欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

量子力学基本概念及理解大全11篇

时间:2023-11-27 10:12:02

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇量子力学基本概念及理解范文,希望它们能为您的写作提供参考和启发。

量子力学基本概念及理解

篇(1)

正如巴特菲尔德和厄尔曼编撰的《物理学哲学》一书所言,近半个世纪以来,物理学哲学充满活力有两个重要的原因,第一是与所分析的科学哲学的形成期相关,第二则是近半个世纪以来物理学自身的研究有关。也正因此,在物理学哲学发展的进程中,其研究的论题和研究方法也随着科学哲学和物理学自身的论题和方法进行着改变。在很长一个历史时期内,物理学哲学曾经关注经验物理学领域,物理学哲学的探讨与对客观性、真理性以及科学合理性的辩护分不开。而在当前宇宙学、量子引力发展的前沿时刻,《物理学哲学》一书体现了当代物理学哲学研究的新特点。本书与以往物理学哲学书籍最大的不同之处就在于,在以往物理学哲学著作往往重点讨论统计物理学、相对论和量子力学的哲学问题的基础上,增加了新的领域:“这些支柱的结合”———量子引力,并运用决定论和对称性这两个“能架起联结物理学理论间(甚至三大支柱间)鸿沟的桥梁”的主题,把最终的讨论由具体引向一般,从而让我们看到两个结论:第一,物理学哲学和物理学之间并不存在清晰的界限。第二,物理学概念的复杂化,想要借由物理学去丰富哲学,并非容易。本文主要就书中的“经典相对论”、“宇宙学中的哲学问题”和“量子引力”等内容进行分析,指出它们所揭示的物理学概念解释的新特征以及物理学理论理解的新特征。

一相对论、宇宙学和量子引力哲学概要

巴特菲尔德在引言中指出,数学的相对论者在不断深化我们对广义相对论基础的理解。大卫•马拉蒙特的“经典相对论”[1]一文就明显具有这样的特点,并不讨论经典相对论的历史发展及其实验依据,而是以微分几何的语言,从概念和形式化的角度对相对论的结构以及相对论引发的一些基础问题进行了分析和讨论。首先从描述相对时空的结构开始,相对论的弯曲时空是一类几何模型(M,gab)表示的相对时空,其中M为一个平滑的连续的四维流形,gab是M中的一个平滑的半黎曼度规。其中每个模型都代表一个与理论的约束条件相容的可能世界。M可以解释为世界中点事件的流形,而gab的解释则关乎四个物理学解释性原理,由点粒子和光线的行为决定,由此把引力和时空几何效应等同起来。当粒子只受到引力作用时,它的轨迹为弯曲时空的测地线。而任何质量粒子的加速度即偏离测地线的轨迹,由引力以外的力决定。马拉蒙特详细地描述了gab的解释性原理和限定条件。在此基础上分析了本征时间、某一点的空间时间分解及粒子动力学、物质场、爱因斯坦方程、类时曲线的汇与“公共空间”、基灵场与守恒量等内容。经典相对论中所有发生的事件都可以用物质场F表示,为时空流形M中的一个或者多个平滑张量或旋量,满足包含gab的场方程。Tab为与F相关的能量-动量场,时空的弯曲受物质分布的影响,任意区域的时空度规和物质场会发生动力学相互作用,遵循爱因斯坦方程。在专题讨论部分,关于闵可夫斯基时空中的相对同时性的地位,试图还原爱因斯坦定义同时性对标准关系选择的特定背景;关于牛顿引力理论的几何化,将引力化的牛顿理论与爱因斯坦相对论进行了结构上的对比;关于时空的整体“因果结构”,关注了什么程度上时空的整体几何结构能够从其“因果结构”中得到。“宇宙哲学中的问题”[2]的作者是乔治•F.R.埃利斯。宇宙学哲学的部分在书中起着承上启下的作用,因为一方面,宇宙学哲学的研究基于爱因斯坦广义相对论引力理论时空曲率和宇宙的演化由物质决定的思想,用广义相对论描述宇宙远古时期之后的演化;另一方面,由于在黑洞以及宇宙大爆炸初期物质高密度状态下无法忽略引力问题,因而无法避免引力理论。总的来说,整篇文章把当代宇宙学看作是观测宇宙学、物理宇宙学、天文宇宙学与各种形式的量子宇宙学共生共长、互惠互补的综合理论系统,想要给出一个“描绘真实宇宙起源和演化的理论”。主要内容分为两大部分,第一部分为宇宙学概论,包括基本理论、热大爆炸、宇宙观测、因果和可视世界、理论的发展、暴胀、极早期宇宙、一致性模型等内容,并澄清了关于宇宙暴胀和超光速等问题的一些误解。在埃利斯看来,“宇宙学正在由一种猜测性的事业向真正的科学转变,这不仅带来了与科学革命相近的多种哲学问题,也使得其他哲学问题更加紧迫,例如关于宇宙学中的说明和方法等问题。”因此文章第二部分进行的问题讨论围绕这些说明和方法问题展开,讨论了宇宙的唯一性、宇宙在空间和时间上的巨大尺度、早期宇宙中的无约束能量、宇宙起源的解释问题、作为背景存在的宇宙、宇宙学明确的哲学基础、有关人类的问题:生命的精细调节、多元宇宙存在的可能性和存在的本质等九大问题。在此过程中,埃利斯提出了34个论点,关涉到这9个问题的方方面面,包括人择原理和多重宇宙存在的可能性等。这些论述关乎几何学、物理学和哲学,它们构成了宇宙学面面临的哲学问题的环境及其与局域物理学之间的关系。埃利斯期望通过这一系列讨论改变人们认为宇宙学只不过是确定一些物理参数的简单看法。“量子引力”[3]一文的作者是卡罗尔•罗韦利,内容大致可分为四个方面。第一,量子引力的研究方法,包括早期的历史和方向、目前的主要尝试性理论等。量子引力的早期思想可以概括为“用一个理论来描述引力的量子特性”。期间出现的第一种方法是罗森菲尔德等人的“协变化”方法,通过引入一个虚构的“平坦空间”来考虑周围度规的微小涨落,并且运用电磁场中的方法来对这些波进行量子化;第二种是伯格曼等人的“正则化”方法,研究和量子化整个广义相对论的哈密顿函数,而不只是量子化其围绕平坦空间的线性化函数;第三种是米斯纳等人的路径积分方法。目前主要的尝试性理论主要介绍了基于协变化方法发展起来的弦理论和基于正则化方法发展起来的圈量子引力理论以及它们之间的争论。第二,关于量子引力研究方法论问题。指出量子引力研究的理由包括经验数据的缺乏和对引力是否应当量子化的思索。分析了当前量子引力研究中的各种态度以及科学知识的累积性和科学哲学的影响。第三,空间和时间的本质,包括广义相对论的物理意义、背景无关性、时间的本质等。第四,与其他未决问题之间的关系,包括统一、量子引力学的解释宇宙学常数、量子宇宙学等等。这些章节的详细内容不是本文的重点,我们想要做的,是分析作者的研究方式所代表的当代物理学哲学研究的视野和方法的转变。本书的研究方式明显地具有两个特征:第一个特征关乎物理学概念的解释:物理学的概念解释脱离不开数学形式化下的整体系统;第二个特征关乎新的物理学理论的理解:在理论的发展中处处显示物理学和形而上学的交织统一。这两个特征与这些物理学研究领域实验检验的缺乏以及理论构造的特征密切相关。

二物理学概念解释的新特征:数学形式化整体系统中的关联解释

巴特菲尔德相信当前基本物理学中的基础问题会为物理学哲学提供从最为有趣且最为重要的问题,而我们关注的是本书处理这些基础问题的方式。虽然从章节上来看,物理哲学的论题被划分为若干个领域,但从内容上,完全可以看到作者的用心,站在当代数学物理学发展的高度用整体微分几何等数学语言对物理学系统进行重新形式化和解释,每一章节的紧密联系使得物理学作为一个整体系统得以呈现。其中对每一个物理概念解释的细节,正是物理学哲学追求的基础问题的答案。可以说,概念解释居于本书的核心地位,物理学哲学解释问题的最重要的方式就是处理当代物理学中的概念和解释问题。

(一)物理学概念的解释:我们理解世界的基础

物理学的发展时时刻刻影响着人们对世界的理解方式,其途径就是物理学概念的解释。经典物理学、相对论和量子力学曾极大地改变我们对世界的看法,它们在经验上的有效性曾经强化过我们对科学理论客观性和真理性的观点,也曾让很多物理学家追求理论的实用性而认为有些基础性的问题毫无意义。但当前宇宙学和量子引力理论的提出,使人们重新注视广义相对论和量子力学的不相容性的时候,从广义相对论以来的一些基础性问题和哲学问题得以重新复兴。相对论为我们宇宙的时空结构确定了一类几何模型,其中每个模型都代表了一个与理论的约束条件相融的可能世界或区域。而我们对时空的理解涉及整体时空结构和爱因斯坦方程的约束条件等等。宇宙学和量子引力的研究则让我们明白,改变我们对空间和时间的理解的广义相对论是在可以忽略引力的量子特性时对引力进行描述的场理论,那么真正的空间和时间的本质又是如何呢?我们对宇宙起源的理解绕不开量子引力方法的尝试,但这种尝试要受到很多约束,比如成熟量子引力理论的缺乏、量子力学基础问题,比如测量问题、波函数的塌缩问题等。现在人们期望得到的成功量子引力的路径基于目前理论的发展,比如惠勒-德维特方程和宇宙波函数思想、来自弦论思想的高维时空方法,或者圈量子引力的应用等。但这些问题是否能真正解决宇宙起源的问题却并没有确切的答案,比如维兰金的创生虚无的真理论的理解要依赖于量子场论的精致框架和粒子物理学标准模型等很多结构,而这些基础本身也是需要解释的。可以说,我们理解世界的基础就在于我们用于理解它的那些概念的意义。

(二)概念解释的新特点:数学形式化下整体系统中的关联解释

巴特菲尔德在经典力学的辛约化中指出,经典力学的核心理论原理已经被欧拉、拉格朗日、哈密顿和雅可比等改写,“我们已经认不出来了,因此对它们的哲学反思也发生了变化。”因此引入辛几何、李代数等语言对理论进行形式化,旨在利用辛约化理论使连续对称和守恒量之间产生联系的特征,从理论结构上显现经典力学与量子物理学的联系,这是运用数学形式化系统展现物理学理论的对称性本质。相对论、宇宙学和量子引力哲学部分,情况也是如此。整本书是站在当代数学发展的高度,运用拓扑学、群理论和微分几何等重新形式化物理学的整个体系,并对其概念进行剖析的一个过程。而对基本问题的理解,则建立在概念剖析的基础之上。在这些文章中,理论发展的历史状况和实验成果,只是系统阐释整个理论概念和解释的背景而已。作者们的重点则放在用数学领域的发展和物理学理论形式化的诉求,促进对物理学理论结构的探索,进而把论题转化为对其哲学问题的探讨。理论的形式化体系、概念结构和物理学解释是有机地结合在一起的。在牛顿引力的几何化中,也是站在当代物理学和数学发展的高度,重新形式化作为相对论弱场近似的牛顿理论,得到与广义相对论类似的数学结构,正是在这个意义上,才能够好地发现两个理论在何种条件和何种程度上是相符的,又在何种条件和何种程度上是区别的。在这个形式化的整体系统中,对于物理概念的解释不再是孤立的解释,而是站在理论的数学结构的高度,成为一个整体系统中的关联解释。这在很大程度上突出了物理学哲学中语义分析方法的重要性,因为没有完全独立的概念,物理学的概念定义之间互相依赖,只有在一个系统的语义结构中才能理解概念的意义。如普斯洛斯在这套爱思唯尔哲学手册的《一般科学哲学》一书中所言:“理论解释的唯一方式就是把它嵌入到同类概念的框架中,并尝试着解开它们的相互关联。”[4]

(三)旧概念重新解释的意义:还原理论创立过

程中概念选择的特定背景在物理学的发展中,每一次理论创新和进步都伴随着新概念的提出或旧概念的重新解释,站在理论发展的角度考虑,这样的解释会让我们更好地理解物理学理论的提出、发展和变迁的合理性。比如蒙特在经典相对论一文中对闵可夫斯基时空环境下相对同时性关系的重新考虑。蒙特指出,当相对于一个四维速度矢量将一点上的矢量分解为“时间”和“空间”分量进行讨论时,我们理所当然地相信包含正交性的相对同时性的标准认同。在解释这种认同的理由时,根据方便在闵可夫斯基时空结构即狭义相对论体系下进行分析。他援引霍华德•斯坦的论述,指出采用相对同时性的标准(ε=1/2)的惯例是需要特定背景的。在他们看来,爱因斯坦是为了解决我们无法检测到地球相对于以太的运动而采取的解决方案,以一种特定的方式(ε=1/2)来思考同时性,但如果并非从爱因斯坦最初的思路来考虑,而是从一个成功理论的高度来理解它,把相对论视为是针对时空结构不变性的论述时,其意义就完全不同了。这在很大程度上还原了爱因斯坦对同时性做出的“定义”中挑选出来的这种标准关系的实质,它可能并非一种自然的存在,而是理论选择的特定需要,还原这个过程,对我们更好地理解理论和概念的本质有着重要的意义。

(四)新理论的概念澄清:科学进步的必然现象

物理学史上每一个新理论的诞生都会引起旧的概念的澄清,量子引力就是个很典型的例子。量子引力是对空间和时间本质的探索,它引导我们重新思考关于时间、空间、“在某处”、运动和因果观测者的地位等很多问题。作为试图把广义相对论和量子理论结合的理论,我们需要以历史的眼光重新追问。我们都知道,广义相对论改变了我们对牛顿独立于物质运动的绝对空间和时间的理解。量子力学则用我们关于运动的一般性理论替代了经典力学,并改变了物质、场和因果性的观念。但量子力学的外在时间变量和量子场论静止的背景时空都是和广义相对论不相容的。而广义相对论中引力场被假设为一个经典决定论的动力学场,无法处理小尺度引力的量子特性。因此,想要把二者进行结合的量子引力就遇到了困难。正因为如此,罗韦利直言尽管基础物理学在经验上有效,但它正处于一种深刻的概念混乱的状态。虽然20世纪后半叶,物理学注重实用而忽略了这些基本问题,但量子引力告诉我们这些基本问题必须得到新的答案。但问题的澄清并没有一条唯一明确的路可以走,超弦理论和圈量子引力在假设、成就、具体结果以及概念框架上都有着显著的不同,但它们都有自己的代价,弦理论的思想基础是为了消除广义相对论的微扰量子化的困难,保留了量子场论的基本概念结构,其代价之一是放弃广义相对论的广义协变性。圈量子引力植根于描述广义相对论的协变性,但它的代价是忽略了理论的不完备性,放弃了幺正性、时间演化、基本层次上的庞加莱不变性以及物理学对象是在空间中局域化的且在时空中演化的概念。可以看出的是,新理论澄清概念的过程是科学理论进步的必然现象,而这一过程是通过分析在描述世界结构时所产生的概念上的困难来对以往科学的研究框架予以质疑或辩护,这涉及的是对世界本质更深刻的哲学和形而上的思考。

篇(2)

作者简介:刘德伟(1979-),男,河南濮阳人,郑州轻工业学院物理与电子工程学院,讲师;李涛(1977-),男,河南淮阳人,郑州轻工业学院物理与电子工程学院,讲师。(河南 郑州 450002)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)34-0085-02

半导体物理是半导体科学的理论基础,是电子科学与技术、微电子学等专业重要的专业基础课,其教学质量直接关系到后续课程的学习效果以及学生未来的就业和发展。然而,由于半导体物理的学科性很强,理论较为深奥,涉及知识点多,理论推导繁琐,学生在学习的过程中存在一定的难度。因此,授课教师必须在充分理解半导体物理,熟悉半导体工艺和集成电路设计的基础上,结合教学实际中存在的问题,优化整合教学内容,丰富教学手段,探索教学改革措施,培养学生的学习兴趣,提高半导体物理课程的教学质量。

一、半导体物理课程特点及教学中存在的主要问题

郑州轻工业学院采用的教材为刘恩科主编的《半导体物理学》(第七版,电子工业出版社),该教材是电子科学与技术类专业精品教材。[1]结合教材特点与教学实践,半导体物理课程教学过程中存在的主要问题与不足[2]可归纳如下:

1.教材内容知识点多,理论性强

半导体物理课程前五章为理论基础部分,主要讲述了半导体中的电子状态、杂质和缺陷能级、载流子的统计分布、半导体的导电性与非平衡载流子,在此基础上阐述了电子有效质量、费米能级、迁移率、非平衡载流子寿命等基本概念;分析了状态密度、分布函数、载流子浓度以及迁移率与杂质浓度、温度的关系。课程涉及理论知识较深,易混淆知识点较多,数学公式推导复杂,很多基本概念及数学公式要求学生掌握量子力学、固体物理、热力学统计物理和高等数学等多门基础学科的理论知识。因此,学生在前期学习中,在相关知识点上难以衔接,对相关理论的掌握存在一定困难。

2.传统教学模式难以理论联系实际

半导体物理课程后八章主要介绍了半导体基本器件的结构与性能,半导体的光、电、热、磁等基本性质。如pn结电流电压特性及电容、击穿电压与隧道效应、肖特基接触与欧姆接触;半导体表面与MIS结构、表面电场对pn结性能的影响;半导体异质结构及半导体激光器等。由于这部分内容主要阐述半导体的实际应用,仅仅从课本上学习相关知识,难以理论联系实际,对于没有接触过半导体制备工艺的学生而言,就会觉得内容枯燥,课堂乏味。

3.教材内容无法追踪科技前沿

现代半导体技术日新月异,发展迅速,例如在半导体照明、半导体激光器、探测器、太阳能电池等领域都获得了重大研究成果,研究领域不断拓展,新的理论不断涌现,与化学、医学、生物等学科之间的交叉和渗透越来越强,极大地丰富了半导体物理的教学内容。而半导体物理教材内容的更新相对较慢,因此,如何在有限的课时内既要讲授教材内容,又要穿插相关科技前沿是一个值得深入探讨的问题。

二、半导体物理课程教学改革措施

基于以上分析,半导体物理课程对授课教师要求较高,如何在有限的课堂教学过程中将大量的知识讲解清楚,需要教师积极探索新的教学模式,针对课程特点与教学现状,通过不断实践克服存在的问题与不足,采用多样化的教学手段,优化整合教学内容,狠抓教学环节,使学生较好地理解并掌握相关知识,为后续课程的学习打下良好的基础。[3]

1.优化整合教学内容

由于现代半导体技术发展极为迅速,研究方向不断拓展,相关知识更新较快。因此,授课教师应与时俱进,关注科技前沿与研究热点,合理安排教学内容。结合电子科学与技术专业其它课程的教学内容,在保持课程知识结构与整体系统性的同时,对教学内容进行合理取舍,压缩与其他课程重叠的内容,删除教材中相对陈旧的知识,密切跟踪科技前沿与研究热点,适当增加新的理论,补充重要的半导体技术发展史,激发学生的学习热情,培养学生的科学精神。例如压缩教材中第一章固体物理课程已经详细讲解过的能带理论内容,将授课时间由原来的8学时压缩至6学时;在讲解半导体光学特性时,结合半导体光电子学的研究前沿,增加该部分内容所涉及的研究领域与最新技术,如半导体超晶格、量子阱等方面的内容;在讲述MIS结构的C-V特性时,补充C-V特性的研究意义,介绍半导体表面特性对集成芯片性能的影响,鼓励学生查阅总结利用C-V特性研究半导体表面的方法;在讲授半导体元器件的结构及性能时,适当补充半导体器件的制备工艺,播放一些半导体器件的制备视频,让学生结合某种半导体器件分析其结构与性能;在讲解半导体异质结构时,先让学生了解pn结种类,然后对比同质结与异质结的异同,最后让学生掌握异质结的电流电压特性,通过增加半导体激光器的发展史,即从第一支同质结半导体激光器只能在低温下发射脉冲激光到现在的异质结激光器的优异性能,让学生充分认识到半导体物理是现代半导体技术发展的理论基础,是科技创新的力量源泉。通过介绍科技前沿与研究热点,指导学生查阅相关文献,扩大学生的知识面,提高学生学习的积极主动性。

2.突出重点,分化难点,强调基本概念与物理模型

半导体物理课程涉及到的基本概念和物理模型较多,仅凭教材中的定义理解这些概念和模型,学生很难完全掌握。在讲解深奥的物理模型时,教师应运用恰当的类比,通过生动形象的事例对比分析,加深学生对物理模型的理解,增加学生的学习兴趣。例如教材中半导体载流子浓度的计算既是难点又是重点,学习中涉及到状态密度、玻尔兹曼分布函数、费密分布函数以及载流子浓度等为较容易混淆的概念。为了帮助学生理解,教师可以通过教学楼里面的学生人数与半导体中的电子数目进行类比:不同楼层的教室对应不同的能带,教室座位数对应能态的数目,教室的学生人数就相当于半导体中的电子数目,这样,计算半导体电子浓度的问题就与计算教室单位空间内学生人数的问题非常类似。通过这种生动形象的类比,学生很容易明白半导体中的能态密度就相当于教室单位空间的座位数,而半导体中的电子在能级上的占据几率就对应于教室内学生的入座情况。半导体中的电子在能级上的占据概率需要满足波尔兹曼分布函数或费米分布函数,而分布函数的确定取决于费米能级的位置,当分布函数确定后,单位能量间隔内的电子数目就可以通过简单的微积分计算出来。

另外,半导体物理课程中理论推导和数学上的近似处理较多,繁琐的公式推导增加了学生对物理模型的理解。如果教师在教学过程中能适当地把物理模型和公式推导分开,正确处理两者之间的关系,分别从物理和数学两方面寻找攻克这些难点的途径,使学生在彻底理解物理模型的基础上掌握理论推导。例如教材中有关n型半导体载流子浓度的内容安排如下:首先根据杂质半导体的电中性条件,推导出一个包含费米能的表达式,然后根据杂质电离情况分为低温弱电离区、中间电离区、强电离区、过渡区以及高温本征激发区,最后再根据不同电离区的特点进行讨论与近似处理。所涉及到的物理模型相对简单,但分区讨论和近似处理部分篇幅较长。如果运用传统教学模式,学生很容易沉浸在复杂的数学公式推导之中,难以透彻理解物理模型。如果教师在授课过程中先让学生了解该部分内容的整体安排,理解物理模型,再分析各温区的主要特点,最后总结规律,通过数学推导得出结论,就能很好地提高教学效果。

3.温故知新,适时比较,加强各章节之间的联系

对于课堂上刚刚讲授过的知识,学生并不一定能够完全掌握,此时教师应该结合半导体物理课程的特点,在教学过程中做到温故知新,适时比较,加强不同章节之间知识点的联系。例如pn结是半导体器件的基本单元,如日常生活中常见的激光器、LED、整流器、调制器、探测器、太阳能电池等。在讲授该章内容时,如果教师以pn结为主线将教材中不同章节之间的内容有机联系起来,学生就会从整体上进一步了解半导体物理课程的教学内容。只有在教学过程中不断加强各章节知识点之间的联系,学生才能完全掌握半导体器件的基本原理,为以后从事半导体行业打下坚实的基础。再如所选教材中有关半导体载流子浓度的计算,分为非简并半导体和简并半导体两种情况。在讲述后者时,教师通过对比分析非简并半导体和简并半导体在概念上有何异同,再引导学生比较简并半导体与非简并半导体载流子浓度的计算公式,学生就会意识到二者的主要区别就是分布函数不同,在计算简并半导体载流子浓度时,虽然分布函数替换后导致积分变复杂,但只是数学处理的方法不同,两者的物理思想却完全一致。通过这样的比较学习,学生对非简并半导体与简并半导体以及玻尔兹曼分布函数与费米分布函数的理解就会更加深入。

三、结束语

通过以上教学改革措施,培养了学生的学习兴趣,增加了学生的学习积极性,提高了半导体物理课程的课堂教学效果,为学生后续专业课程的学习奠定了扎实的基础。

参考文献:

篇(3)

《概率论与数理统计》是一门基础课程,它的应用几乎遍及到我们生活和工作的各个领域,如自然科学、社会科学、工程技术、军事和工农业生产等。因此,它也是一门实践性很强的课程。目前,我国高等院校不仅数学专业开设了此课程,而且理、工、农、医、经济和管理等学科门类也都开设了此课程。结合我校对物理师范专业的办学定位、培养目标和生源情况制定了《概率论与数理统计》课程的教学内容,使其更好的完成学校对物理师范专业学生的培养目标。通过对该课程的学习,为今后学生应用于社会,解决社会经济、技术问题打下基础。同时,对该课程的学习,将有助于我校毕业生在今后的物理教学中,可以居高临下的处理中学物理教材中有关概率和统计的内容[1]。《概率论与数理统计》,首先它是一门数学课程,而数学课程是所有理工科专业的基础课程。显然,物理与数学有着千丝万缕的关系。就该门课程而言,它是物理课程《热力学与统计物理》和《量子力学》的基础课程。没有《概率论与数理统计》的学习,这两门课程的学习将会变得困难重重。比如:《热力学与统计物理》,该课程中统计部分的基础就是《概率论与数理统计》中讲述的等概率原理,它是支持整个统计物理的理论框架体系。又如《量子力学》中的几率密度,它和《概率论与数理统计》中讲述的概率密度是一个概念,它们的归一化条件讲述的是一个原理。我们知道,这两门课程是物理专业非常重要的两门课程,可这两门课程的基础课程是《概率论与数理统计》,其地位对于完成物理专业的人才培养是非常重要的。目前,师范教育的地位处在一种非常尴尬的地位,根据教育部公布的《中小学教师资格考试暂行办法》,从2015年起,全国所有非师范专业的学生都可以申报教师资格证。因此,物理师范专业为了适应新形势下的改革,其培养目标也要适应当前的发展趋势,而培养过程中的课程教学也要做调整。在本文中,我们将结合改革的新形势下,结合《概率论与数理统计》课程在物理专业的地位出发,从物理师范专业的培养目标、教学手段、教学内容、教学设计、学生成绩考核、教学研究和师资队伍建设等方面入手,对物理师范专业《概率论与数理统计》课程改革进行探析。

一、基于人才培养目标下的课程改革

根据当前国家对中小学教师资格改革的暂行规定,我国全日制本科的学生都可以申请教师资格证,这无疑会对传统师范院校毕业生的就业产生强烈的冲击。因此,为了更好的适应政策的变化,提高师范生的就业核心竞争力,师范专业的人才培养计划也要做一些调整,与之相应的专业课程设计也要做相应的改革。具体到《概率论与数理统计》课程调整为:(1)课程设置、课程内容必须更好的为本专业其他课程服务;(2)教学内容则要注重培养学生解决实际问题的能力,纯理论的教学内容则要做相应的调整;(3)压缩概率论内容,减少概率论课时。同时,加大统计内容,增加统计课时。

二、教学手段的改革

众所周知,在传统的教学过程中一切都由教师决定,包括教学内容、教学策略、教学方法和教学步骤。这些都是事先由教师安排好,学生被动的参与其中,处于被灌输的状态。这样的结果会导致学生缺乏学习主动性,遏制学生的创造性,不利于人才的培养。因此,教学手段必须要改革。对此,可以引进多媒体教学,它与传统教学模式相比,有如下几个优势[2]:(1)直观性,能突破视觉的限制,多角度地观察对象,并能突出重点,有助于概念的理解和方法的掌握;(2)图、文、声并茂,多角度调动学生的情绪、注意力和兴趣;(3)动态性,有利于反映概念及过程,能有效地突破教学难点;(4)交互性,学生有更多的参与,学习更为主动,并通过创造反思的环境,有利于学生形成新的认知结构;(5)通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索和创造力;(6)可重复性,有利于突破教学的难点和克服遗忘;(7)信息量大,节约空间和时间,提高教学效率。

三、教学内容的改革

根据当前社会对应用型人才的需求,教学内容也应向应用性发展,对教学内容的改革应朝如下方向进行:(1)教材内容要突出“厚基础”、“重应用”的应用型特色。所谓“厚基础”是指强化基础理论、基础知识,拓宽知识面。(2)教学内容要突出基本概念、基本理论和基本方法,在培养学生的数学素质上下功夫。要改变传统的“重概率、轻统计”的教学思想以及重运算技巧轻数学思想的倾向,突出概率论的基本概念和基本思想的教学。(3)教学内容要注重理论与实际的结合,强化培养学生的应用能力。将“案例”教学贯穿于教学内容的始终,将有利于学生应用能力的培养。(4)教学内容要与计算机应用相结合,为教学手段的现代化构筑平台。在教学内容中引入数学实验,把一些传统的教学内容,如随机试验的例子、统计计算等在计算机上通过数学软件加以展现,并在教师指导下让学生在计算机上解决一些简单的实际问题,调动了学生学习的积极性,并为多媒体教学创造了条件[3]。

四、教学设计的改革

教学设计理论主要有两种,即以教为主的教学设计和以学为主的教学设计。这两种教学设计理论各有千秋,在教学设计中应将二者有机结合起来,取长补短,形成优势互补的“学教并重”的教学设计理念,这不仅发挥了教师的主导作用,也充分体现了学生作为学习主体作用的教学体系[4]。在《概率论与数理统计》课程的教学中,灵活而恰当地选用教学方法,注意教学系统五个要素(教师、学生、教材、教学媒体、网络)的地位与作用。恰当的将教学媒体、计算机软件、网络应用于教学,同时采用与之相应的教学表述方式,使知识的呈现形式和生成方式呈现多样化。例如:复杂的运算结果可以用计算机软件(如Mathematic软件)作为辅助进行近似计算、抽象的几何图形可以用工具软件来生成等。总之,在《概率论与数理统计》课程的教学中主要运用“学教并重”的教学方法。以上教学设计的变化主要基于“构建主义”和“主导—主体相结合”的教学理论支撑[1]。

五、学生成绩考核的改革

以前的考试制度是通过期末考试来完成,这种制度强调理论知识的考核,不是对学生解决实际问题能力的考核。这种考核制度夸大了考试的作用,不利于创新人才的培养,这必然会影响大学生综合素质的提高,不适应瞬息万变的社会发展对人才的需要。因此,我们必须要加强对学生解决实际问题能力的考核。在课程的考核形式上,我们可以采取平时成绩与期末成绩相结合的方式。如:一般平时成绩占到总成绩的20%或30%,期末考试卷面成绩占总成绩的80%或70%。同时,要注意不同教学要求要采取不同的内容来进行考核。这里,我们重点探析平时成绩考核。平时成绩考核的形势应分成两部分:(1)上课出勤率、上课回答问题、平时作业;(2)对一些重点章节和一些实用性很强的章节要额外布置一些题目,这些题目具有一个特点———开放性,最后没有确定性答案,结果只有更好没有最好。同时,要将平时成绩作为对学生创新能力培养的主要通道。

六、教学研究和师资队伍建设

在教学过程中,教师占主导地位。因此,教师的教学理念和教师的教学水平不仅关系到课程目标的实现,也关系到课程教学质量的提高,物理师范专业的培养目标要适应当前社会的新要求。随着社会的不断发展,高等教育也会不断进行改革,那么教师的教学理念和知识面也要不断更新和拓宽。教师不仅要积极从事科学研究,同时也要加强教学研究,包括积极探索本课程的课程体系、教学内容、教学方法和教学手段,以及如何通过对这些内容的改革实现培养目标的“厚基础”和“重应用”的特点。在《概率论与数理统计》的教学过程中,不仅要了解教学规律,掌握教学方法,而且还要讲究授课艺术,从而提高教学水平和教研水平。要实现这个目标,就必须要建设一支高水平的师资队伍,为课程的可持续发展注入新活力,使之更好的为人才培养的目标服务。

七、结语

社会日新月异,其对于人才素质的要求也逐渐提高,学校教育作为培养社会人才的基地,也应对这种需求做出相应的调整。而课程作为培养人才的训练内容,也应做出相应的改变,这就是本文探析《概率论与数理统计》课程的改革的根本出发点。笔者希望本文的研究能为今后更好的推进《概率论与数理统计》的教学提供参考。

参考文献:

[1]韦相龙.《概率论与数理统计》课程教学改革的思考[J].科技信息,2012,(11):226-227.

[2]所艳华,汪颖军,罗洪君,等.无机化学课程与实验教学探索[J].大学化学,2005,13(28):11.

篇(4)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)41-0130-02

一、光电子技术与双语教学

光电子技术是一个非常宽泛的概念,它围绕着光信号的产生、传输、处理和接收,涵盖了新材料(新型发光感光材料、非线性光学材料、衬底材料、传输材料和人工材料的微结构等)、微加工和微机电、器件和系统集成等一系列从基础到应用的各个领域。光电子技术作为一门专业课程,主要涵盖光辐射与发光源、光的传播、光的调制、光电探测、光电显示与成像、光存储等内容。光电子技术不仅是一门专业课程,而且已发展成为一门学科,即电子技术与光子技术相结合而形成的一门新兴的综合性的交叉学科,主要研究光与物质中的电子相互作用及其能量相互转换的相关技术。光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科,是未来信息产业的核心技术。双语教学是运用外语进行的非语言教学,具有如下特征:第一,强调在语言类的专业学科中用外语教学;第二,强调运用外语进行课堂教学的交流与互动。双语教学与专业外语教学在性质上完全不同。前者外语是一种教学语言,以外语为手段,讲授一门课程为目的。后者是一种语言教学,以相关知识为手段,讲授外语为目的[1]。因此,在双语教学中,专业知识与专业外语之间存在相互平衡的关系。在有限的学时条件下,教师既要讲授专业知识又要讲授专业外语,学生要在专业知识与专业外语两方面取得进步,二者之间的平衡关系需要根据课程的要求、学生的实际情况在教学过程中不断调整。同时,专业知识与专业外语之间存在相互促进的关系。扎实的专业知识为课程内容的掌握奠定了基础,为专业外语的理解与提高提供了知识背景;坚实的专业外语基础为理解原汁原味的教材内容提供了保障,促进了学生进一步学习专业知识。

随着知识经济、信息社会的到来,全球竞争日益激烈,现代科学正以前所未有的速度迅猛发展,不断引发各个领域深层次的革命。为缩短差距,提高人才的国际竞争力,满足社会对国际化复合人才的需求,双语教学的迫切性和重要性日益凸显。第一,双语教学是知识经济发展的形势需要。国际间竞争不仅表现为产品和市场竞争,更多表现为人力资源的竞争。面对竞争,只有善于抓住机遇,应对挑战,加速高等教育国际化进程,培养一流的人才,才能促进科学教育的发展和变革,使学生具有参与未来国际活动和国际竞争能力。双语教学有利于培养符合市场需求的高素质国际化人才,增加就业机会,保证我国科学教育更加开放地面向世界,促进我国科学教育可持续发展,促进我国知识经济的发展。第二,双语教学是知识信息交流的客观需要,加强中外交流,提高我国科学术水平,缩短与世界先进国家的差距,为实践科教兴国的战略做出贡献。第三,双语教学有利于复合型人才的培养。这种既懂外语,又有专业知识的复合型人才无疑提高了人才的竞争力。

二、“光电子技术”双语课程建设

双语课程建设内容主要包括:大纲确立,教材选用,讲稿教案撰写,课件制作,课堂讲授,课程考试[2]。下面,我们介绍在上述方面的具体工作。

1.“光电子技术”双语课程教材的选取。西安工程大学理学院物理系自2009年以来开设《光电子技术(双语)》课程,其定位为物理系各专业的一门平台课。结合光电子技术的发展、光电子技术双语课程的定位、物理系学生的具体情况以及就业去向,采用S.O. Kasap编著的“Optoelectronics and Photonics-principles and practices”为教材,并且以相关的中英文教材作为参考书[3-6]。课程以“普通物理”、“光学”、“量子力学”系列课程为基础,主要讲授光的波动理论、介质波导和光纤、半导体科学和发光二极管、光伏器件、激光基本原理与技术、光束的调制、光电探测等基本概念及基本技术。

2.“光电子技术”双语课程大纲制定。“光电子技术”双语课程性质为学科基础课,授课对象为物理系本科三年级学生,48个学时,3个学分。制定课程大纲的宗旨和目标在于,通过课程的学习,学生能够对光电子技术中的基本概念、基本技术和基本器件有比较全面、系统的认识,提高分析和解决工程技术问题的能力。同时,学生能够熟悉光电子技术的应用领域,了解目前光电子技术的最新成就,掌握光电子技术的发展方向。采用双语教学(汉语和英语),提高学生查英文文献、读英文著作、写英文文章,以及专业的口头交流能力。为了实现课程大纲中提出的目标,将每一章的内容分为四个层次,即熟练掌握、掌握、理解和了解,并配以相应的课时。

3.“光电子技术”双语课程多媒体课件。考虑课程内容更新速度较快的特点,备课在依据原版教材的基础上,增加了与教材内容相关的一些崭新成果。既让学生感受到原汁原味的英语表达方法,又让学生开拓了视野,把握学科发展动态和发展方向。课程的教案、讲稿以及多媒体课件全部用英语书写,多媒体课件包含下列特点。第一,内容新颖:除了涵盖教材的全部内容,在每一章的最后部分增加了与这一章相关的科技新进展,使学生在掌握课程内容的基础上了解相关领域的动态和最新进展,为提高学生的创新能力提供了切实的帮助。第二,结构合理:由于课程涵盖了经典光学、波导与光纤、半导体、激光、光电探测、非线性光学等内容,每一章都自成体系,可以进行跳跃式教学。并且,每一章的开头都有本章的目录,每一章的结尾部分都进行了小结,做到了首尾呼应,有始有终。第三,图表丰富:收录了与本课程相关的光电子领域的一些著名科学家的照片,介绍了他们的简历及主要成就。同时加入了相关的动画和视频,使学生对抽象概念的理解与掌握变得直观而容易,并且引用了一些著名科学家的重要话语,为提高学生的学习兴趣,开拓学生的视野,丰富学生的思维方式提供了翔实的资料。第四,行文规范:由于是双语课程,课件的文字叙述与使用教材紧密联系,并采用规范的科技英语表达方式,使学生在本科阶段就能够接触相关的专业词汇以及规范的专业英语,为将来的进一步学习和工作打下良好的专业英语基础.

4.“光电子技术”双语课程互动式教学。当前的社会需求对课程的教学方式提出了新的要求,其中包括教学内容的整合,教学内容的拓展,教学手段的更新,教学方法的改革等。在全球步入信息化时代的今天,讲课不仅是对己有知识的简单阐述,而且是教师的一种再创造过程。“一块黑板加一支粉笔”这样的传统教学方法己经不适合现代化的今天了,现今的教学方法应该更趋多元化。不但要注重课程体系的完整性,课程内容之间的有机联系,而且要丰富教学手段,图文声像等多种效果的多媒体课件与板书结合的模式,同时要采用启发式、互动式的教学方法。在明确教学目标,考虑教学目的和本专业实际情况的条件下,我们采取互动式的授课方式,表现在如下几个方面:第一,学生之间、师生之间互动行程。在课堂上,首先简要回顾上次课的主要内容,让二位同学依次补充细节。其次,讲解并翻译这次课所涉及的专业术语以及重点段落,领读一遍后,让一位同学读一遍,其他同学找不足之处,然后进行课程内容讲授,多媒体课件与板书全部用英语书写,汉语讲授为主,英语为辅。其间,教师常常会提出和讲授内容相关的问题,并鼓励学生可随时提问,收到了非常好的教学效果。第二,教师在课后的反思。互动式教学的主要目的是激发学生获取知识、提高能力的主动性和积极性。要有效实现这一目标,应将以下几个方面有机地结合起来:知识的传授、互动题材、师生之间互动行程、教师的点评。总之,量体裁衣地选用互动模式才能确保教学互动流程的顺畅,才能激发学生的积极性和主动性,增强学生的自信心与表达能力。

光电子技术和微电子技术是未来信息领域的两大支柱。光电子技术的双语教学不但能够促进学生对相关学科前沿学科理论的掌握与了解,而且有利于学生外语综合能力和跨国文化交际能力的培养。在双语教学中,专业知识与专业外语之间既存在相互平衡的关系,又存在相互促进的关系。双语课程建设应在大纲确立、教材选用、讲稿教案撰写、课件制作、课堂讲授、课程考试等方面加大力度。采用互动式教学方法讲授光电子技术,将知识的传授、互动题材、师生之间互动行程、教师的点评等方面有机地结合起来,有利于激发学生的积极性和主动性,增强学生的自信心与表达能力。

参考文献:

[1]吴平.五年来的双语教学研究综述[J].中国大学教学,2007,(1):37-45.

[2]赵懿琨,王卫星,王建.光电子技术双语教学课程的建设[J].教育理论与实践,2007,(27):169-170.

[3]安毓英,等.光电子技术(第3版)[M].北京:电子工业出版社,2011.