欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

初中物理模型法大全11篇

时间:2023-06-26 16:14:20

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇初中物理模型法范文,希望它们能为您的写作提供参考和启发。

初中物理模型法

篇(1)

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)13-047-01

初中物理学科已经显示出它的抽象性,学生接受起来未免有些吃力,教师可以化抽象为直观,发动学生,制作模型,利用模型的形象直观的特点,破解物理难题,开启智慧之门。一方面有利于培养并提高学生的动手动脑能力,一方面锻炼学生的思维能力。

模型在我们日常生活、工程技术和科学研究中也是很常见的,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。

既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。

(1)物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。

(2)物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

(3)物理过程模型――忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。

篇(2)

    模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。

    既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。【1】下面我们逐个加以说明。

    (一)物理对象模型——直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。

    (二)物理条件模型——忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

    (三)物理过程模型——忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。

    (四)理想化实验——在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法【2】。初中物理中就有一个非常着名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。

    (五)数学模型——由数字、字母或其它数学符号组成的、描述现实对象数量规律的数学公式、图形或算法。【3】初中物理中的数学模型主要有磁感线和电场线。磁感线(电场线)是形象的描述磁感应强度(电场强度)空间分布的几何线,是一种数学符号。而磁场和电场本身的性质对这些几何线做了一些规定,例如空间各点的电场强度是唯一的规定了电场线不相交。这样就使它们成为形象、简练而准确的描述磁场和电场的数学符号。

    物理模型在初中物理教育与教学中起到举足轻重的作用,因此,在教学中我们就要重视对物理模型概念和具体模型(例如上文分析的模型)的讲述,重视对建立物理模型方法的讲授,重视对学生建立和应用物理模型意识的增强,重视对学生建立和应用物理模型能力的培养,让学生体验到成功建立和应用物理模型解决实际问题的快乐。

    参考文献

篇(3)

模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。

既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。

(一)物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。

(二)物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

(三)物理过程模型――忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。

(四)理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。

(五)数学模型――由数字、字母或其它数学符号组成的、描述现实对象数量规律的数学公式、图形或算法。初中物理中的数学模型主要有磁感线和电场线。磁感线(电场线)是形象的描述磁感应强度(电场强度)空间分布的几何线,是一种数学符号。而磁场和电场本身的性质对这些几何线做了一些规定,例如空间各点的电场强度是唯一的规定了电场线不相交。这样就使它们成为形象、简练而准确的描述磁场和电场的数学符号。

物理模型在初中物理教育与教学中起到举足轻重的作用,因此,在教学中我们就要重视对物理模型概念和具体模型(例如上文分析的模型)的讲述,重视对建立物理模型方法的讲授,重视对学生建立和应用物理模型意识的增强,重视对学生建立和应用物理模型能力的培养,让学生体验到成功建立和应用物理模型解决实际问题的快乐。

参考文献

篇(4)

(1)物理对象模型 直接将具体研究对象的某些次要因素忽略掉而建立的物理模型

这种模型应用最广泛,在初中物理教材中有许多很好的例子。例如,质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题研究的影响小到可以忽略。这样以来,很多类型的运动描述就得到化简。比如,所有做直线运动的物体都可以看成质点。因为做直线运动的物体的每一部分每时每刻都在做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然,这个点的质量就等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象和理解。很多具体例子都可以这么做,如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球等。

(2)物理条件模型 忽略研究对象所处条件的某些次要因素而形成的物理模型

在初中物理中,有光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析,如简单机械里的杠杆,在初中阶段把问题往往归结到力矩的平衡上来,即动力×动力臂=阻力×阻力臂。

动力和阻力不仅包括杆以外的物体对杠杆的作用力,还包括杆本身的重力;而杆重力的力臂在杆上的每一点都不同,这样,除了杆的形状是几何规则的少数例子以外,绝大部分杠杆问题在初中阶段就没法解决,而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者与杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

(3)物理过程模型 忽略物理过程中的某些次要因素建立的物理模型

在初中物理中,有匀速直线运动、稳恒电流等,这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。

(4)理想化实验 在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验

理想化方法是物理科学研究和学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。

篇(5)

进入高中的学习生活之后,学生普遍认为高一物理难学,原因就是学生能力与高中物理教学要求的差距大。高一物理是高中物理学习的基础,因此高中物理教师必须认真研究新课程标准、新教材和学生情况,掌握初、高中物理教学的梯度,把握住初、高中物理教学的衔接,才能提高高中物理教学质量,才能让学生完成由初中到高中的过渡,进入高中的物理学习。

一、高中与初中物理教学的梯度

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多的涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生解题常常感到无所适从;解题方法有基本公式法、平均速度法、推论法、逆向思维法、比例法等。一些物理思想的培养也渗透其中。开始用图像表达物理规律,描述物理过程;矢量进入物理规律的表达式。

二、如何搞好初、高中物理教学的衔接

1.重视教材与教法研究。高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,从生活中事例出发,保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.坚持循序渐进原则。高中物理课程标准指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。

高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,多举实例,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3.透析物理概念和规律。使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。

首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

4.物理模型的建立。高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。

建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来。

为了提高学生的阅读兴趣与效果,教师可以根据教材重点设计思考题,使学生有目的地带着问题去读书,设计些对重点的、关键性的内容能激起思维矛盾的思考题,引起学生的思维兴趣和思维活动,同时还可以充分利用电脑动画再现物理情景。

总之,物理教师应该熟练驾驭教材,在教给学生知识的同时,注意培养学生的各种能力,让学生学会独立思考,建立正确的物理模型,养成良好的学习习惯,适应高中物理教学的要求,进入高中物理的学习。

参考文献

[1]卢丽杨.谈高中物理学习方式的转变[J].龙岩师专学报

[2]李兴英.高一新生心理适应能力调查分析[J].中国校医

篇(6)

〔中图分类号〕 G633.7

〔文献标识码〕 A

〔文章编号〕 1004―0463(2014)

24―0058―01

物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲授是必不可少的。建立物理模型就要忽略次要因素以简化客观对象。合理简化客观对象的过程就是建立物理模型的过程,根据简化过程和角度的不同,可以将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面,笔者就对这五种模型作详细阐述。

一、 物理对象模型

这种模型是直接将具体研究对象的某些次要因素忽略掉而建立的,它的应用最为广泛。例如,质点就是忽略运动物体的大小和形状,而把它看成一个有质量的几何点,其条件是在所研究的问题中,实际物体的大小和形状对本问题研究的影响小到可以忽略不计。这样以来,很多类型的运动描述就得到化简。比如所有做直线运动物体都可以看成质点。因为做直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,只需要找这个物体上的一个点进行概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。

二、 物理条件模型

这种模型是忽略研究对象所处条件的某些次要因素而形成的,以轻质杆为例加以分析。比如杠杆,在初中阶段,问题往往归结到力矩的平衡上来,即动力×动力臂=阻力×阻力臂。动力和阻力都包括杠杆以外的物体对杠杆的作用力,还包括杠杆本身的重力。而杠杆重力的力臂在杠杆上的每一点都不同,这样除了杠杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆,当外界物体对杠杆的力矩远远大于杠杆自身重力的力矩或者与杠杆自身重力的力矩相互抵消时,就可以把杠杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

三、 物理过程模型

这种模型是忽略物理过程中的某些次要因素建立的。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以忽略不计。这样不用考虑过程中物理量的复杂变化情况,而只考虑恒定过程,分析问题就容易多了。

四、 理想化实验

在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在列举其中的一个例子。同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验应用的广泛和其重要性。

篇(7)

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。

二 搞好初、高中物理教学的衔接

1.研究重视教材与教法

高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.循序渐进

高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3.透析物理概念和规律

使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

4.物理模型的建立

高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

5.学生自主学习习惯培养。

篇(8)

在高一新课程中,物理难教难学一直是困扰着师生的一个问题。其重要原因,就在于初中科学与高中物理的教学衔接上出现了“架空”现象。笔者采用师生访谈的形式,尝试剖析初中科学与高中物理教学衔接中出现的思维方法问题。本文从思维方法角度,透视初中科学与高中物理教学衔接上出现问题的原因,探讨针对性的解决策略,以期提高初中科学和高中物理教学的有效性。

一、初中科学与高中物理思维方法在衔接中存在的断层

先看初中科学老师的访谈反馈。初中科学中的物理现象和物理过程,大多是“看得见,摸得着”,而且从教学内容看,与日常生活现象有着密切的联系。学生在学习过程中的思维活动,大多属于生动的自然现象和直观实验为依据的具体的形象思维,较少要求应用科学概念和原理进行逻辑思维等抽象思维方式。练习题大多要求学生解说现象,计算题一般直接用公式就能得出结果。从教学要求看,初中要求学生大面积及格,教学难度基本控制在课标范围内,对问题的解决停留在模仿、套用公式上。再看高中物理老师的访谈反馈。高中物理学习的内容在深度和广度上比初中有了很大的增加,研究的物理现象比较复杂。分析物理问题时不仅要从实际出发,有时还要从建立物理模型出发,要从多方面、多层次来探究问题。在物理学习过程中抽象思维多于形象思维,动态思维多于静态思维,需要学生掌握归纳,类比推理和演绎推理方法,特别要具有科学想象能力。要求学生有一定的自学能力、分析综合能力及知识迁移能力等,对应用数学的能力要求比较高。再看高一学生的一种常见状况:初中科学学得不错,兴趣也浓,中考成绩也不错;高中却遇到比较大的困难,上课能听懂,作业却不会做,都不知道怎么学了。根据上述现状,笔者从思维方法角度,对初中科学与高中物理的衔接断层问题做如下分析:问题一:初高中教师的教学思维存在着脱节现象。初中科学学业考试命题注重密切联系生活实际,考查学生在实际情景中提取信息、分析和处理信息的能力,重视考查学生的科学探究过程和方法,培养学生从整体上认识事物、从科学本质上分析现象和把握规律的能力。这种强调能力立意,符合新课程精神。但是在实际教学中,特别是在九年级时,应试现象太害人。教师为考试而教,学生为考试而学的现象十分严重,教师包揽一切,学生一味等着喂食,功利性太强。以致部分学生喜欢做题目,不喜欢动手做实验,关注题目的结果,不注重思维的过程。在课堂上教师习惯于学生能正确回答提出的问题,却很少关心有多少学生是否知其所以然,忽视问题解决的思维过程。问题二:初高中课程对学生思维能力的要求存在着脱节现象。初中教材中比较直观的、对思维能力要求较低的内容,如测量、力、运动、用电常识,一般都能较好地掌握,达到教材要求;而教材对学生思维能力要求较高的内容,如八年级教材中压强、浮力和九年级教材中电功率,学生学习起来比较困难,出错最多。这说明初中生的思维能力需要一个发展过程。课标的实施,初中科学降低了理论思维水平,强调从演示实验与生活常识出发学习科学,将这种思维的培养要求向后推移到高一。因此高一学生的智力表现、思维水平、成绩变化大起大落的情况还是较为常见,且在物理科、抽象要求较高的学科出现了大面积的不及格现象,到高二以后则又相对比较稳定。从这一变化情况来看,高一是思维质变的关键期,与此相适应的高中教材的思维要求也发生了很大变化,这是一部分同学进入高一不适应的原因。另外,初中实行素质教育,而高中是以高考为指挥棒的应试教育,这更加剧了这种不适应性。

二、提高初中科学课堂效益,实现思维方法衔接的几种策略

1.加强实验教学,培养学生形象思维能力。形象思维除了具有一般思维的共性外,与抽象思维比较,它的基本特点是形象性。在中学物理教学中,历来重视概念、规律的教学,重视抽象思维能力的培养。但是,如果忽视观察、演示实验等直观形象的教学,忽视形象思维能力的培养,抽象思维能力也会因为缺少形象的支持而难以发展。初中学生正处于由形象思维向抽象思维的过渡期,高中学生正处于抽象思维形成的关键期。由于中学生的抽象思维还是比较初级的、简单的,他们掌握抽象的物理概念和定律,仍然直接或间接与具体的形象相联系。在实验中不仅有形象的感受,还有形象的识别和描述。实验过程是形象思维活动的过程。如在教学过程中,常常会发现所探究的问题无法呈现出实验现象,有时即便有现象也是肉眼看不见的。这就要求我们想方设法使实验的现象“显现”出来。通过实验的设计和实验过程培养学生形象思维能力。2.渗透模型方法,逐步培养学生的抽象思维能力。在科学研究中,人们用过一定的科学方法,建立一个适当的模型反映和替代客观对象,并通过这个模型来揭示客观对象的形态、特征和本质,这种方法就是模型方法。高中物理教材中,要建立大量的物理模型,例如:这就要求在初中教学中,使学生明白,建立合理的模型和理想化过程对于学习和研究物理问题的重要性,以提高他们学习这种方法的自觉性。在传授知识的同时,向学生渗透处理较复杂的问题时采用的具体分析、合理简化、科学抽象的方法,有利于抽象思维能力的培养。在课堂上还可向学生渗透科学发展的历史,可以说是一个模型建立、完善的历史。模型的不断提出、修正、更新推动着科学的发展,使人们对物质世界的认识不断深化,不断逼近事物的本质。初中阶段这种模型思维方法的渗透,避免了学生进入高一接触到理想模型时的陌生感。为高中阶段学习建立“理想模型”作了铺垫,在建模的过程中又培养了学生的抽象思维能力。3.加强解题指导,培养学生动态思维能力。根据思维对象不断运动变化的特点,适时改变思维的程序和方向,并调控思维的过程,从而实现思维的目标,这样的思维方式,叫做动态思维。与动态思维相反,客观事物所具有的相对静止和稳定状态在思维活动中的反映,就是静态思维。物理学研究的物质世界是运动变化,各物理量之间相互联系、相互制约,在不断变化过程中,从相互关系中掌握概念和物理规律。要学好物理,高中生要具备动态思维。从高一学生的错题根源来看,学生对孤立的、不变的问题,易于理解,而对于变化的、相互联系的问题,则较难掌握。从思维发展来看,高一年级的新学生比较熟悉静态思维,动态思维能力亟待培养。所以很有必要树立初中生的动态思维意识。4.重视科学实践活动,发展学生创造性思维。能在原有的经验、知识和方法的基础上,勇于探索,善于创新,取得新颖的、有一定科学价值的成果,这样的思维活动称为创造性思维。创造思维有层次高低之分:在社会发展的历史上,取得重大的新发明,建立崭新的科学理论,对国家作出卓越的贡献,这是高层的创造思维;对于正在学习的学生个体来说,能大胆地提出问题,巧妙地运用前所未有的新成果,也是创造思维活动。这种新异的、符合任务要求的高品质的思维方式对学好高中物理有极大的帮助。初中科学综合实践,倡导学生自主选择,主动探究,养成独立思考及反省的习惯,系统地解决问题和冲突。在教学中,教师要启发学生自己建构知识,注重引导学生主动探究知识,重视知识的建构。从而逐渐发展学生的创造性思维。综上所述,使初中科学和高中物理教学有效衔接,不仅仅是高中物理老师的责任,也是初中科学教师应尽的义务。在思想上,初中教师要做好“送”的准备,在策略上,要实施相应的有效手段,向课堂要效益,搭好思维方法台阶,同时也要积极提升自身的专业素质。由于初中科学教师的专业背景不同,很有必要参加各种研修。教师要深入研读课程标准,领会新课程的内涵。通过校本研修提高初中科学教师的物理专业素养,不断提高自己的业务水平。加强横向和纵向集体备课,即加强一个年级段的集体备课和初中整个阶段的科学课程中物理章节的集体备课,以提高教师驾驭新课程的水平。利用网络研修解决教师教学上的困惑,通过网络研修,教师间可以跨越时间和空间的限制,相互学习、交流与合作,实现资源和智慧的共享,促进自我素质迅速成长。缩小初高中教师的教学思维的差异,为初高中教学架设“阶梯”,让学生都能顺利越过初、高中物理学习的台阶,实现初、高中的有效衔接。

作者:姚掌仙 单位:浙江省桐乡市洲泉中学

参考文献:

[1]赵海燕译.美Roberj.SternbergLouiseSpearSwerling著.思维教学.中国轻工业出版社

[2]朱龙翔.物理教学思维方式.首都师范大学出版社

篇(9)

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。

2 如何搞好初、高中物理教学的衔接

2.1 重视教材与教法研究。高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.2 坚持循序渐进原则。高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

2.3 透析物理概念和规律。使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

2.4 物理模型的建立。高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

篇(10)

初中学生在解决原始物理问题上还存在很大的不足,表现在他们在解决物理问题的思维上存在着缺陷,而这些不足和缺陷,是在解决传统的物理习题中无法暴露出来的。对于使用阿基米德原理解决物理习题,学生们都很熟悉也很熟练,找到相关的已知量代入公式就可以求解了,但如果遇到一个实际问题时,学生就会感到十分茫然,不知道该从哪入手,就无法正确解决了。而原始物理问题在学生的思维训练过程中的思维诊断功能是物理习题所无法比拟的。

2.在初中物理教学中适时适量地引入原始物理问题是完全可行的。

相当多的初中学生对解决原始物理问题还是有一定潜力的,思维方向还是非常准确的,但这部分学生由于对原始物理问题接触极少,心理上的接受能力较差,比较紧张,导致最后阶段出现了一定的思维障碍,造成结果出现了错误。笔者认为这类学生如果能够经常接触原始物理问题,那么能够成功解决原始物理问题的几率是很大的,所以在初中物理教学中适时适量地引入原始物理问题是完全可行的。

3.传统的物理习题教学使一部分学生丧失了解决实际问题的能力。

部分初中学生在解决原始物理问题时,缺乏创造性思维,思维片面,依然停留在传统物理习题的思维水平上,第一感觉就是怎么什么条件都没有?该套哪个公式?总想着如何向物理习题靠近,能够找到一两个关键点,但是由于对原始物理问题比较生疏,无法正确地抽象物理模型的全部,也无法全面的对相关物理量进行赋值。在传统物理教学模式下,学生能够解决习题,能够得到很高的分数,但他们并没有真正的学会物理。因为在解答传统的习题过程中,是不需要学生自己去考虑的,题目都事先抽象出清晰的物理模型,并对相关的物理量给予明确的数值,学生需要做的只是根据物理模型和相关的已知条件,在头脑里找到一个合适的公式或者定理,按部就班就能完成。学生虽然做对了一道习题,但他可能并不理解这个物理问题的本质,不清楚具体的物理情形。传统的物理习题训练,学生只要通过演算、推导便能够得到最后的结论。而由原始物理问题到物理习题的抽象和设置物理量,都由命题者完成了,这样就使原始物理问题和物理习题之间存在了一个鸿沟,使学生运用物理知识解决实际问题的思维出现了断层,所以学生在面对问题时,就无从下手,不知道怎么去解决,失去了解决实际问题的能力。

4.教学建议。

①初中物理常规教学中应有计划、有意识地渗透一些原始物理问题。

初中物理教师可以通过不同的方式在教学中渗透原始物理问题,比如在学习一个新的物理概念之前,可以用一道原始物理问题引入,这样既显得物理学贴近生活,激发了学生的学习兴趣,也给物理课堂增加了无限生机;教师还可以将书本上的习题还原成原始物理问题,让学生解答,让学生明确书本上的习题正是来源于生活。这样就可以逐步提高学生的创新意识。

②在物理教学过程中引入原始物理问题,应注重“因材施教”的原则。

“让每位学生的个性都得到张扬,使每位学生都能全面发展”是我们每一位教师的殷切希望。但是在这一过程中,教师不能搞一刀切,要充分地了解学情,一切从学生的实际出发,注重“因材施教,分层指导”的原则。在教学实践中我们了解到,学生在解决原始物理问题时的思维差异很大,所以,无论是编制原始物理问题还是讲解原始物理问题,一定要关注不同学生的认知水平,尽可能使课堂上出现的原始物理问题能够满足不同层次学生的需要,使每一位学生都能有所收获。

③在教学过程中,应该多创设情境,让处于“最近发展区”的学生能够有所发展。

部分初中学生对物理模型的抽象能力较弱,因为对于传统物理习题,学生并不清楚其中的物理模型是怎么简化得来的,他们也不需要知道就能正确解题。因此,教师在平时的教学中,应该向学生多创设情境,介绍物理模型的简化,引导学生知道这些简化模型的由来,清楚为什么可以简化,为什么可以这样简化,使学生对物理本质能够有更深的了解。或者有意识地让学生对一些生活中的物理现象进行模型抽象。另外,物理课堂教学在注重实验演示的同时,应该更多地为学生提供实际感受物理情景的机会,使学生通过感官切身体验物理情景。这样,学生对于现实生活中的物理现象才能理解得更加深刻,才能更好地利用物理规律去解决实际物理问题。

④对少数物理学习困难的学生不要轻易放弃,应采取循序渐进的原则,进行有针对性的指导。

篇(11)

1、初高中物理知识本身的差异。初中物理具有形象性、直接性、经验性的特点,以形象思维为主,主要通过对现象的观察和演示实验使学生建立物理概念认识其规律,获得定性知识。高中物理具有概括性、间接性、逻辑性的特点,抽象思维为主,如高一物理所讲的摩擦力产生条件、静摩擦力方向、物体受力分析、力的合成与分解、瞬时速度、加速度等,都要求学生具有较强的抽象思维能力。刚进入高中的学生对从形象思维到抽象思维的跨越难以适应。

2、学生学习心理的主观台阶

(1)思维过渡困难。根据皮亚杰的儿童思维发展理论,中学生思维处于从具体运算阶段向形式运算阶段过渡,即从初步逻辑思维向抽象思维过渡。初中生的思维处于具体运算阶段,此时他们能进行初步的逻辑思维,但还离不开具体事物的支持。初中物理研究的是实实在在的物体,物理知识也是建立在形象思维的基础上,初中物理学习内容基本适应学生的思维发展水平。但高中物理研究对象大多是理想模型,要求学生更多地运用抽象思维来获得物理知识,要求学生在头脑中把形式和内容分开,离开具体事物,根据假设来进行逻辑推演。多数高一学生的抽象思维正从经验性思维向理论性思维过渡,其中经验思维仍占优势,思维在很大程度上仍依靠具体经验材料,不善于从理论上进行演绎推导。而高中物理有相当严密的推理系统,始终强调抽象思维,学生的思维水平很难马上适应高中物理思维抽象程度的要求,故造成了进一步学习物理的困难。

(2)认知结构重建。高中物理相对于初中物理而言,是具有更强包括性的上位知识,对上位知识的学习应重新组织认知结构,把原来已有的相应的下位知识,作为理解和支持新的上位知识的生长点。掌握了上位知识,下位知识不难由此记忆或导出。但原有的知识结构往往对更新认知结构产生障碍作用。经验性错误和原有知识的负反馈影响正确概念的形成。其一,学生对日常生活中原有的一些认识,包括不少浮浅或错误的认识,影响学好新的物理知识。

3、学生学习方法的台阶。初中生掌握物理知识习惯于教师多讲、细讲,解决物理问题从头到尾,步步不缺,教师也常为学生指出重点、难点,要学生背牢记熟,对于如何指导学生认真读书、建立物理情景、分析物理过程,极少考虑。学生逐渐养成了死记硬背的呆板学习方法。高中物理学习要求学生能在教师指导下独立主动地去获取知识,教师在教学中主要是精讲,帮助学生在头脑中建立完整的物理情景,灵活运用学过的知识去解决各种实际问题,让学生独立思考和总结课堂学习的知识,独立完成实验,培养学生的自学能力。

二、如何搞好初、高中物理教学的衔接

1、重视教材与教法研究。高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

2、坚持循序渐进原则。高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3、透析物理概念和规律。使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。