欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

航天知识问题大全11篇

时间:2023-08-25 16:53:54

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇航天知识问题范文,希望它们能为您的写作提供参考和启发。

航天知识问题

篇(1)

中图分类号:G642 文献标志码:A 文章编号:1672-8874(2015)04-0057-06

航天电子设计课程是为我校空间工程专业专门设立的、基于小班教学(人数在30人左右)的本科专业选修课程,理论与实践结合较强。随着学校新的本科生培养方案和教学大纲的颁布,该课程的学时进一步压缩。为了保证学生在更短的学时内更好地掌握航天电子设计的技能,解决现有教学模式和手段的不足,考虑将SPOC教学理念引入课堂,实现航天电子设计课程翻转,提高教师讲授和学员听课的效果[1]。

一、航天电子设计课程性质与特点

(一)课程性质地位

航天电子设计课程安排在大四上学期。课程的任务是培养空间工程专业学员航天电子系统设计的基本技能,使学员熟悉航天器电子系统的组成、常用单元设计、电路开发流程,初步具备开展航天电子设计的实践能力,为从事航天工程实践打下基础。课程以航天电子系统为主线,系统地阐述航天电子设计的关键技术和开发流程,包括电路原理图设计、印刷电路板绘制、电路板焊接调试、星载计算机、航天电源系统等内容。

(二)课程基本理念

课程采用以实践引导课程教学,讲授与实践相结合的指导思想。随课堂安排作业和专题实验模块,利用实验加深课程理解,并衔接后续课程设计,让学员在基于理论和动手实验的转换中体会航天电子设计的乐趣,充分调动其学习和实践的积极性。课程内容安排上,突出重点的同时兼顾内容的完整性,在有限课时内使学员对航天电子设计既有全面认识,又熟练掌握实践必需的基础知识和必备技能。

(三)课程设计思路

课程设计为理论讲授、现场实验、课程设计三个环节。三个环节同步穿行。理论讲授环节包括电子设计基础、PCB设计制作技术和航天电子系统等基本内容;现场实验环节以课堂讲授内容为依托,主要完成电路原理图设计、印刷电路板绘制、电路板焊接调试等应用实验;课程设计环节需要完成航天器电子系统的几个专题实验任务,拓展学员航天电子设计的实践能力。

二、当前航天电子设计课程教学中存在的主要问题

该课程设立已有三年,教材为授课组集中编写,内容根据授课效果在逐年更新。在课程教学上,目前还存在一些问题。

(一)教学主体“以教为主”,不能激发学生的学习积极性、主动性和创造性

当前教学过程中,主体为老师,这种方式节省时间,效率高,可以满足多数学生的需求。从教学实践上看,理论教学环节,老师讲授时间超过15分钟,部分学生注意力就会发散,影响授课效果;实践教学环节,一般采用老师示范,学生重复操作的模式,许多学生为追求快速完成实验,死记硬背,缺乏思考,不求甚解,一段时间不用,就忘得一干二净。因此,这种单一的“以教为主”、单向广播的教学模式,学生的学习积极性、主动性和创造性不高,效果不佳。

(二)实践教学环节薄弱,不利于培养学生的综合实践能力

经过连续几年的航天电子设计课程教学,学生们普遍反映该门课程实践性很强。往往是学生们兴趣高、意犹未尽,但是实验时间已经用完,经常是老师联系学生补课,因此实践环节仍然显得薄弱。现有教学模式中,理论授课占据了60%的时间,主要采用先理论后实验的教学方式,实践教学仅限于几次课内实验,并且也多为验证性实验,只能起到使学生了解基本实验操作过程的作用。这种实验仅能使学生掌握比较简单的实验操作技能,难以形成航天电子应用系统的开发与设计的能力。

(三)完全依赖课堂教学,课前预习和课后练习得不到保障

目前的实践教学主要采用课内实验的方式,利用实验开发板和系统开发软件进行。课堂时间有限,实验过程中,学生只需按老师的操作规范要求来接线,再在软件中输入既定程序,然后下载到实验板就可以从中观察到实验结果。课堂上如果部分操作不熟悉,课后没有条件来补课。部分学生希望完成复杂的实验项目开发与设计的愿望也不能实现。因此,完全依赖课堂的实验教学教学效果就不能得到保障。

(四)以考代评,缺乏对实践教学真实考核与评价的环节

目前,对航天电子设计课程教学效果的考核方式以笔试为主,采用“4+6”的模式,即平时的课程实验成绩是40分,期末考试的成绩占60分。实验成绩多是以学生完成实验报告的情况来进行评定的,而老师不能一一具体了解每个学生的工作量和实践水平。可以看出,此种考核与评价方式,体现不出实践教学的重要性,不能较客观公正地考查学生的实践能力。

三、建立航天电子设计课程SPOC课堂的必要性

只有便捷、舒适、高效、满足学生需求的课程教学才具备强大的生命力。现代先进教育技术大量涌现、实际课堂教学的不足、学生们求知的渴望,促使我们积极寻求有效提升实际航天电子设计课程教学效果的授课模式。当今MOOC的兴起,给大学教育带来了新机遇、新挑战[2]。然而,伴随着MOOC平台、上线课程和学生注册数的巨量增长,数量的急剧加速引发了质量危机。近几年的研究与实践表明,由于不设先修条件,学生知识基础参差不齐,缺乏面授,互动性差,教学过程缺乏监督和教学模式不具普遍性等,不仅损害了学生学习的自信心,也影响了教师教学的积极性,成为MOOC注册率高、完成率低的重要原因[3]。MOOC的发展是大势所趋,我们借助MOOC实现航天电子设计课程教学效果提升的重要出路就是:转变为课堂教学工具,进入SPOC时代,将传统的“堂上听课堂下答疑”翻转为“堂上讨论线上学习”。SPOC是英文SmallPrivateonlineCourse的简称,顾名思义为“小众私密在线课程”[4-5]。SPOC的核心理念是实行私有的、定制的、高质量导师制教学,其基本形式是线上MOOC、线下享受教师的导师制单独指导,在传统校园课堂上则可引导学生讨论和解决问题[6-7]。航天电子设计课程SPOC建设有一定基础,其必要性在于:1.人数规模合适:学生规模一般在30人左右,符合小班制教学,即Small的标准;2.学生层次差异不大:作为校内同专业学生,他们的学科基础、知识结构、上课时间等基本相同,符合限制性、私有的和定制的教学模式,即Private的标准;3.授课时间安排合理:每周一次课,每次3个学时,充分保证了理论教学、分组实验的开展;4.课程专题性强,知识点突出:前期课件基础积累丰富,知识点容易索引,章节高度有序,适合MOOC课程专题建设;5.学校教学网平台可以利用:现有教学网较为成熟,适合在线课程资料(电子书、短视频、练习题等)的上传和下载,论坛维护便利;6.教师团队实践经验丰富,容易实现课堂翻转:先后有多名骨干教员参与课程建设、理论授课和实验辅助教学,对课程流程熟悉,同时亲身承担了大量科研任务,特别是对卫星电子系统研制经验丰富,具备翻转课堂的能力。

四、基于SPOC的航天电子设计MOOC课程建设内容

航天电子设计课程是实践性要求很高的一门专业课。现有的教学模式虽有SPOC教育模式的理念,却离SPOC之实相距甚远。因此,如何应用MOOC的成果和SPOC的先进教学管理模式,逐步改革航天电子设计课程教学,是当前本课程教学改革的关键。借助MOOC,实现航天电子设计课程SPOC建设,需要完成以下工作[8]:1.制作高度有序的PPT课件,按照章、节、点、条,精确编号。2.录制讲解精炼、透彻的视频,建立与知识点同名的视频文件,能够围绕知识点索引。3.提供与知识点同名的电子文档,能够围绕知识点索引。4.编写典型的练习题,客观性要强,题目与知识点同名,能够围绕知识点索引。5.完成课程设计题目、典型实验代码编写,对初学者在关键代码段预留中文注释,学生进行补充和调试。6.借助教学网等网站,完成上述资料的上传。7.积极进行网站建设,及时回答线上学生提问,能够随时观察学生学情。这样,围绕一个知识单元,就囊括了短视频、电子书、练习题和讨论题等重要元素,为实现课堂翻转提供了条件。图1为航天电子设计MOOC课程建设示例。

五、基于SPOC的航天电子设计课程课堂翻转步骤

航天电子设计课程翻转课堂的目的在于,使学生成为课堂学习的积极主动参与者。对于航天电子设计这门实践性要求较高的课程,翻转课堂应强调学生动手能力。例如,在程序代码编写环节,利用电子教室软件,老师可在屏幕上实时掌控每位学员的调试过程,随时让某位学员进行屏幕共享、课堂示范讲解,老师及时引导并解答学生存在的共性问题,效果非常好。课堂翻转的步骤分为以下几个方面:1.提前陆续释放相关知识点的课程讲解和阅读资料,让学生有的放矢的,提前自由自主的完成高效的预习。例如:授课视频和参考资料课前全部放在网上,24小时随时可以在线读取;精确到知识点的视频和电子书;教师根据计划设定阶段性学习内容和期限;学生自主决定在这个期限内如何自由完成。2.课前学生学习高度清醒,知己知彼。学习时,可浏览个人进度、作业完成情况、学习时间;掌握每天进度排名和耗时排名;了解论坛热点信息;自建同步笔记和讨论等。3.课堂上实行小班化教学,任务驱动,分组讲解,学生与老师的角色互换。具体操作时,把班级分成几个小组,每组布置不同的教学任务,完成翻转任务书;课堂上各组担任教师角色,向其他组教授相应内容;教师点评、提问、参与讨论;其他组同学一并参与即时讨论。4.后台大数据让教师全程对课程知识点,对学生个体情况了如指掌。教师可以定时布置阶段性学习任务;看到各章节任务总体完成情况,个人完成情况;看到各个知识点完成情况,耗时情况;看到学生总耗时,视频耗时;看到学生个人各个知识点耗时等;看到个人学习日志;把握课程重点和改进难点讲授方式等。图2为航天电子设计课程课堂翻转过程示意图。SPOC的基本流程是:教师把MOOC的丰富视频材料当作家庭作业布置给学生预习和自学,然后在实际的课堂教学中回答学生问题,了解学生已经吸收的知识、存在的问题,在课上与学生一起处理作业或其他任务。总之,教师可以根据自己的偏好和学生的需求,自由设置和调控课程的进度、节奏和评分系统[9]。

六、基于SPOC实现航天电子设计课程课堂翻转的案例实践

按照上述理念,选择航天电子设计课程的部分专题进行课堂翻转的实践。这里,以《星载计算机串行通信》专题进行示例,这节课的特点是素材准备比较充分、知识点突出、实践性要求比较高。下面按照时间顺序进行介绍。课前两周:通过校内局域网邮箱、教学网向学生投送视频、设计实例、虚拟开发软件。包括串行通信基本概念、星载计算机通信接口等。视频8分钟左右,实例演示7分钟,可重复播放。课前:要求学生自主观看视频、观摩实例;安装虚拟开发软件,参考设计实例完成模拟环境下的开发;在教学网或邮箱提出遇到的问题,等待课堂解决。老师在课前一天关注学生在概念理解、程序开发等方面提出的问题,重点做好备课。课堂翻转时间:课堂上,设置不同的翻转任务,包括基本概念讲解、常用通信接口介绍、实例演示等。随机抽取不同小组进行课堂翻转,由学生讲解,老师或学生随时发问。讲解完毕,老师进行点评,学生一起讨论问题。该环节学生主导,教师引导。课堂练习时间:布置随堂实验任务,进行单机串行通信接口实验。这不同于课前模拟环境下的开发,而是基于星载计算机的程序开发。为突出知识点,提高学生成就感,提供特定波特率下的串行通信参考程序,而对要完成的程序段进行留白,学生课堂完成编写、调试。该环节教师布置任务,学生随堂完成。课堂验收时间:验收的整个过程可通过专用电子课堂软件,对待验收的学生屏幕同步投影到教室大屏幕,使得每个学生都能看到待验收同学的演示过程。首先,待验收同学通过单机和模拟通讯软件进行自发自收,对程序质量进行演示;然后,通过第一步演示的两个同学进行双机通讯,确保互联互通;最后,大家对每个学生遇到的共性问题一起解决,共同做出评价。该环节前两步学生主导,最后一步教师主持。课后:根据课堂授课效果,进一步把握课程重点,改进难点讲授方式。整理教学素材,使得知识点讲解更简明扼要,演示更清晰到位,预留问题更有启发性。

七、基于SPOC的航天电子设计课

程课堂翻转效果问卷调查本文采用问卷调查的研究方法,利用校园教学网,对来自四个专业三个班,学习航天电子设计课程的76名学员进行了在线邮件问卷调查。调查执行时间是2015年9月至10月。共收回有效样本75个,回收率为98.68%。调查结果显示,学生们积极评价了基于SPOC的课程课堂翻转效果。“相对传统教学方式,采用SPOC方式学习效果更好”(88%)、“知识点集中,重点突出”(92%)、“师生互动增强,学生参与程度加强”(76%)、“可以自由安排时间预习,可反复学习,效率提高”(96%)、“学生自控能力、表达能力、思辨能力、合作能力等得到全面锻炼,综合能力得到提升”(92%)、“习题与测验量少、精确、高效”(80%)。影响课程的原因主要表现在以下几个方面:“平时可以投入的时间有限”(61%)、“缺乏自控力和毅力”(43%)、“课程内容与预期不符”(19%)、“很难找到学习伙伴交流”(21%)、“课前视频或电子书选用不好用或网络不畅”(24%)、“课程难度太高”(16%)、“课程内容没有吸引力”(13%)、“老师教学方式没有吸引力”(11%)、“不习惯考试方式”(8%)、“不喜欢在线学习的方式”(3%)。因此,基于SPOC的课程课堂翻转模式仍然有许多问题值得探讨。从教师角度而言,教师自己建设课程,管理课程,需要耗费大量精力;课堂研讨的工作量加大,指导学生的力度增强,对教师的学术能力和知识面有了更高要求;定期布置阶段性面授任务,使得学生全程保持紧密学习状态。简而言之,教师少讲、精讲,努力节约讲授的时间,重点放在引导和启发学生思路,重点解决共性难题方面。八、结束语SPOC的核心理念是实行私有的、定制的、高质量导师制教学,实现这一理念的有效方法是线上MOOC(对应传统的课堂下)、线下享受教师的导师制单独指导(对应传统的课堂上)。要保证SPOC有效实施,不仅要完成MOOC所需要的优质视频、知识单元化、学习管理规范化等条件,还要有知识面广、教学经验丰富、计算机水平相当的教学团队,即:既要有内容可翻转,还要有能力翻得动。因此,从理论上说SPOC可有效解决航天电子设计课程现有的所有问题,但实际中还需要做大量的准备工作并加快改革步伐。前期积累越充分,后续全面实现航天电子设计课程“翻转课堂”的效果越好。

参考文献:

[1]曹育红.“翻转课堂”在软件技术实训中的创新应用[J].中国电化教育,2014(4):116-120.

[2]贺斌,曹阳.SPOC:基于MOOC的教学流程创新[J].中国电化教育,2015(3):22-29.

[3]沈景凤,石云霞,吕方梅.SPOC背景下设计方法学教学改革与对策[J].教育教学论坛,2015(1):260-261.

[4]罗九同,孙梦,顾小清.混合学习视角下MOOC的创新研究:SPOC案例分析[J].现代教育技术,2014,24(7):18-25.

[5]康叶钦.在线教育的“后MOOC时代”———SPOC解析[J].清华大学教育研究,2014,35(1):85-93.

[6]杨斌,王以宁,任建四,等.美国大学IPSP课程混合式翻转课堂分析与启示[J].中国电化教育,2015(2):118-122.

[7]周丽涛,刘越,彭立宏,等.探索MOOC在计算机实践教学中的应用[J].计算机工程与科学,2014,36(z1):118-121.

篇(2)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)21-0051-02

一、引言

目前诸多高校针对空间工程、飞行器系统与工程、导弹工程等多种航天专业设置的本科生课程,可划分为力学、航空宇航、电子、信息与控制等多个系列课程。同时,航空航天等技术领域内很多问题,其研究对象可能既是航天问题又是力学问题,具有与多学科多专业广泛交叉、相互渗透,与实际工程结合紧密的特点。基于上述原因,为了提高航天专业本科人才的培养质量,如何在有限的课时计划内、在有限的课程数目内有效设计航天专业固体力学系列课程,是一个值得探讨的问题。

随着高校内部增大学生的实践比重、面向工程能力培养的呼声日渐高涨,笔者所在的教学组借鉴了起源于美国麻省理工MIT的国际工程教育模式――CDIO模式,在航天专业的固体力学系列课程的设计与应用中进行了相应的教学探索与教学实践,期望通过该模式在教学实践中的正确引入与有效发展,更新教师教学理念与实践手段,增加课程实践比重,充分调动学生学习效率与积极性,为航天或力学专业工程师的培养提供参考。

二、CDIO模式与航天专业力学系列课程的结合途径

国际工程教育模式CDIO,是以产品、过程和系统全生命周期的开发与运用为背景,包含了构思、设计、实施和运行(Conception,Design,Implementation,Operation,简称CDIO)4个教育和实践训练环节。它与航天专业力学系列课程的有机结合,可以考虑如下几个途径:

(一)CDIO模式的起源

CDIO是一种基于传授航天领域技术知识与培养预备工程师能力而起源产生的工程教育模式,其创始人是美国麻省理工MIT航空航天系Edward Crawley教授,其发展初期在2004年左右。可见,将CDIO模式与航天专业力学系列课程的结合,则具有一定的合理性和先天优势,是一种积极有益的尝试。

(二)基于CDIO教育理念形成课程观

CDIO模式是基于“做中学”的教育理念,是一种将实践过程与理论教育相结合的教育理念,结合该模式在航天专业力学系列课程的设计中可形成两种课程观:首先,是一种凸显了“社会需求”的课程观,即根据工程师的社会角色与责任,培养工科毕业生具备较好的工程能力与深厚的技术基础知识,在课程体系与课程内容上,并不是按照严密的学科知识体系来组织课程,而是强调基于社会现实需求来选择和编排;其次,亦是一种强调了“学生为主体”的课程观,即学生的学习效果侧重于从学生的实践感知和实践经验出发来构件知识和能力,基于“做中学”强化学生探究兴趣和实践能力,从而体现了学与做的结合、知与行的统一。

(三)明确实践对象与执行方案

CDIO工程教育模式主要特点是深化技术知识基础和实际职业能力的二元学习经验模式,且该模式的基本原则是反复强化实践,因此CDIO模式的实践必须包括两个或者更多的设计与实施环节。具体来说,航天专业固体力学系列课程体系的实践对象包括如下三类环节:第一个是突出导论性基础课程,即引导学生入门工程实践,领略工程技术的魅力;第二个是初级的实践环节,即针对核心基础课程《工程力学》开展课堂一线教学改革研究;第三个是高级的实践环节,即针对来源于科研任务的设计综合项目进行教学改革实践。

三、CDIO模式下航天专业固体力学系列课程的具体设计与教学实践

教学理念的转变最终体现为课程设置、教学内容与实践对象的改革。在我校2012本科人才培养方案中,我院结合CDIO模式对航天专业固体力学系列导论课程进行了具体设计与教学实践的工作,主要包括如下三个方面:

(一)导论性课程的设置

导论性课程是一个早期的基础工科课程,我院针对航天专业的大一新生设置了导论课程《空天工程导论》,要求选课学生具有一定的数理基础即可。该课程内容主要介绍飞行简史、工程学简介、航空器飞行原理、结构与动力系统等基本概念、基本知识,通过它为入学新生搭建了航空航天器设计、构造、应用所需的知识框架。同时,课程还提供了一个初级的设计―实现的实践,让学员参与水火箭或LTA飞行器的设计与制作。

设置导论课程的主要目的快速引导学生了解航天器的基本构造及工作原理,让学生参与入门的工程实践,从而激发学生兴趣和后期加强学习的主动性。

目前,我院30学时的《空天工程导论》课程已经成功申请为我校的精品视频课程,主讲教师的授课教案和讲义脚本已经完成,且授课视频录制已完成一半以上。

(二)《工程力学》课程的教学改革

首先,调研了近年来国内高校在《工程力学》课程中的改革研究:例如,天津科技大学的李秋h在建构主义教学基础上建立“刨设问题情境”教学法[1],山东英才学院的来小丽实施项目驱动教学法[2],哈尔滨学院的张田梅探索了研究性教学法在工程力学课程教学中的实践。上述内容从不同方法与形式来提高学生处理分析和解决工程实际问题的能力,均可作为低年级核心力学课程改革的组成部分。

其次,调整了我院的《工程力学》教学内容:在静力学部分中重点介绍构件的受力分析、简化与平衡规律;在材料力学部分中以杆件的轴向拉压、扭转和弯曲三个基本变形为研究目标,以“内力分析―内力计算―应力应变计算”为逻辑分析主线,结合强度理论、稳定性分析或能量法来优化组织教学内容,并删除了图乘法和摩尔圆等内容。

然后,改革了我院的《工程力学》教学方法与成绩评定:理论讲授采用了习题讲解、启发式、研讨式、案例式等多元化教学方法;实验操作侧重学生动手能力培养,要求学生按照2~3人合作或单人独立完成课程内13项实验内容,同时实验室采取了鼓励课外开放式实验的机制;成绩评定是将考核点分布于教学全过程中,即由平时成绩、课堂讨论、实验操作、实验报告、科技小论文、期末成绩等考核点综合评定最终成绩。

最后,给出《工程力学》课程近年内取得的成绩:2015年《工程力学》评为校优课程;2015年委托科学出版社再版了《工程力学》教材;2015年成功申报了36学时的MOOC课程《工程力学》,目前主讲人和授课内容已确定,2015年完成了省精品课程《工程力学》复核工作,并向湖南省高校数字教学资源中心提交了课程教学视频、课件、教学大纲、电子教案、教学案例、试题习题、文献资料、教学成果、软件工具等电子材料整理;2015年该课程主讲老师分别获得了学校教学质量新星奖和学校本科教学优秀个人一等奖;2015年实验室新增加了XL3418K互动式普及型材料力学实验装置,完成了12个虚拟实验的材料整理。

(三)大学生创新实践项目与本科毕业设计综合项目的优化

CDIO模式将顶峰级实践体验作为本科教育的顶点。该实践环节往往侧重于学生对以前所学知识的综合运用以及创新能力的培养,要求学生在大三或大四年级中申请了综合项目实践,以团队或个人形式承担来源于科研项目的、更为复杂的实际任务。

我院高年级本科生顶峰级实践环节大多数包括大学生创新实践项目与本科毕业设计综合项目两类。例如,为了优化本科毕业设计模式,笔者所在课题团队采取“双团队设计项目”的集成教学方法进行了如下实践工作:首先,成立了以航天方面的学科带头人为核心,包括结构动力学与设计、振动控制、姿态控制、电子电路共5人组成的教师团队;将总体设计、主控分系统、姿控分系统、动力学建模与分析、帆板振动分系统、星体结构设计等六个子项目形成课题任务书,让学生自主选择,并形成了自然分工、相互合作的学生团队;之后,学生会在教师的指导下,按照任务书计划在规定的时间段内(两个或多个学期)逐步完成开题审查、中期检查、方案设计、理论推导与计算、设计制造、实验验证、撰写报告、项目验收或毕业答辩等步骤。

在课题团队的努力下,近年来取得了如下可喜的成绩:2015年课题团队成员指导的省级大学生创新实践项目《座椅弹性缓冲器等效刚度分析与实验研究》顺利验收,并且验收结论为优秀;课题团队指导了2015年国家级大学生创新实践项目《非对称复合材料拉伸-扭转耦合结构设计》,目前为在研阶段;继续完善了学校级的基础力学虚拟仿真实验教学分中心、应用力学虚拟仿真实验教学分中心、力学与航天工程虚拟仿真实验教学中心的工作,并且在省实践教学示范中心的基础上,实验室2016年成功申请为国家级力学与航天工程虚拟仿真实验教学中心。

四、结束语

对航天专业固体力学系列课程进行设计与应用的教学实践表明,由于航天航空领域内很多问题是多学科交叉融合、与实际工程联系紧密的问题,应用CDIO教育理念中深化技术知识基础和实际职业能力的二元学习经验模式,对于学生掌握扎实的专业知识和技能,感受鲜活的科学研究过程,激发创新意识起到了良好的促进作用。

篇(3)

2012年浙江高考理科综合卷的第15题,考查学生用物理知识和天文航天知识,以及用数学知识解决物理问题的能力。同样的,浙江2011年的第19题,2010年的第20题和2009年的第19题,考的都是这些知识和能力。其他省份和全国卷也都存在这一现象:天文和航天知识在物理高考中几乎年年出现。这表明在新课程标准的指导下,现行的高中物理教材和考试题型都紧跟时代的发展,反映现代科技的进步。教师在课堂教学过程中,需要注意增加物理的实用性和趣味性,使学生能把枯燥的物理理论和当代高新科学技术发展联系起来,增强学生的求知欲。特别是天文学和航天技术的发展这些内容。

一、物理学与天文知识、航天技术的关系

天文学在物理学中扮演着一个很特殊的角色。它是物理学的一个重要分支,又占据了物理学中一个相对重要的地位。它的发展是极其曲折而又激动人心的,每一次进步都带动了整个物理学界的巨大变革。而物理学界里程碑似的成绩无不有与之相关的地方,无不有其应用的地方。哥白尼的日心说带来了天文学的一次翻天覆地的变革。之后导致了天体物理学的自诞生以来最为飞速的一次发展,其中牛顿的万有引力的影响是极其深远的。它给天文学家解释许多问题提供了一个最有力的论证。

航天技术是一门高度综合性的科学技术,是很多现代科学和技术成就的综合集成。航天技术的设想来源于基础物理学中的力学和热学,而其发展主要依赖于电子技术、自动化技术、遥感技术和计算机技术等众多先进技术的发展。而这些技术的发展都离不开物理学基础理论的研究。如没有电磁学的发展,人类就无法使用电能,也无法生产电子产品,其他的高新技术就更加无法实现了。

二、扎实掌握高中物理基础知识

1.构建完整的知识脉络。

与天文、航天联系的物理问题主要考查了学生的力学和电磁学方面的知识。如:圆周运动,万有引力,洛伦兹力等知识点。如2009年浙江理综卷第19题,“关于太阳和月球对地上相同质量海水的引力”,考查的就是万有引力定律。2010年浙江理综卷的第20题“宇宙飞船以周期为T绕地球做圆周运动……”考查的就是圆周运动与航天知识,以及用数学解决物理问题的能力。2011年浙江理综卷的第19题“探测X星球”,考查的也是万有引力和圆周运动,体现了理的实用性。

通过认真理解题目信息,联系所学物理知识,建立物理模型,就能运用所学的知识轻松解决这类问题。这需要学生全面、完整、系统地掌握相关的知识。具体有开普勒的三大行星运动定律:轨道定律、面积定律和周期定律;万有引力定律,包括万有引力定律的发现,定律公式,引力常量及其测定G,以及万有引力定律在实际中的应用:计算地球质量、中心天体质量和发现未知天体。宇宙航行章节中的三个宇宙速度及人造地球卫星的运行都需要扎实地掌握。

2.补充天文知识,激发学习兴趣。

有高中物理中,在介绍万有引力定律时,为了让学生感受万有引力定律的巨大作用,我引用了这样两个事实:哈雷应用万有引力定律预言了彗星的回归和勒维耶根据万有引力定律完成了对海王星位置的推算。这不仅证明了万有引力定律的正确性,而且是物理学和天文学互动发展的有力例证。

教师还可以在课堂上及时补充一些天文常识,开阔学生的视野,提高学生的兴趣,激发他们学好物理的主动性。如:中国为何远古就有“金木水火土”五行说呢?虽不科学,但也并非完全不科学,因为太阳系中唯有“金木水火土”五大行星,是用肉眼能观察到的,其他都要用望远镜才能观测到,而我们的祖先很早就对此有了记录,作为后辈的我们更要鞭策自己不断努力了。

再比如金星,又名太白金星,它是天空中最亮的星星,所以一眼就能看到它。它又叫启明星,每天天快要亮时,它出现在东方,很明亮,太阳出来后消失。它又被叫做长庚星,因为傍晚太阳落下不久,最早在西方天边出现的星星就是它。由于它的明亮,西方人把它叫做“爱神之星”。木星,体积最大的行星,它的亮度仅次于金星,也较早呈现天空中,西方人把它命为“众神之父”。

三、关注天文学的热点和新发现

宇宙大爆炸理论,黑洞,中子星这些都是天文学上最热门的研究领域,也是高考的热点。如果学生平时对这些知识有所关注,就可以在短时间内迅速理解题意,正确解答出来。

如2009年安徽理综卷的第16题,先给出宇宙大爆炸理论,假如真是这样,要求学生选出标志宇宙大小的宇宙半径R和宇宙年龄t的关系图像。该题考查的知识点很简单,就是对运动图像的分析,看懂题目,准确了解题意,选择正确的图像并不难。

2009年江苏高考物理第3题以“英国《新科学家》杂志评选出了2008年度世界8项科学之最”之一的“最小黑洞”为背景,紧跟国际新动向。但此题考查的仍然是万有引力定律的应用。虽然知识点非常简单,但是具备相关的天文知识,却能帮助学生更快地解题。尤其是其中计算结果精确到数量级,是天文中常见的估算法的运用。

2009年四川6月的高考,引用的是当年4月底美国的天文发现:代号为2009HC82,与太阳系其他行星逆向运行的小行星。可见高考对天文上的新发现的关注程度。

四、关注我国航天事业的发展

当我国重大天文和航天事件发生时,物理高考中常常会联系这些问题。比如2000年1月26日我国发射卫星,全国卷和天津、广东卷都考了;又如和平号退役,神舟2号、神舟4号、嫦娥一号等重大科技事件的发生,也在当年的高考中体现出来。如2008年的广东卷第12题的“嫦娥一号”奔月示意图,北京卷第17题“嫦娥一号”卫星,2009年福建理综卷的第14题的“嫦娥一号”月球探测器,2009年重庆理综题第17题都以“嫦娥一号”为背景,考查万有引力和圆周运动的知识点。

2010年安徽理综卷第17题,虽然考查的知识点依旧是万有引力定律的应用,却是以“我国预计于2011年10月发射第一颗火星探测器‘萤火一号’”为背景,时代感很强。可以预见,火星探测器项目还会随着今后航天技术的发展而在未来的高考题中成为被高度关注的对象。

在今年的高考中,江苏高考物理第8题也考到了我国航天的最新发展:2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家。如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,则此飞行器的(?摇?摇?摇)

(A)线速度大于地球的线速度

(B)向心加速度大于地球的向心加速度

(C)向心力仅由太阳的引力提供

(D)向心力仅由地球的引力提供

该题并不难,考查的是匀速圆周运动的知识,但了解一定的航天知识对学生题意理解和考场发挥起着很重要的作用。因此,教师应该多关注生活中发生的重大事件,特别是我国航天事业的新发展。同时也引导学生多关注这方面的知识。关注我国天文和航天技术的发展,还有助于增强学生的民族自豪感和社会责任感,同时使学生对物理学在实际科技生产中的应用有更深的认识,激发学生对物理学习的兴趣,提高学生的积极性和主动性。

篇(4)

——《深圳特区报》2010年4月25日

材料二 苏联工程师在登月竞赛失利之后,把精力集中于装配载入太空站。1971年4月19日,成功发射上天的世界上第一个试验性载入空间站——“礼炮1号”……是人類迄今为止规模最大的载人航天工程。它从最初的构想到最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面为这两个从上个世纪50年代就在太空成为“冤家”的航天大国之间,画出了一个意味深长的句号。70年代,中国卫星打完后,有了底气的航天人中有人提出搞载入飞船,当时引起了一些争议。事实上,主要是受当时的综合国力的限制。时间进入到90年代,此时中国航天的科技水平已是今非昔比。红红火火的对外发射服务不仅让中国航天与世界接上了轨,更有了“长二捆”这种让载入上天成为可能的“天车”。世纪之交,中国人的登天激情再一次熊熊燃烧起来。从无人实验飞船到模拟载人飞行,从多人多天飞行到圆梦太空行走,短短10多年间,中国航天实现了一个又一个历史性跨越。而天宫一号进入太空,中国航天向栽人空间站时代迈进了一大步。

——摘自大型电视系列片《撼天记》解说词

材料三拥有和掌握空间交会对接技术是建造和运行空间站的先决条件,也是面向未来实施系列深空探索航天计划的关键一环。因为虽然空间站具有体积大、功能强和运行时间长等优点,是大规模开发太空资源的理想栽人平台,但它无法进行天地往返,需用宇宙飞船等天地往返运输器与其交会对接,才能完成各项航天使命。所以,完成空间交会对接应该是航天大国技术实力的综合展示。

——《报》2011年11月10日

(1)据材料一及所学知识,分析美苏在太空展开竞赛的原因,并分析其对国际航天事业产生的影响。

(2)据材料二,指出世界载人航天工程快速发展的背景。结合所学知识归纳20世纪90年代以来中国载人航天工程发展的特点及原因。

(3)据材料三并结合所学知识,概括指出神舟八号与天宫一号成功交会对接的意义。

【解题技巧】本题是一道典型的文字材料型解析题,解答的关键在于把握读、找、答三个步骤。

一、“读”,即阅读材料,这是答题的前提

第一,先读设问,再结合设问阅读材料。先读设问,带着问题阅读材料,不但能使思路清晰明确,而且便于从材料中找寻有效信息。第二,明确设问要求。在本题中,除第(2)小题的第一问要求“据材料”外,其他几问都要求据材料并结合所学知识回答。第三,要注意设问角度、指向主体、时空限定要求等。如第(2)小题的第二问“归纳20世纪90年代以来中国载人航天工程发展的特点及原因”,设问的角度是“特点及原因”;主体是“中国载人航天工程”;时间限定是“20世纪90年代以来”。

二、“找”,即根据设问要求找信息,确定答案来源

篇(5)

doi:10.3969/j.issn.1673 - 0194.2016.06.055

[中图分类号]V11 [文献标识码]A [文章编号]1673-0194(2016)06-00-03

0 引 言

国内外航天产品研制发展历史表明,航天工程研制具有极端的复杂性和风险性,航天事业事关国家安全、形象和地位,“质量是政治、质量是生命、质量是效益”是中国航天的质量理念,反映了中国航天事业质量的重要性和航天人的价值观。

辩证唯物主义认为,事物的发展是螺旋式上升或波浪式前进的过程。中国运载火箭技术研究院(以下简称一院)建院以来,一院人充分认识到了航天工程的复杂性、科学性、创新性,始终把握型号飞行试验成功的工作目标,把成功作为一院人的信仰与追求,认真履行国家和民族赋予一院的历史使命,不断追求型号产品的高质量、高可靠、高安全,同时在系统工程理论的框架下,持续推进型号质量与可靠性工作的实践、创新、再实践、再创新。

航天一院在型号研制历史上,也经历了不少失败,失败之后的整顿或强化措施,对于扭转当时的被动局面,发挥了重要作用,但是痛定思痛,为什么整顿不能永久保持型号和组织的成功和持续成功?为什么不能第一次就把事情做对?航天型号项目管理是落实系统工程理论的成功典范,但周期性的管理低谷,说明一院对系统工程的研制规律把握上还有差距,应对复杂系统的复杂问题,特别是解决管理与控制的全面性和有效性方面还缺乏有效的方法。

2011年,一院在总结和反思其发展历史上重大挫折的同时,提出要用“维度、深度、细度、力度”等“四度”的工作标准来提高系统工程理论在方法应用层面的有效性,来衡量组织的工作成效,实现由型号成功向组织成功的转变。

“四度”明确了零缺陷系统工程的工作标准,提出了研究复杂系统的分析、认识、保证和评价方法。

1 “四度”的含义和要求

20世纪末,世界著名管理专家朱兰博士在美国的一次几千人参加的大会上,以90岁高龄作了告别全世界企业界和管理界的主题发言。他说:“将要过去的20世纪是生产率的世纪,将要到来的21世纪是质量的世纪”,所谓“将要过去的20世纪是生产率的世纪”,是指在20世纪关注点聚焦于产量、产值和生产效率,是粗放型的。所谓“将要到来的21世纪是质量的世纪”,就是说在21世纪关注点聚焦于产品质量,着眼于质量产生的综合效益。因为市场经济的本质是竞争,竞争的核心是质量,竞争的本质是质量观念、素质、技术、条件、服务及价格等一系列综合的评价、比较和改进,产品质量是综合素质和整体能力的综合反映,是集约型的。因此,人们不仅要关注质量,更要关注质量的有效性,那么就要提高关注的全面性、关注的深度、关注的细致程度,以及投入多大的精力和资源,才能实现质量制胜战略。

航天事业发展伴随着国家和经济社会发展变化而变化,由以军事国防为重点的单一发展方向,向军民一体、服务对象多元化发展方向转变,对企业成功的评价也向以组织成功发展为重要评价体系转化。航天型号研制是复杂的系统工程,在看待和思考复杂系统问题的过程中,必须要找到系统解决方案,从而顺应市场化竞争的需求,使企业从粗放管理向精细化管理转变。

“四度”理念方法正是运用系统的视角,从多维度,用量化的概念和方式去评价组织、项目和任务工作成效的系统工程方法,即通过牢牢把握“维度、深度、细度、力度”实现航天系统工程项目内各环节管理的精准,从而从根本上解决工作有效性不高的问题。

“四度”的理念方法是从不同视角关注复杂系统的过程中,从多维度、多角度认识与把握复杂工程系统的内在规律,系统性提高工作有效性的思想方法。

第一,维度,强调工作的系统性、全面性。事物是多维度的,例如,为了保证飞行过程识别要素的全面性,提出了飞行时序动作确认方法,即要保证按飞行时序的相关要素的全面性和解决相关飞行动作在空间上、在环境上的相互影响问题。又如,为了控制系统的接口,提出了ICD(Interface Controlling Document)和IDS(Interface Data Sheet)接口控制方法。

“维度”要求在技术上消除认识上的盲区,在管理上,杜绝失控和工作漏洞,在产品质量管控上,能够识别关键特性、识别风险源,开展有针对性的工作。

“维度”强调了工作的全面性、覆盖性及协同配合,包含两方面的内涵与要求:一是产品的“维度”,航天工程涉及的专业技术广、产品类型多。对于航天产品全寿命周期中发生的问题,都要用系统工程的方法从多维度、多角度全面、系统地看待,从整体上考虑问题并解决问题,由“吃一堑长一智”提升为“吃一堑长多智”,不能头疼医头、脚疼医脚,要综合权衡,周全考虑,坚持目标导向,在时间维度、空间维度、业务维度和知识维度上系统思考解决发展中面临的问题。二是工作质量的“维度”,组织的任何部门和每一个员工都有自己的工作质量,都有自己的质量职责,不同工作具有各自不同的质量属性,质量管理渗透到组织的所有部门和全体员工。产品质量与服务质量已不是一个部门所能单独完成的,而是由许多组织共同协作完成的。各级组织在各个“维度”都要关注、识别、评价和改进各自的质量特性,不断适应企业发展和产品竞争的需求,从各个方面、各个层次、各个维度解决组织结构中各个要素的协同性,使方方面面的质量要素共同作用,指导产品质量的管控,最终在产品上反映不同工作的质量属性,在产品上凝聚企业质量理念。因此,企业的各项工作都要围绕产品这一核心,以追求产品价值最大化、提升核心竞争力为目标,以用户为导向,按照市场经济规律持续优化资源配置方式。各相关部门要持续改进工作质量,加强相互之间的协调配合,不断提升产品质量保证能力。

第二,深度,强调要把工作做深、做透、层层分解落实到底。事物是分层次的,从系统、分系统、单机、到元器件,按照唯物主义观点是无限可分的。通常航天型号质量要管控到影响系统特性的层面上,例如:某型运载火箭首飞失利是一个元器件引起的,引起元器件失效的原因是内部电气互联工艺在金导线与半导体芯片的铝电极连接面发生了金铝扩散效应,形成的金属间化合物降低了连接强度,导致界面脱开,引起失效,由于质量没有管控到这个层面,因此付出了失败的代价。

“深度”强调了层层落实到底,要把工作做深、做透、精益求精,特别是要对产品持续进行再分析、再设计和再验证,同时要解决工作标准层层衰减的问题。“深度”代表了工作的系统性,以型号质量保证工作为例,要对每个层次的产品形态及其质量要素,如系统、单机、器件、原材料、工艺过程、设备等各个环节、各个层次进行精细化管控,通过责任链条的层层分解与深化落实,实现产品质量,保证水平的提高。尤其是要将单点失效识别与控制、拧紧力矩量化、测试覆盖性分析与控制等量化工作进行到底,要将不可测、不可检环节转化为过程的可测、可检,产品过程质量控制工作深入下去,管得彻底。以科研生产计划质量工作为例,要综合考虑各方面因素,不断优化设计上下游传递与流转关系,在空间维度、时间维度、成本维度上精确管理各项协同性工作,提升计划管理质量。

第三,细度,强调要学会把工作做细,养成做细工作的习惯,找到做细工作的方法。事物的表征是可以量化的,细度主要解决一个量化问题。“细度”强调要养成做细工作的习惯、找到做细工作的方法,注重在过程中量化评价各项质量要素。细度就是量化,达到一定细度的量化是管理成熟度提高的表现。以型号产品研制工作为例,“细度”要求型号研制队伍对设计、仿真、试验等摸清余量,找到边界;对生产、装配和检测等环节要实现精确度量,各方面的工作都要有量化值。以财务及成本质量管理工作为例,要细化分解产品研制流程,全面、准确设置成本控制点,在性能维度、材料维度、工时维度、能源维度上实现成本精确可控。同样,各职能部门都要深入一线,结合基层实际需求,科学管理,统筹安排。

第四,力度,强调要提升识别、发现与解决问题的能力和勇于担当、坚决执行、扎扎实实把工作做到位的工作作风。事物是相互作用的,解决问题,是事物的内部矛盾发生改变,才能有本质的变化,事物间的相互作用力没有达到一定的程度,没有量变的持续积累就不能发生质变,就不能推进事物的发展与目标的实现。从管理上讲,“力”有两方面的解释,一是执行力,二是能力,两者缺一不可。执行力不代表言听计从,而是正确把握工作目标,将工作落实到位。

“力度”强调要提升发现问题、解决问题的能力和执行力。在人员素养上要具备识别、发现和解决问题的能力。对于已经认识到的问题,就要有一个时间表,下决心去彻底解决;对于已经有要求和相关标准的工作,必须坚决的、不折不扣地严格执行和贯彻落实,这是确保成功的基本要求。纵观航天型号产品发生的问题,很多都是重复性问题,说明举一反三工作的力度不够,一方面说明人们对问题的原因分析不透彻,纠正和纠正措施不具体的情况,缺乏对质量问题的总结提炼;另一方面也说明人们普遍存在漠视别人的问题,不能主动吸取别人的教训。

2 “四度”为质量要素的把握指明了方向

航天系统工程是组织管理航天型号规划、计划、预研、研制、试验、生产以及人才、物资、保障条件、经费的科学体系与方法。航天系统工程管理本身具有多维性,包含时间维、空间维、业务维和知识维。其中,时间维是指研制流程的各个阶段;空间维是指系统的分解、配套组成;业务维是指型号管理的各项业务;知识维是指型号研制过程中各种专业、不同素质人员的知识组成。航天系统工程是面向型号系统,从方案可行性论证、方案设计、工程设计、工程研制到设计定型和生产装备的全过程,在技术、计划、组织、进度、质量等方面,对人、财、物、技术、信息与知识等多个基本要素实施的管控。

“质量”是一个广义的概念,既包括微观质量,例如产品质量,也包括宏观质量,例如经济运行质量和绩效,其外延构成包含诸多要素:①实物产品质量;②系统管理与运营质量;③人员质量,如素质、知识、技能;④工作质量,如设计、制造;⑤规划质量,如战略方向、产业布局;⑥计划质量,如计划完成率、资源利用率;⑦服务质量,如技巧、态度;⑧财务质量,如效益、收益;⑨成本控制质量;⑩培训质量,如对员工的重视等;协同质量;知识产权质量;品牌质量;创新质量,如组织、机制、管理、技术;质量优先性;注重环境保护和相关方利益。

“四度”揭示了航天产品质量的评定法则,其不能简单用“好”或“不好”这一概念,而是各个质量要素识别、分析与综合评价的结果。产品的综合质量指标可用下式表示:

f(Q)=f(Q1)*f(Q2)*f(Q3)*f(Q4)*f(Q5)*f(Q6)*…*f(Qn) (1)

其中,f(Q1),f(Q2),f(Q3),…,f(Qn)分别代表实物产品质量、系统管理与运营质量、人员质量、工作质量、规划质量、计划质量、服务质量、财务质量、成本控制质量、培训质量、协同质量及创新质量等各项工作质量要素的分立指标,其量化取值范围为0~1。综合质量指标(f(Q))是各分立指标的乘积,其极限值为1。从公式1可以看出,只有各项质量工作相应的分立指标均向满分为1的极限逼近,综合质量指标才可能实现“零缺陷”的最终目标。并且,随着用户需求的提升和企业认识水平的提高,分立指标是动态发展、不断扩充的。

“四度”的四个核心要素――“维度”“深度”“细度”“力度”四者具有内在的辩证关系,即存在“维度”“深度”“细度”的渐进与递推层次、螺旋上升,并通过“力度”保证其他“三度”在推进过程中的全面性和有效性。在提高工作有效性的过程中,首先,要抓“维度”,即把工作项目识别全面,完成无遗漏;其次,要抓“深度”,即把确保工作项目完成的所有活动识别到底,并逐项严格执行;再次,要抓“细度”,即把活动所要达到的目标进行量化,并据此对活动的效果进行评估;而“力度”,是启动各项工作的初始要求,并且始终伴随着工作持续改进的过程,确保了组织工作有效性的持续提升。

3 “四度”与系统工程的辩证关系

航天工程包括运载火箭、航天武器、可重复使用运载器、卫星等多个工程系统。其中任一工程系统的研究、设计、开发、生产都是一个复杂的组织管理过程,首先,必须考虑到从概念研究到部署、使用全寿命周期活动的要求;其次,必须综合集成多种学科和专业技术,包括一些必须事先攻关的前沿技术;再次,必须组织成千上万科技人员和管理人员在十几年的研制过程中协同工作;最后,必须保持在整个研制过程中技术、经费和进度的协调进展。航天工程系统极端的复杂性和风险性要求必须建立一种“组织管理系统的规划、研究、设计、制造、试验和使用的科学方法”,这就是航天系统工程管理。它是航天工程顺利实施的前提和基础,是组织管理航天型号系统研制工作的唯一选择,也是航天领域必须系统解决的问题。

质量是企业竞争力的核心要素,质量管理是企业管理的纲。质量职能可以用“螺旋上升过程(PDCA循环)”来检验,螺旋形上升过程的旋转是从产品研究与开发开始的,在这旋转的末端,再发动一个新的螺旋形旋转,以进一步改进,质量管理的过程就是质量改进的过程。质量改进是质量管理的精髓,也是系统工程管理的问题导向。质量改进与质量管控要素在维度上是一致的,同样包含实物产品质量改进、系统管理与运营质量改进、人员质量改进、工作质量改进、规划质量改进、计划质量改进、服务质量改进、财务质量改进、成本控制质量改进、培训质量改进、协同质量改进及创新质量改进等各项工作质量改进。

在唯物主义的观点下,系统工程与“四度”二者的核心理念和目标是一致的,都是要实现“复杂系统的质量改进”和“零缺陷”;二者的实现途径也是一致的,都是要“建立高效有序的组织管理方法”。

进一步讲,“四度”在方法论层面上,强调了观察事物和解决问题的系统性,是对系统工程理论的深化和细化的表现方式,是精髓与高度概括,在实际工作中具有很强的针对性、指导性及操作性。

因此,“四度”与系统工程理论二者是一个有机整体,不可分割。“四度”是运用系统工程学,是研究复杂系统的分析、认识、保证和评价方法,是从本质上解决组织有效性的一种工作方法,是系统工程在航天工程领域的新发展。“四度”是项目成效改进工作指导思想的高度概括,精炼阐述了工作标准,指明了改进工作的具体方法。

4 零缺陷系统工程的应用情况及前景

在系统工程思想方法的指导下,将维度、深度、细度、力度等“四度”作为零缺陷系统工程的工作标准纳入质量文化,并深刻解析其准确内涵和具体要求,为运用系统工程学对复杂系统进行分析、认识、保证和评价,并从本质上为提高组织有效性提供了一种科学的工作方法,为系统解决航天事业发展过程中面临的困难与瓶颈,始终保持型号矩阵式质量管理工作纵横均强、相互促进、相互制约、和谐发展的发展态势,“确保成功、永葆成功”,提供了思想方法基础,明确了工作标准,指明了改进方向。

今天中国的航天技术已经从试验阶段走向应用阶段,而国民经济建设、科技进步和国家安全对航天型号在技术水平上、质量上、数量上也提出了更高的要求。面对新机遇、新挑战,为了保持航天的持续发展,有必要重新认识航天科技工业整体发展目标,进一步调整系统结构和组织管理模式,提高工作效率,缩短研制周期、合理利用资源,降低研制成本、满足性能指标要求,确保产品质量。航天产品及其服务,需要以质量和技术为顾客、社会、国家创造价值,同时以质量和技术来体现自身价值和合作伙伴的价值。

质量是民族素质的体现,是做人做事的基本要求。在后续的航天型号研制中,要坚持运用系统工程学的科学方法,遵循“维度、深度、细度、力度”四度工作方法,清晰认识新世纪航天事业的风云变化,深入分析航天工业系统复杂的发展规律,系统解决航天事业发展过程中面临的困难与瓶颈,始终保持型号矩阵式质量管理工作纵横均强、相互促进、相互制约、和谐发展的发展态势,“确保成功、永葆成功”。

主要参考文献

[1]栾恩杰.航天系统工程运行[M].北京:中国宇航出版社,2010.

[2]许达哲.树立航天可靠性工作理念、推进零缺陷系统工程管理[J].质量与可靠性, 2007(2).

篇(6)

良好的开端是成功的一半,在教学论中,教学过程的第一步是激发学生的兴趣和学生的学习动机。教师利用社会热点问题导入新课,可以有效激发学生的學习兴趣。

例如,在学习新课“食物中的营养物质”时,视频播放2016年10月景海鹏、陈东两名航天员在“天宫二号”实验室内工作的录像,让学生思考,航天员飞向太空,在飞船中进行各种科学实验,甚至还要出舱活动,这都需要消耗大量的脑力和体力。为了保证航天员的健康,航天员的一日三餐必须科学合理,接着提出问题,给航天员带到太空的食物中,至少应该含有哪些成分?为什么含有这些成分呢?学生们对于航天实验十分感兴趣,甚至有些同学还是航天迷,对于这一系列的问题学生们展开了积极思考,注意力很快集中到课堂上,在强烈的求知欲下开始本课的学习。

二、穿插热点,深化知识

在学习新知识的过程中,教师可以穿插介绍近期发生的社会热点新问题。既使学生增长见识,拓展知识面,又深化了对新知识的理解。

例如,在“呼吸道对空气的处理”学习中,讲解呼吸道对空气的处理能力是有一定限度的,许多老师选用“沙尘暴”的实例,让学生说出在沙尘天气我们应该怎样做?在这里我将社会广泛关注的超级雾霾版的《北京北京》视频呈现给大家。提到“雾霾”大家都知道,但是,“雾霾”到底指什么,它有哪些危害?很多同学并不能说清楚。通过资料分析,学生拓展了知识,知道了雾霾天气中含有大量的PM2.5颗粒。PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也可称为入肺颗粒物。可沉积于肺泡,而且粒子容易吸附一些对人类有害的重金属和病菌,对人体造成危害。由此学生确信,即使有呼吸道的处理,人体也不能完全避免空气中有害物质的危害,更深刻理解了呼吸道的作用。

密切联系生活实际,让学生切实感受到在日常生产生活中,生物知识与我们密不可分,并使学生做到学以致用,获得成功的体验。

三、交流热点,合作学习

叶圣陶先生说“教者,盖在于引导、启发。”这就是说教师是指导者,课堂上教师可以采用“小组合作学习”的教学形式,拓展学生思维空间,提高学生自学能力。在这一过程中,教师可以安排小组共同收集与课程相关的社会热点问题,课上讨论表达交流,扩展了学生的视野,锻炼了收集、整理资料的能力。

例如,教材中有很多关环境保护方面的内容,在“分析人类活动对生态环境的影响”一课中,我安排学生以小组为单位收集有关滥伐森林、大气污染、水污染、捕杀野生动物等现象的原因、危害及应对措施。查找有关“雾霾”、“温室效应”、“全球气候大会”、“穿山甲事件”等社会热点问题。小组合作收集整理,制成课件向全班展示。在联系社会实际过程中,增强了团队合作能力,提高了对环境保护的意识。

篇(7)

21世纪,知识经济浪潮席卷而来,知识已经逐步取代物质资本成为组织最具竞争力的因素,而作为知识载体的人才,无疑是组织获取竞争优势的最主要来源。航天企业作为我国尖端科技研究单位的代表,对国防现代化、经济建设和综合国力的提升均起着至关重要的作用。纵观国内外,航天领域的竞争异常激烈,而科技竞争的背后无不体现着人才的竞争,但作为国有实体的航天企业,在面对经济改革大潮及人才竞争如此激烈的环境,无不在人员管理方面暴露出了一些不适应。作为人员管理能力提升的前提及关键,人才考评在其中发挥着不可替代的作用,本文通过研究航天企业的人才考评体系,希望可以促进航天企业人员管理能力的提升。

1.人才考评现状剖析

针对有国企背景的航天企业,结合其企业目标,它的员工更多地体现为高学历、高素质,以及具备开阔的视野,较强的学习能力,因而航天企业在人才考评时也应该有所侧重,但现实并不如此。笔者通过对多家航天企业的调查了解,发现多数航天企业在人才考评方面存在以下主要问题:

1.1考评指标及权重不合理

科学的人才考评讲究从德、智、能、绩四个方面进行考核,但多数企业均存在概括有余、针对性不足的缺陷,如考核指标体系中部分指标主面性强、概念上重复,指标未能很好的定义及传达,不同岗位或专项人员考评的区分度也有待改进等。对于各指标的考核权重,随意性较高,未能详加论证,以至最终考核导向偏离、效果弱化。

1.2考评方法欠完善

针对本企业而言,对人才的考评主要以定性评价为主,员工的绩效优劣多由主管领导评定,尤其是工作没法量化的员工,量化评价方法的运用不够到位,从而类似岗位员工之间的差距并不能很好体现。同时,企业的考评手段单一,缺乏针对性、时效性,多数时候的决定权均掌握在领导手里,这样极易破坏企业评价的公平公正。

1.3考评结果效用缺失

航天企业多为国有企业,带有很多国企人力资源管理的问题,重要表现之一是人员流动较慢,用人机制不灵活。人才考评的目的无非是要让企业寻找到合适人才,从而将人才放到合适的岗位上去,“能者上,庸者下”,从而去激励员工不断学习,提升个人综合素质,更好地适应岗位要求,企业要求。多数时候,企业考核只是为了考核而考核,如绩效考核成绩通报后没有后续的绩效面谈,没能同时给予员工适当的激励和压力,以致考评效用缺失。

2.人才考评体系建设

人才考评不仅能让员工去认识自己的优势和不足,从而有针对性地去改善,更能让企业去了解员工,发现人才,从而选拔合适的员工到合适的岗位上,人尽其才,才尽其用,因而,人才考评体系建设在企业员工管理中占用举足轻重的作用。针对航天企业的特性以及其人才考评过程中存在的问题,本文将进一步探析航天企业人才考评体系,以便提升航天企业的竞争优势。

2.1设计原则

(1)考核指标设计。为更加客观、公正的做好人才评价工作,首先,考评指标应尽可能的剔除主观化因素,做到以定量为主、定性为辅,能量化的指标尽量量化;其次,考核指标不能宽而泛,应该少而精,从而使考评效用最大化;最后,针对不同岗位类别,考核指标设计应体现独立性和差异性原则,以及尽可能的通俗易懂,易于传达。

(2)考评方法选择。不仅考核指标设计需要调查问卷、访谈或经验等方法加以论证确立,人才考评的手段也应该多样化,如人才考评中可根据工作实际情况采用笔试、专家评价、定量考核、心理测试、情境模拟、系统测评等多样化的测评模式,从而使考评结果更加客观、公正。

2.2考评导向

为使考评效用最大化,企业应该考虑将考评体系化,不能放任各类考评独立运行。只有做到考评体系化,才能减少各类考评的交叉性,减少无谓的人员精力消耗,从而提升考评效用。体系化考评不仅可以提升考评本身的效用,更能减少企业考评工作的重复性,因而企业应该倡导体系化考评。

2.3对策提升

(1)实施非物质化激励。航天任务涉及国家声誉和国际影响力,其工作者强调奉献精神,同时航天工作者多为高学历、高素质人员,追求自我价值实现的愿望强烈,工作成就对其激励性远远胜于物质激励。因而针对这一特性,航天企业应该更多的去塑造自己独特的文化,强调爱国,强调奉献,同时提供更多的培训机会,让人才持续成长。

(2)多样化、多维度测评。

作为高学历、高素质的一员,航天工作者十分渴望自己能被客观、公正的考评,而能否被客观公正考评也是现今多数知识型员工评价企业好差的一个重要方面。因而,如何针对不同岗位类别的人员进行考评则显得至关重要,这不仅需要有健全的指标体系,更要求有多样化、多维度的测评手段,再根据侧重点赋予对应测评相应权重,这样的测评结果才能更加客观、公正,更能让人信服。

(3)反馈系统

人才考评在提升企业管理能力的同时,更应该去关注考评对象的成长提升,而考评结果的反馈或是后续的考评面谈,可以更加充分的让被考评者认识到自己的优势与不足,从而有针对性的去提升自己,这一环节对于考评工作而言只是举手之劳,但其最终的效用却是对企业大有裨益。

总之,在竞争日趋激烈的现今,人才考评体系开始突显其重要性。针对航天企业的本身特性,本文进一步探析了航天企业的人才考评体系,期望可以为航天企业的人才考评体系构建提供一些有益的参考。

参考文献:

篇(8)

【关键词】人工智能;航天测控技术;应用探究;智能化

【Keywords】artificial intelligence; aerospace measurement and control technology; application inquiry; intelligent

【中图分类号】V55 【文献标志码】A 【文章编号】1673-1069(2017)05-0141-02

1 引言

人工智能在航天领域的应用具有巨大潜能。航天测控技术实际上是通过测控,实现对卫星的控制,这是一份较为复杂的工作过程。随着卫星功能的不断增多,航天测控技术要求也越来越高。虽然我国已经在航天事业方面位于先进的水平,但是航天测控设备多只是实现遥控与测控的自动化,与智能化的实现还有一段距离。因此,人工智能的应用还有待挖掘,人工智能在航天测控技术中的应用还有待研究。

2 人工智能的应用概述

近年来,我国在人工智能的研究领域也有了较大的进展,不少国内学者发表了有实用价值的研究著作。人工智能在医学诊疗方面取得了广泛的应用。随着航天器的多功能发展,智能化的转变,成为发挥航天事业多用途、系统化的决定性因素。因此,我国逐步加大了人工智能在航天测控技术中的研究,希望航天测控技术能够自动处理探测故障、自行进行飞行规划和路线设计等[1]。

3 航天测控技术中的设备应用要求

第一,卫星轨道测试及其引导系统。第二,航天侧控技术的安全控制。第三,根据航天侧控任务要求对卫星的形态进行分析,对其卫星轨道实施控制。第四,航天侧控系统要实时监测卫星内部的设备工作情况。第五,航天侧控技术要求能够对卫星上设备发生的故障,及时采取定位、排除和检修。航天的侧控应用,对设备的响应速度与可靠性都具有很高的要求,不仅要具有极强的通用性质,还要能够在规定时间内完成对相关设备的检测与通信,使设备间保持联系,保证遥测技术数据正常处理流程。对设备故障等任务提出控制指令,进而进行执行[2]。

4 人工智能在航天测控技术中的应用意义

传统的航天y控软件是通过算法结构和计算机而实现推理功能的,对于很多问题还无法提供最精确的答案和描述,数值的计算能力也不够强,有时只能定性推理。而人工智能的应用,可以提升其生存能力,包括航天器的自主检修能力、故障排除能力、定位能力等。对于航天器的轨道设计,自动化网络智能预先对故障检测的定位等设置好,用编程进行控制。随着航天测控技术要求的不断提升,传统的编程控制已经不能满足当代的应用需求,若不向智能化测控技术进行靠拢,其航天测绘中的数据与通信的可靠性与有效性都会受到不同程度的影响,导致接收到的数据不准确、不完整。因此,我国很多专家专门成立研究小组,对航天测控技术进行数据分析,分析其指令的序列、故障检修、定位等信息,将人为的管理逐渐转化为智能化管理。

用人工智能控制航天测控技术,不仅能够提升航天工作的安全系数,还能够减少航天器的使用寿命,降低人工控制费用,减少人工管理精力,具有很明显的优势。第一,人工智能能够代替测控专家进行智能化操作与工作,减少专家的脑力劳动。第二,人工智能中收藏了所有测控专业的各项经验,整合了测控技术的专业知识。第三,人工智能使航天系统离开了人操控的固定模式,提高了操作的变通性和实时性,降低了人为操控影响因素。第四,人工智能使航天机械更容易操控,提升了工作效率。第五,人工智能使航天系统的解决问题能力提升。第六,节约了航天器测控的维持状态的人力和物力,配置速度加快[3]。

5 人工智能在航天测控技术中应用的可行性

人工智能的应用过程,实际上是将人的思维活动进行机械化,使机械具有类似人工的处理问题的能力。人工智能在航天测控技术中的应用,是航天系统模仿测控专家的思维和操作,进行推理判断,使操控程序能够如同专家处理问题的规则一样,及时提供解决措施,根据我国现有条件可知,人工智能在航天测控任务中的应用是可行的。测控系统的功能有数据库和知识库。前者包含遥测数据、指令和故障信息。后者包括用户的接口、知识获取、知识表达等。通过外部输入数据,转换成系统能够识别的信息,进行格式压缩和处理,实现对航天器的控制,利用人工智能实现测控技术控制,减轻了人为负担,也能够提升航天测控能力。

6 航天测控技术任务中的智能化应用分析

我国传统的航天测控技术是采用一般算法实现自动化,该种方式具有封闭性,不利于技术的发展和扩充,故障维护方面也要采用人工方式进行解决,不适用航天事业发展。根据我国航天测控技术现状,我们首先要确定测控设备智能化系统,选择有针对性的部位,融合测控专家的思维,实现人工智能操作[3]。其次,使用智能化系统,还要将专家测控系统嵌入到设备中,再改变原本的算法与结构,使其逐渐适应航天事业的改变与发展。对于智能化测控系统中,可以确定的系统由遥测信息处理系统、通信跟踪系统、故障诊断系统、检测系统等。这些都是容易实现人工智能的部分,能够使遥测信息处理中,清楚航天器的轨道等情况。

7 人工智能在航天测控技术中的应用环境与目标

为了使人工智能在航天测控技术中具有可靠的应用,要遵循一定的应用环境和目标。在开发环境上,要选取经验丰富的建造及测控专家进行系统融合,先借助小型机进行专家智能系统开发应用,再根据需求进行专家系统开发。在目标方面,不仅要开发全面、智能化的航天测控大系统,还要在开发通讯上更加便捷,统一通讯接口,面向广大用户,逐步升级系统故障排除方案。真正实现系统在线实时工作。同时,人工智能在航天测控技术中的最终目标是将地面测控设备小型化,再将其移植到航天事业中,提升卫星的控制能力。

8 结论

人工智能在航天侧控技术中的应用与开发,有利于我国智能化的进一步发展研究,对于提升航天测控设备的可靠性具有重要意义。希望本文的研究,能为提升我国人工智能在航天测控技术中的应用水平提供借鉴。

【参考文献】

篇(9)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)42-0140-04

自改革开放到21世纪初期,中国的发展世界瞩目,我们不论在政治、经济、文化等方面都取得了长足的进步,中国已成为名副其实的世界大国,取得这样的成就,在很大程度上依赖于我国推行的科教兴国战略所造就的庞大的优秀人才队伍。然而,不容忽视的现实是,目前我国培养的工程师队伍虽然已经超出美国的10倍,但是工程师的整体知识水平、设计能力,尤其是优秀工程师的总体质量与美国、德国和日本等发达国家甚至一些发展中国家都有很大的差距[1],具体表现在工程教育方面就是教学内容与产业需求相脱节,工程实践经历缺乏,工程师培养体系不够健全等。导致这些问题的深层次原因主要在于我国的工程教育依然停留在科学范式而不是工程范式,工程教育过分强调了工程科学,而忽视了诸如设计等实践能力培养的环节[1-2]。工程教育不同于自然科学教育,它是一种以技术科学为主要学科基础,以培养工程技术人才为主要目标的专门教育[3]。即工程教育的目的就是培养工程师,这一理念在包括像MIT这样的世界一流大学早已达成共识,MIT的毕业生,无论学士、硕士或博士,到公司就职就是担任工程技术人员。通过工程教育提高工程师教育的水平,完成这一目标有两点很重要:教育的方式和教育的工具。PBL是一种应用广泛学科教学方法,它不仅仅使学生获取知识,并且要求他们学会运用知识。让学生能够将新的信息与学过的知识结合起来明白他们应该如何应用掌握知识。在建立学习的框架时,应当特别注意学生已有的知识基础并且激活这些知识。加快新信息的处理和帮助学生建立有意义的联系是教育和学习的基本要求。PBL促进学生主动参与和学习。学习变成一个发现的过程――讨论问题、研究背景、分析解决方法、设计方案、得出最终结果。这种主动学习方法不仅对于学生来说更加有趣,也使学生们对资料有了更深的了解。近年来,我国教育界的学者和奋战在一线的教育工作者们以这种理论为基础,针对我国教育教学的实际情况,进行了一系列基于PBL理论的教育教学改革理论研究和实践,取得了一定的效果。近年来,“小卫星”已经成为航天发展的热点话题,而将小卫星作为航天工程教育的平台,也越来越成为一种趋势。以小卫星作为载体开展航天工程教育的优势在于:(1)成本低,多数大学里的实验室都可以开展这类项目;(2)开发周期短(一年到两年),学生可以在毕业前看到项目成果;(3)体积小,重量轻,使制造和测试可以在比较狭小的大学实验室内进行;(4)复杂度适中的卫星系统,使学生在参与整个卫星系统工程实施的过程中,能够获得一些具体的系统或子系统经验。作为教育工具,小卫星的重要意义在于:可由学生自主设计、制造甚至发射升空,即使不能发射,也应在与实际发射相似的环境中进行测试。这一点非常重要,因为这样学生可以得到真实情况的反馈,虽然有时实验会失败,但失败也都是下一次实验成功的基石。“设计-制造-测试-总结-再设计”这样的系统循环设计模式,可以很容易地在机器人或计算机这类领域实施,但空间系统发展所需的巨大成本和少有的发射机会让我们不得不停止发展空间教育中的这类循环模式。而小卫星计划可以提供一个工具以实现该模式。

一、基于问题的学习

基于问题的学习是一种以学生为中心的主动型教学模式和课程体系设置方法,其最初是由加拿大的麦克马斯特大学(McMaster University)医学院于20世纪60年代在医学课程教改中逐步形成并提炼出来的。在PBL中,教师根据课程要求和学生的知识基础预先定义一个不完整的或劣构的问题,然后让学生进行研究,理论联系实际,运用已掌握的知识和技能提出解决问题的可行方案,让学生亲身参与问题求解的每一个步骤和知识构建的过程,从而将其先前获得的知识和经验很好地整合起来,使已有知识结构得到完善的同时达到对新知识的理解与掌。

1.目标和基于问题的学习法的特点。基于问题的学习方法的主要目标不仅仅是让学生获得知识,并且要运用知识。PBL重视模型和问题的解决。它试图模拟现实生活中的工程研究和开发过程。Barrows这样描述PBL的主要特点:(1)学习是以学生为中心的,即学生选择怎样去学习和他们想要学习的内容。(2)学习在小团体中展开并且提倡协作学习。(3)老师是促进者、引导者或教练。(4)问题形成组织重点并刺激学习。(5)问题是拓展真正的问题解决能力的工具。(6)新的信息是通过自学获得的。

2.PBL工程教育案例――麻省理工学院航空航天工程系。几年前,在麻省理工学院的航空航天系成立了一个由教师和科研人员组成的新战略计划小组,专门负责课程改革。为了强调教育以学生为中心,讨论小组花费了一定的时间和精力通过对项目和学习成果进行验收,设计了新的教学方法,建造与之配套的实验室。尽管基于问题的学习是关键,但它不是课程组织的原则。新的航空航天工程课程以现实生活中产品完整的生命周期工程为背景,即构思、设计、实施和执行(CDIO),结合设计建造经验,贯穿于整个项目中。接下来就是从简单的项目到高度复杂的系统设计建立过程,以及从中取得的经验教训。第一年,在《航空航天设计导论》课上,学生们设计、构思并且试飞的由无线电控制浮空飞行器(LTA)。第二年,在《联立工程学》课上,学生们设计、搭建并且试飞了无线电控制的电推力飞行器。在一些比较深入的课程例如《空气动力学》课上,从工厂或者政府以往项目中提出航空工业中很常见一个实际的问题,像是以洛克希德・马丁战术飞机系统为模板提供项目设计方案。高级课程完全利用基于问题的学习方法,如:《实验项目实验室空间系统工程》、《CDIO高等课程》。在这些PBL体验中,学生发现自己感兴趣的问题,通过做实验找到解决方法,并用多学科方法设计出复杂系统。麻省理工学院航空航天系“复杂系统学习实验室”的主任提出了一个对于基于问题的学习方法的分类框架(见表1)。它将问题分为四个等级,给出了解决基础科学及先进工程课题的系统方法。

一级:问题集。问题集是指在大多数工程课程中发现的传统问题。它们往往具有一定的结构与较成熟的解决方案(至少问题的设计者知道)。所有学生解决同样的问题,有时独自解决,有时以小组形式解决。问题需要在相对较短的时间内解决。二级:小型实验。小型实验是指在结构化问题下的实验课。例如测量或观察某种工程现象或数据。这些问题在一或两个学期内解决,可以“重复地进行”,也就是说,每个学生团队解决与其他团队同样的问题。在麻省理工学院有许多例子,如《联立工程学》课上的桁架实验室,《空气动力学》课上对在风洞中的流速计的校准,《航空航天设计导论》课上对空气动力减速器的各种测试。三级:大型实验。比起前几个阶段,这个阶段的问题需要更长的时间去解决,可能会耗费几周或整个学期。到了这个阶段问题明显复杂了很多,需要更多的规划和教员支持。在麻省理工学院有许多如是例子:《实验项目实验室》课上的风洞试验、飞行器模型项目,《空气动力学》课上的机械项目,《航空航天教育导论》课上的轻于空气的飞艇,《联立工程学》课上的电动飞行器设计等。四级:顶级CDIO实验。这个阶段在系统中整合了核心工程的顶级实验。麻省理工学院的航空航天工程项目用构思-设计-实施-操作(CDIO)的方法来设法更接近于实际工程。在顶级实验中,工程的四个阶段都将涉及。顶级实验室的项目均为研究的重点,需要更多的资金,工程的复杂度和依赖经验的程度也很高。例如麻省理工学院的自主卫星光学阵列项目和磁控编队飞行器。四级的项目需要学生、老师和研究员花费三个学期去完成。可以看出三级和四级问题的解决过程是由学生主导的、不受约束的、复杂的、多方面的且具有很高的主动性过程,符合之前所说的PBL标准。然而一级和二级中的项目体验过程更结构化,在这个过程中学生体验到关于问题构想的有用指导,使用工具进行研究发现。基于问题的学习方法和设计-制造经验贯穿了整个麻省理工学院航空航天工程系的本科生阶段。使用四个等级的框架来层次化PBL体验过程确保了从高度结构化问题到无约束和复杂问题情况的合理推广。

3.基于问题的学习方法的评估。基于问题的学习方法的评估是多模式和长期性的。这些方法包括实验室期刊、技术简报、设计审查、技术报告、团队协作评估、设计作品、互评和自评。教师的角色主要是顾问和指导员,以及在学习过程中为学生提供大量反馈信息。在《航空航天设计导论》课上,学生们设计、制造并试飞由无线电控制的浮空飞行器,设计审查作品和最后的评估工作都是由飞行器竞赛的方式进行。在《综合工程》课的飞行器设计项目中,二年级学生分析在问题集中与气动性能、稳定性和推进装置有关的问题,并动手组装和试飞无线电控制的电推力飞行器。与第一年的课程相似,评估手段包括问题集、设计审查以及最后的一场比赛。

除了评估认知能力的培养效果,情感变化也要被评估。评估学生们在问题处理过程中的信心、参与到解决具有挑战性问题中的意愿和控制问题解决进展的感觉也很重要。这些情感变化可以通过观察、访谈、作品、期刊和其他形式的自评进行评估。

二、小卫星平台与基于PBL的航天工程教育创新结合途径

在全球化大背景下,除去意识形态的差别,世界人才的标准正趋于统一。根据著名的CDIO(Conceive-Design-Implement-Operate,即:构想-设计-实现-运作)工程教育模型,工程教育包括以下几大培养目标:掌握深厚的基础知识和应用技术;善于构思、设计、实现和运作新产品或系统的能力;承担和实施复杂系统工程的能力;适应现代团队协作开发模式及其开发环境。这些目标是直接参照工业界的需求而制定的,它实际上定义了现代工程技术人员的素质构成。

1.小卫星作为航天工程教育的意义。小卫星为空间发展提供了的一条新途径,这是与以往基于传统空间开发模式的“政府导向的大型项目”完全不同的。此外,NASA已经开展了很多项目为大学提供发射机会,让他们逐渐学会如何开发、运营卫星。超小型卫星计划是其中一个著名的案例,选定十所大学并给予他们项目资金,最终的成品将搭载航天飞机发射上天。凭借多年的项目经验,一些大学已经能够制造卫星,甚至出售卫星给其他大学或国家。小卫星为大型卫星上已经实现的一些任务提供了一条新的实现途径。一定数目的小卫星协作是一个非常重要的概念,通常被称为“星座”或“编队飞行”。这种多卫星体系的优点是容错量大、重构能力强、系统的可扩展性好。

2.基于小卫星平台的航天工程教育项目。小卫星的操作训练为大学生的太空教育提供了一个特别的机会,让他们能够体验从任务创建、卫星设计、制造、测试、发射、运行,直到结果的分析的整个太空项目周期。同时他们还能从这些项目中学到项目管理和团队协作等重要技能。小卫星项目不仅对教育有益,而且有望成为太空技术发展与商业运营中的一名新成员。(1)日本卫星设计大赛。上世纪90年代初期,日本的大学小卫星研究项目远远落后于美国和欧洲各国。然而,在意识到了小卫星在教育和技术发展上的重要性后,日本国内开始大力推动高校小卫星设计-制造计划。第一个里程碑是“卫星设计大赛”。1992年三个学术社团共同成立了大赛组委会,他们分别是JSME、JSASS与IEICE。经过一年时间的准备,于1993年举办了第一届比赛。这项比赛的目的是为更多的大学生提供参与太空项目的机会,同时鼓励一流大学开始进行实体卫星的制造项目。评审项目分成两大类,创意类评审该项目的创意与想法,设计类评审卫星设计的可实现性。提交的项目首先会进行初步的评审,合格的项目才能入围最终的决赛。届时,将进行卫星模型的展示和评审。优秀的作品将获得“设计奖”、“创意奖”以及三大学术社团颁发的奖项。大赛每年都会收到20到30个创意独特的项目。(2)大学空间系统研讨会(USSS)以及CanSat项目。USSS始于1998年,每年11月由JUSTSAP小卫星工作组在夏威夷举办。研讨会的形式十分独特,出席会议的日本和美国的大学首先提出自己卫星项目的构想,以及各大学自身的科研实力,然后将具有相同兴趣、能力或科研实力的大学进行组队。各组展开讨论,在一天半的研讨会后,各组需要向其他组展示他们的项目设计书。这些项目要在USSS结束后的一年内实施,他们的成果将在下一年的USSS上展示。其中最成功的项目就是CanSat(罐装卫星)项目了。CanSat项目是1998年由特维格教授提出的。在最初的计划中,每所大学都要制造一个350mL饮料罐大小的微型卫星,卫星将被发射到轨道上,在下一年的USSS上进行控制操作。(3)立方体卫星。立方体卫星项目由特维格教授在1999年的USSS大会上提出。立方体卫星为重1kg,长宽高均为10cm的微型卫星。每所大学制作的立方体卫星都被放在一个名为“P-POD”的盒形载体内,它由俄罗斯的“第聂伯”火箭装载发射升空。为了减少立方体卫星和P-POD之间的机械和电气接口,P-POD释放机制设置得非常简单:当P-POD的门打开,里面的立方体卫星就被P-POD末端的弹簧弹出。东京大学和东京工业大学已经开始了立方体卫星项目,并大致完成了设计和EM级别的模型制造。这些大学的学生已经在立方体卫星项目中获得了微型卫星开发的基本专业知识。但他们现在需要面临新的挑战:如何使用现成的廉价的部件设计可靠的空间系统,如何进行空间环境试验(如真空热或辐射试验)并获得试验结果,以及如何处理更大的风险,更多的人力资源、时间和成本。目前计划于2002年底发射第一个立方体卫星。(4)欧洲大学生月球轨道航天器。欧洲大学生月球轨道航天器ESMO是欧空局教育卫星计划的第四项任务,它是基于“欧洲大学生太空探索与技术倡议”计划中的“SSETI-Express”卫星。ESMO项目是为了吸引和培养下一代的月球与其他行星的工程师和科学家。航天器有效载荷包括:船载液压双组元推进系统,用船从地球同步轨道通过“日地系统中的拉格朗日点L1”转移到绕月运行轨道的过程,历时3个月;表面光学成像的窄角相机和一个用于测绘全球引力场的子卫星,将在历时超过6个月的时间里执行测量任务;可供选择的载荷还包括一个生物实验和一个微波辐射计。ESMO项目是未来欧洲的科学和勘探计划的一个强大的动手教育和公共宣传工具。它是一个面向大学生的项目,训练和培养了下一代的月球任务的工程师和科学家。

三、建立基于PBL的航天工程教育实验平台和培养范式

我国在“十二五”规划中提出了“创新驱动,实施科教兴国战略和人才强国战略”,要“围绕提高科技创新能力、建设创新型国家,以高层次创新型科技人才为重点,造就一批世界水平的科学家、科技领军人才、工程师和高水平创新团队。实施PBL教学是一项系统工程,由于受国情、传统教育教学模式和人才培养机制的约束,在中国工科大学中实施PBL教学存在问题案例少、实施成本高、评价方式单一和师生角色僵化等问题,因此,需要根据我国工程教育的现状和国情对PBL教学进行本地化处理,不能生搬硬套,具体来讲有以下几个方面需要注意。

1.树立以学生为中心的教学理念。树立以学生为中心的教学理念是实施PBL教学的前提条件,PBL强调以学生为中心,作为PBL教学的实施者,教师必须要深刻认识到这一点。

2.根据具体航天任务设计问题。丰富的问题案例是PBL教学成功的关键。每门专业课的设置都是基于学生已具备一定的先修课程基础为前提,但个体的差异不容忽视,教师或教师团队在进行某课程PBL问题设计的时候要充分了解学生的知识基础,结合具体的实施条件进行问题案例的设计。为了保持热情,学生们可以一种竞赛的形式开始项目,学生们互相分享自己的认识,用自己的双手选择出最吸引人并且最有意义的项目。

3.提高卫星实验平台的开放性与多样性。除了教育实践空间项目对航空航天教育带来的价值之外,学生建造空间项目长期承诺创新型大学的任务是可直接有利于空间行业本身。目前,各大学中设立的大学或研究生开放实验室及其配套的开放创新基金都是一些很好的尝试,取得了很好的效果,但其范围需要扩大,让大学生能够进入一些比较前沿的和良好国际合作背景的研究型实验室,使其很早就能受到良好的学术熏陶,以促进其产生向更高层次发展的内部动机和欲望。

4.加强学习能力的培养。发展学生的学习能力,使其成为高效、独立的终生学习者是PBL的重要目标之一。通过参加PBL学习,让学生明白学习不完全是个人的事情,在PBL小组中每个学生都担当一定的角色,并承担相应的责任,在小组讨论中无私贡献自己的学习成果,并吸取其他成员的学习成果,达到共同进步。

5.建立合理多样化的评估体系。在实施PBL的过程中,可以采用学生自我评价、同学互评及教师评价相结合的办法,注重学生的过程表现,而不是结果。创新人才的多样性和创新思维的多样性决定了我们不能用一刀切的方法来评价学生,而是要采取灵活多样的评估体系,建立激发创新的长效机制。除了评估认知能力的发展和成就,情感变化也要被评估。评估学生们在问题处理过程中的信心、参与到解决具有挑战性问题中的意愿和控制问题解决进展的感觉也很重要。

四、结论

PBL植根于建构主义理论之上,强调发现和知识意义的构建,是一种先进的培育创新精神和激发创新思维活动的教学/学习方式。PBL强调以学生为中心,问题、教师和团队学习是PBL教学法实施的三大关键要素。本文在总结PBL理论的基础上,在此基础上根据我国航天工程教育的现状,从国外几个航空航天教育典型案例吸取经验,讨论了以小卫星作为航天工程教育工具的重要性;其次,叙述了它作为太空技术发展新成员的重要性。探讨了基于PBL理论的航天工程教育在学生群体中推行的途径,期望能促进教育工作者对有关问题的思考。

由学生运作卫星项目极具挑战性,但这会给参与项目的学生和院校带来巨大回报。这些项目提供大学生关于设计、分析、测试、制造和操作空间系统方面的实践经历。有证据表明,参与空间飞行器设计项目的学生,能力得到显著提高。统计证据也显示如果相当数量的大学参与空间飞行器设计活动,进入空间领域工作的学生数量会显著增长。

参考文献:

篇(10)

贵州省白云区举办“航天科技连着你和我

2012年12月3日下午,“航天科技连着你和我——院士专家校园行”的专家走进贵州省白云二中,为白云二中400余名学生进行航空航天科普讲座。受邀的专家是我国著名的科学美术家、中国科普作家协会常务理事、原中国宇航学会《太空探索》杂志社社长兼主编田如森研究员。田如森以他长期从事航空航天科普创作的深厚功底,渊博本文由收集整理的知识,用通俗易懂、深入浅出、形象生动的语言,将世界航空航天的发展历程,我国航空航天的昨天、今天以及将来的发展方向等航空航天深奥的前沿科技传授给学生,不时博得学生们阵阵热烈的掌声。

田如森介绍完以上内容后,与聆听的学生展开互动。同学们在听田如森的报告时,认真地作笔记,把自己感兴趣的问题记在笔记本上。互动开始,全场顿时热闹起来,纷纷举手向专家请教各种问题。田如森用他扎实的理论、平实的语言,一一向学生们进行解答。

通过田如森的报告,引起了同学们对航空航天科学的关注和极大的兴趣,满足了同学们对现代科学的欲望,激励了同学们为国家的振兴、人类的进步、中华民族的伟大复兴而努力学习科学文化知识的热情。同学们都表示,享受了一堂科学文化的大餐。

篇(11)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)14-0261-02

引言:

目前,由于通信工程专业的重要性和应用广泛性。在全国工科高校中,基本上都设有通信工程专业,其中,《通信原理》课程是通信工程专业的核心专业基础课。该课程内容主要介绍了通信系统的基本架构、通信系统模型、不同模型对应的不同调制解调方法、影响通信系统性能的参数以及设计通信系统所要遵循的原则等内容。在整个通信工程专业,它起到了从基础理论向专业子方向转变的一个承上启下的作用,在整个专业体系架构中地位举足轻重。经过多年发展,传统的《通信原理》课程内容体系与教学方法,已经趋于成熟,具有普遍性。然而,具体到某个高校,由于受到其发展历史、学科特色、行业背景等多种因素的影响,其专业课程体系结构和培养人才侧重也有很大区别[1]。以笔者所在的航天类院校为例,整个学校在专业设置及人才培养上,都具有鲜明的航天色彩或针对航天应用。在这样的背景下,对于《通信原理》课程的教学,仅仅参考传统的教学方法虽然也能够完成教学任务,但是却不足以体现学校特色,不足以配合整个专科课程体系的设置,特别是不足以支撑后面具有航天特色专业选修课的教学活动[2]。因此,在《通信原理》传统教学方法的基础上,融入航天特色导向或改进方法,让学生了在学习通信原理的同时,了解具体知识点在在航天领域某处应用方法或思想,形成鲜明的航天特色教学导向,是该课程教学方法上应该考虑和解决的问题。

一、融合特色教学存在问题

在寻找将《通信原理》课程中融入航天特色教学改进的方法之前,首先需要剖析传统的课程教学方法在特色融入方面存在的一些不足,主要表现在以下几个方面。

1.教学导向不明。《通信原理》作为通信工程专业的核心课程,具有比较久的教学历史。由于其教学内容体系成熟、章节内容结构明确,虽然每个高校在教学方法和细节上都会有一套自己的教学套路,但总的来说都是大同小异。在教学导向上,并不具有鲜明特色。课程教师往往只是关注通信原理课程内容本身,忽略课程的承前继后性。一些比较好的教学单位,在关注内容本身的基础上,针对某些知识点,会强调或者扩展一些与实际联系紧密的应用或者例子,但从整体来看,这种强调或者扩展,是一种基于教学内容以及教师自身知识结构、实际工程经验或者教学积累而随机的进行讲解,并没有形成一个统一的体系结构,具有一定的盲目性和随机性[3]。目前,在具有鲜明特色的高校中,本课程也很少能成体系地形成专注于某个特色的导向性教学。一些不具有鲜明特色的高校,如某科技大学或者某工业大学,则对课程内容特定的教学导向需求不高,教学过程中自然不会体现得很明显。但是对于一些特色鲜明类高校,如笔者所在的航天特色院校,大到整个学校的院系设置,小到每个专业课程的内容、实验设计,都会或多或少存在航空航天的影子。在这种情况下,对于《通信原理》这种核心课程,就不能只是单纯地按照传统的教学方式来进行,应该结合实际情况,在教学内容上,按照大纲内容教学,在教学导向上,应注重结合学校的航天特色,将通信在航天应用隐形地穿插于教学内容中,这样既可以联系理论与实际,又可以体现航天特色,形成鲜明的教学导向。

2.教学内容丰富度不够。在《通信原理》课程内容的教学活动中,每一章节内容基本固定,传统方式一般是授课老师根据所教学生具体层次或水平,灵活讲解内容,水平高的学生,老师就多讲些,水平低的学生,老师就选讲章节内容。在这种教学方式下,一般也会取得相对合理的教学结果。然而,基于学生水平而决定讲解内容多少的方式,是一种相对被动的方式,主要体现在:(1)学生水平的高低与教学内容的选取关系,没有客观的评价标准,往往是授课教师根据经验来进行选取。(2)同一个教师,针对同一层次学生,教学内容往往相同,忽略掉上课学生群体的自身差异性。(3)对于具有鲜明特色的高校中,以航天类高校为例,教学内容与学校特色结合较少,整体体现松耦合。

3.教学形式单一。目前,高校《通信原理》专业课,主要教学形式采用板书与PPT讲解相结合的方式,相配套的《通信原理实验》课,或者纳入整个通信原理理论课程中,或者单独成课,无论哪种方式,基本教学形式就是课堂板书、PPT、配套实验三者相结合为主。这种教学形式,已经可以达到普通的教学任务要求,但具体到具有航天特色背景的高校中,则需要在此基础上,考虑在教学形式上如何进一步融入航天类元素,如何拓展多种形式的教学方法,如何更加生动、形象又不失趣味地将《通信原理》课程的基本原理阐述清楚,并且让学生有应用于实际的欲望。

二、课程教学融入航天特色方法及途径

在全面剖析传统《通信原理》教学方法在融入特色教学中存在的问题后,笔者基于在航天类院校实际《通信原理》课程教学实践,在课程教学融入航天特色方面总结以下几方面改进建议:

1.结合学校背景,有意识地建立特色教学导向。以笔者所在航天类学校为例,航天特色鲜明,在实际教学过程中,将通信原理每一章节内容、举例有意识向航天应用靠拢,让学生在潜移默化中了解通信在航天中的应用,进而理解课程内容。如讲解通信传输信道时,分为有线信道和无线信道,此时可举例,在卫星与地面通信时,通常用的是无线信道,同时简单说明一下,这个信道传输中会有哪些影响因素,甚至可以做一个简单的动画课件或者一个小视频形象说明。很多学生对航天很感兴趣,如果加以合理引导,就会很自然将知识点融入到例子中,避免了死记硬背的麻烦,再以此为基础,逐步扩展到其他的信道应用。这样就会在完成教学任务的基础上,体现了航天院校的特色,同时也让学生感受到自己所在院校本身的航天特色,在平时的学习生活中,也会不自觉地关注航天类信息,反过来加深对课程内容本身的理解。

2.丰富教学内容,实现合理化的对象针对性教学。对于具有鲜明特色的院校内《通信原理》课程,在整体课程体系设置和知识点上,应体现其特色。在航天特色鲜明院校中教授《通信原理》实践中,如介绍不同数字调制方式时,可在讲解知识点的基础上,具体讲解一种卫星通信的调制方式,即使不用深入介绍,学生也可通过这个过程,初步理解卫星通信的一些基本的概念,不但加深了对知识点的理解,同时也对卫星的信息天地通信方式有了进一步的了解。

3.在传统教学形式基础上,探索挖掘多样化教学方式。为了融入航天特色,在板书、PPT和实验的基础上,可尝试新的教学形式。其中,一个重要的参考依据就是根据学校特色和背景来展开探索,进一步地加深专业课程与学校特色的融合。以航天类院校为例,可在两方面展开尝试:一方面,开展基于学习小组的小课题研究。在《通信原理》教学中,除了课上时间,可给学生提供一些与航天应用或系统设计有关的小型课题,让学生以小组的形式,根据兴趣,自由选题并展开研究,最后以论文或者研究报告的形式上交作为平时成绩。这种方式,可使学生有更多的时间来选择自己感兴趣的东西,并且将教学内容与航天特色相结合,提高能力。另一方面,可将matlab等常用辅助仿真工具,融入到日常教学中[4]。例如在讲解常规双边带调制过程中,可先用matlab的simulink工具,按照AM调制原理,搭建出调制和解调的系统模型,在课堂教学中,可以实时地运行程序,让学生直观地感受到AM调制的过程,加深对系统原理的理解。

三、总结

本文以笔者所在航天特色鲜明的高校中《通信原理》课程为例,深入分析了如何将这类核心专业课程中加入学校航天特色元素,在课上及课下营造航天知识的学习氛围,探索特色教学方法,在完成教学任务的基础上,提高教学质量。在具有鲜明特色背景的高校中,不仅仅其整体的专业设置与课程体系,要与学校特色相融合,具体到每一门课程,也要在教学导向、内容及教学形式方面,探求新的思想和方法,并将其潜移默化地融入到每一节课的课堂中,使学生具有明显行业背景,无论对于将来的工作或者继续深造甚至个人方向的选择上,都会有积极的影响。

参考文献:

[1]徐桢,刘凯,张军.“现代通信原理”教学改革中的尝试与思考[J].电气电子教学学报,2008,30(3):6-7.