绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇集成电路工艺原理范文,希望它们能为您的写作提供参考和启发。
中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2016.01.047
The Research of Experimental Teaching on "Integrated Circuit
Process Foundation" in Independent College
WEN Yi, HU Yunfeng
(University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, Guangdong 528402)
Abstract Combining electronic science and technology applied talents training model in independence colleges, the experimental teaching was discussed on the "integrated circuit process foundation" course. The course was composed of simulation multimedia teaching system, basic semiconductor planar process experiment, process simulation software and school-enterprise cooperation. With the author's teaching practice, the enthusiasm of students was trying to effectively mobilized, and the development of students' learning ability and practical ability to train qualified electronic information applied talents was promoted.
Key words applied talents; integrated circuit process foundation; experimental teaching
0 引言
微电子技术和产业在国民经济中具有举足轻重的地位。高校的电子科学与技术专业以培养微电子学领域的高层次工程技术人才为目标,学生毕业后能从事电子器件、集成电路和集成系统的设计和制造,以及相关的新技术、新产品、新工艺的研制与开发等方面工作。
“集成电路工艺基础”是电子科学与技术专业的一门核心课程,讲授半导体器件和集成电路制造的单项工艺基本原理和整体工艺流程。本课程是电子科学与技术专业课程体系中的重要环节,也是学生知识结构的必要组成部分。通过本课程的学习,学生应该具备一定工艺分析、设计以及解决工艺问题的能力。
集成电路工艺实验作为“集成电路工艺基础”课程的课内实验,是电子科学与技术专业的专业课教学的重要组成部分,具有实践性很强、实践和理论结合紧密的特点。加强工艺实验教学对于培养高质量的集成电路专业人才十分必要。但是集成电路的制造设备价格昂贵,环境条件要求苛刻,限制了工艺实验教学在高校的开展。国内仅少数重点大学能够承受巨大的运营费用,拥有简化的集成电路工艺线或工艺试验线供科研、教学使用。而大多数学校只能依靠到研究所或Foundry厂进行参观式的实习来解决工艺实验问题,这对于学生实践能力的培养是远远不够的。
我院电子科学与技术专业成立于2003年,现每届招收本科生约120人,多年内为珠三角地区培养了大量专业人才。随着集成电路技术日新月异的发展,对从业人员的要求也不断升级,所以工艺实验教学也必须与时俱进。作为独立学院,如何结合自身实际地进行工艺实验室建设、采用多种方法手段开展工艺实验的教学,提高集成电路工艺课程的教学质量,是我们所面临的紧迫问题。本文以“集成电路工艺基础”实验教学实践为研究对象,针对独立学院学生理论基础较为薄弱,动手热情比较高的特点,就该课程教学内容和教学方式进行了探讨。
1 “集成电路工艺基础”的实验教学
“集成电路工艺基础”具有涉及知识面广,教学内容信息量大,综合性强,理论与实践结合紧密的特点,课程教学难度相对较大。同时独立学院相应配套的实验教学设备较为缺乏。为了提高学生对该课程的兴趣,取得更好的实验教学效果,让学生能将理论应用于实践,具有较强的集成电路生产实践和设计开发能力,笔者从如下几方面对实验教学进行了尝试。
1.1 工艺模拟多媒体教学系统
运用传统的教学方法,很难让学生理解抽象的器件结构和工艺流程并产生兴趣。我院购置了清华大学微电子所的集成电路工艺多媒体教学系统,帮助学生对集成电路工艺流程有一个全面生动的认识。该系统提供扩散、氧化和离子注入三项工艺设备的操作模拟,充分利用多媒体技术,将声光电等多种素材进行合理的处理,做到图文声像并茂,力争使抽象的知识形象化,获得直观、丰富、生动的教学效果。该系统涉及大量的集成电路制造实际场景与特殊细节,能较全面地展示Foundry厂的集成电路生产环境和工艺流程。内容丰富、身临其境的工艺模拟能大大提高学生的学习兴趣,帮助学生理解理论知识。
此外,在工艺课程的课堂教学过程中,尝试利用学生自学讨论作为辅助的形式。针对某些章节,老师课前提出问题,安排学生分组准备,自习上网收集最新的与集成电路工艺实验相关的资料,整理中、英文文献,制作内容生动的PPT在课堂上演示并展开讨论,最后归纳总结。这样既培养了学生利用网络进行自学和小组合作作学习的习惯,提高网上查找、整理资料的能力,也为老师的多媒体课件制作提供了素材,丰富了老师的教学内容。
1.2 基础的半导体平面工艺实验
学院一直非常重视电子科学与技术专业的建设问题,在实验室配置方面的资金投入力度比较大。在学院领导的大力支持下,近年来实验室购置了一批集成电路工艺实验设备和仪器,如光刻机、涂胶机、氧化反应室、磁控溅射设备、半导体特性测试系统和扫描电子显微镜等,为集成电路工艺实验教学的开展打下了良好的物质基础 。
在集成电路专业教学中,工艺实验是非常重要的环节;让学生进行实际操作,对于培养应用型人才也是非常必要的。通过调研考察兄弟院校的工艺实验开展情况,结合我院的实际情况和条件,确定了我院电子科学与技术专业的基础半导体平面工艺实验项目,如氧化(硅片热氧化实验)、扩散(硅片掺杂实验)、光刻(硅片上选择刻蚀窗口的实验)、淀积(PVD、CVD薄膜制备的实验)等。
这些设备和仪器,除了用于工艺课程实验教学外,平时还开放给本科生毕业设计、学生创新项目及研究生科研等。通过实际动手操作,使学生能将所学理论知识运用到实际中,既培养了学生的实际操作能力,又引导学生在实践中掌握分析问题、解决问题的科学方法,加深了对集成电路工艺技术和原理的理解。
1.3 工艺仿真软件
现代集成电路的发展离不开计算机技术的支持,所以要重视计算机仿真在课程中的作用。TCAD(Technology Computer Aided Design)产品是研究、设计与开发半导体器件和工艺所必需的先进工具。它可以准确地模拟研究所和Foundry厂里的集成电路工艺流程,对由该工艺流程制作出的半导体器件的性能进行仿真,也能设计与仿真太阳能电池、纳米器件等新型器件。
利用美国SILVACO公司的TCAD产品,笔者为工艺课程开设了课内仿真实验,实验项目包括薄膜电阻、二极管、NMOS等基本器件的设计和工艺流程仿真。通过ATHENA和ATLAS软件教学,指导学生仿真设计基本的半导体器件,模拟工艺流程,从而巩固所学理论知识,使学生将工艺和以前学过的半导体器件的内容融合起来。学生在计算机上通过软件进行仿真实验,既可以深入研究仿真的工艺流程细节,又可以弥补由于设备条件的制约带来的某些实验项目暂时无法开出的不足。
1.4 校企合作
培养应用型人才还必须结合校企合作。珠三角地区是微电子产业的聚集地,企业众多,行业发展前景好。加强校企联系,可以做到合作共赢,共同发展。通过组织学生到半导体生产测试企业参观实习,如深圳方正微电子、珠海南科、中山木林森LED等,让学生亲身体验半导体企业的生产过程,感受集成电路工厂的生产环境,了解本行业国内外发展的概况,从而弥补课堂教学的不足,激发学生学习热情,引导学生毕业后从事相关工作。目前,学院与这些半导体生产测试企业建立了良好的合作关系,每届毕业生都有进入上述企业工作的。他们在工作岗位上表现良好,获得用人单位的好评,既为企业输送了合格人才,也为往后学生的职业规划树立了榜样,拓展了学生的就业渠道。
2 结束语
经过笔者几年来的实践,在“集成电路工艺基础”课程的实验教学中,对教学内容和教学方式进行了改进,形式多样,互为补充,内容全面、新颖,注重学生实践技能的培养,对提高学生整体素质起到了积极作用,实现了教学质量的提高。当然,“集成电路工艺基础”课程的实验教学还有很大的改进空间,我们还需要在实践中不断地改革与探索,将其逐步趋于完善,使其在培养独立学院应用型人才的过程中发挥巨大的作用。
参考文献
[1] 王红航,张华斌,罗仁泽.“微电子工艺基础”教学的应用能力培养[J].电气电子教学学报,2009.31(2).
[2] 王蔚,田丽,付强.微电子工艺课/实验/生产实习的整合研究[J].中国现代教育装备,2012.23.
关键词: 电子科学与技术专业;集成电路工艺学课程;教学改革
Key words: electronic science and technology major; IC technology courses; teaching reform
中图分类号:G42文献标识码:A 文章编号:1006-4311(2011)13-0223-01
1 信息时代需要优秀的电子科学与技术专业的人才
电子科学与技术专业具有多学科渗透、应用性强、主要服务于IC行业等鲜明特点。能够从事电子科学与技术领域的研究、设计、开发、应用和管理的高级人才。目前国内开设电子科学与技术专业的学校有:天津大学、电子科技大学、西安电子科技大学、北京理工大学、北京航空航天大学等几十所学校。通过本课程的学习应使学生对集成电路工艺学中的基本概念、基本技术和基本器件有比较全面、系统的认识,培养学生分析和解决工程技术问题的能力,为进一步学习相关专业课打下基础。主要研究氧化、扩散和离子注入等相关技术。使学生掌握光刻、刻蚀和蒸发溅射等的基本概念及基本技术,对集成电路工艺学有比较全面、系统的认识和了解。
2 我校电子科学与技术专业本科人才的培养目标
该专业毕业生应获得以下几方面的知识和能力:①掌握信息科学、电子学和计算机科学学科的基本理论、基本知识;②微电子技术系统及其决策支持与安全防护系统的分析与设计方法和研制技术;③具有使用计算机和仪器设备解决工程问题的能力;④具有创新意识和独立获取新知识的能力。
3 电子科学与技术专业集成电路工艺学课程教学改革探讨
3.1 集成电路工艺学的内涵 集成电路工艺学是利用研磨、抛光、氧化、扩散、光刻、外延生长、蒸发等一整套平面工艺技术,在一小块硅单晶片上同时制造晶体管、二极管、电阻和电容等元件,并且采用一定的隔离技术使各元件在电性能上互相隔离。然后在硅片表面蒸发铝层并用光刻技术刻蚀成互连图形,使元件按需要互连成完整电路,制成半导体单片集成电路。随着单片集成电路从小、中规模发展到大规模、超大规模集成电路,平面工艺技术也随之得到发展。例如,扩散掺杂改用离子注入掺杂工艺;紫外光常规光刻发展到一整套微细加工技术,如采用电子束曝光制版、等离子刻蚀、反应离子铣等;外延生长又采用超高真空分子束外延技术;采用化学汽相淀积工艺制造多晶硅、二氧化硅和表面钝化薄膜;互连细线除采用铝或金以外,还采用了化学汽相淀积重掺杂多晶硅薄膜和贵金属硅化物薄膜,以及多层互连结构等工艺。
3.2 电子科学与技术专业集成电路工艺学课程教学改革措施
3.2.1 教学内容 ①授课体系和重点;课程根据电子科学与技术专业方向的学生培养要求,着重从硅工艺的角度出发,理论方面力求清楚易懂,阐述微电子学基础、半导体物理基础、光电现象和光电效应,重点介绍常用工艺原理、特性和参数。为了更好的运用硅基器件,对各类器件的电路也作了详细的分析,同时给出实际应用系统举例。②所讲授的知识要紧跟科学发展前沿;集成电路工艺学教科书对于迅猛发展的集成电路工艺学来说,既是基本的,又是滞后的,教师授课时如果按教材讲解,往往会带来知识陈旧、讲课形式单一、内容枯燥乏味的后果,造成学生学习积极性下降。因此在教学过程中删掉一些陈旧过时的内容,及时补充和更新教学内容,增添一些现代集成电路工艺学的前沿知识,特别是体现本学科专业特色的一些前沿知识,从而紧跟集成电路工艺学的前沿,给学生提供充分的科学探索和求真的空间。③注重课程与专业应用领域间的联系;专业课可理解为某一学科的基础课程,是通向学科广阔领域的桥梁。它的基本功能是引导学生明确学科专业发展方向,使其在日后的学习工作中能自如的在该学科专业的深度和广度上钻研、拓展。因此在讲授课程各部分内容时,电子科学专业的应用领域紧密相连。例如针对硅片生产应用领域,在课程讲授过程中可适当加入集成电路制造技术的应用热点以及在IC行业中的应用等方面的内容,使该专业的学生了解所学课程内容在该领域的应用、研究热点及发展前景。
3.2.2 教学方法 ①利用现代教育技术的各种多媒体技术和网络技术进行教学,例如投影、幻灯、录像等多媒体资料,充分发挥其信息容量大、方便快捷、形象直观、教学效率高的优势。这样使用这些教学工具,既使教师能方便清楚地讲授专业课中的各种图片资料内容,又省去了教师课堂现场作图的时间,在有限的时间内能讲授更多的内容,提高了讲课的信息量。因此教师要积极制作教学课件、开发利用网络上丰富的信息资源,下载适合学生阅读的科研论文,并推荐给学生参考。这是开拓学生视野,培养学生自学意识和科研意识的有效方法。②采用讲座与讲授相结合的教学方法。在进行基础理论教学的适当时机,安排集成电路方面科技知识的专题讲座,穿插现代集成电路科技知识,使学生既强化基础理论训练,又熟悉了解较多的现代集成电路科技知识,激发学习兴趣,培养学生的科研意识。
3.2.3 教学目标 在集成电路课程改革中,把教学目标从以科学知识教育为主转变为实现科学教育和人文教育的融合,培养敢于创新、善于思索、具有团队协作精神的21世纪新型人才。长期以来,我国大学文、理、工分校,存在着科学教育与人文教育的脱离,造成理工科生的人文文化知识和文科生的科学常识知之甚少。针对电子科学与技术的工科学生,应在进行科学知识教育的同时注重培养其人文精神,例如在讲解集成电路课程中的科学概念、原理、方法时可提到发现科学规律的动机,提到科学家如何通过艰苦的努力甚至牺牲生命取得创新,以及这些成果的应用对社会可能造成的影响等,从而使之潜移默化地对学生进行自然的而不是勉强的人文教育。
1.引言
21世纪是科技飞速发展的世纪,集成电路制造业是一项战略性的基础产业,《集成电路工艺》是电子科学与技术专业重要的专业课,其目的是使学生学习和掌握VLSI的主要工艺技术与原理,熟悉工艺设备的特点,培养工艺设计及解决工艺问题的能力。课程具有实践性很强、理论与实践结合紧密的特点,为学生以后进行工程设计和科研工作打下良好基础。本课程的目的是使学生对微电子关键工艺及其原理有较为完整和系统的概念,并具有一定工艺设计、分析和解决工艺问题的能力。结合多年教学工作实际,我提出了几点教学改革设想[1][2]。
2.教学内容的选取
2.1教材的选取。
本课程首选教材是《硅集成电路工艺》。该书有三个优点:一是内容全面丰富。不仅详细介绍了芯片制造中的各项关键工艺,而且介绍了支持这些工艺的设备,以及每一道工艺的质量检测和故障排除。二是工艺技术先进。该书吸收了当今最发达技术资料,如化学机械抛光、浅槽隔离等工艺,因此本教材是一本很全面、很先进和可读性非常强的专业书籍。
2.2教学内容的选取。
本课程的目的是使学生掌握半导体芯片制造的工艺和基本原理,并具有一定的工艺设计和分析能力。本课程32学时,而教材内容章节很多,所以课堂授课内容需要精心选择。一方面,选择性地使用教材内容。对非关键工艺,如教材中的4―6章主要介绍半导体制造中的空穴及缺陷等内容,要舍弃,可供学生课后自己阅读。另一方面,查阅相关资料,对教材内容做必要的补充。由于教材侧重技术介绍,在工艺原理方面涉及甚少,作为电子科学技术专业的本科生,有必要掌握关键工艺的物理基础和原理,因此任课老师需要广泛查阅相关资料,对教材内容做必要的、有益的补充。如离子注入掺杂工艺,选用的教材仅作为一节简单介绍,其基础和原理更是少之又少,必须找出相应详细的介绍。再者,氧化过程中杂质的再分布对器件特性影响是不容忽视的,工艺过程需要考虑,也需要做相应补充,《集成电路工艺基础》中这部分内容有较大价值[3]。
3.丰富多彩的教学方式
3.1多媒体教学,事半功倍。
多媒体教学方式如今已广泛使用,在本课程教学中使用多媒体教学符合教学内容特点的要求,因为有大量的工艺流程和工艺实施后的硅片剖面图,只有通过多媒体才能使学生有直观、清楚的认识。教材中提供了大量结构剖面图和设备图,如果完全靠老师板书,教学内容和效果将不易理解,而采用多媒体教学则能达到事半功倍的效果。
3.2教学互动,让学生走上讲台。
教学互动非常重要。学生对动态和前沿比较感兴趣,易激发其求知欲,抓住学生这一特点,可以给学生布置几个与集成电路工艺动态和前沿相关的题目,让学生课后查阅、整理资料,写成专题小论文,还可开设专题小论坛,每一专题请一位有兴趣的同学制作课件在课堂上给大家讲解。这种方式将课堂时间和空间进行延伸,使学生由课堂被动听讲变为课后主动学习、消化。这样一方面能培养学生通过网络学习工艺知识的习惯,并在不断查阅资料中积累、丰富了专业知识。另一方面能锻炼学生走上讲台“准教师”的思维能力和语言表达能力。
3.3加强实验教学,理论用于实践。
在教学过程中,要坚持理论和实践相结合的原则。建议开设最基本的半导体平面工艺实验,如氧化、扩散、离子注入、光刻沉积。实验要求每组学生用抛光硅片,通过氧化、光刻、等工序制备晶体管,是一个典型的综合性、研究型实验。通过实验教学,学生既能培养动手能力,又能掌握科学的分析问题的方法,加深对半导体平面工艺技术和原理的理解,激发学习兴趣。本课程在大学三年级下学期开设。
3.4将专家学者请进高校课堂。
我们充分利用与国内外高等院校和科研单位进行研究合作与学术交流的同时,在专业课授课过程中,还邀请有一定知名度的专家学者来我校作专题学术报告。由于他们长期从事某一领域的科学研究,十分熟悉该领域的最新发展趋势,因此可以系统地将这些信息传递给学生。这样做不仅大大扩充了学生的知识面,提高了他们的思维能力,而且进一步激发了他们的专业课学习热情和强烈的进取心。近五年来,我们先后邀请包括中科院半导体等单位多名专家为我校的客座教授或兼职教授,分别做了关于微电子方面的多场专题学术报告,均受到了广大教师与学生的一致好评。
4.结语
《集成电路工艺》是电子科学与技术专业本科生的一门重要的专业课程,本课程的目的是使学生掌握集成电路制造工艺和基本原理。学生专业知识和能力的获取,一方面是通过将理论应用于实验来验证和强化,另一方面通过理论课学习获得。通过开发多媒体教学软件,精心选择优秀教材、及时更新教学内容、开设综合性实验、布置设计性作业、安排专题报告、改革考核方式等环节,提高课程教学质量,培养具有创新能力、满足21世纪所需的专业技术人才。
参考文献:
二、针对企业要求的版图设计教学规划
1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。
浙江省教育改革走在全国前列,从2014届开始,通用技术中的《电子控制技术》作为高考的选考内容,这对于全省通用技术教师教学来说是个严峻的挑战。大多数教师不是电子技术专业出身,有些从物理教师转行过来,更甚的是从生物、化学、文科等教师中转行过来,对电子技术专业知识相当的匮乏,且现使用的苏教版《电子控制技术》教材,没有经过教学实践检验,所以教材中有些错误的内容没有订正。这样情况下,我们有必要对555集成电路有全面的正确认识,并能分析其在电路中的工作原理和实际应用。
一、555集成电路命名规则和常见封装形式
555集成电路芯片的生产厂家众多,常见的有NE555、CA555、MC7555、CB7555.那它们的命名规则是怎样的呢?
如果用TTL工艺制作的称为双极型集成电路,用CMOS工艺制作的称为CMOS集成电路。所有双极型集成电路型号最后3位数码都是555;所有CMOS产品型号最后4位数码都命名为7555;如果一个芯片上集成两个555并共用一组电源叫双定时器。双极型双定时器产品命名为556;CMOS双定时器命名为7556。双极型和CMOS型555定时器的功能和外部引脚的排列完全相同。
双极型的555集成电路工作电压为4.5V―15V,第3脚输出(驱动电流)可达200mA,可直接驱动小型继电器,但缺点是静态电流也偏大。
CMOS型的7555集成电路工作电压2―18V,静态电流很小,只有80uA,特别适合于使用电池、低电源电压场合。但7555的第3脚驱动电流很小,只有1mA,不能直接驱动继电器,需要通过三极管的放大来驱动继电器。
二、555芯片等效电路结构及工作原理
(1)555等效功能电路图。
虽然很多半导体器件公司都生产各自型号的555集成电路,但其内部电路大同小异,且都具有相同的引脚功能端。
555集成电路内部等效电路图
555集成电路由3个阻值为5kΩ的电阻组成的分压器(555由此得名)、两个电压比较器C1和C2、基本RS触发器、放电三极管TD和缓冲反相器G3组成。虚线边沿标注的数字为管脚号。其中1脚为接地端;2脚为低电平触发端,由此输入低电平触发脉冲;6脚为高电平触发端,由此输入高电平触发脉冲;4脚为复位端,输入负脉冲(或使其电压低于0.7V)可使555定时器直接复位;5脚为电压控制端,在此端外加电压可以改变比较器的参考电压,不用时,经0.01uF的电容接地,以防止引入干扰;7脚为放电端,555定时器输出低电平时,放电晶体管TD导通,外接电容元件通过TD放电;3脚为输出端,输出高电压约低于电源电压1V―3V,输出电流可达200mA,因此可直接驱动继电器、发光二极管、指示灯等;8脚为电源端,可在5V―15V范围内使用。
(2)555集成电路工作原理分析
5脚经0.01uF电容接地,以防止引入干扰;比较器C1比较电压为2/3VCC,C2的比较电压为1/3VCC。
①当R(__)=0时,Q(__)=1,uo=0,T饱和导通。
②当R(__)=1、UTH>2VCC/3、UTR(____)>VCC/3时,C1=0、C2=1,Q(__)=1、Q=0,uo=0,T饱和导通。
③当R(__)=1、UTHVCC/3时,C1=1、C2=1,Q(__)、Q不变,uo不变,T状态不变。
④当R(__)=1、UTH
三、教材555电路案例分析
案例1.鸡蛋孵化温度控制器的设计电路图如下(教材P99页)
对于这个电路图根据我们之前对555原理的分析,发现教材对该电路的设计和分析有错误:
(1)图中三个箭头处应加上圆点,表示电路是连接的。
(2)将 CB7555 改为 NE555,因CB7555 是 CMOS 型的集成电路,输出电流只有1mA,驱动能力不够。NE55是双极型集成电路,能输出200mA,能直接驱动继电器。
(3)文字描述有误。这里的 555 是工作于双稳态。
把热敏电阻Rt1放入盛有37℃的水的烧杯中,调节可变电阻Rp1,使NE555的2脚电压低于VCC/3,6脚的电压低于2VCC/3,3脚输出高电平,点亮V1,继电器触点J-1闭合,电热器开始加热。
案例2 555电路组成的水箱闭环电子控制系统电路图(教材P104页)
电路分析如下:
当水位低于b点时,555电路中的AC和BC都断开,所以2脚和6脚输入都是低电平,由555逻辑功能表分析可知,3脚输出高电平,V4饱和导通,继电器J吸合,电动机M工作抽水。由于3脚高电平,所以V1导通,打水指示灯亮。7脚输出状态是高电平V2截止,有水指示灯不亮。
电动机M抽水时,水位上升,如果在ab之间,相当于BC导通,AC断开,则2脚输入为高电平(大于VCC/3),6脚为低电平(小于2VCC/3),由555逻辑功能表分析可知,3脚输出状态不变,由原来的状态决定,即3脚输出高电平,V4饱和导通,继电器J吸合,电动机M还是继续工作抽水;由于3脚高电平,所以V1导通,打水指示灯亮。7脚输出状态是高电平V2截止,有水指示灯不亮。
当水位到达a时,AC接通,6脚主电平(大于2VCC/3),则3脚和7脚输出低电平,则V4和V1截止,继电器J断开,电动机M停止抽水,V1打水指示灯灭。由于7脚低电平,则V2导通,则有水指示灯亮。
当水位下降时,AC断开,BC接通,则6脚输入是低电平(小于2VCC/3),而2脚输入是高电平(大于VCC/3),3脚输出状态保持不变,即输出为低电平,抽水机不工作。
当水位下降到b时,电路工作情况跟(1)一样,抽水机又工始工作,又重复前面的周期运行情况。
以上是对教材两例的纠错和电路原理分析,但555电路的应用有很多种,如接成单稳态电路,可用在555触摸定时开关和定时器;还可以外接电容器,组成多谐振荡器,我们教师首先掌握555电路等效功能电路和基本的逻辑关系,对于实际电路也可以通过上面例子的分析方法,相信一定能理解其他555电路工作原理的,在电子控制技术教学中会更加得心应用,心中有底气。
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)34-0076-02
以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。
我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。
一、专业课程体系存在的主要问题
1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。
2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。
3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。
二、专业课程体系改革的主要措施
1.“4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。
我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。
2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。
在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。
对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。
三、结论
集成电路产业是我国国民经济发展与社会信息化的重要基础,而集成电路设计人才是集成电路产业发展的关键。本文根据调研结果,分析目前集成电路设计本科专业课程体系存在的主要问题,结合我校实际情况,对我校电子科学与技术专业集成电路设计方向的专业课程体系进行改革,提出“4+3+2”专业课程体系,并对专业课程讲授内容进行优化。从而满足我校集成电路设计专业创新型人才培养模式的要求,为培养实用创新型集成电路设计人才提供有力保障。
参考文献:
[1]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5).
[2]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).
[3]谢海情,唐立军,文勇军.集成电路设计专业创新型人才培养模式探索[J].电力教育,2013,(28).
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0070-02
21世纪被称为信息时代,电子科学与技术在信息、能源、材料、航天、生命、环境、军事和民用等科技领域将获得更广泛的应用,必然导致电子科学与技术产业的迅猛发展。这种产业化趋势反过来对本专业的巩固、深化、提高和发展起到积极的促进作用,也对人才的培养提出了更高的要求。因此,本文从人才的社会需求出发,结合我校实际情况,进行了本科专业培养方案的改革探索,并详细介绍了培养方案的制定情况。
一、人才的社会需求情况
目前,我校电子科学与技术专业的本科毕业生主要面向长三角地区庞大的微电子、光电子、光伏和新能源行业,市场对专业人才的需求基本上是供不应求的。但是也应该注意到电子科学与技术产业的分布不均,分类较细,且发展变化较快。另外,电子科学与技术产业结构具有多样性,既有劳动密集型的大型企业、大公司,更多的是小公司和小企业;既有国有企业和私营企业,更有合资、独资的外企。因此,社会需求与本专业毕业生的供需矛盾还会继续存在。
二、专业的培养目标和定位
本专业培养具备微电子、光电子领域的宽厚专业基础知识,熟练实验技能,能掌握电子材料、电子器件、微电子和光电子系统的新工艺、新技术研究开发和设计技能,有较强的工程实践能力,能够在该领域从事各种电子材料、元器件、光电材料及器件、集成电路的设计、制造和相应的新产品、新技术、新工艺的研究、开发和管理工作工程技术人才。并且结合我校“大工程观”人才培养特色,依据“卓越工程师”教育理念下工程技术型人才培养的原则,培养适应微电子和新兴光电行业乃至区域社会经济建设需求的工程技术型人才。
三、本科培养方案制定的思路
电子科学与技术专业培养方案参照工程教育认证的要求,以及专业下设微电子、光电子材料与器件两个本科培养方向的思路制定。注重培养学生的专业基础知识和实践工程能力,使毕业生能满足长三角地区微电子、光电子和新能源行业发展的需求。微电子方向的课程设置专注于电子材料与电子器件、集成电路与系统设计方面,光电子材料与器件方向则偏向于光电信息、光电材料与光电器件方面。
四、本科培养方案的改革探索
要实现电子科学与技术专业的培养目标,适应电子信息产业的不断发展,并结合我校学科发展方向和特色,对电子科学与技术专业本科人才培养方案进行了研究,并对省内外几所高校电子科学与技术专业的培养方案进行调研,最终形成了富有特色的电子科学与技术专业人才培养方案,主要内容如下:
1.培养方案的模块化设计。在设计电子科学与技术专业本科培养方案的整体框架时,根据“加强基础、拓宽专业、培养能力”和培养工程技术型人才的办学理念下,专业培养方案分人文与社会科学、专业基础和专业课三个模块,下设微电子和光电子材料与器件两个专业方向。学生在前两年学习相同的课程,到大三时根据自己的兴趣选择专业方向,选修各自方向的专业课。由于两个方向的不同培养要求,因此在专业基础选修课、专业必修课和专业选修课方面设置限选模块,每个专业方向必须修满相应的学分才能毕业。
2.改革专业基础课程。专业基础课程是为专业课程奠定基础,因此,在保留了原有电子信息类专业通常所开设的电子类课程外,增加了与专业相关的课程,如EDA技术、通信原理、数字信号处理、物理光学、应用光学、激光原理与技术等课程,删减了原先与物理类相关的一些课程,如物理学史、原子物理、热力学与统计物理学等,并删减了一些计算机软件类课程,如C++程序设计、计算机在材料科学中的应用等。专业基础选修课程分方向限选模块,两个专业方向对应有不同的专业基础选修课程。
3.优化专业课程。专业课程是整个专业教育中的主干部分,微电子方向的课程设置紧紧围绕半导体和集成电路设计方向,开设有集成电路设计、微电子工艺原理与技术、工艺与器件可靠性分析、半导体测试技术、现代电子材料及元器件、集成电路工艺与器件模拟等课程。光电子材料与器件方向围绕光电材料和光纤通信方向,开设光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤传感原理与技术、光纤通信技术等课程。另外专业课程里面还设置有专业实验,通过加强实验环节,训练学生的动手操作能力,增强学生的理论知识。
五、与省内外专业人才培养的区别
具有电子科学与技术专业的各大高校分布在不同的地区,服务于不同的区域经济,这就要求专业学生的培养具有区域化、差异化。我们分析了杭州电子科技大学、浙江工业大学、苏州大学、南京理工大学和徐州工程学院这五所不同地区、不同层次高校的电子科学与技术专业的培养方案。不仅使我们能学习到其他高校的先进办学理念、合理的课程设置体系,也可以发现与其他高校之间的差异。具体表现为以下几个方面:
1.专业定位。各个学校的电子科学与技术专业依据自身的师资力量、办学条件、区域经济要求确定专业的发展定位。杭州电子科技大学的电子科学与技术专业依托1个教育部重点实验室、2个国家级实验教学示范中心、3个省部级重点实验室,人才培养定位于能从事电子元器件、电子电路乃至电子集成系统的设计和开发等方面工作的工程技术人才。浙江工业大学的电子科学与技术专业主要培养光通信、电子电路系统、集成电路设计等方面的人才。苏州大学的电子科学与技术专业定位在培养能够在电路与系统、集成电路与系统等领域从事各类系统级、板级和芯片级研发工作的高级工程技术人才。南京理工大学的电子科学与技术专业主要是突出光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的电子科学与技术专业主要定位在培养能从事光电子材料与器件开发的工程技术人才。而我校的电子科学与技术专业定位于服务长三角地区半导体和新能源行业,培养能从事集成电路设计与开发、光电子材料与器件的研发等工作的工程技术人才。
2.课程体系。杭州电子科技大学的电子科学与技术专业培养学生设计、开发电子元器件、电子电路系统、电子集成系统的能力,在课程设置上开设了通信电子电路、EDA技术、薄膜物理与技术、电子材料与电子器件、电子系统设计与实践、集成电路设计、嵌入式系统原理和应用、现代DSP技术及应用等专业课程。浙江工业大学的电子科学与技术专业培养学生设计、开发电子电路系统、集成电路系统的能力,开设了电路原理、模电数电、通信电子线路、集成电路设计、光纤通信原理、光网络技术、数字信号处理等专业课程,以及电子线路CAD实验、单片机综合实验、通信原理实验、通信电子线路大型实验、微电子基础实验、半导体器件仿真大型实验、集成电路设计大型实验等实验类课程。苏州大学的电子科学与技术专业培养学生设计与开发电路与系统、集成电路与系统,从事各类系统级、板级和芯片级研发工作的能力,开设了信号与系统、电磁场与电磁波、高频电路设计与制作、电子线路CAD、CMOS模拟集成电路设计、VLSI设计基础等专业课程,以及电子技术基础实验、信号与电路基础实验、电子线路实验、电子系统综合设计实验等实验类课程。南京理工大学培养学生从事光电子器件、光电系统和集成电路的设计、开发、应用的能力,开设了信号与系统、光学、光电信号处理、光辐射测量、光电子器件、光电成像技术、超大规模集成电路设计、光电子技术、显示技术、光电检测技术、数字图像处理、半导体集成电路、集成电路测试技术、微电子技术、光电子线路、电视原理等专业课程。徐州工程学院的电子科学与技术专业培养学生设计与开发光电子材料与器件的能力,开设有信号与系统、光电子学、光电子技术、激光原理与技术、光伏材料等专业课程,以及模拟电路课程设计、数字电路课程设计、单片机原理课程设计等实践性课程。我校的电子科学与技术专业主要培养学生集成电路设计、光电子材料与器件的设计与制备能力,开设有半导体物理学、半导体器件原理、MEMS技术、微电子工艺原理与技术、薄膜材料及制备技术、工艺与器件可靠性分析、集成电路工艺与器件模拟、EDA技术、通信原理、数字信号处理、光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤通信技术等专业课程,以及近代物理实验、专业实验等实验类课程。
3.人才培养特色。杭州电子科技大学的电子科学与技术专业的人才培养特色是注重集成电路设计、系统集成方面能力的培养。浙江工业大学的人才培养注重光纤通信、集成电路设计方面能力的培养。苏州大学的人才培养注重电路与系统设计、集成电路与系统设计方面能力的培养。南京理工大学的人才培养注重光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的人才培养注重光电材料与器件方面能力的培养。我校的人才培养注重电子材料与电子器件的设计与开发、集成电路设计方面能力的培养。
参考文献:
1.引言
集成电路工艺学是以半导体学为理论基础,研究半导体制造工艺过程的科学[1]。沈阳化工大学的集成电路工艺学课程是电子科学与技术专业的主干课,结合本科教学,增强实践能力,培养创新人才为培养目标[2]。本文结合集成电路工艺学实验这门课程,立足于现有的硬件平台,从学生的身心发展角度出发,讨论了实验课教学存在的问题,并针对问题提出了人性化的改进方法。
2.集成电路工艺学实验现状及存在的问题
2.1实验前期准备不足。
实验教师备课不充分。实验课堂问题是层出不穷的,随机的,原因也是无法预知的。因此要求教师对实验原理准确把握,对实验仪器熟练操作。而在现实中大部分教师的课前准备工作需要提高。再者学生课前不预习,等到实验的时候现看实验指导书,完全按照实验指导书的步骤做实验。
2.2教学过于依赖实验教师。
实验课上,有的学生不预习,只是单一按照实验指导书上的步骤做实验,遇到问题自己不思考,问老师,有的老师不引导学生,直接告诉学生怎么做,有的甚至直接把实验数据都给学生做出来了,导致学生动手能力很差,依赖程度增强。学生在实验过程中仅仅需要进行简单的连接,便可得到“理想”结果。使得实验课的价值大打折扣,也使得学生有理由不用在实验前做准备。
2.3注重结果,忽略实验过程。
实验是考查学生动手能力的课程。但是它仍旧是一门需要考查的课程,现有的考评方式较大的因素取决于最后考试时的表现,由于实验本身的不确定性,以及一些随机问题,导致实验结果和预期的存在较大的偏差,甚至有的学生做完后没得到实验结果,这样有可能使得学生的分数大打折扣,导致学生一味重复老师所要求的实验,严格点说就是学生只关注了所谓的考点。至于实验课的目的和意义学生是不会重视的。
3.实验教学改革
3.1应用网络作为实验教学的平台。
我们还积极采用该课程的网络课件,学生通过网络课件学习本实验,该课程的教学大纲、考试大纲、实验大纲、教学课件、模拟试题习题案例、最新发展动态等,均可由学生在网上直接查到。还可以跟学习好的同学和任课教师进行实时沟通、交流。学生通过网络课件参加测试。学生的平时测验、中期总结等可通过网络教学平台,进行设计、评分,并按学院的统一要求,通过校园网将成绩录入“学生成绩管理系统”,从而加速学生的信息传送,便于学生及时查阅成绩和学校教务部门快速管理。
3.2实验分组统一授予成绩。
在实验课程开始前,对所有做实验的学生进行分组,按照自愿结合和强弱搭配的原则,实施小组长负责管理模式。一个小组在实验阶段是一个小的团队,小组的总成绩为每个学生的成绩。通过小组实验模式,有利于学生间的交流、研究,更有助于发挥团队协作能力。同时也降低了过分重视期末考试成绩的情况,使得考评方式更加人性化。
3.3加强实验教学,理论用于实践。
在教学过程中,坚持理论和实践相结合的原则。建议开设最基本的半导体平面工艺实验,如氧化、扩散、离子注入、光刻、沉积。实验要求每组学生用抛光硅片,通过氧化、光刻、等工序制备晶体管,是一个典型的综合性、研究型实验。通过实验教学,既培养了学生的动手能力,又使学生掌握了科学的分析问题的方法。
4.实验内容和方式的创新。
本专业原有实验教学设备中,有验证性实验所占的比例较大,其中实验内容又多以服务于理论教学而设计。这类实验不利于培养学生的创新思维和创新能力。而综合性和设计性实验能从多角度、多层次、多方位、多途径锻炼学生,并对学生进行提问,提高学生分析问题和解决问题的能力,同时也是培养学生实践能力和创新能力的重要手段。按照现有实验条件,我们首先对已有的实验设备进行了整合,通过调试和添加一些新的器件,把现有的6个实验中的3个变为综合性实验,例如氧化工艺实验,原有的实验通过创新改革后,达到以督促学生培养严谨客观的科研态度、规范正确的操作手法、独立思考和自主学习的能力,等等。
5.结语
上述实验教学改革,得到了学生的一致认同,改革调整了学生的知识结构,使学生实现从知识型向能力型、由单一型向复合型、从模仿型向创新型的转变。
一、引言
微电子技术与国家科技发展密切相关,是21世纪我国重点发展的技术方向。在新形势下,无论军用还是民用方面都对微电子方向人才有强烈需求。高校微电子专业是以培养能在微电子学领域内,从事半导体器件、集成电路设计、制造和相应的新产品、新技术、新工艺的研究和开发等方面工作的高级应用型科技人才为目标的。因此,要求学生不仅要具备坚实的理论基础,还需具备突出的专业能力和创新能力,满足行业的快速发展和社会需求。
目前我国微电子行业中,微电子工艺研究相对于器件和集成电路设计研究工作是滞后的,处于不平衡发展状态,为使行业发展更均衡,需要加强微电子工艺人才的培养。微电子工艺是微电子专业中非常重要的专业课,主要研究微电子器件与集成电路制造工艺原理与技术。微电子器件与集成电路尺寸都是在微米甚至纳米量级,导致在理论学习过程中,学生理解有一定的困难,因此需要通过开设微电子工艺实验课程加深和巩固知识内容,使学生更加直接地接触微电子行业核心技术,了解半导体器件、集成电路生产制造加工的技术方法,从而促进学生对微电子工艺等课程的学习。因此,微电子工艺实验教学可以有效地弥补理论教学的局限性和抽象性,促进学生对理论课的理解和提高学生的动手能力。
二、课程分析
微电子工艺课程要求掌握制造集成电路所涉及的外延、氧化、掺杂、光刻、刻蚀、化学气相淀积、物理气相淀积、金属化等技术的原理与方法,熟悉双极型和M0s集成电路的制造工艺流程,了解集成电路的新工艺和新技术。微电子技术的发展是遵循摩尔定律,快速发展变化的,虽然工程教育要求教学最新最前沿的技术,但微电子设备价格昂贵,运转与维护费用很高,任何高校都很难不断升级换代;而且集成电路制造技术的更新迭代主要是在掺杂技术、光刻技术、电极制造技术方面进行了技术改进,在其他方面还都是相似的,因此,在高校中单纯追求工艺先进的实验教学是不现实的。基于此,结合实际教学资源情况,建设主流、典型工艺技术的工艺实验线,并开展理论联系实践的实验教学是微电子工艺实验室建设的重点。通过实验使学生更牢固地掌握晶体管及简单Ic的整个工艺制造技术,学会测试晶体管重要参数,以及初步了解集成电路工艺制造过程。
黑龙江大学微电子工艺实验室已建立数十年,之前受到设备的限制,所开设的实验都是分立的,不能完全按工艺流程完成器件的制作,没有形成有机整体,学生缺乏对晶体管制作工艺流程的整体认识。经过不断发展和学校的大量投入,目前该实验室拥有一条微电子平面工艺线,主要的设备包括磁控溅射设备、电子束蒸发设备、CVD化学气相淀积系统、光刻机、离子刻蚀机、扩散炉、氧化炉、超声压焊机、烧结炉等。这些设备保证了微电子工艺实验能够按晶体管制作工艺流程顺序完成制作。同时实验室配备了测试环节所必须的显微镜、电阻率测试仪、探针测试台、半导体特性图示仪等检测仪器,通过实验能进一步加深学生对微电子工艺制造过程的了解。实践证明,以上实验内容对学生掌握知识和开拓视野起到十分重要的作用,效果显著。该实验室多年来一直开展本科生教学和本科生毕业设计、研究生毕业设计、各类创新实验项目等教学、科研工作。
三、实验教学的开展
为了达到理论实践相互支撑与关联,通过实验促进理论学习,笔者根据微电子专业特点,开展了微电子工艺实验的教学改革。在原有的微电子平面工艺实验的基础上,建立由实验内容的设置、多媒体工艺视频、实际操作的工艺实验、实验考核方法和参观学习五部分组成的教学方式,形成有效的实践教学,加强了学生对制造技术和工艺流程的整体的认识,培养了学生对半导体器件原理研究的兴趣,使学生对将来从事半导体工艺方面的研究充满信心。
(一)实验内容的设置
实验内容主要包括四部分:
1.教师提供给学生难易不同的器件结构(二极管、三极管、MOS管等),学生可以自主选择;
2.根据器件结构,计算机辅助软件设计器件制作的工艺流程;
3.通过实验室提供的仪器设备完成器件制作;
4.测试器件性能参数。
通过这样设置,既能掌握微电子工艺的基本理论,又能通过实验分析完善工艺参数,使学生完全参与其中。
(二)多媒体工艺视频
为了让学生对集成电路设计和微电子制造工艺有直观的认识。结合实际的实验教学过程,制作全程相关单项工艺技术、流程及设备操作视频演示资料,同时强调工艺制作过程中安全操作和注意事项,防止危险的发生。
(三)实际操作的工艺实验
工艺实验涵盖清洗、氧化、扩散、光刻、制版、蒸镀、烧结、压焊等主要工序,为学生亲自动手制作半导体器件和制造集成电路提供了一个完整的实验条件。学生根据所学的理论知识了解器件结构、确定工艺条件、按照流程完成器件的制作。保证每名学生都参与到器件制作过程中。同时每个单项工序时间和内容采取预约制,实现开放式实验教学。
、
(四)实验考核方法
在实验教学环节中,实验考核是重要的教学质量评价手段。实验着重对动手能力和综合分析问题的能力及创新能力进行考核。主要考核内容包括:
1.器件工艺设计:考核设计器件制作流程的合理性;
2.工艺实验:考核现场工艺操作是否规范,选用的工艺条件是否合理;
3.测试结果:考核制作器件的测试结果;
4.实验分析报告:考核分析问题和解决问题能力,并最终给出综合成绩。
(五)参观学习
【基金项目】湖南省自然科学基金项目(14JJ6040);湖南工程学院博士启动基金。
【中图分类号】G642.3 【文献标识码】A 【文章编号】2095-3089(2015)08-0255-01
随着科学技术的不断进步,电子产品向着智能化、小型化和低功耗发展。集成电路技术的不断进步,推动着计算机等电子产品的不断更新换代,同时也推动着整个信息产业的发展[1]。因此,对集成电路相关人才的需求也日益增加。目前国内不仅仅985、211等重点院校开设了集成电路相关课程,一些普通本科院校也开设了相关课程。课程的教学内容由单纯的器件物理转变为包含模拟集成电路、数字集成电路、集成电路工艺、集成电路封装与测试等[2]。随着本科毕业生就业压力的不断增加,培养应用型、创新型以及可发展型的本科人才显得日益重要。然而,从目前我国各普通院校对集成电路的课程设置来看,存在着重传统轻前沿、不因校施教、不因材施教等问题,进而导致学生对集成电路敬而远之,退避三舍,学习积极性不高,继而导致学生的可发展性不好,不能适应企业的要求。
本文结合湖南工程学院电气信息学院电子科学与技术专业的实际,详细阐述了本校当前“集成电路原理与应用”课程理论教学中存在的问题,介绍了该课程的教学改革措施,旨在提高本校及各兄弟院校电子科学与技术专业学生的专业兴趣,培养学生的创新意识。
1.“集成电路原理与应用”课程理论教学存在的主要问题
1.1理论性强,课时较少
对于集成电路来说,在讲解之前,学生应该已经学习了以下课程,如:“固体物理”、“半导体物理”、“晶体管原理”等。但是,由于这些课程的理论性较强,公式较多,要求学生的数学功底要好。这对于数学不是很好的学生来说,就直接导致了其学习兴趣降低。由于目前嵌入式就业前景比较好,在我们学校,电子科学与技术专业的学生更喜欢嵌入式方面的相关课程。而集成电路相关企业更喜欢研究生或者实验条件更好的985、211高校的毕业生,使得我校集成电路方向的本科毕业生找到相关的较好工作比较困难。因此,目前我校电子科学与技术专业的发展方向定位为嵌入式,这就导致一些跟集成电路相关的课程,如“微电子工艺”、“晶体管原理”、“半导体物理”等课程都取消掉了,而仅仅保留了“模拟电子技术”和“数字电子技术”这两门基础课程。这对于集成电路课程的讲授更增加了难度。“集成电路原理与应用”课程只有56课时,理论课46课时,实验课10课时。只讲授教材上的内容,没有基础知识的积累,就像空中架房,没有根基。在教材的基础上额外再讲授基础知识的话,课时又远远不够。这就导致老师讲不透,学生听不懂,效果很不好。
1.2重传统知识,轻科技前沿
利用经典案例来进行课程教学是夯实集成电路基础的有效手段。但是对于集成电路来说,由于其更新换代的速度非常快,故在进行教学时,除了采用经典案例来夯实基础外,还需紧扣产业的发展前沿。只有这样才能保证人才培养不过时,学校培养的学生与社会需求不脱节。但目前在授课内容上还只是注重传统知识的讲授,对于集成电路的发展动态和科技前沿则很少涉及。
1.3不因校施教,因材施教
教材作为教师教和学生学的主要凭借,是教师搞好教书育人的具体依据,是学生获得知识的重要工具。然而,我校目前“集成电路原理与应用”课程采用的教材还没有选定。如:2012年采用叶以正、来逢昌编写,清华大学出版社出版的《集成电路设计》;2013年采用毕查德・拉扎维编写,西安交通大学出版社出版的《模拟CMOS集成电路设计》;2014年采用余宁梅、杨媛、潘银松编著,科学出版社出版的《半导体集成电路》。教材一直不固定的原因是还没有找到适合我校电子科学与技术专业学生实际情况的教材,这就导致教师不能因校施教、因材施教。
2.“集成电路原理与应用”课程理论教学改革
2.1选优选新课程内容,夯实基础
由于我校电子科学与技术专业的学生,没有开设“半导体物理”、“晶体管原理”、“微电子工艺”等相关基础课程,因此理想的、适用于我校学生实际的教材应该包括半导体器件原理、模拟集成电路设计、双极型数字集成电路设计、CMOS数字集成电路设计、集成电路的设计方法、集成电路的制作工艺、集成电路的版图设计等内容,如表1所示。因此,在教学实践中,本着“基础、够用”的原则,采取选优选新的思路,尽量选择适合我校专业实际的教材。目前,使用笔者编写的适合于我校学生实际的理论教学讲义,理顺了理论教学,实现了因校施教,因材施教。
表1 “集成电路原理与应用”课程教学内容
2.2提取科技前沿作为教学内容,激发专业兴趣
为了提高学生的专业兴趣,让他们了解“集成电路原理与应用”课程的价值所在,在授课的过程中穿插介绍集成电路设计的前沿动态。如:从IEEE国际固体电路会议的论文集中提取模块、电路、仿真、工艺等最新的内容,并将这些内容按照门类进行分类和总结,穿插至传统的理论知识讲授中,让学生及时了解当前集成电路设计的核心问题。这样不但可以激发学生的好奇心和学习兴趣,还可以提高学生的创新能力。
2.3开展双语教学互动,提高综合能力
目前,我国的集成电路产业相对于国外来说,还存在着相当的差距。要开展双语教学的原因有三:一是集成电路课程的一些基本专业术语都是由英文翻译过来的;二是集成电路的研究前沿都是以英文发表在期刊上的;三是世界上主流的EDA软件供应商都集中在欧美国家,软件的操作语言与使用说明书都是英文的。因此,集成电路课程对学生的英语能力要求很高,在课堂上适当开展双语教学互动,无论是对于学生继续深造,还是就业都是非常必要的。
3.结语
集成电路自二十世纪五十年代被提出以来,经历了小规模、中规模、大规模、超大规模、甚大规模,目前已经进入到了片上系统阶段。虽然集成电路的发展日新月异,但目前集成电路相关人才的学校培养与社会需求存在很大的差距。因此,对集成电路相关课程的教学改革刻不容缓。基于此,本文从“集成电路原理与应用”课程理论教学出发,详细阐述了“集成电路原理与应用”课程教学所存在的主要问题,并有针对性的提出了该课程教学内容和教学方法的改革措施,这对培养应用型、创新型的集成电路相关专业的本科毕业生具有积极的指导意义。
1.引言
微电子技术是随着集成电路,尤其是大规模集成电路发展起来的一门新技术。微电子产业包括系统电路设计,器件物理,工艺技术,材料制备,自动测试及封装等一系列专门的技术的产业。微电子产业发展非常迅速,它已经渗透到了国民经济的各个领域,特别是以集成电路为关键技术的电子战和信息战都要依托于微电子产业。
微电子技术是微电子产业的核心,是在电子电路和系统的超小型化和微型化的过程中逐渐形成和发展起来的。微电子技术也是信息技术的基础和心脏,是当今发展最快的技术之一。近年来,微电子技术已经开始向相关行业渗透,形成新的研究领域。
2.微电子技术概述
2.1 认识微电子
微电子技术的发展水平已经成为衡量一个国家科技进步和综合国力的重要标志之一。因此,学习微电子,认识微电子,使用微电子,发展微电子,是信息社会发展过程中,当代大学生所渴求的一个重要课程。
生活在当代的人们,没有不使用微电子技术产品的,如人们每天随身携带的手机;工作中使用的笔记本电脑,乘坐公交、地铁的IC卡,孩子玩的智能电子玩具,在电视上欣赏从卫星上发来的电视节目等等,这些产品与设备中都有基本的微电子电路。微电子的本领很大,但你要看到它如何工作却相当难,例如有一个像我们头脑中起记忆作用的小硅片―它的名字叫存储器,是电脑的记忆部分,上面有许许多多小单元,它与神经细胞类似,这种小单元工作一次所消耗的能源只有神经元的六十分之一,再例如你手中的电话,将你的话音从空中发射出去并将对方说的话送回来告诉你,就是靠一种叫“射频微电子电路”或叫“微波单片集成电路”进行工作的。它们会将你要表达的信息发送给对方,甚至是通过通信卫星发送到地球上的任何地方。其传递的速度达到300000KM/S,即以光速进行传送,可实现双方及时通信。
“微电子”不是“微型的电子”,其完整的名字应该是“微型电子电路”,微电子技术则是微型电子电路技术。微电子技术对我们社会发展起着重要作用,是使我们的社会高速信息化,并将迅速地把人类带入高度社会化的社会。“信息经济”和“信息社会”是伴随着微电子技术发展所必然产生的。
2.2 微电子技术的基础材料――取之不尽的硅
位于元素周期表第14位的硅是微电子技术的基础材料,硅的优点是工作温度高,可达200摄氏度;二是能在高温下氧化生成二氧化硅薄膜,这种氧化硅薄膜可以用作为杂质扩散的掩护膜,从而能使扩散、光刻等工艺结合起来制成各种结构的电路,而氧化硅层又是一种很好的绝缘体,在集成电路制造中它可以作为电路互联的载体。此外,氧化硅膜还是一种很好的保护膜,它能防止器件工作时受周围环境影响而导致性能退化。第三个优点是受主和施主杂质有几乎相同的扩散系数。这就为硅器件和电路工艺的制作提供了更大的自由度。硅材料的这些优越性能促成了平面工艺的发展,简化了工艺程序,降低了制造成本,改善了可靠性,并大大提高了集成度,使超大规模集成电路得到了迅猛的发展。
2.3 集成电路的发展过程
20世纪晶体管的发明是整个微电子发展史上一个划时代的突破。从而使得电子学家们开始考虑晶体管的组合与集成问题,制成了固体电路块―集成电路。从此,集成电路迅速从小规模发展到大规模和超大规模集成电路,如图1所示。
图1 集成电路发展示意图
集成电路的分类方法很多,按领域可分为:通用集成电路和专用集成电路;按电路功能可分为:数字集成电路、模拟集成电路和数模混合集成电路;按器件结构可分为:MOS集成电路、双极型集成电路和BiIMOS集成电路;按集成电路集成度可分为:小规模集成电路SSI、中规模集成电路MSI、大规模集成电路LSI、超导规模集成电路VLSI、特大规模集成电路ULSI和巨大规模集成电路CSI。
随着微电子技术的发展,出现了集成电路(IC),集成电路是微电子学的研究对象,其正在向着高集成度、低功耗、高性能、高可靠性的方向发展。
2.4 走进人们生活的微电子
IC卡,是现代微电子技术的结晶,是硬件与软件技术的高度结合。存储IC卡也称记忆IC卡,它包括有存储器等微电路芯片而具有数据记忆存储功能。在智能IC卡中必须包括微处理器,它实际上具有微电脑功能,不但具有暂时或永久存储、读取、处理数据的能力,而且还具备其他逻辑处理能力,还具有一定的对外界环境响应、识别和判断处理能力。
IC卡在人们工作生活中无处不在,广泛应用于金融、商贸、保健、安全、通信及管理等多种方面,例如:移动电话卡,付费电视卡,公交卡,地铁卡,电子钱包,识别卡,健康卡,门禁控制卡以及购物卡等等。IC卡几乎可以替代所有类型的支付工具。
随着IC技术的成熟,IC卡的芯片已由最初的存储卡发展到逻辑加密卡装有微控制器的各种智能卡。它们的存储量也愈来愈大,运算功能越来越强,保密性也愈来愈高。在一张卡上赋予身份识别,资料(如电话号码、主要数据、密码等)存储,现金支付等功能已非难事,“手持一卡走遍天下”将会成为现实。
3.微电子技术发展的新领域
微电子技术是电子科学与技术的二级学科。电子信息科学与技术是当代最活跃,渗透力最强的高新技术。由于集成电路对各个产业的强烈渗透,使得微电子出现了一些新领域。
3.1 微机电系统
MEMS(Micro-Electro-Mechanical systems)微机电系统主要由微传感器、微执行器、信号处理电路和控制电路、通信接口和电源等部件组成,主要包括微型传感器、执行器和相应的处理电路三部分,它融合多种微细加工技术,并将微电子技术和精密机械加工技术、微电子与机械融为一体的系统。是在现代信息技术的最新成果的基础上发展起来的高科技前沿学科。
当前,常用的制作MEMS器件的技术主要由三种:一种是以日本为代表的利用传统机械加工手段,即利用大机械制造小机械,再利用小机械制造微机械的方法,可以用于加工一些在特殊场合应用的微机械装置,如微型机器人,微型手术台等。第二种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件,它与传统IC工艺兼容,可以实现微机械和微电子的系统集成,而且适合于批量生产,已成为目前MEMS的主流技术,第三种是以德国为代表的LIGA(即光刻,电铸如塑造)技术,它是利用X射线光刻技术,通过电铸成型和塑造形成深层微结构的方法,人们已利用该技术开发和制造出了微齿轮、微马达、微加速度计、微射流计等。
MEMS的应用领域十分广泛,在信息技术,航空航天,科学仪器和医疗方面将起到分别采用机械和电子技术所不能实现的作用。
3.2 生物芯片
生物芯片(Bio chip)将微电子技术与生物科学相结合的产物,它以生物科学基础,利用生物体、生物组织或细胞功能,在固体芯片表面构建微分析单元,以实现对化合物、蛋白质、核酸、细胞及其他生物组分的正确、快速的检测。目前已有DNA基因检测芯片问世。如Santford和Affymetrize公司制作的DNA芯片包含有600余种DNA基本片段。其制作方法是在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维,不同的DNA纤维图案分别表示不同的DNA基本片段。采用施加电场等措施可使一些特殊物质反映出某些基因的特性从而达到检测基因的目的。以DNA芯片为代表的生物工程芯片将微电子与生物技术紧密结合,采用微电子加工技术,在指甲大小的硅片上制作包含多达20万种DNA基本片段的芯片。DNA芯片可在极短的时间内检测或发现遗传基因的变化,对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。生物工程芯片是21世纪微电子领域的一个热点并且具有广阔的应用前景。
3.3 纳米电子技术
在半导体领域中,利用超晶格量子阱材料的特性研制出了新一代电子器件,如:高电子迁移晶体管(HEMT),异质结双极晶体管(HBT),低阈值电流量子激光器等。
在半导体超薄层中,主要的量子效应有尺寸效应、隧道效应和干涉效应。这三种效应,已在研制新器件时得到不同程度的应用。
(1)在FET中,采用异质结构,利用电子的量子限定效应,可使施主杂质与电子空间分离,从而消除了杂质散射,获得高电子迁移率,这种晶体管,在低场下有高跨度,工作频率,进入毫米波,有极好的噪声特性。
(2)利用谐振隧道效应制成谐振隧道二极管和晶体管。用于逻辑集成电路,不仅可以减小所需晶体管数目,还有利于实现低功耗和高速化。
(3)制成新型光探测器。在量子阱内,电子可形成多个能级,利用能级间跃迁,可制成红外线探测器。
利用量子线、量子点结构作激光器的有源区,比量子阱激光器更加优越。在量子遂道中,当电子通过隧道结时,隧道势垒两侧的电位差发生变化,如果势垒的静电能量的变化比热能还大,那么就能对下一个电子隧道结起阻碍作用。基于这一原理,可制作放大器件,振荡器件或存储器件。
量子微结构大体分为微细加工和晶体生长两大类。
4.微电子技术的主要研究方向
目前微电子技术正朝着三个方向发展。第一,继续增大晶圆尺寸并缩小特征尺寸。第二,集成电路向系统芯片(system on chip,SOC)方向发展。第三,微电子技术与其他领域相结合将产生新产业和新学科,如微机电系统和生物芯片。随着微电子学与其他学科的交叉日趋深入,相关的新现象,新材料,新器件的探索日益增加,光子集成如光电子集成技术也不断发展,这些研究的不断深入,彼此间的交叉融合,将是未来的研究方向。
参考文献
[1]高勇,乔世杰,陈曦.集成电路设计技术[M].科学出版社,2011.
[2]常青,陶华敏,肖山竹,卢焕章.微电子技术概论[M].国防工业出版社,2006.
[3]王颖.集成电路版图设计与TannerEDA工具的使用[M].西安电子科技大学出版社,2009.
[4]毕克允.微电子技术[M].国防工业出版社,2000.
[5]于宝明,金明.电子信息[M].东南大学出版社,2010.