是专业课程如何改革以适应“卓越计划”培养目标的实现提出了更多的思索。团队经过多次调研与反复研究一致认为课程建设要与学校的人才培养目标、与行业所需人才紧密结合起来,树立了与行业协同管理、协同育人的课程建设理念。
通过校企协同管理,使专业课程建设从目前学校的单方管理,转变为学校、石化企业双方协同管理。中国石油化工股份有限公司茂名分公司(以下简称茂名石化)是我国最大的石油化工基地,是我校国家级工程实践教育中心,拥有大批高水平石化专家及先进的管理理念,对本行业技术前沿最了解,对行业发展趋势最了解,对行业用人需求最了解。成立由企业专家组成的化学工程与工艺专业课程建设教学指导委员会,确定“油类”课程群建设主要目标,共同制定课程群建设方案、课程教学大纲及重点教学内容;共同构建四年不断线的工程教育模式,以培养适应石化行业需求的紧缺人才。
三、按不同培养目标优化教学内容,避免内容交叉重复
在这四门课程中,石油炼制工程和石油化工工艺学是化工专业必修课,是专业基础知识的综合应用,具有较强的实践性,化工专业实验则将专业知识与理论知识融合起来。石油化工过程概论是全校的公选课,包含了石油加工和石油化工的基础知识,石油储运基础是专业的选修课程,主要介绍石油及油品的储存和运输技术。这几门课程“油味十足”,既有联系,又有区别。为此,我们要按着不同层次优化教学内容,避免交叉性内容的重复。
笔者一直从事化学工程与工艺专业课的教学工作,为省石油炼制工程教学团队负责人及省精品课程资源共享课程负责人。在教学研究过程中,真切地感受到各门课程是相互紧密联系的,但有时又会出现课程内容的重复。如这几门课程中都涉及到油品的基本性质,如何根据课程的培养目标合理安排教学内容就显得非常重要。正是由于各门课程之间有千丝万缕的联系,各门课程的教学内容要进行合理安排,如果在教学安排上不注重教学内容的安排,只是简单重复,势必引起学生厌倦或厌学。
为此我们组织的油类课程群教学团队将油类课程群作为一个整体来优化教学内容,在各门课程互通有无的基础上,对于交叉性内容,不同的具体课程,共目标各有侧重,并据此安排教学内容和课时。这样不仅避免了简单的重复,节省了学时,同时还激发了学生的学习兴趣,提高了学习效果。
四、紧紧依托学科建设资源,教学内容紧跟学科发展步伐
化工专业充分依托茂名石化公司得天独厚的产学研优势,在石油化工领域取得了较好的科研成绩,已形成一支学术水平较高、结构合理、合作精神和创新能力强的研究团队,在同类型的院校中脱颖而出,从而使化学工艺学科成为广东省重点特色学科。课堂上,团队成员紧跟学科发展前沿,针对石油化工的最新发展,在课堂教学中及时补充和更新的理论和知识,增加一些能反映现代科学技术发展的前沿内容。例如,随着环境保护的要求,清洁汽油、清洁柴油新技术的发展,在石油炼制工程中增加这方面的知识;随着新产品、新工艺、新技术和新设备的涌现,在石油化工工艺学教学过程中不断补充与课程相关的最新化工生产技术和科研成果。及时更新和补充专业课的教学内容,不仅拉近了教学与学科前沿的距离,还促进了学生对新知识和新技术的认知,拓宽了学生知识面,培养能够适应石油化工行业的发展和社会需求的化工人才。
同时,注重教学与科研相结合,以专业实验为载体,促进专业理论知识的学习。专业实验教学内容的改革是本课程群建设的重要内容。我校化学工程与工艺专业实验一直独立设课,内容上偏重验证,不能行之有效地检验和运用课程群的知识。为此,在实验内容的精选和安排上,我们注意引进老师的科研成果,这不仅丰富了教学内容,提高教学效果,还增加了学生对老师科研情况的了解,培养学生的科研兴趣,使学生尽早地加入老师的科研课题,进行团队工作,并借助课题培养学生系统地思考问题的能力以及提高创新能力。
五、校企共建教学资源,协同培养石油化工类人才
在课程建设机制上,坚持校企(为石油石化企业服务)联合办学。广东石油化工学院与中国石油石化企业一直有着天然的密切联系,是广东省人民政府与中国石油化工集团公司、中国石油天然所集团公司、中国海洋石油总公司共建高校,长期依托的三大企业——中石油、中石化、中海油都是世界500强的跨国集团。学校坐落在“南方油城”——茂名,与中石化属下的“茂名石化”有着血浓于水的情感。茂名石化炼油加工能力1350万吨/年,有60多套炼油工艺,掌握着最先进的技术装备和生产工艺,有真实的工程实践条件和环境,同时,还拥有先进的典型炼油工艺模拟仿真系统。我校在60年的办学历史中,有30多年属石化行业公司主管,依托这种得天独厚的优势,通过校企协同育人,使工程技术人才培养从高校培养转变为高校和企业联合培养。在企业的深度参与下培养的石化工程师能更有效地满足石化产业对人才的特殊需求。学校与茂名石化公司共建国家级工程实践教育中心,为深化专业课程改革提供了重大机遇,近几年在专业课程建设方面创建了企业深度参与人才培养特色,体现在与企业共建教学资源包括共同编写了教材、实习指导书、典型事故案例分析、共同拍摄典型炼油工艺过程教学片等。这些与实际结合紧密的教学资源,对有效地培养石油化工类工程技术人才提供了良好的条件保障。这种面向石化,依托企业的工程教育有效地提高了教育教学质量。
中图分类号:G6430文献标识码:A文章编号:1674-120X(2016)08-0097-02收稿日期:2015-10-09
随着社会经济的不断发展以及产业结构的调整升级,对高级人才的知识结构、实践应用能力的要求日益提高,培养应用型、复合型、实践性的高级专业人才已成为高等教育的重要使命[1][2][3]。我国从2009年开始加大了全日制专业学位研究生的培养力度。但是,根据现有培养实践来看,我国专业学位研究生的培养还存在着培养模式的同质化,与社会、学校以及研究生个人的需求脱节等问题[4][5][6]。因此,开展新形势下专业学位研究生的综合改革具有重要意义。
一、“四位一体”化学工程专业学位研究生培养的建设思路
化学工程作为一个工科专业,实践性是其显著的特点。中南大学化学工程专业在长期的办学过程中,结合学科平台优势,形成了四个具有鲜明特色的研究方向:资源化学工程、储能化学工程、生物医药工程、环境化学工程,学术效益、社会效益、经济效益明显,培养的人才在行业内广受好评,为专业学位研究生的培养奠定了良好的基础。
围绕专业学位研究生培养教育的要求,中南大学化学化工学院进一步加快了“从以学术型人才培养为主向学术型与应用型人才培养并重转变”,构建了化学工程专业学位研究生“四位一体”的教育模式:以提升学生专业应用实践能力为主体,以课程体系改革、创新导师队伍建设、丰富实践载体以及完善评价和保障机制为着力点,深入开展化学工程专业学位研究生教育综合改革。
二、推进化学工程专业学位研究生课程体系改革
课程体系的设置的基本思路在于突出专业学位研究生培养的实践性。根据国外发达国家专业学位研究生教育的经验,课程学分远远少于学术性研究生教育[7]。因此,中南大学化学工程专业学位研究生的课程体系设置,更加注重减少培养体系中对课程学分的要求,适当地加强实践能力培养、综合能力发展的课程,从而达到我们培养复合型人才的目的。如将专业实践从4个学分提升到10个学分,进一步突出专业实践的重要性。课程体系的设置采用“层次化、模块化”的模式。所谓 “层次化”是指构建从基础专业课程到专业能力发展课程,再到综合能力发展的立体课程体系;“模块化”是指打破现有的课程组成,按照培养人才功能的不同,对现有课程形成模块化的组合。
三、创新化学工程专业学位研究生导师队伍建设
国外发达国家的专业学位研究生导师队伍建设具有以下特点:一是注重多渠道吸引优秀人才进导师队伍,严把入口关。如日本一般专门职业大学院要求有实践经验的教师须占专任教师的30%以上,法科大学院要求20%以上,教职大学院要求40%以上。[8]二是注重导师队伍的考核。如美国高校对导师实行“非升即走”的评估考核制度[9]。三是保证导师队伍的稳定性,加强保障。如德国的法律把教授的身份定位为国家公务员,职务也是终身的,不得任意解聘[10]。
目前,我国专业学位研究生导师队伍建设还处于摸索阶段,中南大学化学化工学院创新化学工程专业学位硕士生导师队伍建设主要体现在以下几方面:
(1)推进制度建设。制订了《中南大学化学工程专业学位研究生导师遴选细则》等制度。一是明确专业学位研究生教育导师队伍建设的重要性和作用,规定专业学位研究生教育导师队伍建设的原则和标准,制订专业学位研究生教育导师队伍建设的方法和措施,积极引导专业学位研究生教育导师队伍朝着正确的方向健康发展。二是厘清专业学位研究生导师与学术性研究生导师职责的异同,明确专业学位研究生校内导师、企业导师的职责,制订相关的制度。
(2)依托科研项目与平台,拓展“双导师”选聘途径。中南大学化学化工学院根据化学工程专业与企业联系紧密、在化工冶金等领域具有一定的行业影响力的特点,依托老师的科研项目与科研平台,聘请企业导师。依托产学研合作选聘导师有两个明显的作用:一是以科研项目和平台为依托,使“双导师”联系更加紧密,避免“双导师”流于形式;二是积极发挥项目的纽带作用,学生既能够在学校接受相关教育,又能到企业受到工程应用实践的锻炼,而且“双导师”能形成良性互补、互动的局面,从而提升学生的培养质量。
(3)以更加开放的姿态,从国外选聘兼职导师。从国外引进既有理论水平又有实践经验的优秀技术开发人才,利用其在国外工作、学习、生活的经历,通过对专业学位研究生的教育教学,使高校在专业学位研究生教育方面能较快获得国际性的最新信息,有利于吸收国外专业学位研究生教育方面的先进教育教学理念,有利于促进我国高校对专业学位研究生的培养。
四、丰富化学工程专业学位研究生实践载体
实践是专业学位研究培养的核心。围绕提升专业学位研究生的实践能力,中南大学化学工程专业通过在课程中模拟实践、在行业中锻炼实践,取得了良好的效果。
(1)在课程学习中注重实践能力的提升。一是“在教学内容中强调理论性与应用性课程的有机结合,突出案例分析和实践研究;教学过程中重视运用团队学习、案例分析、现场研究、模拟训练等方法”,从而提升学生解决问题的能力,培养学生实践意识。二是利用虚拟仿真技术,让学生更加深刻地理解相关工程化学过程。
(2)与行业与企业共建合作,提升实践能力。一是“二维深化”企业、行业合作力度。在横向上,加大企业合作的面;在纵向上,加深与企业合作的深度。除了就专业学位研究生人才培养进行合作外,还将科学研究、社会服务等多元的合作与其融为一体,使人才培养服务于科学研究、社会服务,并在这两者中得到提升。二是探索企业合作的责权划分机制。对于共建基地,对基地的组织体系、双方职责、导师、学生、培养细则、知识产权、经费、学校支持等内容探索确切的规定和解释。三是探索“集中双向”研究生实践机制。“集中”是指依托学校、学院、专业、系,将合作的资源进行集中起来,“双向”是指系里将集中的资源以及培养的专业学位的研究生资源进行双向的公布,让双方进行双向选择,从而达到资源优化配置的目的。
五、完善化学工程专业学位研究生教育的评价及保障体系
(1)探索“四级联动”专业学位研究生教育评价体系。“四级联动”是指建立学校、政府、企业、社会机构“四级”专业学位评价主体体系。现阶段,我国专业学位研究生培养的评价主要方式就是学校自评、政府考核,企业特别是企业导师也有一定的参与度,但是不深入。社会机构参与评价的形式还较少见。但是随着国家评估与评价的宏观政策的变化,比如“管办评”分离,明确地提出了要将第三方机构纳入评价体系中。因此将社会机构也纳入评价体系中。学校是专业学位研究生教育评价的主体,中南大学化学化工学院每两年一次,邀请校内专家为化学工程专业学位培养质量进行评估,每四年一次,邀请校外专家,包括政府教育部门官员、企业代表、其他高校化学工程教授代表、第三方的评估机构进行诊断号脉,从而及时调整办学思路。现已完成第一轮的校内、校外专家评估。
(2)构建“软硬结合”专业学位研究生教育保障体系。一是完善管理体制。建立研究生专业学位建设领导小组,领导小组由学校的教授、企业导师、第三方机构的成员组成;依托教授委员会进行决策,建设领导小组的提议应在教授委员会上通过才能执行;组建专业学位研究生委员会,隶属于学院学生工作委员会,负责指导学生的日常管理、思想政治教育等工作。二是理顺内在体制。建立、完善专业学位的质量保障、监控体系,尝试建立了相关预警机制,探索建立奖助贷体系,现已建立25万元/年的奖助体系。三是营造良好外部环境,取得良好效果。近年来,中南大学化学工程专业学位研究生参与实践率达到100%,就业率达到100%,选修人文素质相关课程达到100%。
近年来,中南大学化学化工学院依托化学工程的优势与特色,围绕实践能力提升这一核心,在课程体系改革、创新导师队伍建设、丰富实践载体以及完善评价和保障机制等四个方面,开展了化学工程专业学位研究生教育的综合改革,具有一定的示范作用以及现实指导意义。
参考文献:
张东海,陈曦研究型大学全日制专业学位研究生培养状况调查研究高等教育研究,2011,(2):87―94.
耿有权,彭维娜,彭志越,等全日制专业学位研究生培养模式运行状况的调查研究现代教育管理,2012,(1):103―108.
甄良,康君,英爽专业学位研究生培养质量评价及保障体系的构建研究生教育,2012,(6):52―55.
朱永东,张振刚,张茂龙全日制专业学位研究生培养的现状调查及分析――基于珠三角地区3所不同类型高校的问卷调查学位与研究生教育,2011,(11):40―44.
秦发兰,陈新忠,汪华,等关于全日制专业学位研究生特色化培养的思考中国高教研究,2012,(4):60―64.
包水梅,顾怀强专业学位研究生教育――跨越式发展背后的尴尬及其化解中国高教研究,2011,(9):45―49.
张建功中美专业学位研究生培养模式比较研究广州:华南理工大学,2011.
一、前言
液流电池具有安全可靠、设计灵活、使用寿命长和成本低等优点,是一种很有应用前景的电化学储能装置,引起了众多研究者的兴趣[1-5]。 锌铈液流电池[5,6]使用Zn / Zn2+作为负电解质,Ce3+ / Ce4+作为正电解质。充电过程,Zn2+离子还原为锌,Ce3+离子被氧化成Ce4+离子; 放电过程,锌被氧化,Ce4 +还原为Ce3 +。电极是锌铈液流电池的关键材料之一,其必须具有高机械强度、高导电性、良好的稳定性和高电化学活性。由于金属表面易钝化且成本高,不适合用作锌铈液流电池电极材料。石墨毡导电性高、表面积大且成本低,是一种较好的锌铈液流电池电极材料。然而,石墨毡的电化学活性差和疏水性严重限制了锌铈液流电池的能量密度和能量效率。在本文中,研究了热处理石墨毡对Ce3+ / Ce4+电对活性的影响,并报道了其在锌铈液流电池中的应用。 结果表明,热处理后石墨毡对Ce3+ / Ce4+氧化还原反应的活性得到改善。
二、化学试剂和材料
石墨毡(厚度为1.0 cm,中国甘肃浩石碳纤维有限公司)。石墨毡在450℃空气气氛中热处理2.5小时。碳酸铈和甲基磺酸购自中国天津阿尔法公司。所有试剂均为AR级,除非另有说明。含有甲基磺酸的铈溶液是通过碳酸铈与甲烷磺酸之间的中和反应来制备。整个实验过程均使用二次蒸馏水。
样品表面形貌的变化使用场发射扫描电子显微镜(MLA650F)来表征。样品的X射线衍射图使用Panalytical(EMPYREAN)粉末X射线衍射仪获得。样品表面主要元素使用X射线光电子能谱(QUANTUM 2000,USA)进行研究。循环伏安和线性扫描伏安法测量在CHI电化学站中进行。使用石墨毡作为工作电极,铂网(4cm2)作为对电极,SCE作为参比电极。
三、电池性能测试
锌铈液流电池的性能测试采用电池测试系统CT2001C-10V / 2A(中国武汉蓝电有限公司)实施。以热处理石墨毡为正极,甲基磺酸铈的甲基磺酸溶液为正极电解液;锌片为负极,甲基磺酸锌的水溶液为负极电解液;Nafion115膜为隔膜;电解液流速为10 mL/min。
四、结果和讨论
石墨毡在空气中热处理后的表面形貌有明显的变化。处理前石墨毡表面比较光滑,在425℃下空气气氛中热处理2.5小时后石墨毡表面出现许多小孔从而增大了石墨毡的表面积。图1展示了石墨毡对Ce3+ / Ce4+氧化还原反应的活性。随着扫描速率的增大,峰电流增大,峰电位也增大(图1a所示)。扫描速率的平方根与峰电流呈现线性关系,由此测得Ce3+离子的扩散系数为3.6 × 10-6 cm2/s。热处理后的石墨毡,其活性得到明显改善(图1b所示)。
五、结论
以锌片为负极(5 cm2),170 mL 0.5 M ZnSO4为负极电解液;热处理石墨毡为正极(5 cm2),170mL 0.5 M Ce(CH3SO3)3 + 2M CH3SO3H为正极电解液;流速为10 mL min-1;恒电流充放电,电流为100 mA。库仑效率、电压效率和能量效率分别为85.0%,82.9%和70.5%。石墨毡在425℃热处理2.5小时对Ce3+ / Ce4+氧化还原反应表现出良好活性。使用热处理的石墨毡作为正极的锌铈液流电池库仑效率、电压效率和能量效率分别为85.0%,82.9%和70.5%。
参考文献:
[1]Z Xie, Q Su, A Shi, B Yang, B Liu, J Chen, X Zhou, D Cai, L Yang. High performance of zinc-ferrum redox flow battery with Ac-/HAc buffer solution. Journal of Energy Chemistry, 3(2016):495-499.
[2]B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, and W. Wang, Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery, Nano Lett. 13 (2013) 1330-1335.
[3]R. L. Clarke, B. Dougherty, S. Harrison, P. J. Millington, S. Mohanta, Load leveling battery and methods therefor, U.S. Patent7,270,911 B2. (2007).
[4]⒃俅海王治安,黄黎,张凯,吴致远,焦海稳,李瑞莲,王辉宪,吴雄伟. 全钒液流电池用PP/SiO2纳滤膜的制备及性能研究. 广州化学,1(2017):6-11,30.
注:本文系国家自然科学基金资助,项目编号21361010。
二、“大工程领域”全日制工程硕士培养模式改革的主要措施
1.重新定位全日制工程硕士的培养目标
扬州大学围绕“大工程领域”全日制工程硕士培养模式改革,邀请行业专家和企业代表共同对化学工程领域全日制工程硕士的培养目标进行重新定位,提出:培养面向行业、面向未来的高层次复合型“大化工”人才应该具备宽广的知识背景、良好的创新思维、较高的实践能力和强烈的责任意识,具有扎实的化工、材料、制药、环境等学科基础知识,能综合运用化工过程、绿色工艺、工业催化、材料制备、药物合成和环境化学等多个领域的研究方法和现代技术手段,具备独立从事化工-材料类、化工-制药类、绿色化工-环境保护类等多个大类方向的研究工作和解决多样实际工程问题的能力。在此基础上,学校按照“方案宽口径、培养个性化、出口多方向”的基本原则,重新制定了化学工程领域全日制工程硕士培养方案。
2.构建基于多学科交叉的“模块化双螺旋”课程体系
针对化学工程领域全日制工程硕士新的培养方案,学校在充分发挥自身办学特色和整合学校教学资源的基础上,由化学工程领域牵头,校内多个工程领域协调配合,改革了传统的层次化课程体系,见图1,构建了基于多工程领域学科交叉的“模块化双螺旋”课程体系,见图2。实现理论课程和实践课程的多链交汇,有效解决了传统课程体系中理论课程与实践课程相互脱节的问题。对相关课程进行模块化处理,使得课程内容更具灵活性和针对性,加上多工程领域学科交叉的理论课程平台和多元化实践课程平台所整合的多种教学资源,能够最大限度满足“大工程领域”人才培养的需要。其优点主要体现在以下三个方面:
(1)“模块化”的课程内容更具灵活性和针对性
通过设置模块能够实现理论课程和实践课程的多链交汇,有效解决了传统课程体系中理论课程与实践课程相互脱节的问题。对相关课程进行模块化处理,使得课程内容更具灵活性和针对性,加上多个工程领域学科交叉的理论课程平台和多元化实践课程平台所整合的多种教学资源,能够最大限度满足“大工程领域”人才培养的需要。
(2)“双螺旋递进式”的课程排布更加贴合人的发展规律
“双螺旋递进式”的课程排布,既保持了理论课程体系和实践课程体系相对独立性,又确保了理论课程体系和实践课程体系的内在联系性,使得各模块之间呈现了从掌握多学科基础知识———构建基本工程技能———建立初步工程概念———获得多领域工程科研训练———亲历工程实践———实现“大工程领域”的知识、能力、素质综合提升这样一个循序渐进的培养过程,完全符合人的发展规律。
(3)多元化的实践课程平台能够更好地满足学生个性化培养的需要
学校多元化的实践课程平台由校内和校外两部分组成。校内教学实践资源包括扬州大学国家级测试中心、江苏省环境材料与环境工程重点实验室、扬州大学药物研究所、扬州市材料性能强化技术中心、扬州大学联环生物化妆品研究所、扬州大学超分子化学研究所、扬州大学高分子化学与材料研究所、扬大-中化精细化工研究所、化学工程与工艺专业实验室、药物合成专业实验室等;校外教学实践资源包括扬州市化工园区、高邮市电缆材料科技园区、大学科技成果孵化园、泰州医药城、江苏油田、扬农集团、长青农化、上海药明康德新药开发有限公司、联环药业等多家单位,以及50多家江苏省企业研究生工作站,近70家校企联合培养基地,能够针对学生的专业特点、兴趣爱好和个人能力提供多样化的教学资源,为学生多工程领域应用能力的培养提供了有效支撑,满足了学生个性化培养的需要。
3.打通相关工程领域的课程设置“大工程领域”的课程设置
应该摒弃传统的学科主义色彩,充分体现实用主义的根本诉求。学校通过打通相关工程领域的课程设置,将多工程领域学科交叉的构思细化落实到相关课程之中,重点开展了以下四个方面工作:
(1)少而精地设置学位课程
学位课程主要包括政治类课程、外语类课程、工程数学类课程以及相关工程领域所共用的最基础的课程。最基础的课程并不强调学科系统性,而是以“必需、够用”为度对相关课程和教学内容进行重组和优化,旨在为学生提供必备的基础理论知识。
(2)有针对性地选取教学内容
教学内容首先要重视其学科交叉性、宽广性、应用性和实践性,重视学生应用能力和实践能力的培养;其次要能反映本工程领域和相关工程领域的前沿知识,使学生熟悉多个工程领域科研的最新动向,增强科研兴趣;此外还要有针对性地将企业生产实际中遇到的问题或工程案例引入教学内容,使学生对企业工程应用有一个初步的了解,增强学生对工程问题的分析能力;最后课程内容的选取还要考虑系统性,做到与后续课程和课题研究的有效衔接,减少学生课程学习的盲目性。
(3)充分发挥选修课的灵活性
选修课的设置除了相关工程领域的专业课程外,还要设置大量的交叉学科课程,同时鼓励学生根据自己的兴趣和研究能力在全校开设的研究生课程中选择适合自己的课程,进一步拓宽学生的知识视野,培养学生的综合素养,解决知识结构单一化的问题,适应不同类型研究方向的需要,促进学生的自由发展。
(4)加大实践课程的学分比重
“大工程领域”课程体系设置中,实践课程学分占到1/3左右,实践课程的内容将不仅仅局限于本工程领域的教学内容,更多是要提供多个工程领域的实践教学内容。而且,实践课程体系的设置还将贯穿于全日制工程硕士的知识学习、科研选题、工程实践,以及延伸至对论文写作阶段工程应用性的指导。同时,还要重视理论课程与实践课程的内在联系,提高知识学习与工程应用的转化效率,强化学生工程应用能力的培养。
4.科学合理地配备师资“大工程领域”的课程在师资配备上
除公共课及部分专业基础课外,主要采用“三三制”,即多个工程领域的专家、学者讲授课程占总课程的1/3,企业及研究单位的高级工程技术人员讲授课程占总课程的1/3,院内有企业工作背景及长期与企业有业务合作的教师讲授课程占总课程的1/3。尤其对于实践课程的师资配备则要充分体现“工程背景”,可以是具有企业工作经历的校内教师,也可以是拥有一定数量面向企业横向科研项目的校内教师,或是来自企业具备一定教学经验的工程技术人员。同时,积极尝试采用多教师串讲的授课形式,例如:在化工—材料类课程中醋酸纤维的生产和应用这部分内容,将安排三位老师进行串讲和指导,两位校内教师一位主讲化工工艺与设备,一位主讲材料的制备及功能化,而邀请的企业高级工程师则讲解醋酸纤维的应用及市场行情分析。从而实现了多学科知识配置—市场认知—企业应用三位一体的综合性教学目标。