欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

化学工程研究大全11篇

时间:2023-08-27 15:03:28

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇化学工程研究范文,希望它们能为您的写作提供参考和启发。

化学工程研究

篇(1)

1.2新的分离技术。随着世界各国经济的快速增长,原有的分离技术已经无法满足现代化学生产的需要,只能够进行深层次的探讨创新。所以,国内外一起合作共同研究除了大量的新分离技术。由于这些新的分离技术刚刚研究出来,刚刚投入到化学生产中,所以不是很完善,还存在着许多的问题。这项研究的相关分子蒸馏在理论上的探讨比较少,也没有深入研究、设计刮模式分子蒸馏器。但是随着时代的发展,信息技术与科学技术的进步,分离技术在实际应用的过程中得到了极大的改善,取得了显著的成果。后来,逐渐将信息技术融合到了分离技术当中,产生膜分离技术、超临界分离技术、超声提取等先进的新型分离技术。

1.3超临界化学反应技术。超临界化学反应技术是随着绿色化学的发展而产生的,是一种以超临界流体作为化学反应介质或反应物的新反应技术。因为这种反应物与临界点相当接近,所以其反应速率相当快,已经广泛的应用到了化学工业、生物工程、食品生产等领域当中,对这些领域的发展做出了巨大的贡献。

2传热过程中的新研究

2.1传热理论研究进展。近几年来,由于滴状冷凝的实现与增长冷凝表面寿命等相关问题的影响,研究人员至今未将滴状冷凝应用到实际的化学工业生产当中。现在的机械、石油化工以及航空航天技术仍然在使用沸腾传热方式,利用这种方式来进行工业生产。长期以来,人们一直致力于液体发生核态沸腾原因的探索,因为沸腾的形式多变又复杂,所以增加了研究的难度。尤其是在计算方面,更是存在一些严重的缺陷,使得计算的准确率极低,而且还需要大量的实验做基础。除此之外,水沸腾时会产生一些气泡,这些气泡会影响到加热器的表面,使得计算的难度再次加大。这都是现阶段急需解决的问题,也是现在研究的重点。

2.2微细尺度传热学研究进展。微细尺度作为现代热学中的一个分支,主要是研究热学的一些规律以及微细的探讨,研究前景非常广阔。在研究微细尺度传热学的过程中,如果所研究的物体尺寸远远比承载粒子的平均尺寸大,我们所假定的观点依旧成立。但是由于我们研究的尺度比较微细,所以原来假定的那些影响因素会发生一些改变,导致液体流动的规律发生变化。随着近几年来纳米技术不断进步,逐渐受到人们的重视,生产中的诸多领域都在引用尺度微细传热学,如高度集成的电子设备、微型热管等。

2.3强化传热过程的研究进展。要想优化传热过程,就必须从换热设备方面进行研究分析,优化设备,从而提高传热效率。换热设备主要就是进行热量的传递,热量传递有逆流、顺流、交差流、混合流等四种方式,其中逆流过程中产生的温差是最大的,顺流产生的温差是最小的。我们应该想办法改进换热设备,使其能够持续对外放热,以此达到本次研究的目的。例如:我们可以发明一些新的换热设备,采用新的传热材料应用到设备当中;改进原有的传热设备生产工艺;参照原有的设计方案,结合现代的科学技术对方案进行优化等。

3化学工程未来发展动态

时代在进步,科技在发展,大量的科技产品及技术不断出现在人们的视野当中,并且被广泛的应用,这就给化学工程的研究提出了新的研究方向。那就是在今后的发展当中,如何给新技术的引用提供一些良好的服务及体系,并且将新形成的理论完善,使化学工程不断进步,朝着新的目标发展。其次,现在主张全面发展,我们应该研究一下信息、生物、能源、环境等方面的技术,将这些与化学向结合,为化学工程的发展做出良好的铺垫。

篇(2)

对于化工来说,其是促进社会和物质文明发展的关键,并且为人类做出了非常大的贡献。与此同时,环境污染问题也日益严重,这样就需要采取相应的措施进行解决。而绿色化学工程与工艺是利用科学有效的方法和材料等进行处理,不仅大大提升了生产的利用效率,还很好的解决了存在的污染问题,因此,其对化工节能就有很大的促进意义。

1绿色化学工程与工艺的开发

1.1采用绿色化学原料

在进行化工生产的过程中,原材料是一个重要的影响因素,针对传统化工生产,使用的原材料绝大部分都是不可再生能源,这样促使我国不可再生能源消耗大大提升,也造成污染物质的排放量有了很大增加,从而导致污染问题日益严重。而采用绿化化学原材料,例如:芦苇、苞米杆等,可以促使它们转化为酮、醇以及酸类等多种类型的化学产品,并且在进行转化的整个过程中,原材料既会产生一定含量的氢气,又不会生成有毒和有害的物质。因此,在化工生产中,绿色化学原材料得到了非常广泛的应用。

1.2提高化学反应的选择性

对于化学工程,物质反应是非常重要的一个部分,一切化学原材料的转化都需要通过化学反应才能够实现。同时在化学工业生产中要对反应形式进行合理的选择,这样就能确保生产效率和质量得到很大提升。但是影响化学反应的因素有很多,例如:反应原材料、环境以及时间等,其中最常见的反应形式是氧化反应,然而在氧化反应中会产生很多热量,就促使所有化学原材料在热能的催化作用下出现了质量的变形,进而就造成生产质量有了很大降低。此外,对于绿色化学工程来说,运用这种新型的反应形式(烃类氧化反应)既可以促使催化能力有很大提升,又能够确保同分异构的反应时间有所增加。

1.3使用无毒无害催化原料

从目前的现状来看,伴随着化工行业的不断发展,合理运用化学反应成为了化工行业健康稳定发展的关键,而在进行化学反应的时候,催化剂的使用是非常关键的,既可以对反应速度进行加快,也可以对反应时间进行缩短,那么在进行化工生产中,要想确保绿色化工工程和工艺得到快速的发展,就要使用没有毒害的催化原材料。同时现在我国有关部门对催化原材料的选择和应用已经给予了高度重视,并且催化剂的开发、研究和制作在不断增多,从而就促使在进行化学反应的时候,催化原材料有了很大的改善。此外,使用没有毒害的催化原材料还能够大大提高化学反应的效率,对能源消耗含量进行降低,也能够很大程度减少环境的污染。

2绿色化学工程与工艺对化学工业节能的促进作用

2.1清洁生产技术的应用

要想确保化工生产中达到节能的目的,应该将清洁生产作为主要的步骤。所谓清洁生产就是说,要尽可能少使用或者不使用有毒害的原材料,并且采用废物量排放少或者是没有废物量排放的新工艺和设备,并且对通常采用的生产工艺进行改进;在生产过程中,还要尽可能减少各种危险,例如:高温、高压以及易爆等;还要采用简单化和可靠化的生产工艺进行操作和控制。例如:在进行铬酸酐生产的时候,对绿色化的改造;环氧丙烷的清洁生产以及二氯苯胺的清洁生产等,这些都对化工节能具有非常重要的促进作用和意义,与此同时还可以确保绿色化工的实现,从而就可以对生态环境进行很好的保护,也能促使人们的身体健康得到保障。

2.2与生物技术相结合的应用

对于化学工业,在生产的过程中,经常将这种技术与绿色化工工程与工艺相结合,就是使用生物炼制将可以再生的资源转化成化学原材料,这样就可以制作出人们需要的化学品。同时与普通的工业原材料相比较,这种技术生产出来的原材料具有很好的反应效果和催化效率,并且污染物质和废弃物质也比较少,这样就促使其具有没有污染、高效率以及节能的特征。此外,生物技术是一种具有创新特征的技术,采用生产能源、材料与化学工业产品相结合的模式,例如:采用生物技术对全部作物进行炼制的时候,以大豆、玉米作为主要的原材料,并且进行发酵和基因组合的方法,在氧气的作用下生产丙二醇。

2.3环境友好型的化学品的应用

在化工中,对绿色化工工程与工艺的应用,不仅能够生产出环境友好型产品,同时还能促进社会和自然环境更加健康的发展。例如:采用三氟碘甲烷来对传统制冷氟利昂进行替代,这是通过联合国审批的新一代环境保护制冷剂。同时因为这种产品可以对臭氧层不造成严重的损害,这样就可以大大减轻温室效应,并且对环境的破坏力也比较小。

3结语

总之,在开展化工生产的过程中,要以绿色化学工程与工艺的开发作为主要的切入点,这样才能促使化工行业得到健康稳定的发展,从而实现节能的目的。

参考文献:

篇(3)

起步于1991年的专业学位研究生教育作为我国研究生教育的重要组成部分,发展至今为我国的经济建设与社会发展输送了大量人才。为了更好地满足国家经济社会发展对高层次应用型人才的迫切需要,优化研究生教育类型结构,完善其培养体系,推动硕士研究生教育从培养学术型人才为主向培养应用型人才转变,2009年全日制工程硕士开始招生。正是由于全日制工程硕士与在职工程硕士在培养方式、招生等方面有所区别、存在差异,因此,过去对在职工程硕士的培养经验不能完全照搬到全日制工程硕士的培养上来,这就要求对全日制工程硕士的培养模式进行创新。但如何创新以及如何真正在具体的培养实践中体现出“创新”,是值得思考与研究的问题。

1全日制工程硕士培养中存在的问题

全日制工程硕士专业学位是全日制专业学位的一种,旨在培养应用型、复合型、高层次工程技术人才和工程管理人才。国内工程硕士研究生教育发展至今,其教育体系和培养模式已较为完善,研究也比较深入。其中,对工程硕士培养模式的研究主要集中在培养目标、课程设置、导师制、论文标准、实践方式等方面。因此,尽管国内外对工程硕士研究生教育进行了较深入的研究,并取得了许多积极有益的研究成果。但对全日制工程硕士培养模式的研究则处于起步和探索阶段,仍存在不少不足和问题,主要体现在以下三个方面[1-3]。

1.1培养目标形同虚设

培养目标是培养模式中的重要因素,也是理顺整个全日制工程硕士培养过程思路的关键因素。我国全日制工程硕士专业学位尽管与对应的工学硕士学位的培养目标有较明确的文字表述差异,但在实际培养过程各环节却与工学硕士学位有极大的重合,并未表现出其培养目标所设定的差异所在,尤其是培养目标在反映全日制工程硕士专业学位的实践性特点方面存在不足。美国全日制工程硕士专业学位尽管与对应的工学硕士学位的培养目标没有很明确的文字表述差异,但在实际培养过程各环节中,无论是学制、学分、课程设置或是学位论文考核等各方面均表现出明显区别。

1.2培养过程缺乏实践性

培养过程是培养模式中的最重要因素,也是全日制工程硕士培养质量的最关键因素。我国高校的全日制工程硕士在具体培养环节与原有的学术型工学硕士相比没有体现出明显差异,其实践性和应用性在全日制工程硕士培养过程中存在明显不足。如,课程设置缺乏实践性课程,专业实践环节薄弱,指导教师工程实践意识淡薄等等。

1.3质量评价体系模糊不清

质量评价是培养模式中的重要环节,也是综合反映全日制工程硕士培养水平的重要环节。目前,我国全日制工程硕士的学位论文评价体系仍停留在对论文选题类型的探讨之中,至于学位论文考核的其他环节(学位论文的选题及形式、考核方式、评阅答辩等)则仍处于模糊不清的状态。

2化学工程领域全日制工程硕士培养模式研究

为了解决全日制工程硕士培养中存在的培养目标形同虚设、培养过程缺乏实践性、质量评价体系模糊不清等主要问题,从以下四个方面对基于化学工程视角的全日制工程硕士的培养模式进行了研究。

2.1建设校内和校外“两支”师资队伍

为了更好地针对全日制工程硕士的实践性与应用性特点展开教学与培养指导,培养高层次应用型人才,通过建设校内和校外“两支”师资队伍,为全日制工程硕士的培养提供及时有效的指导。每位全日制工程硕士配备两名导师,校内导师为主且主要负责研究生的理论指导,校外导师为辅且主要负责研究生的实践指导,校内外导师各负其责,共同商定研究生的个人培养计划。校内师资队伍。校内师资队伍主要来自化学工程与技术一级学科学位点硕士导师,具有工科背景,工程实践经验丰富,结构合理。根据学校硕士研究生指导教师管理办法,每年选聘、培训2~3名校内导师。校内导师实行任期考核制度,每三年考核一次,考核合格者方可延续任职资格,考核不合格被取消导师资格。校外师资队伍。根据学校硕士研究生指导教师管理办法,校外导师每年由化工企业负责组织推荐,被推荐专家应是实践经验丰富、理论学术功底深厚、主持省部级及以上应用研究项目或企业技术革新和改造项目的高级工程技术人员,符合学校有关导师聘任条件,由学校负责认定导师资格,并聘任为全日制工程硕士校外导师,与校内导师合作指导全日制工程硕士。校外导师应严格按照学校学位授予和研究生培养工作等规章制度,履行导师职责。

2.2构建“一个”突出实践性与应用性特点的培养方案

为了突出实践性与应用性,化学工程领域全日制工程硕士培养方案遵循“强化基础理论、突出实践与创新、着重综合素质”的原则,培养方案科学、合理。课程设置以实际应用为导向,以职业需求为目标,以综合素质、工程实践和创新能力的提高为核心,要符合学校定位,具有学校特色。教学内容强调基础理论与应用实践的有机结合,突出案例分析和实践研究。论文课题应来源于企业,或有明确的生产技术背景和应用价值,涉及化学工程领域的新产品、新工艺、新过程、新技术、新装备、新软件或新材料的研制、开发、放大、设计与优化。可以是一个完整的工程项目,也可以是某一个大项目中的子项目。论文所涉及的课题要有一定的技术难度和工作量,论文要有一定的理论基础,具有先进性与一定的创新性。

2.3打造校内实验平台和校外实践基地“两个”培养平台

为了更好地实施校企联合培养机制,践行突出实践性与应用性特点的培养方案,通过打造校内实验平台和校外实践基地“两个”培养平台,形成有利于全日制工程硕士自我学习、工程实践、创新应用的环境和条件。校内实验平台。主要包括教育部重点实验室、湖南省基础课(化学)示范实验室、湖南省普通高等学校重点实验室、湖南省高校科技创新团队、湖南省大学生创新训练中心等省部级教学科研平台,是全日制工程硕士创新应用能力培养的主要场所[4-5]。校外实践基地。主要包括国家级大学生校外实践教育基地[6-7]、湖南省校企合作人才培养示范基地[8]、湖南省高校产学研合作示范基地、化学工程领域全日制工程硕士联合培养基地等校外实践基地,是工程实践能力培养的主要场所。2.4完善“一个”符合学校办学定位和企业实际的校企联合培养机制为了培养和提升化学工程全日制工程硕士的工程实践能力和创新应用能力,通过实践教学方式方法改革、工程实践采取校内外导师联合指导方式等,完善“一个”符合学校办学定位和企业实际的校企联合培养机制[9]。实践课程设置。为了提高全日制工程硕士的工程实践能力和创新应用能力,实践课程主要有专业实践A(集中实践)、专业实践B(分段实践)。实践课程由校内外导师联合指导,其中专业实践A以校内导师为主,专业实践B以校外导师为主。实践教学方式方法改革。基本实施了校内导师与校外导师相结合、理论学习与工程实践相结合、自主学习与现场实习相结合“三结合”实践教学方法。逐步实施了学校教育与企业培养相结合、工程实践与创新训练相结合、工程创新与科技创新相结合“三结合”实践教学方式,充分利用校企优质教学资源,开展现场演示、专题讲座、案例分析等多元化的教学活动,积极开展项目式、案例式、体验式等实践教学改革。工程实践基本要求。工程实践是全日制工程硕士培养中的重要环节。工程硕士在学期间,必须保证不少于半年的工程实践,应届本科毕业生的实践时间原则上不少于1年。工程硕士采用集中实践与分段实践相结合的方式到企业进行工程实践。通过工程实践,使工程硕士熟悉本领域中的项目规划、产品研制、设备设计、工程强化、环境保护等某一或多个环节中的工程知识,并撰写总结报告。通过工程硕士在工程实践中的态度、表现、过程、实践内容和总结报告质量,对其工程实践课程成绩进行整体评价。工程实践采取校内外导师联合指导方式。在双导师指导下,工程硕士通过在企业参加工程实践活动,巩固和深化理论知识,提高发现并解决工程实际问题的能力。工程实践成绩分为优、良、中、及格和不及格五个等级,由校外导师、校内导师和企业相关技术人员组成的考核小组给出。

3结语

针对全日制工程硕士培养中存在的主要问题,通过研究和实践,建立了基于化学工程视角的“2121”全日制工程硕士培养模式,即,建设校内和校外“两支”师资队伍、构建“一个”突出实践性与应用性特点的培养方案、打造校内实验平台和校外实践基地“两个”培养平台、建立“一个”符合学校办学定位和企业实际的校企联合培养机制。该研究将为化学工程领域全日制工程硕士培养模式的创新提供依据,为其他领域全日制工程硕士培养模式的创新提供借鉴,为全日制工程硕士研究生教育的改革与实践提供参考,具有重要的理论和实际意义。

参考文献

[1]李必文,胡良斌.构筑校企合作培养创新平台提升全日制专业学位研究生实践能力[J].科技视界,2013(4):47.

[2]茅艳雯.全日制工程硕士专业学位培养模式研究———基于材料工程硕士的视角[D].上海:上交通大学,2011.

[3]柴松波.全日制专业学位硕士实践能力培养的研究[D].大连:大连理工大学,2013.

[4]申少华,周虎,李国斌,等.大学生创新训练中心现有基础与建设思路研究[J].广州化工,2014,42(21):204-205.

[5]申少华,李爱玲,李国斌,等.大学生创新训练中心运行管理研究[J].广东化工,2014,41(21):227-228.

[6]申少华,彭青松,刘爱华,等.大学生校外实践教育基地工作现状及建设思路研究[J].广东化工,2014,41(18):191-192.

[7]申少华,周虎,曾坚贤,等.大学生校外实践教育基地建设初探[J].教育教学论坛,2015(2):148-149.

篇(4)

前言

化学生产工艺是化学生产过程中一直处于开发状态的技术,化工工艺的开发与发展在近年来更加火热,主要原因在于化工生产常常造成一定范围内的污染,附近居民的生活受到很大的影响,工厂附近水质也不断地降低。这一系列化学工程造成的环境污染问题已经困扰人们很多年,也带来了许多不便,当今社会越来越不接受这种状况,对化学工厂、化学产品制造进行改革的声音越来越大。随着科技技术的不断深化,越来越多的化学污染环境问题写入了国家发展政策的大纲。解决环境问题、如何最有效地进行化工生产、如何提高化学品工业品的质量还有待商榷。目前大多数工厂尚未满足对绿色生产的要求,提高化工生产处于临界状态。

1化工生产行业当前的形势

1.1生产效率没有达到应有的水平

生产效率在化学工业的进程中进步缓慢,在我国这是各个化工厂都有的缺点,特别是在化学反应中,状态和机器不过关。例如在化肥生产过程中,生产机械的运作往往不能够使反应临界点达到预定的状态。反应不充分,致使废弃掉的气体和废弃掉的反应物大量地排放到空气中。实验过程中,资源的浪费是非常严重的。对反应完的原料的丢弃程度到了令人震惊的地步,许多人将仍然没有充分反应宝贵的生产资源丢弃在周边的生态系统中。其他失败品、不合格品的丢弃率高的惊人,这造成了非常大的资源不充分利用,也没有使生产达到想要的效果,在巨大的消费者群体面前,化学品的使用效率不高,因此化工产品的质量及数量还远远不能满足人民生活的需要。

1.2生产过程没有达到保护环境的效果

化学工业产生了严重的环境污染,统计表明,化学制品的废物排放是主要的污染源。目前中国的化工生产的污染物严重超标,特别是重金属的排放和未完全反应的实验废物的排放。这些化工废弃物排放之后,各种污染物进入水中,水中生物的生活环境遭到破环,除此还降低了周边土壤的肥沃度,大大降低周边农产品的产量和质量,其次,这些化工废弃物还污染了周围的空气,导致周边的空气质量大大降低。因此化工生产造成的污染是严重的,多层次的,化工产品生产向环保化生产刻不容缓。

1.3生产不连续性成为生产进度的掣肘

化学工程中,生产环节不连贯也是化工中的一大问题。生产环节不连贯的主要原因在于生产工人的技术不高、工厂的机器落后。一些工厂为了节省开支,忽略了对新型先进机器的引进,对生产工人的培训也不到位,许多没有熟练掌握机器的工人走上了工作岗位。生产环节不连贯致使整个工程的连续性不佳,工程的进度容易受到影响,尤其是当整个生产环节出现脱节的时候,生产的停顿不仅会影响已经产生的化学反应结果,而且对下一步的化学生产也造成了一些不必要的麻烦。同时,化工生产中生产时间是一个非常值得重视的问题,生产的停顿难免会造成生产时间的延长,从而对产品的交付和销售产生不良的影响。因此,生产的不连续性是化工生产中一个亟待解决的问题。

2化工生产的工艺解析

2.1改善化工生产过程中化学反应的要求

在化学生产过程中,对反应条件和反应环境要进行改进。反应条件是化学生产中不可获缺的一份子,为了生产更多有用的产品,减少生产的时间,不让大量的废物产生,反应条件是最首当其冲的考虑因素。在一个合适的环境中的化学反应可以达到最理想的效果。在化学生产中,不得不考虑的方面是加强化学生产过程中的反应条件。使用的催化剂和反应条件必须符合规定的标准,以确保有效的生产和减少化学生产过程中的废物,变成真正的绿色生产。在随后的反应条件的合理安排,也可以确保废物不直接排入自然环境或有用的原材料的再利用,并保证化学生产的相对环境保护。

2.2完善当前对排污和化工流程的管理体系

当前化工企业的生产,不仅应该减少污染环境,而且还应该能够提供对化工流程的处置方法和管理制度的规定。目前,有毒物质和重金属,是绝对不允许直接进入自然环境中的。但是现在大部分工厂的废水处理,许多工厂没有通过合格的标准就将废物排放在河流,甚至一些不负责任的工厂直接将生产原料倾泻入河流当中,大大破坏了植物的生长环境,居民的生活也因此受到很大的影响。所以,我们目前看到的废气排放,都应进行适当处理后进行排放,废水排放的化学技术是简单的,尤其是运用基本化学反应原理,通过沉淀废水中的重金属,之后通过损坏的废气中的顶部和一个排气在排气系统中的设备可以将尾气中有毒气体和废气中的粉尘排放到空气中进行过滤,得到符合国家标准经过一系列的处理,废弃物由此就可不直接进入环境,并对环境造成不良的影响。

2.3让化学生产工艺真正在生产中起到积极的作用

化工生产的主要过程是由化学反应的方法和产品加工方法组成,落实各项措施是用化学方法为主。通过生产工艺和技术以改变其组成和结构的物质,之后合成新的物质。例如,制造氧气,以什么样的方式是最简单的、效率高,更适合生产化学品的呢?在另一个环境的生产原料,可以随机地改变,通过改变生产的适应性,实施后的一系列化学工业生产过程,从而提高生产效率和、学的执行效率和实现绿色生产。在化工生产中,生产过程的未来化学工业生产中运用化学生产工艺是未来化工生产的发展趋势,使用化学工艺能让化学工程达到趋于理想状态,化学的工业现代化对中国化学工业的发展也起到了重要作用。

3对本研究的全面概括

在本研究中,作者研究的主要问题是针对对化学生产工艺的。化学技术是当今的一个热门话题,传统的生产工艺以牺牲自然环境为代价,以生产大量的化学物质为目标。尽管这些化学物质对我们的经济发展中农业和工业都起了非常重要的作用,然而对环境造成的负面影响是无法估量的,许多湖泊、河流受到污染,水中生物的栖息地被无情的破坏,无数的水中生物被有毒化学废物无情致死,所以,实施绿色化的化工产品生产、进行合理的化工生产流程,是未来化学工业和化学工艺生产的重要趋势,化工生产必须不断向高新化、流程化的发展,以促进环境保护,在以后通过运用化工生产工艺到化工产品生产技术中,可以同时达到增加生产效率、节约能源和保护环境的效果。虽然当前的化工生产过程不能实现环境保护、节能减排要求,但是化工生产工艺不断发展,未来会使这些问题得到有效解决。在化工生产过程中,许多化工厂仍然需要不断积累经验,以谋取在发展之路中向现代化转型。政府的政策也支持一些大型化工企业进行改革,逐步改善之前化工生产的一些不足,逐步提高化工生产的效率。今后十年,化工生产工艺必然有一个质的飞跃。

参考文献

篇(5)

一、化学工程技术的产生及发展

化学工程最早产生于19世纪的欧洲,到20世纪石油的开采进一步发展,石油化工业兴起。一战后美国经济迅速发展成化学工程领域的领跑者。二战期间化学工程的作用大大的显示出来,各种化学武器搬上战场。原子弹的研发也是这期间化学工程领域突破性的进展。

20世纪60年代开始化学工程技术的应用领域进一步的扩展,已经从一些小型化工产品向着研究大型化工设备的方向前进,出现了许多能够生产大量化工产品的大型装置。60年代后,计算机开始应用到化学工程领域,极大地促进了化学工程技术的发展和进步。至此70年代以来各种高新的化学工程技术不断地出现,化工领域的变化也称得上是日新月异,取得了很大的成就。

二、化学工程技术在新世纪的发展趋势

化学工程的迅速发展在中国已经成为一级工程学科,在新的世纪呈现与相关的学科交叉结合的趋势。

1.化学工程与相关学科的交叉

1.1与高分子化学、高分子物理的交叉。化本文由收集整理学工程与高分子化学、高分子物理的交叉的学科工程就是所谓的材料化学工程。这一发展趋势是将工程化学原理应用到材料的制造过程中,把自然资源的粗材料加工成精细的化工材料。这一发展趋势的应用领域十分的广泛,如农业中用的薄膜以及各种新型纤维,汽车器材的制造。

1.2与生物化学、微生物学的交叉。化学工程与生物化学、微生物学的结合就是生物化学工程,是将化学技术手段应用于生物技术的研究,生物科学实用化学技术手段转化为能偶为人类使用的产品。化工原料的生产就是这一技术的主要应用领域,还有各种农药、酶制剂以及氨基酸的生产,这些产品都是人们生活中必须要用到的。有了生物化学技术,更加方便了人们的生产生活。

1.3与有机化学、无机化学的交叉。化学工程与有机化学和无机化学的交叉学科就是精细化学工程。这一技术的主要应用领域是化肥的生产以及石化企业的石油精细化产品的加工生产。

1.4与环境学的交叉。当今社会经济发展的同时环境的保护也越来越得到重视,不断发展的化学工程技术也要注意到环境的发展,这就是环境化学工程。目前主要应用于一些无公害产品的生产,以及净化环境技术的研究。

1.5与物理、微电子学的交叉。化学工程技术与各种电子产品的生产技术的结合,有利于各种微电子产品如硅、线路板的生产发展。

2.化学工程与数学、物理学、基础化学进一步结合

2.1与数学的结合。当代化学的发展必须要掌握一定的数学工具,化学工程中非线性代数的应用越来越广泛,表明化学工程技术与近代数学的进一步结合。

2.2与物理学的结合。化学工程技术与物理学的进一步结合体现在x光衍射、气相色谱程序以及电镜等高科技产品的研发和利用方面。

2.3与物理化学、生物化学的进一步结合。化学工程技术与物理化学、生物化学学的结合主要体现在人力学参数的预测和生物环境的治理上,通过与生物化学学技术的深层次结合,是这两项技术有了很大的进展。

三、促进化学工程技术发展的对策

1.着眼全局提高化学工程技术水平

化学工程科学近年来的发展趋势已经明显地呈现与多学科交叉的现象,要进一步促进化学工程技术的进步,就要从全局出发综合考虑与化学工程交叉的各个领域的情况。要统筹考虑各个领域的运用,做好整体的规划,协调各项科学的开发利用。并且统筹现有领域的同时积极开拓新的研究领域,使各个学科领域相互促进,最后实现共同发展。

2.提高化学工程机械设备研究水平

机械设备是提高一项技术必须具备的,先进的机械设备能为更高水平的技术研究硬件支持。但是相对而言,目前化学工程技术方面的机械设备还比较落后,应该加强研究力度,向世界化学工程技术研究的机械水平靠近。有了这些高科技水平的机械设备,在化学工程技术领域赶超世界水平指日可待。

3.做好化学工程技术的教育工作

任何一项技术的发展都不能离开高水平的人才,所以要促进化学工程技术进一步发展需要加强化学工程领域的教育培训工作。不仅需要培养化学工程技术方面的知识,与其相关的学科的教育与培训也要加强。不仅仅培训理论知识,更要加强学生的实践能力,为化学工程技术的发展储备人才。

4.积极开拓化学工程技术的应用市场

篇(6)

一、化学工程技术的产生及发展 20世纪60年代开始化学工程技术的应用领域进一步的扩展,已经从一些小型化工产品向着研究大型化工设备的方向前进,出现了许多能够生产大量化工产品的大型装置。60年代后,计算机开始应用到化学工程领域,极大地促进了化学工程技术的发展和进步。至此70年代以来各种高新的化学工程技术不断地出现,化工领域的变化也称得上是日新月异,取得了很大的成就。

二、化学工程技术在新世纪的发展趋势

化学工程的迅速发展在中国已经成为一级工程学科,在新的世纪呈现与相关的学科交叉结合的趋势。

1.化学工程与相关学科的交叉

1.1与高分子化学、高分子物理的交叉。化学工程与高分子化学、高分子物理的交叉的学科工程就是所谓的材料化学工程。这一发展趋势是将工程化学原理应用到材料的制造过程中,把自然资源的粗材料加工成精细的化工材料。这一发展趋势的应用领域十分的广泛,如农业中用的薄膜以及各种新型纤维,汽车器材的制造。 1.3与有机化学、无机化学的交叉。化学工程与有机化学和无机化学的交叉学科就是精细化学工程。这一技术的主要应用领域是化肥的生产以及石化企业的石油精细化产品的加工生产。

1.4与环境学的交叉。当今社会经济发展的同时环境的保护也越来越得到重视,不断发展的化学工程技术也要注意到环境的发展,这就是环境化学工程。目前主要应用于一些无公害产品的生产,以及净化环境技术的研究。

1.5与物理、微电子学的交叉。化学工程技术与各种电子产品的生产技术的结合,有利于各种微电子产品如硅、线路板的生产发展。

2.化学工程与数学、物理学、基础化学进一步结合

2.1与数学的结合。当代化学的发展必须要掌握一定的数学工具,化学工程中非线性代数的应用越来越广泛,表明化学工程技术与近代数学的进一步结合。

2.2与物理学的结合。化学工程技术与物理学的进一步结合体现在X光衍射、气相色谱程序以及电镜等高科技产品的研发和利用方面。

2.3与物理化学、生物化学的进一步结合。化学工程技术与物理化学、生物化学学的结合主要体现在人力学参数的预测和生物环境的治理上,通过与生物化学学技术的深层次结合,是这两项技术有了很大的进展。

三、促进化学工程技术发展的对策

1.着眼全局提高化学工程技术水平

化学工程科学近年来的发展趋势已经明显地呈现与多学科交叉的现象,要进一步促进化学工程技术的进步,就要从全局出发综合考虑与化学工程交叉的各个领域的情况。要统筹考虑各个领域的运用,做好整体的规划,协调各项科学的开发利用。并且统筹现有领域的同时积极开拓新的研究领域,使各个学科领域相互促进,最后实现共同发展。

2.提高化学工程机械设备研究水平

机械设备是提高一项技术必须具备的,先进的机械设备能为更高水平的技术研究硬件支持。但是相对而言,目前化学工程技术方面的机械设备还比较落后,应该加强研究力度,向世界化学工程技术研究的机械水平靠近。有了这些高科技水平的机械设备,在化学工程技术领域赶超世界水平指日可待。

3.做好化学工程技术的教育工作

任何一项技术的发展都不能离开高水平的人才,所以要促进化学工程技术进一步发展需要加强化学工程领域的教育培训工作。不仅需要培养化学工程技术方面的知识,与其相关的学科的教育与培训也要加强。不仅仅培训理论知识,更要加强学生的实践能力,为化学工程技术的发展储备人才。

4.积极开拓化学工程技术的应用市场

篇(7)

1.1裂解质谱。裂解质谱即将热裂解产生的碎片送入质谱分析仪中,由谱图分析裂解产物。裂解质谱具有所需样品量小、可从碎裂方式分析分子结构、可鉴定混合物等优点。故裂解质谱是最早也是最广泛应用于合成和天然高分子结构分析的质谱技术,典型应用包括:均聚物结构的确认;异构体高分子的区别;共聚物的组成和序列分布分析;高分子混合物的分析;高分子中挥发性添加剂的鉴定及添加剂对高分子性能影响的研究和高分子的热分解机理研究等。裂解质谱技术包括直接裂解质谱、闪蒸裂解质谱和裂解色谱质谱。

1.2裂解色谱是将试样放在严格控制的条件下,经过热裂解形成小分子碎片,而后用直接或间接方法送进气相色谱仪中进行分离测定。不同的高分子材料有不同的特征谱图,因此未知样品谱图与标准特征谱图对照分析,即可对未知样品进行定性、定量分析。本方法可以发挥气相色谱法的快速、灵敏度高、分离效能高的优点,且样品用量少,对含有复杂填充剂的硫化胶,通常可不必经过复杂的分离手续,即可直接进样裂解分析。主要用于聚合物的鉴定、组成分析、结构表征以及降解研究等方面。高分辨裂解气相色谱和裂解同时衍生化技术是近年分析裂解技术的重要进展,其大大推动了裂解色谱在各个领域中的应用。裂解质谱与裂解色谱相比在定性分析制品方面占有绝对优势,但定量分析较为困难,而裂解色谱则可定量分析。综合裂解质谱和裂解色谱各自的优点,两种技术的联用可对橡胶制品进行广泛的推广。

2分析裂解技术的应用

橡胶制品由于相对分子质量大,难溶、难熔且难以挥发,用通常的分析技术难以分析他们的组成。分析裂解技术可以结合化学方法并与其他仪器分析法如红外、核磁等联用,对橡胶制品进行深入、系统的分析,是提供制品分子结构、组成信息唯一而有效的方法。

2.1废旧橡胶分析橡胶工业发展的同时废旧橡胶的产量也与日俱增,这不仅造成了环境污染,还浪费了大量资源,回收利用废旧橡胶制品已成为一个重大的社会问题。回收利用废旧橡胶制品首先要对其组成结构给以分析。景治中等人曾用热裂解色谱2质谱技术对硅橡胶边角废料及次品进行分析,确定了两种酸碱化合物的组成,高温橡胶的酸催化裂解产物主要是环状化合物,室温橡胶的酸催化裂解产物中有环状和链状两类化合物,从而为硅橡胶废料利用提供了理论依据。邱清华等运用裂解质谱及其他辅助技术对胶粉进行了研究,结果表明,胶粉含胶率为49161%,填料质量分数为50139%,其中炭黑质量分数为29128%,为胶粉的利用提供了理论依据。孙玉珍采用色质连用仪对氟橡胶二段硫化挥发物进行了研究,确定挥发物及组分来源,对环境保护有很重要的意义。对废旧橡胶制品的组成结构分析,可以了解其废旧原因,探讨其废旧机理,以便在制品的配方设计或工艺设计中加以改善,从而提高制品的使用寿命。Cardina利用分析裂解色谱技术研究了轮胎胎面胶废旧后成粒子状的原因是空气粉尘对其破坏作用,但空气粉尘对不同胶种的破坏作用不同,由此,我们可以优化耐用胎面胶配方。

篇(8)

引言

化学工程是研究化学工业为代表的,是对石化工业的生产过程中有关化学过程与物理过程的原理和规律进行研究,并利用这些规律来解决工业装置的建设。随着石化工业的不断发展,石化工业所涉及的范围也越来越广,因此重视化学工程技术的创新,并在石化工业装置建设中得到实践与发展是非常必要的。而同时,随着石化工业装置建设的发展,化学工程技术创新提供了必要的条件。

一、石化工业装置建设中的主要改造的部分

在石化工业装置中,工业炉是整个生产工艺中的重点设备,无论是炼油、有机原料的炼成和合成树脂的工艺都需要借助不同工业炉完成。比如在炼油中,最为常见的石化工业装置有裂解炉、转化炉和加热炉等。它们能够按照不同的作用,不同的工艺要求,发挥不同的效果。但目前大多数的石化工业装置仍然是根据其外形将工业炉分为五类:

1.管式加热炉:按形状分为圆筒炉、立式炉、箱型炉。管式炉炉体一般由钢架及筒体(或箱体)组成,炉内衬有耐火材料和隔热材料,还有炉管系统、炉配件和烟囱等部分。根据其受热形式有纯辐射式和辐射-对流式。管式加热炉是石油化工行业最常用的炉型,以后各节主要围绕管式加热炉展开介绍。

2.立式反应炉:这类炉的炉体基本上是受压容器,如甲烷化炉、中(低)温变换炉、气化炉、二段转化炉等;另一部分类似平顶(底)或锥形顶(底)的常压容器,如沸腾炉、蓄热炉、煤气发生炉等,炉体多数均有复杂的内件和衬耐火材料,催化剂填料等。

3.卧式旋转反应炉:炉体呈卧式旋转筒体,内部装有螺旋输运器或加热炉管,外部有传动及减速装置,如HF旋转反应炉等。

4.带传动、升降投料装置的反应炉:这类炉设备类似容器,但外部有投料提升装置,炉内有内衬或砌筑耐火和隔热材料,如电热炉等。

5.其他工业炉:焚烧炉:用于废气、废液、废渣的焚烧。将其中有害物质经焚烧转化为无害物质排出。如污泥焚烧炉、硫磺回收装置焚烧炉。干燥炉:用于干燥工艺物料。热载体炉:塑料厂用的较多。当化学工程技术得到创新,石油化工装置也需要做出相应的改变,以发挥化学工程技术的作用,提升自我生产率。所以为了进一步提升我国石油工业事业的发展,并且配合化学工程技术的创新发展,石化工业装置的主体——工业炉也应该进行相应的改造。

二、化学工程技术创新在炼油方面的实践与进展

1.催化裂化技术

在炼油装置中的创新体现催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化的主要工程需要在裂解炉中完成,裂解炉,主要以石油馏分为原料,进行热裂解生产烯烃,其结构特征为:立管加热裂解炉。裂解炉大多数为立式钢架结构炉体,将几种不同管径组合成一组,炉底有油气联合喷嘴;对流室在顶部,为卧式盘管,预热原料或燃料等。如今催化裂化技术已经成为石化工业装置建设中的核心技术,是石化工业炼油都需要用到的一种方式。在这项技术中就体现了许多化学工程技术的创新之处,如自动开发的高效雾化喷嘴,PV高效旋风分离器、油浆旋液除尘和烟气能量回收等。这些技术的创新与使用,很好的解决了炼油中长期存在的回收烟气压力、取出多余热量等难题。有效的提升了炼油的效率和环保性,让炼油取得了更好的经济效益。

2.炼油装置

炼油装置中的核心部分为常压装置,是处理炼油的重要装置。能有效提升其处理能力,降低能耗,提升拔除率。镇海炼化与SEI对炼油装置大型化开发应用了一系列化学工程创新技术,如在两段闪蒸、三级蒸馏节能型常压蒸馏技术应用其中,并使用真空技术来降低低压降、高减压的拔除率,是其研发出的炼油装置成为目前国内最大的长减压装置。经过实际的投入运用,该常减压设置的处理能力达到了102%,总拔除率达到了79.12%,整个装置的能耗量低至每吨11千克标油。

3.催化重整技术创新

在炼油装置中的体现催化重整是在催化剂的作用下,对油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。石油在炼制的过程中需要在加热、氢压和催化剂发挥作用的共同环境中,让原油中蒸馏所得的轻汽油馏分转变成富含芳烃的高辛烷值汽油,并副产液化石油气和氢气的过程。催化重整中可以用作汽油调合组分,也可以使用芳烃抽提制取苯、甲苯和二甲苯,副产的氢气是炼油厂中重要的氢气来源。需要注意的是,制氢装置转化炉的结果与其他工业炉的结构不同,炉管里都装有催化剂,并在关于制氢反应过程是在炉管内完成的。炉内温度较高,达到1000°C,反应介质出口温度为800°C左右。而催化重整技术的创新主要是在其中应用了新型再生器催化剂分布器,能均匀的分布下料,有效提升反应器的利用率和催化剂的再生治疗。该技术在进气方式及气体分配流动技术也有所创新改进,通过改善气体的轴向及径向分流的均匀性及提升了气体在径向床成内的压力降和气体在轴向的压力分布情况。这些技术方面的创新都有助于提升整个催化重整技术的效果。

4.新型塔板、填料和冷换设备

在改进炼油中相关的化学工程技术中,选择合适的材料能有效保证创新技术的效果发挥,并能帮助炼油厂的合理成本管理。新型规整的填料或乱堆填料已经成为催化裂化中吸收稳定塔和常减压塔的主要材料。高效换热器也已经成为常减压装置的主要构件,其能很好的回收烟气热能,将热炉热效率提升到90%以上。此外,表面蒸发冷凝器、表面多孔管换热器也已经在炼油装置中得到广泛的应用与普及。

三、化学工程技术创新在有机原料方面

1.乙烯成套技术

自“九五”计划以来,我国乙烯事业就开始快速的发展,仅2000年中国石化集团公司的乙烯产量就达到287×104t,并且在乙烯成套技术方面有了很好的创新和发展。石化股份公司对裂解炉和分离工艺技术进行了创新改进,通过在文丘里管流量控制技术对裂解原料在众多的辐射段炉管中的流量实现了精密的均匀分布控制;应用“湿壁”模型解决了废热锅炉结焦的问题。此外,在底部供热和侧壁供热中是由辐射段,建立有效的供热模式系统,让供热更快、更为均匀。乙烯分离技术一直是化学工程技术集中度非常密集的一个范围,并且对于乙烯大型化节能效果与深冷条件都有着非常严苛的要求。通过对该技术的不断研究与创新,在通过多种考虑后,石化公司选择中型乙烯作为乙烯分离技术创新、改进的切入点。如今该项技术已经成功的在石油化工中得到使用。

2.甲苯歧化和烷基转移成套技术

甲苯歧化和烷基转移技术是芳烃技术中的一个重要组成单元,是满足石油化工对二甲苯需求的有效的措施之一。上海石油化工研究将HAT系列作为催化剂,并以此为基础研制出大型轴向固定床反应器和反应器进口气体分布器,以提升甲苯歧化反应的效率,并提升对二甲苯的回收率,满足了石油化工对二甲苯日渐增大的需求。如今一套甲苯歧化和烷基转移成套技术所使用的40×104t/a已经安全、稳定的使用了6年。

3.苯乙烯成套技术

在苯脱氢制成苯乙烯的成套技术中,乙苯脱氢轴径向反应器是该项技术的创新点。对反应器中的原料与反应物料流向进行更合理、更环保、更节约的改进,能降低对催化剂的使用量,并提升乙苯烯的制成率。华东理工大学在6×104t/a和10×4t/a的反应器中进行多次实验后,终于建立了两维气体的数学模型,并计算出反应器入口处轴向催化器的气封高度。另外,也有研究发现使用新型的高效静态混合器,是解决原有反应器入口处乙苯与水蒸气在高温和高速流动状态发生的质量偏离及乙苯脱氢转化率偏低的问题的最好方式。

4.化工型MTBE合成及裂解一体化成套技术

化工型MTBE合成及裂解一体化技术为制出高纯度的聚合级异丁烯,上海石油化工研究院就以下两点进行了创新:(1)使用带有环柱形催化剂装填构件,以实现深液层塔盘的催化蒸馏技术的使用;(2)在预反应器中是由外循环工艺,改变床层抽出的位置。这两点的创新抓住了化工型MTBE合成及裂成一体化技术的关键所在,因此其所发生的效果也是颠覆性的。在MTBE裂解单元中使用固体酸裂解工艺技术,并适当的放大固定床反应器,并对裂解产物分离和精馏塔系进行合理的设计。目前该项技术已经得到很好的使用,以燕化公司为例,其所生产的高纯度异丁烯很好的与丁基橡胶合成。

篇(9)

化学工程设计的目的是利用化学方法和物理方法寻找工业生产的最佳过程,研究工业生产中的共同规律,从而使工业生产的效益最大化。计算机软件在工业工程设计中的应用已非常普遍,化学工程数学模型计算、实验设计、工艺流程绘制等,都会用到计算机软件,化学工程设计中最常见的应用软件有MATLAB、CAD、ORIGIN等,研究这些计算机软件的应用,能有效提高化学工程设计的效率,降低化学工程设计成本,使其设计结果更科学、更可靠。

1化学工程研究的内容及手段

化学工程设计就是对产品生产的化学过程、物理过程进行研究、设计,使其能够完成大规模的生产任务,使化学科学能更好为工业生产服务。如石油精炼、食品加工、药品生产、建筑材料生产等,这些都属于化学工程研究的领域,化学工程设计要对工程的相关因素进行充分的、全面的考虑,并结合装置效应,解决生产过程中的各类问题,确保化学工程生产过程可靠、安全、有效。这一过程涉及物理、化学、数学等多个学科,结合生产过程开发和操作理论等研究工业生产的最佳形式,包括单元操作研究、化学反应工程研究、传递过程研究等,是一项非常庞大且复杂的工程。一方面,化学工程本身比较复杂,它属于多学科交互的研究范畴,有时物理现象和化学现象同时发生相互影响,研究起来比较复杂。此外,化学工程研究的物质有气体、液体与固体,多种形态共存,研究起来比较复杂。另一方面,化学工程研究的物系流动时边界比较复杂,这就导致其设备没有固定的形态、构造等,要结合不同的生产需要,灵活设计化学工程,致使其设计比较复杂、多变。化学工程的研究方法较多,早期,人们主要通过实验来研究化学工程的设计,将实验的过程逐级扩大,以探索工业生产的规律、工艺等,人们将其称为经验放大法。随着化学科学在工业生产中的应用日益广泛,进入20世纪后,人们逐渐意识到化学工程研究的重要性,开始寻找新的方法对其进行研究,这一时期就出现了因次分析、相似论,研究的具体做法就是将影响过程的众多因素进行分析归纳,寻找相似的变量,尽可使研究变得简便,然后再通过实验求得这些数据的关系,再设计化学过程。这一时期,将数学模型方法应用于化学工程设计中的研究模式已初步形成,利用数学模型法,结合实验方法,取得重要的数据,再通过实践鉴别、验证这些数据,进而完善化学工程的设计。这一时期,化学工程设计面临的最大问题就是巨大的数据量与人繁重的工作之间的矛盾,而且人工计算、设计中易出错。计算机诞生后给各行各业的发展带来了巨大的契机,化学工程研究也迎来了新的局面,计算机在化学工程设计中的应用将人从繁重的运算、数据整理分析等工作中解放出来,提高了人力资源的利用效率,同时节省了时间、研究成本。直到现在,计算机仍是化学工程设计的重要辅助工具,计算机软件被广泛应用于化学工程设计当中,成为化学工程发展的重要支柱。

2计算机软件在化学工程设计中的应用

2.1计算机软件在化学工程设计中应用的优势

首先,计算机的数据存储和处理功能为化学工程研究带来了方便,化学工程设计者不用再反复、重复收集、整理各类数据,计算机网络的资源共享性、计算机的数据处理功能,使化学工程研究人员通过计算机应用可以获得更多的研究资源和设计资源,应用软件对掌握的资源进行加工、分析,可以得到更准确的结果,这种方法显然比人工准确、可靠、高效得多。例如,利用MATLAB软件,可以迅速、准确分析大量数据,快速得到结果。例如,对某企业废水中的一些有毒物质进行检测,检测数据众多,人工处理起来复杂、麻烦、易出错,应用MATLAB处理就简单得多了,输入相关数据,很快便能得到结果。其次,应用计算机软件可以使化学工程设计的过程更为直观、简便。例如,应用MATLAB软件可以对数据进行图像处理,将数据转化为图形,还可以在图中添加文本,这样能使化学工程研究更方便。又如,使用CAD软件,可以绘制化学工艺流程,使化学工程设计的内容更精确、美观、具体,有利于设计者及时发现问题,改变设计思路,使化学工程的设计更完美。再次,计算机软件可以模拟化学工程实验和化学工程过程,使研究者和设计者更易得到准确的数据,也使化学工程的内容和方法得到了丰富和完善。

2.2计算机软件在化学工程设计中的应用实例

化学工程设计中最常用的计算机软件有MATLAB、CAD、ORIGIN、ASPEN、PROⅡ等,这些软件应用的主要目的是数学建模、化学实验设计、化学工艺流程绘制、数据处理及数据分析与化学工程分析、设计、核算等。例如,配备一定浓度的溶液,应用计算机软件依次输入相关的数据,就能够得出固体的配置量,这样大大地提高了化学工程设计的效率,使工程设计得到了优化。又如,利用计算机软件进行化学制图,应用MATLAB、CAD都能完成。特别是CAD的三维图,直观、立体感强,是现在化学工程研究必不可少的软件,能够将化学工艺流程真实、客观地表现出来,人们通过看图就能掌握化学工程的概况,方便、快捷,即便不是化工的专业人士通过看图也能够了解化学工程的概况和生产流程。

2.3计算机软件在化学工程设计中的应用问题

计算机软件、硬件的发展都非常快,软硬件相互配合才能发挥出计算机应用的最大价值。当前,化学工程设计中计算机软件的应用存在的一大问题就是大多数化学工程研究者、设计者,过于重视对计算机相关软件的学习、应用和研究,而忽视了对计算机相关硬件的学习和了解,在计算机应用过程中,计算机硬件的一些小问题就会阻碍工作的继续进行,甚至造成难以挽回的损失。例如,化学工程设计图存储不当,造成设计图丢失、损毁、被盗等情况发生,影响了化学工程设计的进度和效益。其次,一些化学工程设计者、研究者过于依赖计算机软件,进而忽视了自身对专业知识的掌握、应用和研究,一旦离开计算机感觉什么事都做不好,这种依赖使其在化学工程设计中缺少创新和钻研精神,不利于化学工程科学的持续发展。再次,化学工程研究中设计和操作优化问题一直都很突出,在研究过程中,大部分研究者也比较重视实践研究,计算机软件也能模拟部分的实验过程,且其处理分析数据的能力很强,即便如此,将化学工程设计应用到大型生产中还是存在诸多问题,这就启发我们需要进一步研究化学工程设计的相关软件,进一步提高其模拟实验和处理数据的功能,更好解决化学工程研究中的各类问题,最好能综合不同软件的应用效果,使软件的应用更为方便、简洁、高效。

3结语

化学工程设计中应用计算机软件,首先应重视计算机软、硬件的协调发展,这样才能使软件更好发挥其作用。其次,化学工程研究的对象相当复杂,计算机软件作为化学工程设计的辅助工具,对于促进化学工程研究、设计是很有帮助的,但归根结底它只是化学工程研究和设计的辅助工具,因此,在化学工程研究设计中,更应重视人的主动行为,大胆开发和创新化学工程设计,不断完善化学工程,使其能更好为工业生产服务。

参考文献

[1]王莉君,周芳.计算机辅助设计在化工工艺中的作用[J].当代化工研究,2016(3).

[2]单自龙.计算机模拟在化工设计中的应用研究[J].化工管理,2015(1).

篇(10)

一、化学工程专业全日制专业学位硕士研究生培养的课程设置

根据全国工程硕士专业学位教育指导委员会“关于制订全日制工程硕士研究生培养方案的指导意见”的精神,要求所培养的学生掌握化学工程领域的基础理论、先进技术方法和手段,在领域的某一方向具有独立从事工程设计、工程实施、工程研究、工程开发、工程管理等能力。结合学院实际学科研究方向,确定了化学工程专业的培养方案。按照学校的统一要求,学制为2年,最长学习年限不超过4年,应修总学分不低于32学分,其中,必修课不低于17学分(公共必修课5学分,校级基础课2学分,专业基础课不少于8学分,专业技术课本文由收集整理不少于2学分);综合环节12学分;专业选修课不少于3学分。专业基础课主要包括高等化学工艺学、高等化学反应工程、新型分离技术、化工传递过程原理、化工过程建模仿真与优化、现代电化学、化学工程前沿讲座、经典学术专著选读、化工系统工程等课程。专业选修课包括合成化学、材料化学、高分子材料、高等有机化学、有机化合物的波谱解析、近代有机合成技术与方法、化学电源、精细化学品化学、液相色谱手性分离、应用腐蚀电化学、绿色化学与化工、化工网络资源与化工软件、现代实用电镀技术、高性能树脂合成方法的应用等课程。综合实践环节包括综合实验、科研实践、文献综述报告、学术活动、知识产权基础与实务、工程信息资源获取与专题利用等内容。

二、培养模式的探索

实践环节是全日制专业学位硕士研究生培养的重点和难点,是全日制专业学位硕士研究生教育质量的重要保证。实践基地的建设,是进行实践教学环节的根本保障,为了积极落实国家对全日制专业学位硕士研究生的培养要求,保证学生不少于半年的实践教学要求,学校、学院把建设各种形式的实践基地作为全日制专业学位硕士研究生培养的重点工作,积极利用各种社会资源,多层次、多角度建立符合全日制专业学位硕士研究生培养的实践基地。如学校层面上建立的大型实践基地,学院层面建立的中型实践基地,以及指导教师通过科研合作等方式建立的小型实践基地,都可以纳入到学生的实践教学培养环节,在学院调查、核实的基础上就可以投入使用。指导教师对于全日制专业学位硕士研究生创新能力和综合素质的培养有直接影响,实行“双导师制”是全日制专业学位硕士研究生与学术型研究生培养的又一区别。“双导师制”对于培养具有实践创新能力的全日制专业学位硕士研究生更具有优越性。目前,企业导师的选聘成为全日制专业学位硕士研究生培养的制约因素。具有坚实理论基础、丰富实践经验并且愿意指导全日制专业学位硕士研究生的企业导师不多。目前,学院主要通过两种方式确定企业导师,一是校外实习基地所在企业推荐;二是在科研项目合作过程中积极争取。进一步明确学校导师和企业导师的职责,学校导师由于具有深厚的理论知识和丰富的教学经验,主要负责基础课和专业课的教学,把握学位论文的理论深度,规范学位论文的写作。企业导师具有丰富的实践经验,主要负责将学生的研究与企业的工程、生产实际结合起来,使研究更有目的性,提高学生的实践能力。从现在运行的情况看,效果良好。

三、加强学位论文的过程管理。

从选题开始,学校导师和企业导师就需要密切合作,加强对选题的评估与论证,明确选题技术背景和研究目标,使选题与生产实际相结合,解决企业的实际问题,论文完成后能够为企业带来一定的经济效益。在论文研究进入到中期阶段,学院将联合企业一起对研究工作进行中期检查,一方面督促学生保证论文进度,对进展缓慢的学生提出警告,对另一方面,帮助学生把握研究方向,并给出合理的意见与建议,使研究工作能够顺利进行。在此期间,加强对于学校导师和企业导师定期交流的管理,鼓励学生进行学术交流。在后期阶段,学院主要结合学位论文对学生加强管理,在双方导师修改同意后,对学位论文实行双盲评审。学院将在校内外选择相同或相近领域的专家进行评阅,对学位论文给出评价,并做出是否同意提交答辩的结论,学院根据评审意见决定是否同意学生参加论文答辩。这使得学位论文的质量得到了保证。

四、培养过程中的问题与建议

篇(11)

但是由于宣传得不够,做实验的学生不多。另外,我们实验室的其他仪器也实行了有条件的向学生开放,经过培训的学生可以使用。

四、结论

实验室应选拔责任心强、知识面宽和实验技能水平高的教师参加实验室开放工作。要对参加开放实验室的教师从思想和业务两个方面进行培训,尽可能地使他们成为本学科实验教学指导方面的多面手。为确保开放实验质量,必须对实验室的开放制定一些切实可行的管理办法,例如仪器设备怎么保护、损坏怎么赔偿,实验报告怎么评定,学分怎么给,对于在开放实验室中取得重大成果怎样进行奖励等,仍需要拟订一些规定予以规范。在开放实验室的教学过程中,实验室教师必将付出比以往更多的时间和精力。如何承认他们付出的这种劳动,教学管理部门和人事管理部门应予以认真考虑,否则将挫伤他们的积极性。同时,也要进一步完善目前的学分制,对学生在实验室中所做的实验或完成的课题设计,也要给予一定的学分。对于在开放实验教学中做出突出成绩的教师、实验技术人员或学生,都应给予奖励,这样教师和学生才有积极性,才能更好地推动实验室开放工作的顺利进行。

参考文献:

[1]齐永钦.创新教育与高校实验教学改革[j].实验室研究与探索,2002,21(3):9-11.

[2]蒋剑辉.创新实践教学模式 培养高素质应用型人才[j].中国电力教育,2009,(22):122-123.

[3]吕广红,黄崇林.实验室层次开放实验教学体系的研究与探索[j].中国电力教育,2009,(15):122-123.

[4]梁永朵,陈健.建设开放性实验室,突显防灾特色[j].中国电力教育,2010,(6):141-143.

[5]凌亚文,等.开放实验室的实践和思考[j].实验室研究与探索,2006,(5):672-680.

[6]吕丽娜.实现资源共享 建立院办系管实验室[j].实验室研究与探索,2003,(4):126-127.

[7]陈孔亮,等.全天候实验室开放技术平台的构建[j].实验技术与管理,2004,(4):36-39.

[8]赵成军,石志标.实验室开放新模式探索与实践[j].中国电力教育,2003,(z1):145-147.

[9]储伟光,谭丹,赖兴运.高校实验室与大型仪器设备开放需要解决的几个问题[j].中国地质教育,2003,(2):61-62.