绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇超高层建筑结构设计范文,希望它们能为您的写作提供参考和启发。
Abstract: to a tall building for, and to adapt the building structure system, structure and arrangement of the conceptual design is not absolute but reasonable structure design should be the only. Based on many years of work experience, and structure design of a high-rising structure is analyzed, in order to offer reference for the same.
Keywords: tall building; Structure design
中图分类号:TU97 文献标识码:A 文章编号:
超高层的结构体系选择与低层、多层的建筑相比,超高层建筑的结构设计显得十分重要。不同的建筑结构体系选择可以对建筑的楼层数目、平面布置、施工技术要求、各种管道的布置及投资多少等产生最为直接的影响。超高层的建筑结构设计主要具有以下几个特点:
1 水平力是超高层建筑结构设计的主要因素。有研究证明,楼房的自重与楼面的载荷在竖向放人构件中所产生的弯矩与轴力大小仅仅是与楼房的高度一次方形成正比,但是水平载荷对与建筑所产生的倾覆力矩以及轴力的大小则是与楼房的高度二次方形成正比。因此在超高层的建筑设计中,水平力是设计主要因素。
2 轴向变形是不可忽视的。当楼层十分高时,由于楼房的自重而产生的轴向压应力会导致楼房的中柱产生出较大轴向变形,会直接导致连续梁的中间支座处负弯矩值直接减小,从而导致跨中正弯矩值与端支座的负弯矩值增大。
3 侧移做为控制指标。超高层的建筑结构侧移随着高度增加会迅速的增大(侧移量和楼层之间高度四次方是正比关系),所以结构侧移是超高层建筑结构设计的关键因素。
4 抗震设计的要求更高。超高层的建筑抗震设计必须要做到“三水准”要求,即“小震不坏,中震可修,大震不倒”。
二、工程概况
某大厦由一栋30层写字楼、一栋2层商业附楼和4层地下室组成,总建筑面积90149m2,屋面结构高度18280m、停机坪结构高度19320m。
三、总体结构设计
1 结构选型
本工程采用钢筋混凝土框架一核心筒结构,虽然其结构承载能力和抗变形能力比筒中筒结构差,但避免了结构竖向抗侧力构件的转换,满足了建筑立面效果和使用要求。为解决建筑首层层高120m、结构高度超限及减小柱截面等问题,下部若干层采用钢管混凝土组合柱,楼盖采用现浇普通钢筋混凝土梁板体系。
承载力和水平位移计算时,基本风压均按重现期为100年的0.90kN/m3取值,(广东省实施《高层建筑混凝土结构技术规程》JG13―2002补充规定DBJ/Tl5―46―2005尚未颁布)。由于结构侧向位移不满足限值要求,在第3O层利用建筑避难层,设置了钢筋混凝土桁架的结构加强层,结构加强层是一把双刃剑,虽然可提高结构抗侧移刚度,也使得结构竖向刚度突变,所以结构加强层及相邻层按《高规》要求进行了加强处理。
2 超限措施
本工程结构平面形状规则、刚度和承载力分布均匀,竖向体型也规则和均匀、结构抗侧力构件上下连续贯通(如图1),除结构高度超过适用限值外,其它指标通过调整后均达到未超限。
图1 结构布置平面图
由于结构高度超限、而且首层层高12.0m,超限应对措施把首层及下部若干层的结构抗侧力构件作为加强的重点:l~15层框架柱采用钢管混凝土组合柱、1~2层核心筒剪力墙四角附加型钢暗柱、首层抗震等级提高一级。钢管混凝土柱有着卓越的承载能力和变形能力,但其防腐和防火材料不仅造价较高还有时效性,需考虑今后的维修保养,钢管混凝土叠合柱及钢管混凝土组合柱可弥补这方面的缺陷。核心筒剪力墙四角附加型钢暗柱,以解决由于首层层高较大,使得剪力墙端部应力集中的问题,并提高剪力墙的承载能力和抗变形能力。
四、钢管混凝土组合柱的梁柱节点
在工程中往往仅在框架柱中采用钢管混凝土,而框架梁则采用普通钢筋混凝土,钢管混凝土柱和钢筋混凝土梁的连接节点成为工程中难点之一。目前常用的连接节点有:钢牛腿法、双梁法、环梁法、钢管开大洞后补强法及纯钢筋混凝土节点法等,本工程采用在钢管上开穿钢筋小孔的连接节点,为连接节点的设计提供多一种选择。
1 钢管开小孔的连接节点构造(如图2)。钢管上开穿钢筋小孔的连
接节点做法要点如下:
图2钢筋穿钢管立面图
① 钢管开小孔:小孔直径D=钢筋直径+10mm,小孔水平间距:3×D,小孔垂直间距=2×D;
②钢管水平加强环:梁顶面和梁底面各设置一道,环板宽度:钢管混凝土柱时,取0.10倍钢管直径、钢管混凝土叠合柱时,取65~100mm;环板厚度=0.5t且≥16mm(t为钢管壁厚);
③钢管竖向短加劲肋:紧贴水平加强环,肋宽=环板宽一15mm,肋厚=环厚,长度为200mm,布置在梁开孔部位的两侧和中间;
④梁钢筋尽量采用直径较大的HRB400级钢筋,以减少钢管开孔数量。在钢管混凝土叠合柱时,部分梁钢筋可以在钢筋混凝土柱区域穿过。
2 钢管开小孔连接节点的优点
①钢管开小孔后对钢管截面削弱不大,梁钢筋穿过小孔后剩余的缝隙很小,钢管对管芯混凝土的约束力基本没减少,不影响钢管混凝土柱的承载能力和变形能力;②梁钢筋直接穿过钢管后,梁可以可靠的传递内力,梁长范围内的刚度保持不变,结构受力分析与实际相同。(钢牛腿法和钢管开大洞后补强法,在梁端范围内有相当长度的型钢,使得梁刚度急剧变化);③在设置水平加强环和竖向短加劲肋补强后,钢管在节点区是连续的,节点的刚性不受影响,满足“强节点弱构件”的要求;④ 现场施工较方便,即使圆弧形梁钢筋也可顺利穿过;⑤节点补强所用材料比钢牛腿法和钢管开大洞法减少很多,造价较低。
五、剪力墙平面外对梁端嵌固作用的分析
对于框架一核心筒结构,部分框架粱要支撑在剪力墙平面外方向,剪力墙平面外对梁端嵌固作用究竟如何,其研究文献较少,设计标准和规范也没有涉及。影响剪力墙平面外对梁端嵌固作用的主要因素:墙平面外对粱端嵌固作用的有效长度、墙线刚度与梁线刚度之比和墙在该层的轴压力等等。目前常用的计算分析软件虽然具有墙元平面外刚度分析功能,但未考虑墙平面外对梁端嵌固作用的有效长度,当遇到墙肢很长或筒体墙肢空间刚度很大情况时,计算分析软件会高估了墙平面外对梁端的嵌固作用,使得梁端负弯矩计算值要大于实际值,本工程应对措施如下:
1 采用梁端增加水平腋方法,用以直接增加墙平面外对梁端嵌固作用有效长度;
2 采用增加墙边框梁方法(如图3),用以增加墙平面外对梁端嵌固的局部刚度。墙边框梁截面宽度应不小于0.4倍梁纵筋锚固长度,墙边框梁截面高度应大于楼面梁截面高度,为保证梁端剪力通过墙边框梁均匀传递到墙上,墙边框梁宽出墙厚处用斜角过渡;
3 为保证梁正截面设计更加符合实际受力情况,梁端计算弯矩可以采用“调幅再调幅”方法,即分析计算时设定梁端负弯矩调幅系数后,配筋时再局部手算调幅。“调幅再调幅”时,应考虑构件的刚度、内力重分布的充分性、裂缝的开展及变形满足使用要求。
图3墙边框梁的设置
六、核心筒外墙的连梁设计
核心筒外墙的连粱纵筋计算超筋是非常普遍的情况,《高规》对连粱超筋有专门的处理措施,而且研究文献也少,但计算模型的选取也是重要因素之就一。
《高规》规定,跨高比小于5时按连梁考虑,即连梁属于深弯粱和深粱的范畴,其正截面承载力计算时,已不能按杆系考虑,也就是已不符合平截面假定,但许多分析软件仍然把连梁按杆系计算,其计算偏差当然是很大了。
按“强墙弱梁”和“强剪弱弯”原则进行连梁设计时,虽然《高规》对连梁设计有具体要求,但这个“弱”要到什么程度,还是取决于设计者的理解和经验。
本工程核心筒外墙的连梁按《高规》要求进行设计,除连梁均配置了交叉暗撑外,对非底部加强部位剪力墙的边缘构件也进行了加强处理,以满足“多道抗震防线’和“强墙弱梁”的要求。
关键词:
复杂高层建筑;超高层建筑;结构设计;结构类型
随着我国市场经济发展进程的不断加快,复杂高层与超高层建筑工程的项目建设需求越来越大。然而,其建设设计过程的复杂程度也在不断加深,尤其是结构设计。做好结构设计工作是保障建筑物使用安全性和经济性的关键。对于复杂高层建筑或者是超高层建筑,要根据它们所承受的不同强度来开展抗震设防烈度的设计工作。
1建筑结构设计方案的选择
1.1结构方案和结构类型的选择在设计复杂高层与超高层建筑结构的过程中,结构方案选择的合理性是决定其建设质量的关键。对于复杂高层与超高层建筑结构方案的选择,如果没有根据实际工程情况进行,就很容易导致建设后期中的调整。这就在一定程度上增加了复杂高层与超高层建筑结构的设计难度,从而为建筑设计单位带来较大的修改工作量和经济损失。因而,复杂高层与超高层建筑的设计单位在结构方案的选择过程中,应充分结合相关的建筑结构专业知识,并将其应用到设计当中。对于结构类型的选择,设计人员不仅要将工程建设地的岩土工程地质条件考虑在内,还要将抗震设防烈度的要求考虑在内。这样才能降低工程建设企业复杂高层与超高层建筑工程的造价。由此可以看出,在选择结构设计类型时,需要认真考虑工程的造价和施工的合理性。
1.2结构方案和结构类型的选择要点结构方案和结构类型的选择应注重复杂高层与超高层建筑的概念设计。由大量的设计实践经验得出,在复杂高层与超高层建筑的结构设计过程中,要尽可能地提升建筑结构的均匀性和规则性,保证建筑工程结构的传力途径直接而清晰,尤其是结构竖向和抗侧力的传力途径。随着建筑行业的快速发展和科学技术的不断进步,如何实现可持续发展的建设目标已经成为研究人员重点关注的问题。
2建筑结构设计要点
2.1抗震设防烈度复杂高层与超高层建筑抗震设防烈度的设计是保证建筑物使用安全的重要设计内容。对于复杂高层与超高层建筑的结构设计要求,设计人员要根据其承受的不同强度来开展抗震设防烈度的设计工作。然而,由于建筑物高度是不同的,这就意味着在进行结构设计时,要依据实际工程情况进行有针对性的设计。一般情况下,复杂高层与超高层建筑高度均超过300m,那么在结构设计时,就不适合将其设计在抗震设防烈度为“八”的区域,而更适合设计在抗震设防烈度为“六”的区域。由此可以看出,在设计复杂高层与超高层建筑结构时,要综合考虑抗震设防烈度的具体情况。这样做,不仅可以有效减少建设误差,还可以保障居民的生命财产安全。此外,提高复杂高层与超高层建筑结构设计中的抗震技术水平,能够在一定程度上增强建筑物的经济性和安全性。因此,设计人员应从细节出发,秉承“以人为本”的设计理念。只有这样,才能有效保障人民群众的生命财产安全。
2.2结构舒适度确保复杂高层与超高层建筑水平振动舒适度是树立“以人为本”重要结构设计理念的基础。从结构设计的一般方法来说,复杂高层与超高层建筑的结构是相对柔软的。因而,在进行结构设计的过程中,不仅要保证结构设计的安全性,更要满足建筑物使用人群对舒适度的要求。这就意味着要对高层建筑的高钢规程和混凝土规程作出明确的设计要求。这一过程是使高层建筑物的结构设计达到顺风向和横风向顶点的最大加速度的重要设计内容。结构舒适度分析是复杂高层与超高层建筑结构设计的重要组成部分。具体内容包括以下两方面:①对混凝土结构的建筑来说,其设计的阻尼比最好取0.05;②对于钢结构以及混合结构的建筑来说,其设计的阻尼比要根据工程项目的实际情况控制在0.01~0.02之间。此外,从复杂高层与超高层建筑的建设用途来看,公共建筑的水平振动指标限值与公寓类建筑的指标限制存在较大的差异,因此,设计人员要根据建筑使用功能的不同进行差异性设计,比如可以通过优化TMD技术或TLD技术来实现。这样一来,就可以在复杂高层与超高层建筑水平振动舒适度不合格的情况下,进一步提升建筑物的舒适度水平。
2.3施工过程可行性是对复杂高层与超高层建筑结构进行设计时必须要考虑的问题,否则,即使设计得再合理、先进技术应用得再多,也无法满足实际建设要求。因此,设计人员在设计的过程中,要充分考虑钢材的传力效果以及复杂节点部位钢筋的可靠性、施工建设的可操作性。这也是设计人员在对复杂高层与超高层建筑进行结构设计的过程中必将会涉及到的问题。要想解决型钢与其混凝土梁柱节点处主筋相交的问题,可采用以下四种设计方法对其进行有针对性的设计:①将钢筋与其表面的加劲板进行焊接处理;②将钢筋绕过型钢;③通过在钢板上开洞的方式来穿钢筋;④在型钢与其混凝土梁柱节点表面焊接钢筋、连接套筒。由于复杂高层与超高层建筑的建设要求越来越高,因此,可以采取一些特殊的施工工艺,这也是保证建筑结构稳定的有效措施。
3结束语
总而言之,复杂高层与超高层建筑的结构设计要点是将结构方案和结构类型、抗震设防烈度、结构舒适度以及施工的具体过程考虑在内,同时,还要将提高建筑构件的材料利用效率和结构设计的可行性作为设计重点。这是因为上述内容是提升复杂高层与超高层建筑质量的重要保障。由此可以看出,复杂高层与超高层建筑结构设计所有过程的实现都离不开设计人员对工程建设项目的全面了解。
参考文献
[1]刘军进,肖从真,王翠坤,等.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011(11):34-40.
引 言
复杂高层与超高层与普通的高层建筑有所不同,必须引起设计人员的注意。随着超高建筑物的不断增加,虽然逐渐地暴露出一些设计方面存在的不足,但这些问题为人们在日后的超高建筑建设方面积累了一定的经验。为此,本文首先对复杂高层与超高层建筑与普通高层的差异进行比较,然后对复杂高层与超高层建筑的结构设计进行论述。
1 复杂高层与超高层建筑和普通高层建筑在结构设计上的区别
复杂高层与超高层建筑和普通建筑在结构设计上存在明显的差异,一般普通高层的高度基本都建立在200m以内,而复杂高层与超高层建筑的高度基本都在200米以上乃至上千米。对于普通高层,人们大多采用的是混凝土的结构设计,但复杂高层与超高层建筑在结构设计方面还可以选择全钢结构或者混合的结构设计。同时由于复杂高层与超高层建筑对消防以及机电设备的要求要更高一些,因此要考虑到避难层与机电设备层的设计。为避免地震等自然灾害对建筑物的破坏,复杂高层与超高层建筑在平面形状的选择上较普通的高层建筑要少得多,并且要满足《高层建筑混凝土结构技术规程》的抗震要求。另外复杂高层与超高层建筑需要考虑风载荷作用下舒适度的问题,而普通高层建筑无需考虑。
2 复杂高层与超高层建筑结构设计需要考虑的问题
2.1 抗震设防烈度
对于超过100m以上的建筑物,在不同强度的抗震设防烈度下,对于建筑物的高度要求也是不尽相同的。一般情况下,抗震设防烈度在8度的区域不适宜建设300m以上的建筑物,复杂高层与超高层建筑适合建设在抗震设防烈度在6度的地区。
2.2 结构方案
对于一个优秀的建筑设计师来说,在设计中首先就要考虑到建筑物的结构方案问题,尤其对于复杂高层与超高层建筑来说,如果结构方案选择不当,将会引起整个方案的调整,因此,在设计单位进行建筑方案设计时,需要有结构专业参与到设计当中。
2.3 结构类型
在复杂高层与超高层建筑结构类型的选择上,人们不但要充分考虑到拟建方案所在地的岩土工程地质条件,同时要考虑到该区域的抗震度要求。另外,为了节约建筑成本,人们还需要充分考虑到在工程造价问题以及施工的合理性问题,同等条件下选择造价较低的合理的结构类型。
2.4 关注舒适度和施工过程
2.4.1 高层建筑水平振动舒适度
复杂高层与超高层建筑因其结构较柔,设计时,除保证结构安全外,还需满足室内居住人群的舒适度要求,高层混凝土规程、高钢规程均提出了明确的设计要求,需对高层建筑物在顺风向和横风向顶点最大加速度进行控制。复杂高层建筑需讲行舒适度分析,对混凝土结构阻尼比宜取0.02,对混合结构、钢结构阻尼比可根据情况取0.01~0.02舒适度验算时,可取10年重现期下风压值进行。高层混凝土规程和高钢规对舒适度验算的要求,公寓类建筑(如住宅、公寓)和公共建筑(如办公、旅馆)因功能不同,其水平振动指标限值也有所不同。当水平振动舒适度不满足或为进一步提高舒适度水平时,可采用增设TMD(可调质量阻尼器),TLD(可调液体阻尼器)等方法实现。
2.4.2 大跨、悬挑柔性楼盖竖向振动舒适度控制
复杂高层建筑设计中常设计大跨度楼板、空中连桥、大跨悬挑等复杂建筑特征,此类部位由干结构竖向自振频率较低,与行人激励频率相近,彼时需对楼盖设计时的舒适度问题予以关注。高层混凝土规程要求楼盖结构的竖向振动频率不宜小于3Hz,且对不同竖向自振频率下的楼盖竖向振动舒适度峰值也提出了控制要求。因适用对象不同,住宅、办公建筑、商场及走廊建筑的竖向振动峰值加速度限值亦不相同。
2.4.3 设计时应考虑施工建造过程的可实施性
设计人员在结构设计时,应注意复杂节点部位钢筋及钢材传力的可靠性以及现场施工的可实施性。型钢混凝土梁柱节点中主筋与型钢相交时常用四种处理方法:①钢筋绕讨型钢;②型钢表面焊接钢筋连接套筒;③钢板上开洞穿钢筋;④钢筋与型钢表面加劲板相焊接。复杂高层建筑施工方法会采取一些特殊工艺,如某塔采用“内理型混凝土施工、造型中部增设水平临时支撑桁架”见图1。
3 复杂高层与超高层建筑的结构设计
3.1 风载荷
在复杂高层与超高层建筑的结构当中,由于建筑结构的第一自振周期与其所在地面卓越周期相差很大,随着建筑物高度的不断增加,风载荷的影响要远远大于地震对建筑物的影响,特别是对于一些比较柔的复杂高层与超高层建筑,风载荷是它结构设计中的控制因素。因此,人们有必要对风载荷进行专业的研究。一般情况下,我国规定风载荷的计算公式为Wk=βzμsμzW0,其中μz为风压高度的变化系数。其中A类地面:μz=0.794Z0.24;B类地面:μz=0.479Z0.52;C类地面:μz=0.284Z0.40。在《建筑结构荷载规范》当中,对200m以上的复杂高层与超高层建筑也进行了相应的规范,其中就包括在对复杂高层与超高层建筑确定非圆形截面横风向风振等效风荷载情况时,要求必须进行风洞试验。它的主要目的在于通过试验对建筑外形的空气动力进行进一步优化,同时确定围护结构以及主体结构的风载荷的标准值,对设计整体进行优化。
3.2 重力载荷
对于复杂高层与超高层建筑,在设计时要考虑到重力载荷的传力情况,实现合理的传力途径,因此在设计时对于重力载荷的途径要尽可能地直接明了,同时要充分考虑到因建筑外圈框架和核心筒之间轴压比之间的差异而造成的变形差对水平构件产生的影响。一般采用一些施工的处理方法连接框架与核心筒。
3.3 混合结构的设计
在复杂高层与超高层的建筑当中,很多时候都会采用混合结构设计,混合结构分为三种,而在实际中常用的是圆钢管或者是矩形钢管的混凝土框架与钢筋混凝土核心筒的混合结构,以及型钢混凝土框架与钢筋混凝土核心筒(内外框梁为钢梁或型钢混凝土梁)的混合结构两种。每种结构类型在设计上对钢材用量的需要也不尽相同。在设计中,要考虑到对型钢、圆钢管混凝土中柱钢骨的含钢量,严格按照技术规程的要求进行控制,同时,在钢筋混凝土的核心筒要设置型钢柱,这样就可以确保型钢混凝土、筒体延性相同,从而促使它们两者之间的竖向变形减小。对于结构抗侧刚度无法满足变形需要的混合结构,人们采取相应措施进行弥补。比如,设置水平伸臂桁架的加强层,或利用避难层或设备层在外框或外框筒周边设置环状桁架。
4 复杂高层与超高层建筑结构设计的关键点
4.1 构造设计要合理
在对复杂高层与超高层建筑物进行设计时,必须保证构造的设计谨慎并合理,重点要注意对一些薄弱的部位进行加强,避免出现薄弱层,充分考虑到温度应力对建筑物的影响以及建筑物的抗震能力,注意构件的延性以及钢筋的锚固长度,在对平面和立面进行布置时要确保平整均匀。
4.2 计算简图要合适
计算简图是对建筑物结构进行计算的基础,它直接关系到复杂高层与超高层建筑的结构安全。为了保证结构的安全性,人们必须从计算简图抓起,慎重研究,合理选择,对于存在于计算简图中的误差,要保证其值控制在技术规程允许的范围内。
4.3 结构方案选择要合理
建筑方案的合理性取决于结构方案是否合理,因此,在选择结构方案时不但要充分考虑到经济因素,还要充分考虑方案的结构形式和结构体系,同时能够充分结合设计要求、材料、施工以及自然因素等来确定结构方案,确保结构方案的合理性。
4.4 基础方案选择要合理
在进行基础方案的设计中,设计师要考虑到载荷的分布情况,工程所在的自然因素、地质条件,施工方的施工条件,周围建筑物对所设计建筑物造成的影响等各方面因素,以此来确保基础方案的选择既经济又合理,达到最优效果。
5 结束语
复杂高层与超高层建筑是社会发展的必然结果,随着科技进步,越来越多的复杂高层与超高层建筑将会逐渐亮相于城市之中,我们虽然在复杂高层与超高层建筑当中取得了一定的成绩,但仍需我们不断研究与改进,使复杂高层与超高层建筑的结构设计更加完美,发展更为迅速。
参考文献
结构设计并不是一项简单的设计工作,其能效发挥与不确定因素的控制效果是相互关联的,尤其是复杂高层的层高特点,会直接造成设计难度的进一步增加,因此这就需要从建筑需求入手,开展有针对性的设计工作,并将相应影响因素纳入重点考量范畴中,一旦结构设计环节缺少对结构布置的合理性规划,不仅后续建筑施工流程难以正常推进,建筑质量更会受到直接影响,而建筑结构缺少稳定性,也会导致其使用寿命不断缩短,因此,这就需要不断强化对复杂高层及超高层建筑结构设计的研究,充分掌握其设计要点。
一、复杂高层及超高层建筑结构设计要点
1.强化对概念设计的重视
在当今社会,设计可以说是建筑施工的灵魂,尤其是复杂高层及超高层建筑,结构设计的优化性也就显得至关重要。目前,我国的设计师也将工作重心放在了高层结构设计上,在实际设计环节根据对设计项目的研究及总结,也逐渐形成了一定的规范化标准,其中最为主要的就是强化概念设计。首先,复杂高层及超高层由于层高较高,这就对结构的稳定性提出了更要的要求,在实际设计环节应当以此为关键点,在结构设计中不断加强对结构受力的均匀性设计,使其更加符合应用的规范化标准。
其次,设计内容中应该涵盖着对应力高效传递的优化研究项目,使其能够在应用过程中实现力的快速分解及传递;第三,在结构设计环节,应当确保其标准内容能够直接体现在结构整体上,实现对结构的完善性规划整理;第四,当今社会的各个领域中都倡导应用绿色能源,减少浪费及污染问题,而这一理念也应当在结构设计中得以灌输,只有这样才能有效提升复杂高层及超高层建筑的环保性能;第五,在推进设计工作时应当在结合工程实际情况的基础上,将建筑材料与结构进行有机结合,使二者能够更加具有协调性,从而从根本上提高材料利用率,使其能够在后续应用中承受高强度的结构荷载力。总体来说,为了将以上几点落实到设计主w中,需要建筑以及结构工程师的密切配合,在互相交流经验及工程项目研讨过程中,不断对设计图纸进行优化调整,使其更加具有参考价值。
2. 科学选择结构抗侧力体系
为了在复杂高层与超高层建筑结构设计中,能够充分体现出安全性问题,我国相关设计师总结出,提高结构抗侧力体系的科学性是基础。选择该体系的过程中,应当注重以下几点:结构体系的合理选择应当根据具体的建筑高度来确定,我国相关工作人员在近年来的工作中总结出了不同结构抗侧力体系与不同高度建筑之间的关系。
例如,在建筑高度小于等于100m 的时候,该体系最佳组合为框架、框架剪力墙及剪力墙;当建筑物的高度在100~200m之间的时候,最佳体系为剪力墙和框架核心筒;当建筑物高度在200~300m之间时,该体系最佳组成为框架核心筒、框架核心筒伸臂;如果该建筑高度小于600m时,该结构抗侧力体系的最佳构成应该为筒中筒伸臂、巨型框架、桁架、斜撑及组合体;在进行设计的过程中,应注重以上提及的相关结构抗侧力构件能够保持高度的连接,最好能够形成一个统一的整体。
3. 高度重视建筑抗震设计
复杂高层与超高层建筑当中,其抗震设计应当在建筑功能充分发挥的基础上进行确立,同时该环节也是确保建筑拥有较高安全性的重要部分。抗震方案在高层建筑当中,最重要的一点就是科学选择建筑材料;实现有效减少地震过程中的能量增加。在这项工作当中,验收承载力是使用建筑构件最主要的方式,并且应当有效控制地震情况下建筑结构的层间位移限值;在实际高层建筑的过程中,结构抗震手段的应用应当在位移的基础上建立,并定量分析相关设计方案,促使地震发生时结构的变形弹性能够对建筑产生一定程度的保护作用;精确分析地震发生时建筑构件会产生的变形及位移在建筑结构中的体现具有重要意义,这样一来,能够对构建变形值进行有效的确立;针对性设计应当体现在建筑构件的生产要求及建筑界面的应变分别当中,同时应当注重场地的坚固性,这也是有效降低地震发生时能量输入的重要方式。
4. 坚持高程建筑结构设计经济理念
复杂高程和超高层建筑是一项较大的项目,在结构设计和施工过程中,会面临很多成本输出问题。因此,在建筑结构设计过程中,应该坚持经济型设计理念。对于结果设计方案,应该坚持优化处理,避免在建设过程中由于结构冗长而造成成本浪费的问题。
二、复杂高层与超高层建筑结构设计中确保计算和设计的准确性
1. 合理选择分析软件、合理计算结果
现阶段,复杂高程与超高层建筑结构计算软件的种类很多,侧重点也有所不同,在结构设计过程中,设计人员首先应该明确不同的软件的作用,然后根据实际需要合理选择合适的计算软件。与此同时,还应该对具体的设计计算结果进行科学分析,从力学理念和工程设计经验方面进行合理判断,确保计算结果的合理性和准确性。
2. 重视荷载与作用方面的考虑
对于复杂高层与超高层建筑的结构设计,由于高层建筑很容易受到风载荷的影响,因此在高层建筑,尤其是超高层建筑结构设计中,应该重点考虑风载荷的影响。例如,在某大楼设计过程中,不仅需要考虑相关设计规范,而且还进行了相关风洞试验,从而提高建筑物的抗风载能力。在具体的试验过程中,设计了一个以 1:500 为比例的模型在半径为 600m 的风场环境中进行试验,验证建筑在不同风况下的受力情况。
现阶段,对于地震灾害的预测,在技术方面还有一定的限制,很难准确预定地震灾害。有些发达国家对于地震的研究十分深入,但是依然无法准确预估地震发生的时间和地点。因此,在高层建筑设计过程中,应该加强抗地震力的设计。与此同时,还应该重点考虑建筑主楼、裙楼在地震力作用下的不同反应。
综上所述,随着科学技术水平的不断提高,人们生活质量不断上升,我国城市建设过程中复杂高层与超高层建筑增加,在对这类建筑进行设计的过程中,应当充分考虑到抗震设防烈度、结构方案及类型等因素。经过我国建筑行业近年来积累的经验,总结出复杂高层与超高层建筑结构设计要点包括概念设计、结构抗侧力体系及抗震设计等内容。新时期,我国建筑行业相关工作人员只有在实践中不断加强对这些方面的重视,才能够促进我国建筑业不断进步。
1高层建筑结构的特点
在超高层建筑设计上面,需要兼顾高层建筑的水平位移与高层在垂直方向造成的垂直荷载力。在具体的超高层设计过程中,由于外力造成的水平荷载是高层建筑最需要考虑的因素,在对超高层进行建筑结构设计的时候,必须要首先对超高层的承载范围确定清楚,控制在一定的数值范围之内,也就是说,在超高层的设计中,其设计核心就是对建筑结构的抗压设计计算。
2超高层建筑结构体系的选择
2.1超高层结构体系分类
一般分为钢筋混凝土设计、钢与混凝土组合设计。由于超高层建筑结构体系的不同,可以将超高层建筑结构的设计分为混凝土的设计、钢结构与钢组合结构的设计等。就目前来说,我国的超高层建筑结构基本上都是采用的钢筋混凝土结构。
2.2超高层建筑体系选用原则
在对超高层建筑结构进行选取的时候,必须要按照经济性、合理性、安全性的原则来进行选择作为高层建筑结构的体系。不过,超高层的设计还要依据建筑物的使用要求与高层的施工环境来确定其体系的选用。与此同时,超高层建筑结构在选取时还要具有较高的承受压力的能力。
2.3超高层的结构材料分析
当前,钢筋混凝土结构在超高层中的应用非常广泛,对于材料的选择必须要按照超高层设计的依据进行。原则是要求尽力发挥钢筋混凝土的材料性能。钢混结构由于具有耐久性能、防火能力以及结构刚度大等优点被广泛采用。不过,在设计过程中必须要考虑混凝土构件的截面尺寸问题,以保证空间结构的最优化设计。就目前来看,钢—混凝土混合结构的应用在高层建筑中的使用率将会进一步提升。但需要进一步开展混合结构体系的抗风、抗震性能研究,研究工作主要有两个方面的内容:一方面是混合、组合结构的抗震性能研究,如阻尼系数的确定、整体结构稳定性能等;其次,针对组合构件以及组合构件之间衔接及构造关系要进行相关研究。由于混合结构体系比较复杂,大多包含巨型柱和斜撑等大型构建,各种组合柱、梁、楼板等体型复杂,因此需要结合工程实际应用,对各种新型组合构件进行更加深入细致的研究,才能真正的将复杂化的混合结构运用到实际工程中去。
2.4超高层结构体系选择
针对超高层建筑框架结构体系的选择主要分为:1)框架结构体系。所谓的框架结构就是说在结构的横向与纵向都利用混凝土梁柱组成一个整体的框架结构,而且可以同时承受水平与竖向的荷载。单纯的单一框架结构布置非常灵活,因此空间结构非常的大,是目前使用最为广泛的高层建筑。2)剪力墙结构体系。所谓的剪力墙结构体系就是纵横向的剪力墙来承受建筑结构的水平与竖向荷载的建筑结构体系。采用剪力墙结构对于建筑物的整体抗震能力具有很大的提高。3)框架—剪力墙结构。框架—剪力墙就是指兼有框架结构与剪力墙结构的优点,这样就使框架剪力墙结构不仅仅能够变得空间灵活,还能有很强的抗侧移能力。框架—剪力墙布置数量不如剪力墙结构多,数量决定了其抗侧力的能力较低。不过剪力墙的数量超过一定值后就会影响经济性。
3高层建筑结构设计的问题分析及对策
3.1扭转问题
在超高层建筑结构中,其设计的中心点就是刚度、几何形心点和结构的重心点,不过,当对超高层结构进行设计时,很难将超高层的几何形心、刚度与结构的重心点进行整合,因此,就会使得超高层在设计时出现扭转的情况。为了解决这个扭转的问题,作为结构设计者对于超高层的建筑结构设计要选取最合理的平面结构布置图,力求三个中心点能够重合。
3.2受力性能的问题
在超高层建筑方案的选取中,在初步选择建筑方案时,建筑师很少会对高层建筑的具体结构特征来进行考虑,而是将重点放在了建筑物的空间结构上,这样就容易使得超高层建筑在设计上出现一些不合理的受力。所以说,在对超高层进行设计时,必须要明确选择结构体系,在方案选取上,要对主要的承重部位的布置与数量进行整体优化设计。
3.3超高的问题
目前,超高层建筑结构有明显的超高、超重现象存在。在我国,出于建筑结构的抗震需要,对于超高层建筑的层高有很明确的规定。所以说,在对超高层进行建筑设计时,建筑设计师会轻易忽略这一问题,从而导致审图不通过,这就需要在设计完成后,对设计方案进行重新的设计与审图,杜绝在超高层建筑结构设计中出现超高的现象。
3.4嵌固端的设置问题
在当前的超高层建筑设计中,一般来说都会有地下室,这样就使得超高层的嵌固端位于地下室的顶板处。在针对嵌固端的设置问题上,很多情况下设计师常常会忽略这类问题导致的后期效应,就使得在后期经常会出现针对嵌固端问题的修正,如果修正不及时,就会对嵌固端的安全性造成不良的影响,为安全留下了隐患。
3.5防连续倒塌设计
目前,我国关于高层建筑结构连续倒塌的试验分析与理论研究还不多。现行规范所确定的基本目标就是防止建筑物发生地震时倒塌,确保人的生命不受损失。汶川地震中,按现行抗震规范设计和建造的高层建筑,虽然在地震中没有连续倒塌、保障了人们的生命安全,但是其填充墙等受力构建破坏对建筑物内部的设备、物品的损坏间接造成了财产损失。对于高层建筑的非受力构建倒塌问题需要引起人们的关注,作为建筑结构设计师要引起重视,对于非地震造成的倒塌,例如飞机撞击、爆炸、火灾等不可抗拒的灾难,如何在设计时予以考虑等等,都是下一步研究的重点。
4基础设计
基础设计确实是超高层的一个设计难点与重点,与此同时也是关系到整个超高层建筑结构的安全性的重要一环。所以说,在进行超高层设计时,必须要保证超高层建筑的埋置深度,地基的变形系数与稳固要求必须要符合相关规定要求。在采用桩筏时,对于其埋置深度必须要按照相关的规定进行。与此同时,对于超高层的施工现场场地问题,要注意与相邻建筑物的相互关系,保证基坑开挖后对于相邻建筑物的影响不会造成不良后果,实时监测其变化过程。
引言
一般情况下,高层的建筑概念设计有很多种,但对于加强高层建筑抗震能力的概念设计则运用的比较广泛。超高层建筑的设计以及施工通常都要耗费更多的财力和物力,因此控制好超高层建筑的质量和抗震效果至关重要。但如何设计高层建筑结构的方法却是不确定的,在这个过程中需要考虑建筑物的自身特征以及相关的外部因素。本文主要介绍的就是关于超高层建筑在进行结构设计时应当注意的问题,并作出提升超高层建筑结构设计质量的相关建议。
一、 关于超高层建筑的结构设计特点以及相关要点
(一) 重力荷载迅速增大,控制建筑物的水平位移成为主要矛盾
由于超高层建筑相对于其他类型的建筑具有不同的特性,使得其建筑结构的设计也具有自身的一些特点。首先,超高层建筑在高度上具有其他建筑所不可比拟的特性。因此,随着建筑物的高度不断上升,其重力荷载也呈直线上升的趋势,作用在竖向构件柱以及墙上的轴压力也随之增加。在这样的条件下对于基础的承载力也就提出了更高的要求。与此同时,控制建筑物的水平位移也成为了主要矛盾,这种情况主要是由两方面原因所造成的。一方面,超高层建筑的高度较高,使得风作用效应加大;而风力的加大也就使得合力作用点的位置变高,从而使其对于建筑物产生的作用效应也就变得更大。另一方面,超高层建筑的高度过高使得其自身的重心位置也相应的被升高,建筑的结构自重也相应的加大,此时在地震作用下就将导致薄弱部位加速破坏。
(二) 竖向构件产生的缩短变形差对结构内力的影响增大
受力变形、干缩变形以及徐变变形都是竖向构件总压缩量的构成部分。通常情况下,受力变形都会在瞬时间完成,并且变形量能够根据胡克定律进行大致的测量。而干缩变形所需要的时间则相对较长,通过相关的统计数据对比可以发现,在一般条件下干缩变形量大致占总压缩量的三分之一左右。而耗时最长的就是徐变变形量,线性徐变能够通过公式进行相应的计算。而受到构件的总压缩量随着高度的不断上升而增大的影响,使得在超高层建筑中竖向构件产生的缩短变形差对于结构内力的影响也逐渐变大。
(三) 倾覆力矩增大,整体稳定性要求提高
超高层建筑由于在建设的过程中,高度不断上升使得侧向风力引起的倾覆力矩也会不断增加,随之而来的是抗倾覆力的要求也随之升高。许多具体的工程施工中都会采用增加基础埋深以及加大基础宽度或者是采取抗拔桩基等手段来达到保证整体稳定性的需求,来强化整体的稳定性。
(四) 防火防灾的重要性显现,建筑物的重要性等级升高
与此同时,在进行超高层建筑的结构设计时应当着重考虑防火防灾的功效,凸显出防火放防灾的重要作用。这是由于超高层建筑的一些建筑材料虽然具有耐热的特性,但是耐火的功效却不甚理想,一旦放生火灾的话极易造成重大的损失。并且由于高层建筑与地面之间的空间距离较大,高层中的人们很难找到有效的逃生途径也容易造成大的人员伤亡。此外,在出现地震等坍塌性事故时,需要较长的疏散时间,但超高层建筑大多采用钢筋混凝土结构,在长时间的疏散过程中极易发生其他的安全事故。与此同时,超高层建筑的投资一般都比较巨大,并且在所属区域一般都应是当做代表性建筑来建造的。所以超高层建筑无论是在经济上,还是在文化乃至政治上都具有较强的影响。为此,在进行超高层结构的设计时务必要强化结构设计的可靠性,强化建筑的整体性能质量。
(五) 控制风振加速度符合人体舒适度要求
一般情况下,风力的作用效果都会随着高度的升高而不断加强,在超高层建筑中风力的作用效果尤为明显。但是风振作用过于显著会影响到人们的舒适度,不利于人们的工作和生活,因此如何处理好风振及速度与人体舒适度之间的平衡成为了超高层建筑结构设计的重要问题。为此,必须控制好顶层的最大加速度,使其满足规定的限值。此外还要掌控好由风振带来的扭转加速度,通常情况下不应该超过标定的限值。与此同时,鉴于超高层建筑的高度较大,使得垂直于围护结构表面上的风载标准也迅速增大,所以围护结构必须进行抗风设计。
二、 超高层建筑结构设计的具体方法
进行超高层建筑的结构设计不仅要掌握好相关的要点,了解相关的结构特征,还要在具体的结构设计上合理的利用设计方法。首先,根据超高层建筑的自身特点就要做到减轻自重,减少地震作用。在这方面通常可以采用高强度轻质材料,全钢结构以及轻质隔断等都能够起到很明显的减轻结构自重,减小地震作用的效果。其次,就要降低风作用的水平力。降低风作用水平力的主要手段可以从减小迎风面积、降低风力形心以及选用体型系数较小的建筑平面形状来实现。其中为了减小迎风面积可以采用正方形的平面形式,如果计算对角线方向的迎风面宽则可以采用圆形的平面形式。而降低风力形心的方式主要可以通过采用下大上小的立面体型来实现,这种方式不仅可以有效的减小高风压在高处的迎风面积,也可以通过降低风作用的重心来使建筑物底部的倾覆总弯矩减小。与此同时,还应做到减少振动耗散输入能量。在这方面主要可以采取阻尼装置或者加大阻尼比的方式来实现。还要选择耗能、减振的结构体系,像利用偏心支撑的钢结构具有耗能的水平段,使用橡胶支座都能够做到有效的减振。最后需要完成的就是加强抗震措施。为了强化超高层建筑的抗震能力,就要从多方面共同入手。首先就要为建筑配有明确合理的计算简图,科学的分析地震作用以及相关的受力情况。大多数情况下,圆形、正多边形以及正方形等平面形状能够做到避免强弱轴的抗力不同和变性差异。但在具体的设计过程中也需要考虑到相应的问题。例如,要注意到结构平面形状是否做到对称,是否设置了多道抗震防线以及是否在满足了强度等方面的需求后采用了延性更好的结构材料等。此外,为了保证结构设计的科学性还应利用多个权威程序进行核算对比,使计算出的结果更加具有科学性和说服力。并且在设计上应当尽量向智能化方向偏转,增强对于结构设计的可控性。
结束语
超高层建筑结构的设计对于建筑的整体效果和实际功能质量具有重要的影响,但是适合的设计方法却也不是单一的。在进行设计方法以及方案的选择上,可以根据建筑的实际特点和需要来进行有针对性的选用。但终归来说,应当通过科学的设计方法使超高层建筑具备安全、舒适以及适用等方面的特征,达到相应的设计要求,满足社会以及公众的需要。
参考文献:
中图分类号:TU318文献标识码: A 文章编号:
引言
超高层建筑的建造,其所以如此之快,除了有的城市为了有一个高大的形象建筑之外,主要还是超高层建筑能在有效面积的土地上,得以发挥最大的使用效益。也尽管建造超高层需要的费用比一般高层建筑高出很多,但在我国的城市建设中,随着日益快速发展的需要,为土地使用率的提高,必然会使超高层建筑以更快的速度发展。
一、超高层建筑设计的特点
1、超高层建筑由于消防的要求,须设置避难层,以保证遇到火灾时人员疏散的安全。由于机电设备使用的要求,还需要设置设备层。一般超高层建筑是两者兼而使用,而对于更高的多功能使用的超高层建筑,它不只每15层设一个避难层兼设备层即可,还需要设有机电设备层。对于这些安放有设备的楼层设计除考虑实际的荷载之外,更需考虑设备的振动对相邻楼层使用的影响。
2、超高层建筑的平面形状多为方形或近似,对于矩形平面其长宽比也是在2以内,尤其抗震设防的高烈度地区更应采用规则对称平面。否则,在地震作用时由于扭转效应大,易受到损坏。
3、超高层建筑的基础形式除等厚板筏基和箱基外,由于平面为框架-核心筒或筒中筒,基本没有一般高层建筑中所采用的梁板筏基。同时,由于基底压力大要求地基承载力很高,除了基岩埋藏较浅可选择天然地基外,一般均采用桩基。
4、房屋高度超过150m的超高层建筑结构应具有良好的使用条件,满足风荷作用下舒适度要求,结构顶点最大加速度的控制满足相关规定要求。
二、超高层建筑结构设计要点
1、平面设计
从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意味着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
在满足地下室车库层和底层架空或者底层商铺的前提下,遵循对称、均匀、周边、拐角的原则,在结构周边、拐角和核心筒等部位对落地剪力墙进行较合理布置,主体结构抗震等级为三级(低于140m)和二级(高于140m)。对结构薄弱部位如楼电梯周围,内庭院周围均设置了120mm厚楼板,采用双层双向拉通钢筋予以加强;对少量肢长受到限制的短肢剪力墙(墙肢长度∶墙厚
2、基础设计
超高层建筑一般多设二层或更多层的地下室,其基础的埋置深度均能满足稳定要求。而对于基岩埋藏较浅无法建造多层地下室不能满足埋置深度要求的,则可设置嵌岩锚杆来满足稳定要求。
(1)天然地基基础。对于基底砌置在砂、卵石层的建筑,多是采用等厚板筏形基础。但也有工程采用箱形基础。
(2)桩基基础的设计。超高层建筑的桩基础,由于基底压力大,要求的单桩竖向承载力较高,因此,均采用大直径钻孔灌注桩或有条件的工程场地采用大直径人工挖孔扩底灌注桩。桩端持力层的选择应考虑层厚较大和密实的砂、卵石层或中风化、微风化基岩,以减少桩端沉降变形。
3、核心筒外墙的连梁设计
核心筒外墙的连梁纵筋计算超筋是非常普遍的情况,《高规》对连梁超筋有专门的处理措施,而且研究文献也不少,但计算模型的选取也是重要因素之一。《高规》规定,跨高比小于5时按连梁考虑,即连梁属于深弯梁和深梁的范畴,其正截面承载力计算时,已不能按杆系考虑,也就是已不符合平截假定,但许多分析软件仍然把连梁按杆系计算,其计算偏差当然是很大了。按“强墙弱梁”和“强剪弱弯”原则进行连梁设计时,虽然《高规》对连梁设计有具体要求,但这个“弱”要到什么程度,还是取决于设计者的理解和经验。本工程核心筒外墙的连梁按《高规》要求进行设计,除连梁均配置了交叉暗撑外,对非底部加强部位剪力墙的边缘构件也进行了加强处理,以满足“多道抗震防线”和“强墙弱梁”的要求。
4、转换层设计
高层建筑应保证大空间的需求的房间具有足够的刚度,从而防止转换层沿竖向的刚度变化过大,应建立严格的转换层上部和下部结构的侧向刚度比例。高层建筑的转换层抗震的结构设计中,转换层结构的侧向刚度不小于上一层结构侧向高度的百分之七十,并且根据高层建筑的指数设计的规范要求。控制转换层结构的下部与上部的等效侧向刚度比宜接近于1。同时还应保证一定比例剪刀墙的落地,加大落地厚度,从而提高剪刀墙混凝土的强度等级,减小洞口的尺寸,从而尽量使纵横墙形成筒体。整体结构的分析过程,应对转换层的薄弱部位的楼板平面的变形对建筑结构受力的印象程度。并通过剪刀墙的布置方式的调整,从而使相应的结构与刚性相接近,避免了扭转,实现平面布置的规范。合理地加强框支剪力墙转换层以下竖向构件的配筋率,按相关规定确保整体稳定和结构抗倾覆;同时,使用现浇钢筋混凝土楼板来达到增强结构整体性的目的。保证核心筒内部楼板厚为150mm,并且是双层双向的配筋以及相关围护材料为新型轻质材料,从而有利于减小地震反应,减轻建筑自身重量。
5、电梯设计
超高层建筑内主要竖向交通由多部高速电梯承担着人的竖向动线运动。由于甲级办公楼行业规定,电梯等候时间和电梯的运输能力(5分钟内运送人员占总人数的比例:HC5)是另一个重要指标,对其产生直接影响的是电梯的速度、数量和载客人数。另外,电梯的数量和大小又直接影响着建筑面积的大小。
此外,超高层内按照《高层民用建筑设计防火规范》规定,还需布置消防电梯,电梯数量按照标准层单层面积决定。除了客运、消防关系着电梯的设计外,整栋建筑中的所有货运流线,也需通过建筑的竖向交通解决。因此,超高层建筑肩负着整栋建筑的客运流线、货运流线、消防疏散三个重要的方面。
三、新技术的推广和应用
为执行国家建筑技术经济政策,积极推广建设部推广的建筑十大新技术,根据本工程的实际情况,在保证工程总造价不超出投资限额的情况下积极推广使用建筑新技术和新材料。
1、使用高强度钢筋。采用高强度钢筋,充分利用钢筋的抗拉性能,减少钢筋用量,减小构件配筋率,节约工程造价,总体经济效益明显。
2、竖向钢筋接驳采用埋弧对焊或机械连接,可保证钢筋的连接接头的质量。
3、采用高强和高性能混凝土。下部楼层柱及剪力墙混凝土强度等级采用C55;地下室底板、外侧墙及后浇带采用微膨胀抗渗混凝土,以增加混凝土的抗裂性能,取得较好的防水效果。
4、砌体采用新型轻质墙砌体材料,减轻结构自重,减少地震作用,降低基础造价。
结语
超高层建筑自身特点大大增加了超高层建筑的不稳定因素,因此,不能将超高层建筑视为普通建筑的拉伸和重叠,以免影响到建筑的使用效果。在实际设计过程当中,要根据超高层建筑的特点开展相应施工环节的加强,减少安全隐患,确保超高层建筑整体质量,确保我国建筑行业的健康发展。
参考文献
【1】秦荣.高层与超高层建筑结构[M].北京:科学出版社,2012.
二、设计复杂高层以及超高层建筑时需要考虑的问题
1.抗震设防烈度。对于超过一百米以上并且承受不同强度的抗震设防烈度的建筑物,所被要求建筑物的高度同样是不尽相同的。通常情况下,三百米及以上的建筑物不适合建在抗震设防烈度为八度的区域,因此,复杂性高层以及超高层建筑更加适合建设在六度抗震设防烈度的地区。综合考虑以上因素,在建设复杂高层以及超高层建筑时,就应该将该地区的抗震设防烈度考虑在内,以免造成技术错误,防止人民的生命财产产生不该有的损失。作为一名设计师,就应该十分重视抗震技术,提高高层建筑的质量,包括建筑的安全性以及经济性,从建筑的细部处理出发,坚持以人为本的原则,才能切实有效地保障人民群众的财产安全。
2.结构方案与结构类型。想要成为一名优秀的建筑设计师,首先一定要考虑到在设计中的建筑物结构方案的问题,特别是复杂性高层以及超高层建筑,结构方案的不合理选择,很容易导致整个方案的调整,产生许多不必要的麻烦,给设计单位带来损失。因此,设计单位就应该在进行建筑方案设计的同时,具备结构专业知识,并将其参与到设计当中。与此同时,在高层结构类型的选择上,设计师不仅仅要将方案所在地自身岩土工程地质条件充分考虑在内,而且要充分考虑所在地的抗震度要求。除此之外,为了可以更好地节约建筑成本,工程造价问题和施工合理性问题也应该充分考虑在内,同等条件下,当然青睐造价较低的方案。
3.关注舒适度和施工过程。(1)高层建筑水平振动舒适度。通常来说,复杂性高层以及超高层建筑的结构比较柔软,因此,在设计的时候,除了要保证结构安全之外,更多的是需要满足居住人群对于建筑舒适度的要求;当然对于高钢规程以及高层混凝土规程同样提出明确的设计要求,这就需要设计师及时控制,特别是在高层建筑物已经达到顺风向与横风向顶点的最大加速度。进行舒适度分析是复杂高层建筑进行分析的主要任务,对于混凝土的结构,阻尼比最好取0.02,对于钢结构以及混合结构,其阻尼比可以根据实际情况在0.01~0.02之间取。公共建筑与公寓类建筑相比,水平振动指标限值也有很大的区别,其主要原因就是功能的不同。增设TMD或者TLD可以在水平振动舒适度不合格的情况下,进一步提高舒适度水平。(2)在设计的同时应考虑建造过程的可实施性。及时注意钢材传力以及复杂节点部位钢筋的可靠性、施工的可实施性,这是设计人员在结构设计的同时必须要做到的。通常来说,有四种处理的方法来解决型钢与其混凝土梁柱节点中主筋相交的问题:①钢筋与表面的加劲板焊接;②钢筋绕过型钢;③钢板上开洞穿钢筋;④其表面的焊接钢筋和连接套筒。复杂的高层建筑则会在施工方法上采取另外一些特殊的工艺。
三、设计要点分析
1.注重概念设计。通过大量的实践经验,我们可以总结出,在复杂超高建筑的结构设计上,应该要重视建筑的结构概念设计,尤其应该重视以下环节:(1)应该尽可能地提升建筑结构的规则性以及均匀性;(2)确保结构的传力途径清晰而又直接,特别是抗侧力以及结构竖向的传力途径;(3)在设计上,将结构的完整性保持在一个较高的水平上;(4)节能减排的意识要渗透进设计,能够建立一个比较合理的耗能机制;(5)重点提高建筑构件材料利用效率与结构,保证结构的受力完整性。在这里,所有过程的实现,都是离不开建造师与工程师较好地沟通与交流的,只有沟通,才能将建筑与结构相统一。
2.科学、合理选择结构抗侧力体系。大量的理论与实践证明,正确地选择了合理的抗侧力体系,可以更有效地保证复杂高层以及超高层建筑结构的安全。因此,在选择上要特别注意以下因素:(1)与建筑的实际高度相结合,选择合理的结构体系。(2)对于建筑设计上,最大可能地保证结构抗侧力的构件之间的互相联结。(3)对于采用多重抗侧力结构的情况下,综合分析结构体系的效用,正确估计和评判各自的贡献度。
1 超高层建筑结构设计应考虑的问题
1.1 采用SRC柱时,柱中型钢下端的埋置部位问题
高层及超高层建筑地下室的层数依据基础埋深、使用功能、地质条件综合确定,少则二至三层,多则四层及以上。如果地下室的竖向刚度和水平刚度能满足《抗规》6.1.14条和《高规》5.3.7条的相关要求,那么,地下室的顶板可作为上部结构的嵌固部位,即是说计算时可以地下室的顶板为固定端对上部结构(悬臂体)进行抗震、抗风等进行整体计算。《抗规》6.1.3条和《高规》4.8.5条规定,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。超高层建筑结构的底层柱及抗震墙,因要考虑延性和降低轴压比等技术因素,同时又要从使用上考虑尽可能减少竖向构件截面,以争取更大的使用率等非技术因素,往往采用SRC柱。如果为多层地下室,且嵌固端在首层,那么,在不考虑延性因素,轴压比能满足要求的前提下地下一层以下的柱是否可不设SRC柱。
笔者认为,对超高层建筑结构SRC柱中的型钢应锚固到基础中,锚固在地下一层以下的柱中存在不安全因素,原因是:对带有地下室的高层建筑来说,目前计算时通用的做法是:考虑土体或大底盘对地下室的侧向约束,将地下室刚度进行放大。因此,将地下室顶板作为上部结构嵌固部位计算,和实际结构变形相比存在一定误差。某些超高层项目,出于多种理由本应将生根于基础面或基础中的SRC中的型钢,移至地下一层以下柱中,此做法,有待商榷[3]。
1.2 地基规范允许的基础整体倾斜对超高层建筑的整体稳定性影响问题
《地基规范》3.0.4.2条规定:计算地基变形时,传至基础底面上的荷载效应应按正常使用极限状态下荷载效应的准永久组合,不应计入风荷载和地震作用。相应的限值应为地基变形允许值。同时,《地基规范》5.3.4条对建筑物的地基变形允许值规定如下:多层和两层建筑的整体倾斜,当高度高于100m时,建筑物的地基变形允许值为0.002,也就是1/500。超高层建筑的基础一般为刚性基础,如果忽略高层建筑地下室的埋深、地下室外墙因土压力产生的摩擦力等要素对整体倾斜产生的约束作用。那么,上部结构也将有1/500的倾斜。
目前,大家公认重力二阶效应,一般由两部分组成。一是构件自身挠曲引起的附加重力效应,叫效应;二是结构在水平荷载或水平地震作用下产生侧移变位后,重力荷载由于该侧移而引起的附加效益,即效应。对一般高层建筑结构而言,效应的影响相对较小,一般能够忽略不计,由于结构侧移和重力荷载引起的效应相对较为明显,可使结构的内力和位移增加,位移较大时甚至导致结构失稳。故重力二阶效应实际上是效应。也即现行《抗规》与《高规》涉及的效应[4]。
高层和超高层建筑结构只要有水平侧移,就会引起重力荷载作用下的侧移二阶效应。其大小及结构侧移和重力荷载自身大小直接相关。高层和超高层建筑基础的整体倾斜,从理论上讲,会使高层建筑结构产生水平侧移,也会引起效应。现行《高规》或《抗规》有关涉及效应的规定中,似未明确考虑规范允许的基础整体倾斜对结构侧移的累积效应。作者认为,对超高层建筑来说,一般高宽比比较大,效应敏感。其结构弹性计算与弹塑性变形计算时,结构侧移中应考虑地基规范允许的基础整体倾斜值的累积侧移,同时考虑由此对结构整体稳定性的影响。
2 超高层建筑SRC型钢柱的施工方法
笔者所在工程主体结构地上43层,地下2层,嵌固位置为地下2层底板, 主体结构采用框架-核心筒结构,主体结构柱采用SRC型钢混凝土柱,钢骨柱为十字型截面,截面型号十900×500×20×28。根据本工程的特点,确定了如下的施工方法:
2.1 第一段钢骨柱及上部钢骨柱的吊装
安装前要对予埋件进行复测,并在基础上进行放线。根据钢骨柱的底标高调整好螺杆上的螺帽。然后钢骨柱直接安装就位。当由于螺杆长度影响,螺帽无法调整时,可以在基础上设置垫板进行垫平,就是在钢骨柱四角设置垫板,并由测量人员跟踪抄平,使钢骨柱直接安装就位即可。每组垫板宜不多于4块。垫板与基础面和柱底面的接触应平整、紧密。钢骨柱用汽车吊吊升到位后,首先将钢骨柱底板穿入地脚螺栓,放置在调节好的螺帽上,并将柱的四面中心线与基础放线中心线对齐吻合,四面兼顾,中心线对准或已使偏差控制在规范许可的范围以内时,穿上压板,将螺栓拧紧,并在钢骨柱四周及时拉设缆风绳确保其稳固,此时即为完成钢骨柱的就位工作。当钢骨柱吊装并校正完毕后,及时利用缆风绳进行固定,保证钢骨柱的稳定,同时通知土建单位对地脚进行扎筋、(二次)浇灌等施工,对钢骨柱进一步稳固。
上部钢骨柱的安装与首段钢骨柱的安装不同点在于柱脚的连接固定方式上不同。上部钢骨柱吊点设置在钢骨柱的上部,利用四个临时连接耳板作为吊点。吊装前,下节钢骨柱顶面和本节钢骨柱底面的渣土和浮锈要清除干净,保证上下节钢骨柱对接面接触顶紧。
2.2 钢柱校正
钢柱的校正主要有钢柱错口校正、钢柱轴线校正、垂直度校正及钢柱标高的调整。第一节柱柱脚的位移调整以基面中线与柱身中线对齐为标准,如有偏差,用千斤顶往反方向调整,千斤顶的反作用受力点可作用在劲性柱脚插筋的根部。第一节柱校正到位后用揽风绳拉住柱顶耳板与底板固定或用角钢与柱身焊接并支撑在混凝土地面上,且将柱底板与垫块围焊,以防柱钢筋施工过程中对钢柱的垂直度的影响[1];
上部柱校正完后应用马板在柱接头处将上段柱与下段柱相对固定,待钢柱对接焊完后将马板割掉;
钢柱标高的调整:对于标高偏差超规范的钢柱须对标高进行调整,对于标高偏差较大的须在加工厂进行调整,偏差较小的可以在现场调整,一般调整方法是在钢柱接头位置加垫铁;
钢柱轴线校正到正确位置后,进行钢柱垂直度复核,确保钢柱垂直度在规范允许范围内;
钢柱垂直度的校正采用两台经纬仪分别置于相互垂直的轴线控制线上(借用1m线),精确对中整平后,后视前方的同一轴线控制线,并固定照准部,然后纵转望远镜,照准钢柱头上的标尺并读数,与设计控制值相比后,判断校正方向并指挥吊装人员对钢柱进行校正,直到两个正交方向上均校正到正确位置。
2.3 钢骨柱垂直度校正及焊接偏差预留值
用两台经纬仪从柱的纵横两个轴向同时观测,依靠千斤顶进行调整。柱底部依靠揽风绳葫芦高速柱顶部,无误后固定柱脚,并牢固栓紧揽风绳。
由于钢骨柱接头焊接后会有一定收缩,因此钢骨柱在垂直度校正时必须预留焊接收缩值,外侧柱的垂直度误差,以向外侧倾斜3mm 控制预留焊接收缩量,高层的外侧柱在安装时外侧无揽绳拉点,所以在安放柱时有意识的将柱向外侧倾,内侧系上揽风绳,既保证安全性又保证容易调整的状态。
2.4 检查验收
钢骨柱吊装校正好后,通知监理单位验收构件校正结果,验收合格后进行下道焊接工序,焊接校正等工序施工完毕,在自检合格的基础上,通知监理单位、土建单位以及第三方检测机构进行现场检查,并做好相应的资料和影像记录[2]。
3 总结
应该根据超高层建筑结构设计实践,充分考虑超高层建筑结构设计中的问题,同时积极探析SRC型钢柱的施工方法,进而确保超高层建筑能够顺利发展。
参考文献:
[1]GB50009-2001 建筑结构荷载规范.
一、高层建筑超限设计分析的主体因素
(一)基于性能的抗震设计能否满足抗震性能目标
小震作用一般采用规范规定的振型分解反应谱法或者弹性动力时程法对结构进行计算分析,中震一般采用弹性计算并采用结构构件的屈服判断分析法进行判断控制,大震采用静力弹塑性的Pushover推覆分析及动力弹塑性分析分别进行计算,以判断结构是否达到“小震不坏、中震可修、大震不倒”各阶段相应的抗震目标。
(二)考虑可能的风载作用控制并验算风作用下舒适度
虽然风荷载作用并不属于抗震超限审查的必须项目,但基于高层超限结构工程的经验来看,由于高度较大的超高层周期较大,往往由风而不是地震起控制作用,故根据建筑结构周期的特点建议对超限设计分析时,加入风载的分析内容。具体分析指标时要分析其它一些受相邻超高层建筑物风扰影响的超高层建筑的风洞试验的结果,如根据超限结构工程可能会发生横风作用大于顺风而起控制的情况,应结合工程超限结构及体型特点,预估即使由横向风作用控制,比对应方向顺风作用的增大值会不会超出,在超限计算中,应对两个方向的风压值分别乘以1.3的放大系数进行相应的位移和强度计算,以此来考虑可能起控制的横向风作用和最佳舒适度。
(三)根据高层超限结构构件和刚度需求分析温差效应
由于高层竖向构件筒体、柱截面和刚度较大,不可避免要对现浇混凝土楼盖梁板沿水平方向的温差变形产生较大的约束,从而各自产生相应的约束内力,称为水平温差效应。实际设计中主要考虑由楼屋盖中面在施工和使用时与混凝土终凝时温度的差值对结构所引起的附加内力。
(四)针对超限分析要考虑混凝土徐变收缩对结构的影响
徐变收缩是混凝土固有的特性,钢结构则不存在徐变收缩问题,混凝土随着作用在其上的压应力时间持续,将持续发生变形-徐变变形。一般来看。超限高层建筑由于竖向构件高度大,其徐变变形累计大,并通常伴随着收缩变形同时发生,这样两种变形的叠加,将使整个超高层建筑竖向构件后期非荷载直接引起的塑性变形达到一个量级,会接近甚至超过荷载直接引起的弹性变形而不容忽视,可能会对部分结构构件和非结构构件造成较大的不利影响,因此实践工程设计时要对混凝土徐变收缩的影响进行量化分析,评估其不利影响的程度,以判断是否需采取相应对策,以为建筑结构和非结构构件提供可靠的质量保证。
二、高层结构超限设计中主体问题的解决措施
采用基于性能的抗震设计方法,对结构是否达到小、中、大三个阶段的抗震性能目标进行量化分析判断,在考虑竖向荷载、风和小震的作用时,采用规范方法进行计算和设计,构件基本不超筋,则可基本保证结构构件处于弹性阶段,实现小震作用时结构“处于弹性,结构完好、无损伤”的第一阶段抗震性能水准。
对中震作用,采用弹性计算,选用中震的地震反应谱曲线,计算中荷载及材料的分项系数、抗震承载力调整系数均取1.0,不考虑地震作用的内力放大调整,并取材料的强度为标准值,当这时构件的地震作用组合效应不大于按强度标准值计算的抗震承载力,则可判断构件为中震不屈服。
竖向构件及与外框柱及内筒剪力墙面内相交的主要框架梁均不出现屈服,梁均不出现受剪屈服,在小震及屈服判别地震作用1时,所有梁不出现受弯屈服;在判别地震作用2及中震时,核心筒连梁仅出现程度较轻的屈服(主要表现为面筋配筋率略>2.5%),可判断为轻微的损伤;另,右侧的边框架梁在中震下也出现轻微屈服,经将梁宽度适当加大后,即可满足该梁中震不屈服。实际设计时,将按小震和中震两者的较大值对构件进行配筋,这样则能实现中震作用下结构“重要构件不屈服,其它构件部分允许受弯屈服,可修复使用”的第二阶段抗震性能水准。
对大震作用,则可以采用相应软件对结构进行静力弹塑性分析(Pushover)及用接口程序BEPTA进行模型的前处理和准备工作后通过分析软件对结构进行动力弹塑性分析。按弹塑性程序计算所反映的塑性发展程度来对构件以至整个结构进行相应的性能评价。
针对高层超限建筑结构特点,对工程进行超限设计时,除超限审查本身所要求的抗震方面的内容外,还应对风载作用、温差效应、混凝土徐变收缩的影响、解决钢管柱与混凝土内筒间竖向压缩变形差对框架梁产生过大附加内力的对应措施等进行分析,虽然这些因素并非抗震超限审查的必须内容,但确都属于高层超限结构能否真正实施所必须分析和解决的问题。
三、总结
当进行采用软件在施工模拟进行分析中,应综合考虑在施工阶段由主体结构去承受后加的恒载、活载、风载及地震等作用,计算中同时考虑混凝土与钢管混凝土徐变收缩的等影响的诸多因素,才能确保满足高层超限结构设计的要求。
参考文献:
中图分类号: TU208 文献标识码: A.
引言:基础是整个建筑工程的重要部分,其重要性在结构、占比、造价、工时上有着全面的体现,是建筑设计、建设和施工单位高度重视的关键部位和环节。超高层建筑基础设计工作中只有通过全面了解情况、优化基础选型、全面科学计算等工作才能够确保超高层建筑基础的安全性和功能,同时确保超高层建筑基础工程造价的可控和降低。在超高层建筑基础实际的设计工作中要对基础选型影响因素进行控制,坚持基础选型的原则,通过对超高层建筑框架结构、箱(筏)和桩箱(筏)种类基础的有效设计和全面控制,实现超高层建筑基础设计的目标,促进超高层建筑基础功能的完善,真正完成超高层建筑基础设计的系统性、全面性的目标。
一、超高层建筑结构设计原则
(1)选择适合的基础方案
应该根据工程的上部载荷分布和结构类型,地质条件,施工条件以及相邻的建筑物影响等各种因素进行综合性分析,选择既合理又经济的方案,必要时要进行地基变形演算,在进行设计时要最大限度地发挥地基的潜力。在进行基础设计时,应该参考临近建筑资料和进行现场查看,要有详细的地质勘查报告,一般情况下,在一个结构单元内部适合用两种不同的类型。
(2)对计算结构进行正确分析
高层建筑结构设计普遍运用计算机技术,但是,往往不同的软件会得出不同的计算结果。所以,对于程序的适用条件、范围等设计师应该进行全面的了解。因为软件本身有缺陷、人工输入有误或者程序与结构的实际情况不相符合,在计算机辅助设计时,都会造成错误的计算结果,所以,在拿到电算结构时要求结构工程师要慎重校对,认真进行分析,做出合理的判断。
(3)选用适当的计算简图
.为了保证结构的安全,在选择计算简图时要选择适当的计算简图。如果计算简图选用不当,则会造成结构安全隐患,要有相应的构造措施来保证计算简图。为了减少计算简图的误差,实际结构的节点应该保证在设计所允许的范围之内,因为其不能是纯粹的刚结点。
(4)采取相应的构造措施
强剪弱弯、强柱弱梁、强压若拉、. 强节点弱构件、.注意构件的延性性能原则是在结构设计中要始终牢记的。要注意钢筋的锚固长度,特别是钢筋执行段锚固的长度。要加强薄弱部位,考虑温度应力的影响。
(5)合理选择结构方案
要选择一个切实可行的结构体系与结构形式,一个经济合理的结构方案是一个合理设计的保证。结构体系应该传力简捷,受力明确。地震区应力求平面和竖向规则,同一结构单元不宜混用不同结构体系。总之,必须综合分析工程的材料、施工条件、设计要求、地理环境等,并且要与水、电、建筑等专业进行充分的协商,以此为基础确定结构方案,为结构选型,最好进行多方案比较后选用较为优秀的.
二、超高层建筑基础选型工作的要点
2.1超高层建筑基础选型的影响因素
2.1.1超高层建筑上部结构对基础选型的影响
上部结构对超高层建筑基础类型、深度、浮力等参数存在着直接的影响,由于上部结构种类的不同,会引起超高层建筑基础荷载大小和分布的不同,要在设计超高层建筑基础予以注意。同时,不同类型的超高层建筑上部结构会因自身的类型不同而产生不同的沉降幅度和变形幅度,因此,带来超高层建筑基础形式上的不同。地下室的种类和形状也会对基础选型有一定影响,要在设计超高层建筑基础时做以重点考量。
2.1.2地质条件对超高层建筑基础选型的影响
地质条件中两项情况对超高层建筑基础选型影响最为显著,一是,地基持力层情况,持力层是承受超高层建筑基础负荷的土层,要根据持力层承载能力大小和压缩模量变化幅度选择超高层建筑基础类型;二是,穿越土层基本状况,应该根据土层中地下水影响和桩基穿越能力的大小选择超高层建筑基础的类型。
2.1.3周围环境因素对超高层建筑基础选型的影响
一是,超高层建筑施工的振动和噪声要对基础带来各种影响,因此需要对此加以控制和预防,以便超高层建筑基础能够持久、稳定和安全。二是,超高层建筑施工中的空间因素也会给基础类型带来一定的影响,要选择既利于施工有利于稳定的超高层建筑基础类型。三是,超高层建筑施工中挤土效应,超高层建筑基础桩基的入土和挤土会产生挤土效益,这会对周边建筑和地下管网造成影响,应该从最小影响原则出发,优先选择挤土效应最小的桩基方式进行超高层建筑基础施工。
2.1.4超高层建筑基础桩种类的影响
不同种类的基础桩有着不同的尺寸,应该从持力层性质、安全性要求、超高层建筑负荷等主要方面确定基础桩的类型和规格,使其满足超高层建筑总体施工建设的需要。
2.1.5超高层建筑基础施工的工期
工期是设计超高层建筑基础类型的重要参考参数,要在确保超高层建筑基础施工速度、施工质量和施工效益的基础上形成最为科学的施工
工期,实现超高层建筑总体价值的全面兼顾。
2.2超高层建筑基础选型的基本原则
超高层建筑基础选型应该坚持的原则有:一是,多样式原则,超高层建筑基础设计单位应该全面掌握各种超高层建筑基础类型,并有针对性地选择社会和综合价值较高的超高层建筑基础类型。二是,经济性原则,超高层建筑基础设计要追求最佳的经济效益,因此,设计超高层建筑基础时要考虑到成本控制、施工进度的重要因素,全面提高超高层建筑基础设计和施工的经济性。三是,总体优化原则,超高层建筑基础设计单位要对各种设计综合起来,将各种设计的优势集中起来,形成优化的超高层建筑基础设计,以实现超高层建筑建设的基本目标。
三、超高层建筑基础设计的方法
当前超高层建筑基础设计采用上部结构与地基、基础共同作用的分析方法,这种方法中地基、基础、上部结构之间同时满足接触点的静力平衡以及接触点的变形协调两个条件,即将上部结构、基础和地基三者看成是一个彼此协调的整体。这种从整体上进行相互作用的分析方法难度较大,计算量庞大,对计算机的性能及存储量要求较高,只在较复杂或大型基础设计时,按目前可行的方法考虑地基-基础-上部结构的相互作用。共同作用分析方法的进步之处仅在于它考虑了上部结构的刚度,这一优势是传统设计方式所不具备的。
四、做好超高层建筑基础设计的要点
1框架结构基础设计的要点
在超高层框架结构基础设计时,基础宜柔不宜刚;若地基土为高压缩性,则基础宜刚;当采用桩基时,可考虑采用变刚度布桩的方式(如改变基础中部桩径或桩长、加密中部布桩),以调整地基或桩基的竖向支承刚度,使差异沉降减到最小,从而减小基础或承台的内力。
2箱(筏)基础设计的要点
对超高层建筑箱(筏)基础设计时,考虑上部结构参与工作有利于降低箱基的整体弯曲应力。建议采用共同工作整体分析进行计算,这样算得的整体弯曲箱基底板钢筋应力才比较符合实际;另外,共同作用使得上部结构下面几层边柱(墙)出现较大内力,采用常规设计方法时应提高边柱(边墙)的内力。
3桩箱(筏)基础设计的要点
超高层建筑桩箱(筏)基础上部荷载满布,可采用变刚度布桩的方式,调整桩基的竖向支承刚度,从而调整桩顶反力分布;若考虑利用桩间土分担上部荷载,充分发挥箱(筏)底桩间土的承载力,可适当增加基础中部桩的间距;另外,若上部结构为剪力墙,则桩宜沿剪力墙轴线布置,这样与
满堂布桩相比可以大大减小底板的厚度。
参考文献
[1]姜海菊.江浙地区超高层建筑基础的选型与优化设计――以某超高层住宅楼工程为例[J].建筑,2011(08)
[2]王荣彦,徐玲俊,张亚敏.郑州东区超高层建筑基础选型探讨[J].岩土工程界,2005(12)