绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数字化设计和制造技术范文,希望它们能为您的写作提供参考和启发。
[中图分类号] G642 [文献标志码] A [文章编号] 1008-2549(2017) 03-0092-02
随着全球经济的迅猛发展,消费者的消费观念发生了结构性变化,要求产品更新换代的速度加快,产品设计制造周期缩短,产品质量还必须要好。数字化设计制造技术是一项综合性、集成性很高的高新技术,是先进制造技术的重要组成部分,也是提高设计水平、缩短产品开发周期、增强企业竞争力的一项关键技术。全面、熟悉地掌握数字化设计制造技术已成为工程技术人员适应新形势、新要求的重要任务,也成为应用型大学本科生实践教学改革的新方向。
一 应用型大学本科数字化设计制造综合实训课程现状
数字化设计制造综合实训是机械设计制造及其自动化专业和机械类专业学生的一门必修课,也是理论教学结束后进行的实践教学环节。部分学校也称CAD/CAM实训、CAD实训、CAM实训或计算机辅助设计制造实训等。教学目的是让学生进一步掌握现代设计制造的方法和手段,提高学生的CAD/CAM技术应用能力。通过实训让学生亲身参与产品设计、制造的整个过程,熟悉产品设计的流程、规范、制造方法、工艺过程等,锻炼学生综合运用知识的能力、设计软件的使用能力、查阅资料的能力、动手与团队协作的能力,培养对产品创新设计的兴趣。目前现有的课程大概有以下几种形式。
1 实训只进行CAD/CAM的部分环节,比如只进行CAD模块或CAM模块的实训,学生不能系统熟悉整个设计制造流程,更无法模拟体验企业作业过程。
2 实训让学生采用一门CAD/CAM集成软件,对零件进行CAD 阶段的设计,再进行CAM过程的模拟仿真加工,整个过程以课内上机形式完成,未进行零件的实际加工,学生不能切身进行数控设备加工过程的操作练习,且学生未能体验到整个设计制造的过程。
3 实训让学生掌握并应用一门CAD/CAM集成软件,完成一般零件的造型设计,运用所学CAM及数控编程的相关知识,针对设计的零件进行手工编程,并实际操作数控车床完成零件的加工。CAD和CAM通过手工编程来连接,整个CAD/CAM的集成过程未能实现,且缺失DNC过程,先进的数字化设计制造技术未能得到完整的诠释。
4 在实训过程中,使学生亲身经历从设计――工艺――制造―DNC传输――零件加工制造整个数字化设计制造流程,通过数字化设计制造综合实训,让学生建立数字化设计制造理念,懂得运用先进的设计制造方法解决实际问题并进行工程应用。但是绝大多数都是由指导教师给学生下定任务单,学生机械的完成整个过程,缺乏创新,不能充分发挥学生的主观能动性。
二 应用型大学本科数字化设计制造综合实训教学改革措施
社会与经济的发展对产品的设计与制造提出了更高的要求,产品在保证质量的前提下,研发和制造的周期越来越短。这样就要求在设计的过程中必须保证设计的正确性与可靠性。不断发展的CAD/CAM技术可以最大限度的满足目前产品的设计制造要求。所以为了满足现代社会生产技术的要求,在相关专业本科生的培养过程中,需让学生对这一现代化的技术有全面的了解和熟练的应用能力。在实践教学过程中,我们从教学方法、教学内容和考核方式等几方面入手,探索和实践了新的教学改革,现阐述如下。
(一)教学方法改革
1 项目教学法
以企业真实项目为载体设计实训项目,按照实际工作过程明确具体任务,并通过完成任务实现技能模块的教学过程。实施步骤为:项目分解――任务驱动――实际操作――技术研讨。在整个过程中学生始终保持团队合作状态。
此方法既可以让学生掌握实际产品的设计、制造流程和相关的知识,又能锻炼学生的团队合作能力。
2 问题探究教学法
教师(组)或教师引导学生提出问题,在教师组织和指导下,通过学生比较独立的探究和研究活动,探求问题的答案而获得知识。如车削零件时,就可采用该方法,实施步骤如下:创设问题的情境――机床如何实现车削过程;选择与确定问题――数字化制造部分理知识体系;讨论和解决问题――CAPP;仿真验证――CAXA数控车仿真;实践并得出结论。
3 小组合作教学法
项目在实践教学环节,将学生划分为不同小组,每个小组有不同的实训任务单,每个小组根据任务内容和教师的安排,通过技术讨论、实际操作等手段,合作完成一个实训项目。这样既提高了学生实践操作技能,又培养了学生组织协调、合作学习的能力。
4 现场教学法
将实践教学环节的一部分设置在学校的工程训练中心,另一部分设置在校外实践教学基地。让两部分的教学内容能够相互关联,通过工程训练中的操作实践和校外教学基地的认知实践,让学生把所学的知识与企业的实际生产联系起来,感受真实生产氛围,学习知识在企业中真实应用的技能。
5 分层教学法
项目采用分层次培养学生能力的教学思路。课程在设置之初对学生的要求划分了3个层次:基础理论与技能应用层次、综合系统培养层次、科技创新层次。基础理论与技能应用层次针对机械类等对课程要求较低的专业,要求学生在理论知识掌握和实践技能应用方面达到课程大纲要求;综合系统培养层次针对机械专业的学生,要求学生对理论知识和实践技能可达到熟练综合运用的程度;科技创新层次针对在课内和实践训练环节综合能力较为突出的学生,每学期选拔一批对课程内容掌握较扎实的学生进行课外科技创新培训培养、校企实践教育教学基地共同培养等活动。
(二)教学内容的安排
数字化设计制造综合实训构建在现代数字化工厂的实际环境之中,学生通过对典型机械零件的完整设计、仿真直至真实加工与检测,可系统且完整地体会现代数字化设计制造模式的全过程。数字化设计制造方法优于传统设计制造,整个设计制造过程不是独立的,而是一个并行的过程,详见图1。
根据数字化设计制造综合实训的要求和拟达到的预期目标,项目需要完成的主要内容包括以下几方面:计算机辅助设计(CAD)、计算机辅助工艺设计(CAPP)、计算机辅助制造(CAM)、机床实际操作和逆向工程。计算机辅助设计主要完成数控车、数控铣及线切割3个工种的零件设计;计算机辅助工艺设计需要对CAD阶段的零件进行加工路线安排;计算机辅助制造则是对已完成工艺设计的零件进行仿真加工、NC代码生成及校验;机床实际操作主要完成数控设备的简介及基本操作、NC代码的DNC传输、零件成型、机床保养及维护等内容的教学与实践;逆向工程主要给学生讲解逆向工程的原理、实现逆向的设备简介及操作过程。
图1 数字化设计制造综合实训课程内容流程图
(三)考核方式
数字化设计制造综合实训考核方式注重过程考核、能力考核以及结果考核。因此数字化设计制造综合实训成绩包含形成性的考核和终结性考核两部分,具体考核内容及占比见表1。
表1 数字化设计制造综合实训考核内容及占比
三 改革的创新点
在教学中注重了从“设计――工艺――制造”的完整周期,让学生有一个完整的体验和认识;CAD和CAM通过DNC来连接,实现了整个CAD/CAM的集成过程,数字化设计制造技术得到了很好的诠释和展现;实训过程中采用单独和协作共存的模式,既锻炼了学生个人的动手能力,又让他们认识到团队合作的重要性,锻炼了团度合作协调能力;教学过程中突出学生自身的主观能动性,允许学生自主设计,并将所设计的产品制造出来,既让学生在实践过程中学习了知识,又增强了学生的自信心。
参考文献
[1]王彬.大赛引领下高职 CAD/CAM 课程教学改革――以“机械产品的计算机辅助设计与制造”课程为例[J].职教通讯,2015(18):23-24.
[2]张华,陈杰.CAD/CAM实训体系建设探讨[J]. 装备制造技术,2007(6):156-157.
数字化制造技术的推出,是新形势下科学技术的发展对传统制造业的革命,同时,数字化制造技术的发达程度也是衡量国家和地区科技实力和综合国力的重要标准之一,它的发展与人们的生活质量和水平有密切的联系[1]。新形势下衡量一个国家的科技发展水平,不再仅仅以其拥有的发现发明专利为标准,更多的是以它的制造业和制作技术能够为世界提供多少有利于人类发展的产品为标准,在科学技术迅猛前进的今天,工装产业与数字化制造技术的结合提供了越来越多造福于人类的产品。
1工装数字化制造技术发展现状与趋势
1.1国内外工装数字化制造技术的发展现状
随着计算机技术的发展和普及,计算机在越来越多领域的运用得到了前所未有的重视,在制造业也不例外。制造业在信息技术与自身的制作技术相结合的环境下日益迈向了数字化的历程,工装数字化制造技术已经成为提高企业产品竞争力的重要技术手段,近三十年以来,数字化制造技术在加快发展的步伐,许多发达国家的工装产业实现了数字化设计和无图纸生产。同时,数字化制造技术也在纵深方向,在机器人化机床、多功能机床等整机方面和高速电主轴、直线电机等单元技术方面均有较为突破的发展。我国数字化制造技术的基础技术和数控技术都有很大的发展,基础技术的研发和应用使我国的制造业设计自动化水平产生了质的飞越,对数控技术的进一步研发促进了我国数字化制造技术的成熟。
1.2工装数字化制造技术的发展趋势
第三次科技革命催生了计算机的发明,凭借着自身的强大优势,计算机自诞生不就之后便被运用于控制机床加工。实现了由传统的依靠人工向依靠自动化控制机床的转变,为数字化制造技术的发展提供了可靠的条件[2]。无论是几十年以前还是科技发展越发成熟的今天,数控机床的拥有量以及年产量不可置疑的成为一个国家制造能力的重要标志。数字化制造技术是基于精密化、网络化、智能化的先进制造技术的基础和核心,随着计算机技术的不断成熟和网络技术的不断普及,工装数字化制造技术也将在更广阔的领域发挥造福于人类的重大作用。
2新形势下工装数字化制造技术的结构体系
2.1工装数据库
建立数据库是数字化设计中非常重要的基础性工作,是数字化设计和制作的必要内容,是也是数字化制造技术运行的动脉。工作数据库主要包括O型圆模具数据库、压型折弯零件及其模具数据库、加长镗杆钻杆数据库、配重汇总数据库等组成。O型圆模具数据库的主要任务命名工装名称、工装代号、制作标准和图号、对应产品信息以及进行模具设计、校对、审核等;压型折弯零件及其模具数据库汇总了工作室近几十年以来的压型折弯零件模具档案图纸,并将这些图纸制作成电子文档方便工装编制人员、设计人员以及管理人员搭建资源共享平台;加长镗杆钻杆数据库汇总了多套加长镗杆工装和加长钻杆工装,为后期的大规模生产提供必要的数据;配重汇总数据库主要收录了包括尺寸、重量、数量、等在内的多种配重。工装数据库是工装数字化制造的依据,它的建立对工装工艺设计、制造、监测具有不可忽视的作用。
2.2设计制造应用技术
应用系统可以将工装设计制造过程中各部分基于网络集成为一体化技术,使系统内设计、加工、监测等各项技术协调运行[3]。设计制作应用技术包括工装数字化设计、工装数字化工艺设计、工艺数模设计以及数字化工装制作。工装数字化设计是以三维设计为基础、采用并行工作方式的技术,它可以在设计的不同阶段将数模发送给工装设计数据库,并通过网络即时向有关部门反映问题;工装数字化工艺设计主要工作是制定工装制作工艺的总方案记忆各个协调方案,还需要设计出各个零件的制作工艺,将其刻录到工艺设计数据库之内;工艺数模设计是工装数字化制造过程的一个重要环节,也是工装制作过程的依据,它的主要任务是在工装数模基础上增加工艺余量和定位重构的数据库;数字化工装制作主要是依靠数字化加工设备来提高工作加工的精度,以便于缩短制作周期、提高制作速度和质量。
3结束语
数字化设计和制作技术是新形势下制作技术的变革,也是机械制造业发展的必然趋势。利用发展工装数字化制造技术是企业提高技术水平和业界竞争力的一个重要举措,同时也是提高我国现代化工装制作技术水平的必经途径,在国际舞台上,谁占据了工装数字化制造技术的制高点,谁就拥有更广阔的工装市场和发展前景。
参考文献:
中图分类号 G642.0
文献标识码 A
文章编号 1005-4634(2012)05-0073-04
随着计算机技术的飞速发展,数字化设计与制造技术开始在模具制造业中发挥着越来越重要的作用,并且已经成功应用到模具设计、分析、仿真、模拟以及制造的全过程,数字化已经成为模具制造行业发展的必然趋势。因此众多模具企业需要大量的数字化设计制造高技能人才。长江三角洲地区是我国模具行业最集中和发达的地区之一,对模具高级工程人才的需求更加旺盛,培养符合企业需求的大批具有创新精神的模具卓越高级工程师,既是学校自身发展的需要,也是高校的职责所在。
目前,国内各院校成型专业技能人才的培养与企业要求不能达到“零对接”。这主要表现在:课程体系与企业需要的数字化设计制造能力要求脱节;课程内容陈旧,实践环节薄弱。其结果导致学生工程实践能力和设计创新能力不强。
为了适应设计制造领域快速发展的形势和满足社会对数字化设计与制造技术人才的需求,按照国家“卓越工程师培养计划”的基本要求,南京工程学院材料成型及控制工程专业正在探索和研究新的培养模式,改革传统的课程设置,对现有零散、重复交叉的数字化设计与制造课程进行整合、补充和优化,改革传统的课程体系和教学方法,构建卓越计划背景下数字化设计制造技术教学体系,对培养学生的创新能力和数字化设计制造技术工程的应用能力具有重要的意义。
1 材料成型及控制工程专业卓越工程师总体培养目标
在对众多模具企业进行广泛调研的基础上,参照其他高等院校本专业的培养计划,结合南京工程学院的实际情况,制订了新的成型专业卓越工程师培养目标。新确定的培养目标是使学生掌握金属塑性成形和高分子塑料成型以及现代模具设计与制造的基础理论和工艺技术,具有应用三维数字化技术进行产品的模具设计、成型过程模拟分析、数控自动编程等基本技能,具备一定的材料性能及产品质量检测分析的能力,擅长模具设计制造与材料成型生产的技术管理,能够在模具领域从事设计制造、技术开发及生产经营管理的卓越模具工程师。
卓越计划培养目标下数字化设计制造技术教学不能只满足于学生会使用造型软件工具,还要使学生掌握必要的软件开发原理、计算机与专业结合的切入点等必要的理论基础,即在教学内容灌输上不但要做到“知其然”而且要“知其所以然”;数字化设计制造技术教学重点在于培养学生的综合应用三维数字化设计能力,完成产品的三维模具设计、成型过程CAE分析、模具型腔模拟加工等,使学生对材料成型CAD/CAPP/CAE/CAM一体化有一个系统的训练,并结合在企业的一年生产实践,进一步强化和巩固课堂理论知识。
2 卓越计划背景下数字化设计制造教学体系构建
在卓越计划总体培养目标的指导下,结合本专业现有的软硬件教学条件,建立实用性、可操作性强的数字化设计与制造能力教学培养体系(如图1)。所构建的教学体系决不是简单地增加几门软件使用操作课程,也不是在原来的课程体系中再增加一系列独立的、自成体系的数字化设计技术类课程,而是必须明确在卓越计划背景下以三维数字化设计制造能力为培养目标,以CAD/CAPP/CAE/CAM一体化为理论教学主体,并与专业课程有一定的联系,创新实践环节上以模具数字化设计实训、课外创新活动为基础,同时辅以Pro/E、UG等三维应用软件资格培训、模具卓越工程师培训等。通过改革传统的教学体系和教学手段与方法,使得学生既拥有数字化设计制造技术的应用能力,又具有较强的创新意识和创新能力。
在理论教学中注重文理渗透,拓宽基础。夯实学生计算机应用能力,注重分析研究模具专业技术的新发展,并以数字化技术为主线指导教学内容,将有关的现代科学技术融于课程教学中,改革教学内容、教学方法和手段,给予学生基本的创新理论与方法,启迪学生的创新意识与思维,发掘学生的创新潜力。
3 卓越计划背景下数字化设计与制造技术课程体系配置
数字化设计与制造技术课程涉及成型专业领域的模具CAD设计方法、成型工艺计算机辅助自动决策(CAPP)、成型过程模拟、最新成型加工方法等。随着理论与信息化技术的快速发展和社会需求的不断变化,数字化设计与制造技术课程体系应当精选和改造传统课程,充实、反映当前科技成果的最新内容(如图2所示)。
模具工程基础课程主要为后续课程打下一个基础,如《CAPP概论》、《CAD/CAM技术》课程中会涉及到实用CAPP系统、模具CAD系统的开发,就需要学生掌握VB语言等计算机语言基础。
数字化设计系列课程培养学生现代模具设计理论与方法,应用数字化技术进行产品(实物模型)的三维CAD造型、三维模具型腔的设计、工艺分析、成型过程模拟等,使数字化设计技术贯穿设计全过程。
模具设计与制造相辅相承,先进的设计必须有先进的制造技术来实现,数字化制造技术是先进制造技术的核心。为此,在课程设置中,突出数字化制造技术,设置数字化制造系列课程,培养学生应用数字化制造技术与方法解决产品的制造问题。
专业素质拓展系列课程通过模具工程师理论基础、模具设计选材与失效分析、压铸工艺与模具设计等专业素质拓展课程的学习,进一步拓宽材料成型领域模具设计专业知识。
4 数字化设计与制造创新实践教学
创新实践教学是数字化设计与制造技术培养中极为重要的组成部分,只有通过实践才能更好地培养学生创新意识以及利用数字化技术进行创新设计的能力。创新实践教学主要包括数字化设计与制造系列课程实验、模具数字化设计制造实训、基于校企联合的综合型实践教学以及课外科技活动等。
4.1数字化设计与制造系列课程实验
数字化设计与制造系列课程实验以工程为背景,密切联系工程和围绕工程进行;针对传统的实验内容都被孤立地分散在各门专业课中、互不发生联系的状况,对实验内容进行筛选和整合,实现专业课程实验课的综合化。以逆向工程课程为例,本课程实验要求选取的实验对象与后续模具数字化设计制造实训选取的实验对象一致,以便实现CAD/CAPP/CAE/CAM一体化。
4.2模具数字化设计与制造实训
模具数字化设计与制造实训是以典型模具零件为工作任务进行模块化教学,主要流程为:用三维扫描仪(RE)对零件进行扫描获取零件的三维坐标信息,在此基础上完成对零件的三维CAD造型,并由零件的三维模型得到成型模具的三维型腔;根据模具结构对成型过程进行CAE模拟,模拟结果分析无问题后在计算机上使用软件进行模具型腔的模拟加工,生成相应的加工数控代码。利用数控机床所提供的通用标准接口将现代技术制造中心的多台数控机床通过计算机网络联接起来,组建成一个局域网;将该局域网与CAD/CAE/CAM试验中心的局域网连接起来,使设计信息、工艺信息、加工信息及后置处理数据能及时地传递到制造单元,学生在CAD/CAE/CAM试验中心进行数控编程和仿真的数据也可直接传送到机床上,这样就构成了网络化制造环境,减少了中间环节,增加了可靠性,并提高了工作效率,如表1所示。
4.3基于校企联合的综合型实践教学
为了从根本上解决工程人才培养中工程教育不足和校企脱节的严重现象,“卓越计划”建立了高校与企业优势互补、联合培养人才的新模式,将学生在校期间的学习分为校内学习(三年)和企业学习(一年)两个阶段。企业学习阶段主要安排学生到企业完成的教学环节有:认识实习、生产实习、毕业实习、毕业设计等。毕业设计要求结合企业实际项目进行。企业学习阶段重点强调学生数字化设计与制造能力的培养、训练和形成,以及工程创新意识的培养。
4.4课外科技活动
在模具卓越人才的培养过程中,理论学习是基础,思维是关键,实践是根本,三者必须紧密结合。在理论教学、实践教学、课外培训等环节中,不仅要注重创新理论和方法的培养,还应注重创新思维和创新能力的培养,开展丰富多彩的创新活动。通过开展学术讲座、课外科技活动等创新活动,可以极大地调动学生学习和实践的积极性。可选择的校内科技活动项目包括:大学生科技创新、模具创新设计大赛、AutoCAD创意设计大赛、数控技能大赛等。可选择的校外竞赛项目包括:挑战杯全国大学生科技作品设计大赛、中国大学生创意创业大赛、3D数字化创新设计大赛等。
5 教学体系实施的保障
5.1校企联手打造高素质的“双师型”师资队伍
师资队伍建设是实现培养目标和提高教学质量的关键因素。积极组织“卓越工程师培养计划”的专任教师到企业参加实践或参加项目研制开发,进而提高教师的工程实践能力。企业实习指导教师以生产一线的高级工程师为主;企业授课教师必须是在模具相关的企业工作三年以上,并具有一定的模具数字化设计与制造能力;企业毕业设计指导教师必须要求是具有较深的工程实践背景的企业高级工程师或中高层领导,且能全面、系统地掌握相应的工程实践环节。
5.2建立适应卓越人才培养需要的校内外实训基地
建立稳定的、满足教学需要的校内外实践教学基地,是培养学生数字化设计与制造能力的重要保证。南京工程学院购进了数控加工中心、线切割、电火花等一批先进设备,还引进了符合专业发展方向和相应行业背景的企业,在学校营造必要的工程教学环境,将工程专业要素融入到平常理论学习和实践教学当中。
中图分类号:TP873 文献标识码:A
随着世界飞机制造业的高速发展,客户对产品的需求也向多样化、多品种的方向发展,为满足客户要求,飞机制造企业必须具备快速研制和快速迭代的能力。传统的飞机制造模式已很难适应未来发展的需求,必须有一种新的制造技术来替代,这就是飞机数字化设计制造技术。
飞机数字化设计制造技术是以美国为首的西方发达国家在20世纪80年代后期采用的一项新技术。本技术将三维产品制造信息与三维设计信息共同定义到产品的三维数模型中,代替二维图样,直接作为制造依据,实现了产品设计、工装设计、零件加工、部件装配、零部件检测检验的高度集成、协同和融合,开创了飞机数字化设计制造的崭新模式,数字化设计制造技术已经成为了飞机的主要研制手段。
为适应数字化条件下产品快速高精度验收和数据有效传递的需求,我们必须对数字化检测技术进行专门的研究,近几年,我国在数字化检测技术研究方面有了较大发展,但与国际先进航空制造业的数字化检测技术水平相比,仍存在相当大的差距。我们只是热衷于购买一些先进的测量的设备,在局部的一些点上干出一定的成绩,而没有从全局角度来考虑如何发展数字化检测技术,没有考虑如何合理经济地配备并使用测量设备,没有考虑如何对测量数据进行有效的分析和利用,也就是缺乏数字化检测技术基础性工作的专题研究,我们只有从数字化检测技术的基础工作踏踏实实做起,循序渐进地发展,使数字化检测技术变成一种文化,变成一种习惯,最后才能发展到真正意义上的数字化检测。
一、在数字化检测方面应该做好哪些基础工作
(一)应把数字化检测的理念融入到产品设计、工装设计和工艺设计过程中。
设计模式往往可以决定制造体系的模式,要实现真正意义上的数字化检测,就必须把数字化检测的理念融入到产品的设计过程中。设计人员必须把设计基准、关键装配尺寸、辅助测量点、标注的注释、尺寸公差、容差分配、状态协调、测量点等关系到数字化产品检测的要素通过数字模型准确地表达出来。并做统一的规定和说明,形成一套专门的标准和手册,用于指导检验人员准确全面地识别检测要素,保证产品的正确验收。另外,工艺人员在进行工艺策划和工艺规程的编制时,要与设计人员进行充分地沟通,要把工艺文件中的一些制造信息如飞机分离面的确定等及时反馈给产品设计、工装设计人员,使产品设计和工装设计尽量与生产实际相符合等便于操作人员和检验人员能准确全面地识别出相关的设计信息,对一些在测量时很难确定基准的零件(如钣金件),工艺人员要及时与设计人员沟通,在设计时可在这部分产品上设计一些辅助测量基准。工艺人员在进行工艺规程编制时,要合理地设置检验工序,并选取合理的检测工具,把检测要素准确完整的表达出来,在考虑测量精度的同时,也要充分考虑生产效率和经济性因素。
(二)数字化检测技术应与生产实际与制造水平相适应。
数字化检测工作应与生产实际与制造水平相适应,对一些高精度复杂零组件,在制造精度可保证的前提下,我们尽量采用一些高精度的自动测量设备来进行检测,以满足其检测要求;对于一些制造水平无法满足设计精度要求的产品,如一些薄壁易变形的钣金件、复合材料零件,我们首先要做的是提高制造精度,而不是刻板地在其上面推行一些高精度测量技术;对一些数量少、结构简单、精度较低的零件,我们一般采用常规的测量手段即可;对于一些需求量特别大的简单零件如螺栓、铆钉类,建议在专用的检测设备上对多件零件同时进行测量;对于一些铸造和锻造毛坯件,在入厂验收时,也建议在这些件上选取一些特征点,采用简便的数字化测量设备进行检测,以快速判断是否可满足后续的加工要求,避免投产后造成不必要的损失。
(三)建立基于质量产品结构的集成质量管理系统。
应建立基于质量产品机构的集成质量管理系统,开发集成质量管理系统的共享平台,检验人员可在生产现场适时把采集飞机检测数据,并建立检测结果与质量产品结构的关联关系,纳入集成质量管理系统进行有效的管理,在此基础上形成飞机的质量档案,真正实现检验数据的高度共享和科学的管理。
(四)加强数字化检测技术的培训工作。
在传统的飞机设计和制造过程中,检验人员一般以二维图纸和工艺文件为检测依据,采用通用工具测量,这种工作方式在检验人员的头脑中已经根深蒂固,要他们在短时间内完全接受和适应以三维数模为依据并采用大量先进自动检测设备来进行检测的方式,难度很大,还需要一定的过度期。因此,我们必须对检验人员进行大量有关数字化检测理念与技术的培训工作,通过日积月累,让他们从根本上接受并适应数字化检测的这种工作模式,并具备一定的识别与操作能力,从中体会到这种改变所带来的乐趣。
二、结束语
我们只有从头做起,从数字化检测技术的基础工作做起,一步一个脚印,循序渐进进行发展,我国的数字化检测技术才能得到快速发展,才能适应数字化设计制造技术高速发展的需要。
(作者单位:沈阳飞机工业(集团)有限公司)
参考文献:
[1]苏春.数字化设计与制造.机械工业出版社,2009.
中图分类号:TK421 文献标识码:A 文章编号:1671-7597(2014)20-0004-01
中高速柴油机广泛应用于船舶动力推进和船舶电站、陆用电站等,具有结构复杂、尺寸大、零部件类型及数量多、配套行业面广的产品特点,产品生产具有批量小、配套方案多样化的特征,制造周期较长。如何在行业内广泛深入的应用数字技术,对于提高柴油机制造业的生产效率及产品质量具有重要的意义,也是未来中高速柴油机制造技术发展的方向。
1 国内中高速柴油机企业数字化制造技术现状
我国中高速柴油机企业数字化制造技术经过十几年的摸索,在柴油机零部件设计、工艺、工装、数控加工等方面取得了一定的效果,数字化应用水平逐步提高,大致如下。
1)基础环境:计算机应用基本普及,网络建设和计算机硬件配备与时代接轨,行业通用仿真分析软件、CAD/CAM/CAE/PDM等软件系统逐步普及,与软件开发公司合作开发了部分有企业特征的专用数字化系统,形成了初具模型的数字化工作方法和能力,为数字化技术推广应用提供了保障。
2)设计、工艺技术:普及了以二维CAD软件为基础的产品、工装设计,三维CAD/CAM设计份额持续增长;CAPP技术在工艺中得到了较普遍的应用;PDM开始在企业局部应用;MES数字化信息管理系统逐步构建。
3)企业管理:在人力资源、财务管理、生产计划、车间物流计划等方面均推广了各种信息数字化技术;实现了产品生产计划和物料定额计划数字化方案制定和管理;开展了EPR、OA等管理流程优化工作,管理效率明显提升,管理成本大幅降低,应用效果显著。
4)生产线:机械加工数控设备有较大增长,关键零件实现数控编程制造;检测设备仪器采用了三坐标、数显测量尺、电子窥镜、激光扫描等数字设备;仓储管理引入计算机管理系统。
2 我国中高速柴油机数字化制造面临的问题
国内中高速柴油机数字化制造技术应用与国外先进水平仍然差距显著,数字化制造在中高速柴油机制造业中的应用广度和深度函待提高。主要表现如下。
1)数字化制造技术缺少成熟模型。企业多注重柴油机产品设计技术,一般只在部分环节上辅以数字化技术手段,忽视数字化技术系统化应用。行业缺少可参考的完整成熟数字化方案,难以形成系统化数字制造技术体系。数字化制造技术应用产生的效益、效果只是比较传统作业手段有所长进,并未充分发挥数字化功效。
2)数字化技术“信息孤岛”问题十分严峻。单位与单位甚至单位内部不同部门,不同人员之间,数字化技术系统相互隔离、各自为政。各种相互有关联的数据资源无法有效的集成和共享、交流,大量不必要的重复建设经常发生。数据共享和交流平台建设缓慢,平台建设者和使用者缺乏深入沟通,纸介质技术资料继续是部门之间信息传递的唯一“合法”手序,数字化数据更新滞后难以实战。
3)企业内部数字化系统未摆脱传统串行模式,并行工程不易实施。企业设计、工艺、生产、检验数字化应用体系串行现象突出,缺乏能够引领团队协作的数字化顶层并行设计方案,使得制造数据衔接缺乏默契,生产准备周期长,信息交流存在各种障碍,由此造成实施柴油机制造并行工程困难。
4)数字化制造技术开发滞后。柴油机企业的数字化开发能力不强,数字技术标准建设滞后于数字技术的推广应用。数字化软件企业对柴油机行业又缺少符合时展要求的长周期系统化调研,数字化软件设计也常常只是简单模仿部分传统作业模式流程,数字化模式未能深入改变传统作业思路。
3 中高速规模柴油机企业数字化制造技术的发展趋势
柴油机的研制水平要与时展相得益彰,数字化技术必须在更广的范围和更深的层次上得到应用,通过数字技术增强柴油机企业的研发能力。我国中高速规模柴油机制造正处于与数字化制造技术相结合由引进技术向自行研发的重要时期,呈现出以下趋势。
1)建立基于单一数据源制造模式。实现CAD/CAPP/CAM/CAE等多种数字技术一体化,使产品制造向无纸化制造方向发展。产品设计、工艺工装设计、加工与装配数据实现共享和继承、重组,单一数据源为产品的优化设计、性能分析、生产制造、装配、质量检验及企业生产系统规划、调度、各级过程管理与控制提供一体化模型支持,可使生产全过程信息交流无障碍、从而使产品生产效率和质量得到更好的结果。
2)实现相互关联不同资源的整合。人力资源、知识库资源、制造资源、用户资源等各种相互关联资源将进一步得到整合,基于数字技术的虚拟体系使企业各级人员能够利用数字化工具协同工作,消除“信息孤岛”现象,进一步提升各种资源的利用效率。
3)建立数字化并行网络辅助制造体系。制造系统采用并行化网络制造环境组织业务流程,实现产品和工艺设计结果的早期验证,快速响应市场需求。
4)建立支持产品全生命周期的虚拟企业协同工作平台。实现数字化工厂和数字化车间,从产品设计,工艺方案、生产计划、零件制造、装配试验、仓储物流到用户服务的快速响应系统,建立基于实现共享和交流的集成工作平台标准体系。使产品从设计到交付全过程信息无缝链接传递及反馈。
4 数字化制造技术进一步发展的思路
面对国内中高速柴油机制造业的迫切需要,数字化制造技术还需要从以下几个方面着手推动进一步发展。
1)推动流程优化。研究和分析国内外先进制造、管理模式,总结和提炼适应我国柴油机设计和制造数字化模式。以自主研发为契机,推动中高速柴油机企业在设计、工艺、制造、管理等产品全生命周期数字化流程优化,落实并行工程全面实施。
2)重点研究数字化制造统一数据库及集成应用。着重研究CAD/CAPP/CAM/PDM/MES等各类单项数字化制造技术应用系统的集成,构建基于统一数据库体系的企业级集成平台,发挥集成应用效果。
3)开展柴油机企业之间、企业与院校、研究机构、软件公司等相互交流,共同为中高速柴油机行业摸索出一条具有行业特征的系统化数字制造技术模式。
4)加强人才队伍建设。制定数字化制造技术专业人员激励、培养、锻炼计划,对技术人员和管理人员规范化和高层次地数字化制造技术培训应广泛开展。
5 结束语
数字化制造技术是全局性、体系化的新技术,涉及产品研制的各个环节,中高速柴油机是关系我国国计民生,国防安全的重要产品,数字化制造技术的应用是国内中高速柴油机企业研制的必由之路,此项技术的深入发展和广泛应用必将使国内中高速柴油机研制水平跨上一个新的台阶。
参考文献
数字化工厂是以制造产品和提供服务的企业为核心,由核心企业以及一切相关联的成员构成,使所有运营信息数字化的动态“组织”。通过数字化工厂信息系统有效地组织控制人流、物流、资金流和信息流,实现组织内部所有成员之间的高度协作和资源共享,为客户提供满意的产品和服务。而数字化工厂工作流管理系统作为数字化工厂信息系统的基础,是协调数字化工厂成员内部、成员相互间的各项活动的具体执行者。数字化工厂是指以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造技术与计算机仿真技术相结合的产物,同时具有其鲜明的特征。它的出现给基础制造业注入了新的活力,主要作为沟通产品设计和产品制造之间的桥梁。
一、数字化工厂概述
数字化工厂(DF)以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。在设计部分,CAD和PDM系统的应用已相当普及;在生产部分,ERP等相关的信息系统也获得了相当的普及,但在解决“如何制造工艺设计”这一关键环节上,大部分国内企业还没有实现有效的计算机辅助治理机制,“数字化工厂”技术与系统作为新型的制造系统,紧承着虚拟样机(VP)和虚拟制造(VM)的数字化辅助工程,提供了一个制造工艺信息平台,能够对整个制造过程进行设计规划,模拟仿真和治理,并将制造信息及时地与相关部分、供应商共享,从而实现虚拟制造和并行工程,保障生产的顺利进行。“数字化工厂”规划系统通过同一的数据平台,通过具体的规划设计和验证预见所有的制造任务,在进步质量的同时减少设计时间,加速产品开发周期,消除浪费,减少为了完成某项任务所需的资源数目等,实现主机厂内部、生产线供给商、工装夹具供给商等的并行工程。数字化工厂(DF)是企业数字化辅助工程新的发展阶段,包括产品开发数字化、生产准备数字化、制造数字化、管理数字化、营销数字化。除了要对产品开发过程进行建模与仿真外,还要根据产品的变化对生产系统的重组和运行进行仿真,使生产系统在投入运行前就了解系统的使用性能,分析其可靠性、经济性、质量、工期等,为生产过程优化和网络制造提供支持。
二、数字化工厂的关键技术
通常研究的制造系统是非线性离散化系统,需要建立产品模型、资源模型制造设备、材料、能源、工夹具、生产人员和制造环境等、工艺模型工艺规则、制造路线等以及生产管理模型系统的限制和约束关系。数字化工厂是建立在模型基础上的优化仿真系统,所数字化建模技术是数字化工厂的基础。随着虚拟设计技术的发展,在计算机中进行产品零件的三维造型、装配分析和数控加模拟技术以及以上程分析技术不断发展和完善,这种技术进一步向制造过程领域发展。数字化建模的基础上,对制造系统进行运动学、动力学、加工能力等各方面进行动态仿真优化。随着三维造型技术发展,三维实体造型技术已得到普遍的应用。具有沉浸性的虚拟现实技术,使用户能身临其境地感受产品的设计过程和制造过程,使仿真的旁观者成为虚拟环境的组成部分。数字化工,软件模块之间以及和其他软件模块之间的信息交换和集成。虚拟环境的下具集、各种数据转换工具、设备控制程序的生成器、各种报表的输出工具等。
三、数字化工厂的解决方案
(一)产品研发的数字化和虚拟化
数字化工厂通过使用CAX等软件,建立产品的逻辑、几何、功能、性能和关联等模型,实现基于模型的产品定义与关联设计,在虚拟的数字世界中完成多学科优化、协同设计、优化分析、制造试验仿真及模拟产品的制造和运营过程(包括虚拟工厂、生产线布局、物流等)。同时,通过PLM与ERP/MES等集成,实现三维模型、数字化工艺指令等信息向生产现场的推送,并与质量、采购、物流等部门进行共享。各部门依据这些共享信息即可开展相应的零部件生产、原材料采购、产品验收和产品确认等工作。
(二)生产过程的精益化和标准化
数字化工厂是按照精益思想建设的,通过对生产过程进行优化整合,并制定相应的标准化操作规程,确保车间生产节奏更加紧凑和有序。它使用ERP统一管理和下达生产指令,使用MES和数据采集与监控系统实现对生产计划调度、物料追踪、数据采集、生产设备状态监控、工位操作、包装发货等生产运营全过程的管理,并将检测结果与PLM中设计模型进行快速对比,形成从虚拟产品设计到实际生产制造的闭环产品质量控制,实现从原料进厂到产品出厂的生产过程自动化、装备制造信息化和智能化、生产过程的高度透明化。
(三)车间生产的自动化和集成化
数字化工厂车间生产自动化是在统一通信、统一编程以及统一IT架构的基础上,通过高运行可靠性和可用性的数据链路(物联网及工业网等),把生产制造过程中众多独立的产品、工具与关联的服务进行集成,支持自动化控制、制造执行和企业资源管理等系统的完美整合。并将网络与通信、传感器与感知、自动检测、人机交互与专家系统等智能化技术加入车间制造单元与生产线中,实现系统自优化、自重构、自诊断,形成高度的柔性生产方式,达到信息技术和制造技术深度融合的目的,使得高度智能的快速生产成为可能。
四、结束语
绿色和人文是数字化工厂的重要特征,所以数字化工厂的建设不仅要求体现数字化、自动化和智能化元素,还要符合绿色人文的需求。它一方面用自动化设备来减轻人员的体力消耗和精神压力,以及用持续的职业发展规划来延长员工的工作寿命和工作质量。
在上级机关的领导和支持下,中国航空工业通过实施飞机制造业数字化工程,以打通数字化生产线为主线,以并行产品数字化定义为核心,打通了飞机/直升机数字化设计制造主流程,从根本上变革了飞机设计、试验、制造和管理的模式、流程、方式、方法和手段,形成了数字化生产方式,初步建立了飞机数字化研制基本体系,大幅度地缩短了飞机型号研制周期,降低了生产成本,提高了产品质量。
飞机数字化研制基本体系
体系是由若干个相互关联、密不可分的要素组成的一个整体。飞机数字化研制基本体系由数字化设计等九大要素组成,各要素在飞机研制过程中的位置、作用及关联关系见图2。
数字化设计、试验仿真、制造、管理构成了飞机数字化研制体系的主线,而基础数据库、飞机设计/制造标准规范和政策法规构成了飞机数字化研制体系的基础;中间的数字化支撑环境和软件系统将各类要素联系在一起,集成各类应用系统和网络,为飞机数字化研制提供支持协同设计制造的协同工作平台,实现飞机数字化研制的信息沟通、单源数据管理和并行过程控制。
通过构建飞机数字化研制基本体系,中航工业主机厂、所形成了“一个平台,七个中心”的数字化建设成果,全面支撑了数字化设计、制造主流程和仿真试验辅流程等全新的飞机数字化并行协同研制模式。见图3所示。
一个平台
较大规模的厂、所数字化协同平台。厂、所数字化协同平台是以产品设计、工艺设计、产品数据管理、物流管理系统为核心,是航空企业从事产品设计、工艺设计、工装设计与制造、生产管理等各类数字化研制业务的协同工作环境和信息集成、平台。是数字化设计管理的基础设施,它通过建立强壮的网络连接和提供完善的网络服务,整合企业内外的各种信息资源,保证设计、制造、管理信息流的通畅流动,实现产品设计制造的数据集成、功能集成和过程集成,形成支持跨厂所的产品设计制造协同工作环境,是飞机数字化研制体系的重要组成部分。
平台主要由三维设计软件、产品数据管理软件,工作站、服务器,连接厂所千兆网络等组成。可供全体飞机数字化设计制造人员同时按并行协同的方式,完成全机产品数字化定义和制造生产数据的有效组织和传递。见图4所示。
七个中心:
功能/性能仿真中心,是基于功能/性能数字样机,通过数字化仿真试验手段,在产品设计阶段早期就替代、减少和简化部分物理试验(实物、半实物试验),通过仿真迭代使产品的功能和性能逼近设计指标,逐步走向成熟。
数字样机装配、仿真中心,用以部分取代实物样机设计协调。确保装配设计数字样机评审结果的真实有效。通过虚拟拆装、人机工效等先进的三维仿真手段对装配过程进行预演,检验产品的可装配性、可维护性和工艺性。使得在型号研制中采用全新的三维数字化手段和逼真的立体图像进行设计装配和协调,替代了过去飞机研制采用的木质或金属实物样机。为详细设计、发出飞机生产图样打下基础,见图5所示。
工艺仿真中心,主要通过虚拟制造环境,集中开展主要专业制造过程(如装配、机加、钣金、复材、焊接等)的模拟仿真,对产品制造过程中的技术关键进行分析和预测,提前发现可能存在的工艺问题并优化工艺设计,使工艺方案更科学、合理。如图6所示。
产品数据管理中心和制造数据管理中心(型号数据中心),由产品数据管理系统和支撑的服务器硬件组成,并通过二次开发和系统集成,将设计数据、分析数据、工艺数据、工装数据以及各类基础数据库等按不同需求物理异地存放,逻辑统一管理,支撑并行协同研制过程,解决型号研制过程对产品数据共享和流程控制的需求,实现单一产品数据源。
物料配送中心,按照数字化的生产组织管理方式要求,对生产物料进行集中管理和配送供应,按照生产作业计划组织进行工装工具、毛料、零件和标准件的即时配送管理,实现主要生产过程的流程并行。不仅保证按计划进行生产,同时能够实现对物料的统一仓储规划、实现系统化作业管理和规范化库存管理生产管控中心,负责生产计划指定和设备有限能力的平衡,实现按照架次交付计划进行生产计划的优化排序,实现生产计划编制、下达、跟踪和反馈全过程的动态管理和控制。从而促使飞机制造企业由传统的按完成项目百分比考核进度、手工对账方式统计缺件等粗放的管理方式,向准确、具体、信息反馈及时的生产计划与管理模式转变。
在飞机数字化研制基本体系建设过程中,突破了九项重大关键技术:
1) 飞机数字化研制模式及并行协同流程关联技术;
2) 成熟度控制下的并行产品数字化定义技术;
3) 用于并行产品数字化定义的组织模式和管理技术;
4) 数字样机与虚拟现实融合技术;
5) 面向制造的全机产品数字化定义技术;
6) 跨厂所并行协同工作平台和产品数据单源管理技术;
7) 飞机总体方案多专业关联设计技术;
8) 统一模型关联和参数化模块化快速设计集成技术;
9) 基于模型定义的全三维设计制造技术(MBD技术)
结合型号研制应用,初步实现了方式、方法和手段的七大变革,显著缩短了新机研制周期、提高了生产效率和质量、降低了成本。
1)并行产品数字化定义取代了传统设计/制造串行;
2) 数字样机取代了实物样机设计协调;
3) 开展了部分飞机系统的数字试验仿真,简化或减少部分物理试验,加速产品设计迭代过程;
4) 数字量协调传递为主的制造技术体系取代标准样件-模线样板工作法,取消大量模拟量工装;
5) 打通了机加、钣金、焊接、直升机装配等部分数字化生产线,实现数字化制造取代模拟量制造;
中图分类号 文献标识码 A 文章编号 1674-6708(2016)161-0064-02
数字化技术正以前所未有的速度和深度影响着世界航空产业的发展,国内航空业也在积极响应这一趋势;试验机设计改装专业承担着我国特种试验机设计技术研究、试验机测试改装的设计/施工及机载专用试验系统研制等工作,它是我国航空产业试飞板块中重要一环,因此,数字化在航空领域的发展必将对其产生巨大影响。
试验机设计改装正在从初期的型号测试改装向特种试验机设计改装技术研究、试验机测试改装的设计/施工及机载专用试验系统研制3个方向发展;为了应对未来我国众多的试飞任务,试验机数字化改装技术显得尤为重要,它将为未来特种试验机设计研制和型号试飞任务提供高效、有力支撑。本文从技术角度提出了试验机数字化改装技术的关键要求,以及数字化改装技术建设的核心内容,以期为试验机数字化改装技术发展提供参考。
1 数字化改装技术要求
数字化改装技术的目标就是实现试验机改装数字化协同设计、制造,促进试验机研制、试飞进程,匹配国内外航空企业飞机研制的信息化、数字化新模式,提高试验机改装水平。综合国内外航空业的发展趋势以及试验机改装设计制造的自身发展需求等多方面因素,数字化改装技术应该具备以下几个方面的显著特点:
1)全三维设计。全三维设计是实现数字化协同设计制造的基础条件。全三维设计是以三维实体为最终设计结果和生产依据的设计模式,替代了原二维图样的全部功能。全三维设计技术可保证设计数据的唯一性及一致性,设计结果直观明了并可以有效提高设计、制造效率。
2)研制工作并行展开与传统产品开发过程并不相悖,它同样遵循产品开发的每一个必经阶段,而且是基于连续的信息转化实现的。研制工作并行开展就要求信息的转化伴随活动随时进行传递。
以型号新机试飞研制为例:第一,在项目的总体研制过程中,试验机设计、试验机改装设计、试验机制造等研制过程可以并行交叉进行;第二,在具体的设计阶段,试验机改装设计各系统和原机各系统的设计工作可以并行开展。设计过程中各系统之间的相互关联和相互影响不可避免,通过互相协调适应以及各系统间实时迭代设计,可使得设计工作最大限度的展开;第三,设计人员可以并行开展工作。基于相同的设计技术平台,同一系统的不同设计人员及不同系统的设计人员可以并行工作,使设计资源得到了有效的利用。试验机改装协同设计制造充分融入到试验机研制过程中,提高了试验机的研制效率。
3)跨地域协同设计制造。世界航空产业正在形成研制和市场的全球数字化协同模式,例如,我国部分主机厂就承担了欧洲空客及波音系列飞机相关部件甚至部分重要结构件的生产制造工作。这一案例充分说明了数字化协同技术已成为飞机研制活动中重要的技术手段之一,可以有力推动研制活动高效、精准开展。
外部的这种发展趋势也正在强有力的影响着我国的飞机研制产业,国内飞机研制体系正在突破传统的串行封闭式研发模式。例如,我国某型飞机研制工程项目中首先尝试采用异地协同设计、全国多地协同制造、国内外19家供应商的协同研制模式,实现了国内外不同地域的分包商和配套商的协同工作[ 1 ]。
2 数字化改装技术建设
综合分析国内外协同设计制造现状和发展趋势,结合试验机改装研制的特点及现阶段的具体情况,数字化改装技术建设应该分步进行。
第一步,进行数字化设计基础平台建设,加强数字化设计人才队伍培养,建立数字化改装技术规范。
通过第一步建设,可以实现数字化改装技术的初步目标:1)试飞机构内部实现大型试验机改装、特种试验机研制等大型项目的全三维数字化协同设计;2)具备试飞机构与主机厂所间试验机数模顺利传递的能力;3)培养出一支高素质的数字化设计队伍。
第二步,在国内航空领域条件成熟时实现行业内数字化协同改装设计制造。国内在跨地域数字化协同设计制造方面只是进行了试验性的尝试,目前还不具备行业内跨地域数字化协同设计制造的条件,但是我国航空业正在积极努力地向实现这个目标迈进。
在数字化设计基础平台建设及数字化改装技术规范方面建议如下:
1)数字化设计基础平台。在三维建模软件方面,CATIA作为世界航空领域三维设计的主流软件应该是最佳的选择。CATIA以设计对象的混合建模、变量/参数化混合建模以及几何/智能工程混合建模等先进的混合建模技术,支持从项目调研、构思、详细设计、分析、模拟、装配及维护在内的全部工业设计流程,是全球航空业界普遍使用的一个集成产品开发环境。CATIA在国内航空企业中已得到了广泛的应用。
在产品数据管理方面,ENOVIA VPM以其与CATIA在产品建模之间已紧密集成的优势成为首选数据管理软件系统,能够实现物料管理、任务流管理、事件管理、配置管理、人员组织和权限管理等,它能提供一个上下关联的设计环境,便于多专业同时开展设计工作,便于不同部门之间制定设计的优化方案,便于开展不同配置的并行设计[ 2 ]。
在协同平台方面,可以基于Windchill系统根据试验机设计和改装业务进行配置和二次开发,使之成为试验机协同研制平台。Windchill是PTC 公司的一个大型PLM软件,该软件提供了近10个功能模块,涵盖了企业级产品数据管理和协同工作平台应具备的所有功能。Windchill 还提供了功能强大的工作流引擎,能够方便地对航空企业的各种复杂工作流程进行自动化和规范化的管理和控制[3]。
对于改装数字化设计基础平台可以考虑以三维设计软件CATIA作为基本的设计工具软件,通过ENOVIA VPM系统实现对产品数据管理以及设计过程的管理,依靠基于Windchill系统进行二次开发的协同平台实现研制工作流程自动化和规范化的管理和控制。
数字化改装设计基础平台构架示意图如图1所示。
2)数字化改装技术规范。波音公司根据相关标准和规范制定了BDS-600系列规范,使参研人员在统一的规范下有序进行。我国航空企业正在建立统一的数字化设计制造规范,已经颁布和实施了关于数字化设计制造的初步标准和规范,可以看出我国航空业正在积极推进数字化设计制造规范化建设。因此,作为试验机研制的一个重要环节,数字化改装技术规范化势在必行。数字化改装技术规范应该依据我国航空业现有标准、规范的统一约定,结合试验机改装设计特点及相关要求进行制定,并随着行业标准的完善不断地修订,最后形成与全行业标准规范相统一的完善的数字化改装技术规范。
3 结论
数字化技术、信息化技术对飞机的研制及业务模式产生了深刻的影响,我国在航空领域积极推进数字化、信息化建设,试验机数字化改装技术将是试验机设计改装的发展目标之一,它将有力地推动试验机数字化研制进程。
参考文献
一、第三次工业革命的新技术解读
第三次工业革命的一个重要概念是“制造业数字化”。但“制造业数字化”不是一个全新的概念,在现今的大批量生产方式下就存在制造业数字化。一般来说,设计部门应用支持产品设计和工艺设计的各种图形库、数据库和CAD软件在电脑中产生数字化产品的图样、设计文件和工艺文件,完成产品开发过程的信息化,这就是产品设计的数字化。这一方式在现今的制造业中已经被广泛使用。而第三次工业革命角度下的“制造业数字化”与传统所说的“制造业数字化”在产品设计数字化这一块是相同的,它们的区别在于与产品设计的数字化结合的制造过程所用生产工具不同。为了显示区别,本文把传统模式下的“制造业数字化”称为“制造业自动化”,第三次工业革命下的“制造业数字化”称为“制造业数字化”。
(一)“制造业自动化”的生产工具。在现今的生产模式下,与产品设计的数字化结合的是精密数控装备。具体来说,是将数字化设计产生的数字化模型从电脑里导入数控机床中,机床可以根据数字模型把一个复杂的产品按照程序从毛坯加工到成品。这一过程称之为制造过程的数字化。这样的制造业数字化仍是传统模式的制造业生产方式。即需要先加工零部件再进行组装。生产成本的降低建立在标准化批量生产的基础上。 先进制造业跨国公司通过零部件的标准化、产品模块化以及在全球构建价值网络从而降低成本,获得竞争优势。
(二)“制造业数字化”的生产工具。在第三次工业革命的视角下,与产品设计数字化结合的是快速成型技术。它不需要模具,也不需要切削打磨等一系列过程。而是通过使用粉末状原料,逐层叠加塑形进行制造。这样就大大降低原料用量,大幅降低生产成本。而且这种添加剂型制作流程对规模要求不高,无需生产线。特别适合个性化定制、小批量制作。 这会大大降低中小型企业和个人创业者的进入门槛,生产组织结构可以变得更灵活,更能适应需求的变化。这就带来了一场新的产业革命,生产将从大规模生产线方式再次转化为“家庭作坊式”的生产,从集中生产转为分散生产,从标准化制造转向个性化制造。由此带来的结果是,市场竞争结构发生改变。
二、“制造业数字化”对江苏的影响
(一)江苏要素成本的比较优势可能被削弱。
长久以来,江苏的经济发展主要依靠参与国际分工,加入全球价值链,以人力资源与环境的低价提供获得比较优势来吸引外资。但第三次工业革命的快速成型技术使得小规模的分散式生产成为制造业发展方向。大规模生产的比较优势弱化,要素成本的比较优势也就弱化了。
(二)外资回流可能使江苏省经济发展丧失部分资本动力。
对外资的引进与利用是江苏省经济发展的一个重要动力。但随着第三次工业革命的到来,直接从事生产的劳动力会不断下降,劳动力成本占总成本的比例会越来越小,传统的以廉价劳动力取胜的制造业将发生根本性变化。与此同时,发达国家拥有新型制造装备技术和生产能力,重新获得了在技术密集型和资本密集型方面的比较优势。曾经为寻找低成本要素而从发达国家转出的制造业有可能重新回流,制造业重心向发达国家偏移,外资会流向发达国家,参与发达国家的“再工业化”。
(三)大型企业将面临更大的市场转型压力。
第三次工业革命解决了个性化定制的技术问题。这要求生产者要贴近消费市场,也使得工厂生产转向个体生产,即创意设计者能够从网络上获取产品设计的程序和模板,并借助快速成型设备,将创意瞬间转化为个性化产品,使得创新者瞬间转变为制造者,制造业企业的主要业务将是研发、设计、IT、物流等,主要的环节不再是传统的生产。生产者卖的既是服务,又是产品,分工生产转向融合生产,制造业与服务业之间关系变得越来越密切,产业边界渐趋模糊。大型企业一方面失去了规模优势,另一方面由于结构庞大,对市场反应的灵敏度也比不上小型新兴企业,在未来的竞争中会处于不利地位。
三、江苏产业升级对策
(一)加强研发、大力推进“制造业的数字化”。
新工业革命的核心是“数字化”制造,因此拥有新型制造装备技术和生产能力至关重要。3D打印机现在的应用范围还不广,并没有进入产业化阶段。这是因为3D打印机技术还没有完全成熟,只能在某些产业的某些领域内应用,传统的制造模式目前还是主流。但毫无疑问,3D打印机代表了未来制造业方向,江苏一定要把握这个先机,集中精力突破制造业“数字化”的关键技术,如3D打印机技术、新材料技术,促使制造业从传统的自动化走向数字化。
(二)加强信息平台建设。
个性化制造的要求生产者拥有对消费者的快速响应能力,实现生产与消费的无缝对接。因此,在制造业与服务业的边界变的模糊,两种产业开始融合的未来社会中,信息将扮演越来越重要的作用。江苏应该以现代信息技术为引领,建立供各类市场主体和获取各种信息的技术平台,实现信息交流的畅通,适应第三次工业革命对市场供给与需求对接的更高要求。
(三)积极开展人才储备。
第三次工业革命不仅要求先进制造技术及与其配套的研发人员能够站在技术创新的前沿,而且对生产现场的工人提出了由简单劳动向技能型劳动和知识型劳动提升的要求。江苏应该适应未来制造业对人才的新要求,加快开展有利于前沿技术突破的科研体制改革、有利于知识型员工培养的教育体制改革。积极打造人才高地,引进高层次人才,培育适应第三次工业革命需要的人力资本优势。
中图分类号:P231.5 文献标识码:A 文章编号:1009-914X(2014)40-0359-02
1 数字制造的概念
1.1 数字制造的内涵与定义
数字制造被认为是一种可以减少生产时间、成本,而且可以照顾用户的个性化需求、提高产品质量、加快对市场的反应速度的技术。大的汽车和飞机生产商在探索利用先进的三维虚拟软件、虚拟现实技术以及产品生命周期管理系统(PLM)的数字制造,它不仅帮助制造过程的实施,也有利于在产品开发阶段了解产品是否能在可承受的成本内制造。数字制造是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的,其内涵是:(1)以CAD/CAM/CAE为主体的技术;(2)以MRP Ⅱ(Manufacturing Resources Planning,制造资源计划)、MIS(Management Information System,管理信息系统)、PDM(Product Data Management,产品数据管理)为主体的制造信息支持系统;(3)数字控制制造技术。数字制造技术是数字化技术和制造技术融合形成的,且以制造工程科学为理论基础的制造技术的重大革新,是先进制造技术的核心。数字制造的定义,指的是在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及原型制造,进而快速生产出达到用户要求性能的产品的整个制造过程。也就是说,数字制造实际上就是在对制造过程进行数字化的描述而建立起的数字空间中完成产品的制造过程。
1.2 几种数字制造观
1.2.1 以控制为中心的数字制造观
数字制造的概念,首先来源于数字控制技术(NC或CNC)与数控机床,这是数字制造的重要的基础。随着数控技术的发展,先后出现了对多台机床用一台(或几台)计算机数控装置进行集中控制的直接数字控制(DNC) ,可以加工一组或几组结构形状和工艺特征相似的零件的柔性制造单元(FMC),以及将若干柔性制造单元或工作站连接起来实现更大规模的加工自动化就构成了柔性制造系统。以数字量实现加工过程的物料流、加工流和控制流的表征、存储与控制,这就形成了以控制为中心的数字制造观。
1.2.2 基于产品设计的数字制造观
正如数控技术与数控机床一样,CAD的产生和发展,为制造业产品的设计过程数字化和自动化打下了基础。将CAD的产品设计信息转换为产品的制造、工艺规则等信息,使加工机械按照预定的工序和工步的组合和排序,选择刀具、夹具、量具,确定切削用量,并计算每个工序的机动时间和辅助时间,这就是计算机辅助工艺规划(CAPP)。指出数字制造近年来还融入了CAPE(Computer Aided Production Engineering),这是一种新的计算机辅助工程环境,制造过程的环境信息可以被工程师应用到今后的制造系统及其子系统的设计和实施。
1.2.3 基于管理的数字制造观
从数字制造的概念出发,可以清楚地看到,数字制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。在数字制造环境下,用户和企业在广域内形成了一个由数字织成的网,个人、企业、车间、设备、经销商和市场成为网上的一个个结点,由产品在设计、制造、销售过程中所赋予的数字信息成为主宰制造业的最活跃的驱动因素。
另一方面,数字制造包含了以控制为中心的数字制造、以设计为中心的数字制造和以管理为中心的数字制造。当前,网络制造是数字制造的全球化实现,虚拟制造是数字工厂和数字产品的一种具体体现,而电子商务制造是数字制造的一种动态联盟。
2 数字制造的本质和核心问题
数字制造的本质是制造信息的数字化,而数字化的核心则是离散化。其本质是如何将制造的连续物理现象、模糊的不确定现象、制造过程的物理量和伴随制造过程而出现和产生的几何量、企业环境、个人的知识、经验和能力离散化,进而实现数字化,即是将它们表示为计算机可以识别的模式。
离散化和数字化的过程,将涉及一系列理论基础问题,计算制造学是最核心的理论基础。这里,计算制造学就是建立各种制造计算模型,对产品进行数字化表征与传递、建模与仿真,这是计算制造学的关键技术,也是数字制造的基础和核心科学问题。
3 数字制造的建模方法
数字制造系统的建模对象涉及到广义的制造过程,包括制造环境、制造行为和制造信息。数字制造系统的目标,就是要在数字化的环境中完成产品的设计、仿真和加工。即接到定单后,首先进行概念设计和总体设计,然后是计算机模拟或快速原型过程,直至工艺规划过程、CAM(computer Aided Manufacturing,计算机辅助制造)和CAQ(Computer Aided Quality,计算机辅助质量管理)过程,最终形成产品。
下面重点介绍这一过程中的基于物理的建模与仿真这一环节。
建模与仿真可广泛用于产品开发过程,包括方案论证、设计、分析等各个阶段[9]。在这个过程中,常常需要把现有的对象融入虚拟环境中。例如,机器人是一种综合了机、电、液的复杂动态系统,通过计算机仿真可以模拟系统的整体状态、性能和行为。揭示机构的合理运动方案及有效的控制算法,从而避免或减少机器人设计划造以及运行过程中的问题。目前新产品的设计和制造规划越来越多地借助于计算机仿真来实现。
近年来,数字样机(Digital Mock-up)技术成为产品开发中的一个研究热点。数字样机就是把CAD基于物理的建模、仿真和产品全生命周期管理系统综合起来,形成一个虚拟产品开发环境,使产品开发人员能够在这种环境下策划产品、设计产品、预测产品的运行性能特征以及真实工况下可能具有的响应,从而减少设计迭代的次数,减少甚至取消制作物理原型样机,以改善设计,有效地缩短产品的开发周期。支持产品开发的建模与仿真是一个十分复杂的系统,需要许多单项技术的支持。但同时也存在许多共性问题如三维建模、约束运动学相动力学分析、计算算法相求解等。在建模仿真系统研究与开发中,可以采用基于商品化软件平台二次开发的策略,把研究集中在可制造性分析和产品物理性能建模等方面。在产品的设计过程中,数字样机可根据需要随时改变,以满足测试与评估的需要。数字样机为面向技术要求、制造性能、可维护性的设计提供了集成可视化、虚拟环境和虚拟原型技术的计算平台。
4 数字制造应用实例
4.1 需求分析
平面二次包络环面蜗杆副(简称平面二包蜗杆副)有着优良的传动性能,但这些优良性能必须以较高的制造精度、安装精度来保证。长期以来,平面二包蜗杆副都采用对偶范成法加工,这种加工方法由于工艺复杂,难以解决精度差的痼疾,且制造成本高、使用寿命短,这限制了平面二包蜗杆副的推广普及。在数字化时代,必须应用全新的数字制造模式来解决平面二包蜗杆副制造的瓶颈。在此模式下,只有在保证最优设计指标的基础上,采用先进的制造技术才有可能完成最优的实体型面加工。
4.2 数字制造方案
制造信息是贯穿制造全过程的精髓,制造信息的产生、处理、传递和应用是决定产品制造敏捷性、精确性、经济性的关键因素。在信息驱动型制造业中,制造信息的数字化是数字制造的前提条件。平面二包蜗杆副的制造信息数字化应包括两方面内容:①蜗杆副实体的三维数字化建模;②数字化制造工艺规划。数控加工是数字制造的最终目标。在传统生产模式下,平面二包蜗杆副必须使用专用机床加工,这是制造成本高的根本原因。在数字制造模式下,只要获得蜗杆副型面的精确数学模型,就可使用通用数控机床对不同模数、不同中心距的蜗杆副进行统一加工。具体的实施方案如下。
4.2.1 平面二包蜗杆副的数字化造型
平面二包蜗杆副蜗轮齿面形状复杂,用虚拟加工的造型方法虽然可以获得蜗轮齿面,但往往精度不高。NURBS方法具有表示与设计自由型曲线曲面的强大功能,是形状数学描述的主流方法之一。由于蜗杆副啮合型面理论接触线方程已获得严格数学推导,因而啮合型面的造型可以认为是已知数学模型的自由曲面造型。在进行蜗轮真实齿面的造型时,可基于经典的齿面啮合理论,针对真实齿面啮合分析的特点,由NURBS齿面上的拓扑离散数据点构造齿面曲线,再由齿面曲线构造插值曲面,实现参数化NURBS自由曲线曲面理论与经典啮合理论的有机结合,在此基础上建立面向几何又有严格数学支持的蜗轮齿面数学模型。
在完成啮合型面造型之后,整个型面可以用统一的参数方程加以描述。利用这个参数方程可以计算齿面上任意点处的型值,并以此构成啮合型面关系数据库,这就为数控加工提供了数据基础。
4.2.2 平面二包蜗杆副数字化工艺规划
平面二包蜗杆副在数控加工环境下的工艺过程包括毛坯的选择、各表面最终加工方法的确定、制订工艺路线、工序设计等步骤。针对平面二包蜗杆副这种目标明确的产品,使用基于成组技术(GT)的派生式工艺生成系统。
接下来是对平面二包蜗杆副的数控加工,采用数控车床、磨床加工蜗杆,蜗轮齿面直接采用多坐标联动数控机床直接控制球头铣刀加工出近似蜗轮齿面。在平面二包蜗杆副的误差检测阶段可采用全数字检测:用三坐标测量仪扫描蜗杆副实际齿面,将测量数据输入计算机;然后,基于测量数据进行蜗杆副实体的计算机重构;最后,将重构型面与计算机仿真理论型面进行比较,可获得实际加工误差。
5 结语
制造信息的数字化是数字制造的本质和前提。本文以在传统模式下设计、加工复杂,难以适应市场快速多变要求的平面二包蜗杆副为例,将平面二包蜗杆副的制造信息数字化――包括建立其实体啮合型面关系数据库和基于成组技术(GT)派生数字化工艺规划。采用数字制造技术可以提高对市场反应的速度,满足个性化的需求。
计算机技术已全面渗透到机械领域,学生熟练掌握和应用数字化设计制造技术已成为其必备的基本技能,企业在招聘中也将这项能力作为重要考核指标之一。为适应这种快速发展的新形势,满足社会的迫切需求,研究和探索如何培养掌握和应用数字化设计制造技术的优秀毕业生具有重要意义。通过广泛调研和细致分析,结合我校机械专业实际情况,提出了以典型数字化设计、分析、制造技术工程软件应用为主线,以实践教学基地和工程训练中心为载体,以培养学生创新能力、实践能力为目标,构建了贯穿于机械专业培养过程始终的数字化设计制造技术培养体系。
一、教学体系和教学内容的改革
在保持专业原有优势和特色的基础上,着重对数字化设计、数字化制造的教学内容、实习和实训等进行改革与创新,形成了一套完整的提高学生数字化设计制造技术能力的教学体系。
(一)工程制图类教学与实践
工程制图类是学生认识机械、了解机械的重要专业基础课,开设了机械制图、计算机绘图、三维设计等制图类课程,在教学中注重各门课程之间的融会贯通。计算机绘图将制图基本知识、视图表达方法、零部件绘制、装配关系等用计算机实现,提高了效率和设计质量,加深了对机械制图的理解和掌握。在三维设计中,通过建立三维实体模型、动态仿真,使学生容易理解,更容易激发其空间想象力和创新热情。
(二)工程力学类教学与实践
开设了机械系统动力学分析(如ADAMS)和有限元分析(如ANSYS)等分析课,增强工程力学类课程的直观性。如将刚体的静力学、动力学分析,变成动态的曲线或动画等输出形式,将构件的应力、应变分析等,变成动态的颜色改变、形状改变以及数据改变,形象直观,印象深刻。
(三)机械基础类教学与实践
机械基础类包括完整的机器设计过程―运动设计和工作能力设计。利用ADAMS等可以根据机构的运动尺寸建模,对机构进行运动学、动力学分析,为工作能力设计提供技术支持。利用ANSYS等进行应力、应变以及应力集中问题的仿真分析,加深学生对传动方案、结构尺寸和选用原则的理解。
(四)机制基础类教学与实践
机制基础类教学的一个主要任务是培养学生的工艺设计和夹具设计的能力。针对工程实际中的一个具有典型特征的机械产品零件,根据生产纲领要求以及现实生产条件,进行工艺设计和夹具设计。利用数字化设计表达夹具零件和装配体,并验证其设计结果。
(五)数控技术类教学与实践
针对工程实际中的典型加工对象,利用三维数字化设计首先进行建模、编程,生成加工轨迹,仿真加工及检验,后置处理,最终生成数控G代码。通过串行通讯或网络,实现上位机与数控机床之间通讯,将编制好的数控G代码下载到数控设备中,从而进行实际加工。从对象建模、刀具选择、工艺规划、代码生成、实际加工、加工效率检验等多方面培养学生的设计制造综合能力。
(六)现代设计方法类教学与实践
反求工程是现代设计方法之一。其利用三维激光扫描仪无接触地扫描被测对象表面轮廓,获得几何数据,构建曲面数字化模型,经过后置处理,生成RP需要的模型截面轮廓数据或NC代码,最终复制出原型或加工出实物。反求工程实现了从产品原型、产品设计到产品制造的数字化,达到了对学生进行综合应用训练的目的。
二、工程训练体系和内容的改革
工程训练的基本指导思想是四年不断线,分阶段、分内容、分层次系统地进行训练和培养。
(一)机械基础认知实习
对于刚入校的学生,进行包括传统设计、数字化设计、常规制造技术以及数控制造技术等在内的机械设计和制造方法的参观演示,使学生对主要的设计方法、制造技术和实现方式有一定的感性认识,激发学生对专业知识的学习热情和对专业的热爱。
(二)机械基础技能训练
进行全面的机械设计技术、制造技术等基础知识的学习与训练。绝大部分时间是用于车削、铣削、磨削、钳工、焊接、铸造、锻压、冲压、剪切等传统制造技术训练。同时,也进行简单典型零件二维、三维设计、读图能力训练以及基本的数控加工技术训练。
(三)数控技术训练
学生使用数字化设计制造手段进行典型零件的设计和数控编程,并在数控机床上完成零件的加工,突出了数字化设计与制造二者的有机融合。
(四)特种加工训练
训练学生掌握和使用多种与特种加工有关的设计、加工软件,掌握特种加工方法。加入这些训练内容,可使训练内容更加全面、生动、丰富。
三、项目驱动式第二课堂创新与实践能力培养
项目实践过程与听课不同,是一个主动的学习经历。项目课题主要来源于三个方面:一是学生自主命题,就是学生将在生活实际中遇到的困难、问题,进行提炼、分析、总结,提出有创造性价值的课题,这有助于培养学生的创造性思维和发现问题、分析问题及解决问题的能力。二是有主题的实践活动,例如根据各种学科竞赛的主题要求,组织学生开展创新设计实践,选拔优秀的创新设计作品参加竞赛,这有助于提高学生的创新能力。三是教师提供项目课题,教师可以根据自己的科研课题为学生提供创新实践项目。在项目的实施过程中,从设计构思、具体设计、工艺规划、加工制造、装配调试以及产品商业化等全过程都需要学生付诸实践。数字化设计与制造手段为项目课题的顺利实施起到重要作用。
四、结语
以数字化设计制造能力培养为切入点进行教学改革,促进了人才培养模式的不断完善。通过实践,该方法行之有效。不但使学生在空间思维能力、图形表达能力、常规工程设计制造能力得到培养和提高,而且其创新设计能力、先进制造能力以及工程实践能力也得到培养和训练,适应了知识创新和技术创新的需求。
参考文献:
[1] 雷辉. 机械类专业实验创新模式的构建与实践―链式工程训练实验教学法研究[J]. 中国大学教育, 2010, (6).
[2] 张树仁. 构建数字化设计制造技术教学平台的探索与实践[J]. 长春理工大学学报(高教版), 2010, (4).