绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇地质灾害监测范文,希望它们能为您的写作提供参考和启发。
各种自然灾害发生前一般都会出现各种先兆,而且很多灾害的发生和发展都有一定的时空规律,彼此之间常有一定的关系,这就为自然灾害的预报提供了可能。在自然灾害的预报和研究中运用遥感技术可以发挥以下几个方面的作用:
2.1推动国家自然灾害数据库建设
地质灾害是一种常见的自然灾害,发生地质灾害后的地形地貌在遥感图像中通常与周围正常的情况有所区别,特别是在形态、色调和影纹结构等方面。为了在地质灾害发生后快速及时地了解地质灾害的规模和具体情况,可以通过我国的资源卫星、气象卫星和其他专业卫星等进行遥感信号的采集,然后运用地质灾害遥感信息的合理解释,对已经发生地质灾害的地点或是隐患点进行详细的调查分析,并对数据进行整理后得出灾害规模、灾害分布、形成因素、孕育过程、变化趋势等。通过以上工作可以有效推动对灾害数据的收集和整理工作,并且按照地质灾害的类别,建立灾害要素数据库,构建灾害预测评估和灾后灾害快速评估运行系统。
2.2为抗灾救灾应急决策提供快速信息支持
一些突发性自然灾害,难以实现迅速、准确、动态的监测与预报,但遥感技术可以不受地面条件限制,快速获取灾害发生后灾区的全面景观,根据灾害分类分级及影像模型,判读图像,快速确定灾情,为应急救援工作提供第一手资料,从而在最短的时间内实现对自然灾害的应急响应。在2008年四川汶川大地震及2010年青海玉树大地震中,有关部门使用多种航天、航空遥感技术为抗震救灾指挥部及时提供了多种类型、不同分辨率的卫星和航空遥感数据分析信息,为抗震救灾指挥系统及时全面地了解灾情、快速部署救援行动提供了可靠的信息支持。在澳大利亚维多利亚州发生特大火灾时,我国立刻调整了环境减灾卫星A、B星拍摄角度和运行频率,每天两次飞过澳大利亚上空,迅速准确地拍摄了澳大利亚火场的光学、红外和雷达图像,为澳大利亚空间信息合作研究中心提供了大量的卫星监测图像,极大地帮助了澳大利亚有关部门的灭火行动。
2.3提高次生灾害的预测预报能力
做好次生灾害的排查与监测预警工作,是减少和降低灾害损失的重要措施。利用卫星遥感技术实时监测地震次生灾害,让人们能够有效规避灾害或减小灾害损失。在2008年汶川大地震中,中国国土资源航空物探遥感中心通过航空遥感应急调查,及时掌握了北川等14个重灾县市道路、房屋损坏等灾情和崩塌、滑坡、泥石流及堰塞湖等次生灾害情况,共解译出地震引发的崩塌、滑坡、泥石流7226个,堰塞湖147个,灾害毁路1423处;圈定有危险的村镇264个,潜在危险道路1732处,从而为有效防范次生灾害的发生、最大限度地降低灾害损失提供了有力的信息支持。
2.4为灾后重建规划提供决策依据
地震等重大自然灾害发生后,灾区的重建规划是抗灾救灾的一项重要工作。如地震灾后恢复重建规划应当根据地质条件和地震活动断层分布以及资源环境承载能力,重点对城镇和乡村的布局、基础设施和公共服务设施的建设、防灾减灾和生态环境以及自然资源和历史文化遗产保护等作出安排。城镇和工程选址时要充分考虑灾害综合区划,既防止类似的灾害重复发生,也要防御其他自然灾害的侵袭。在2008年四川汶川大地震发生后,我国利用航天和航空遥感,及时开展汶川地震灾情评估工作,完成不同烈度人口影响评估,以及房屋倒损、道路损毁、人员伤亡等灾情及次生灾害评估、灾情综合评估、地震灾害范围评估、地震灾害经济损失评估等工作,为灾区规划重建提供了科学依据和决策咨询。
2.5帮助提高地震预测预报水平
地震的预测预报是一个世界性难题。我国破坏性地震频繁发生,损失极为惨重。为了有效地预测地震发生,必须对地震前的各种兆信信息进行收集和数据挖掘,找到地震演变规律,尽可能地有效预测预报地震。卫星遥感技术通过多种手段观测、广阔的信息覆盖、短周期的观测手段等,为提高地震灾害的预测预报水平提供了可能。遥感技术用于监测和评估地震灾害已成为研究的一大热门。目前,遥感方法中合成孔径雷达干涉测量(InSAR)技术在监测地震形变方面的潜力已得到广泛认同。在地震研究方面,我国运用各种遥感图像,进行断层活动性、强震构造环境、地震地表破裂等方面的遥感地质解译以及干涉形迹测量研究,取得了重要研究成果。同时还开展了遥感技术在地震监测预报中的可应用性研究、红外遥感地震前兆的异常特征、预报方法和机理研究以及地震前兆热红外异常卫星遥感监测与快速处理系统研究等,为卫星遥感应用于地震监测预报开辟了新的方向。我国地震局已将卫星遥感的部分热红外实测数据,通过全国地震系统共享给所有地震研究工作者,为地震监测和预报提供数据支持。
3遥感技术在地质灾害监测中的具体应用
我国的地质灾害遥感调查技术为大型工程的可行性研究提供地质灾害分布、潜在危害及环境基础资料。实践证明,遥感技术在识别滑坡、泥石流,制作区域滑坡、泥石流分布图等方面体现出巨大的应用价值。
3.1孕灾背景调查与研究从地质灾害预测预报相关理论分析可知,灾害孕育过程中要对一些因素进行长期观测,发现其变化规律。这些因素包括时日降水量、地面坡度、多年平均降水量、植被发育状况、构造发育程度等。这些因素的成功观测是地震预测预报的重要保障。通过气象卫星可以实时检测降雨情况,而资源卫星可以对地表地物进行详细的调查,通过红外波段和微波波段分析地下物质的体貌体征等。结合气象卫星和资源卫星强大的遥感技术,可以对以上孕灾因素进行实时监控和分析,因此利用遥感技术有效调查研究地质灾害孕灾背景是遥感技术的重要应用之一,也是地质灾害最重要的基础准备工作。
3.2地质灾害现状调查与区域划分
在地质灾害发生后,必须及时有效地对地质灾害现状进行总体分析,了解其发生规模和特征,才能制订相应的救灾和避灾措施。地质灾害过程中,不良地质所迸发出的滑坡、崩塌、泥石流等灾害个体或灾害群体,在遥感图像中会呈现出与众不同的地质特征。很多关于地质发生规模和形态特征等信息都可以通过遥感影像进行提取。这些信息提取后,就可以有效分析目标区域内地质灾害发生点和隐患点的全面信息,找到灾害发生的分布、规模、特点、趋势等信息。另外,在上述工作基础上还可以对地质灾害发生地进行区域划分,对地址灾害进行分级管理,对隐患区进行严密监控,为建立地质灾害监测网络提供基础资料。
3.3地质灾害动态监测与预警
当地质体从量变到质变后,地质灾害很容易发生,但是这种从量变到质变的过程是很难被观测察觉的,因为其蠕动速率非常小且比较稳定,地质灾害动态检测就是期望实时得到发生突变的信息,来预测和预报灾害发生。在全球卫星定位系统(GPS)的精确定位下,这种缓慢的变动速率是可以被察觉并记录的。利用卫星定位系统进行地质灾害动态检测,可以有效地对地质灾害进行预测、预报和警报。
3.4灾情实时调查与损失评估
当地质灾害的发生不可避免时,就要尽可能地减小灾害损失,这就要求在地质灾害发生后对灾情进行实时检测和调查,并评估和区分灾情较重和较轻的区域,进行有效的人员救援和物资运送。利用遥感技术可以对地质灾害进行详细的调查,除了可以对人员和牲畜伤亡进行统计外,还可以对地面建筑、水域资源、桥梁道路、自然资源等各项情况进行实时的调查和评估,为救灾提供有效的信息支持。
1.2滑坡形成机制泥岩构成了矿区山体的软弱结构面,而造成软弱结构面应力集中以致破坏的基本条件是:(1)软弱结构面有一定的坡度(5°~12°,平均9°),并倾向临空面,且临空面的坡度(老滑坡滑动之前的天然斜坡坡度应在20°以上,目前滑坡体地面平均坡度为16.7°)大于软弱结构面的坡度。(2)泥岩、特别是厚层泥岩具有良好的隔水性能,地下水遇到厚层泥岩被隔挡,在泥岩面滞留,使软弱结构面被软化,抗剪强度降低。2005年矿山企业在该滑坡体上挖方削坡修建了办公楼和厂房,并堆存了大量的煤矸石,扰动了老滑坡,破坏了滑坡的天然平衡,使滑坡稳定性降低,进入雨季之后,在长时间降雨条件下,滑坡开始复活。
2滑坡治理的主要工程措施
2.1抗滑桩工程在办公建筑、副井井筒南侧布置一排抗滑桩(共25根)。采用钢筋混凝土矩形桩,桩顶标高846.0m,断面尺寸为3m×2m,桩中心距4.5m,桩长25m,桩身混凝土为C30。抗滑桩桩顶一般低于现地面1.5~3.0m左右。受荷段10~13m,锚固段约12~15m,符合《滑坡防治工程设计与施工技术规范》(DZ/T0219-2006)要求。
2.2锚索根据初步设计及离柳焦煤集团决定,考虑到地质不确定性因素的特点,为增强抗滑桩的稳定性,在抗滑桩中间增加锚索,共设计锚索24根。
3滑坡变形监测本滑坡
目前处于蠕动变形阶段,需在抗滑桩施工过程中监测滑坡位移情况,查清滑坡的稳定性,确保施工过程中滑坡的安全,以检验抗滑治理效果,监测抗滑桩质量及使用期间的安全性。变形监测主要通过2种方式进行,一是对副井井筒错缝间距进行监测,二是在滑坡体上选择具有代表意义的监测点进行监测,在滑坡体外地质稳定地段选择一个基准点、一个后视点,在滑坡体上选择9个变形监测点采用高精度全站仪进行观测。根据副井井筒位移记录,实施抗滑桩工程前2013年4月22日井筒初始位移为0.63m,到2013年7月10日,井筒位移为0.64m,增加10mm。从2013年7月10日到2013年9月5日,井筒无变形。从2013年4月22日准备实施抗滑桩工程至2013年9月5日抗滑桩主体工程基本结束,运用高精度全站仪对滑坡体上监测点进行了持续观测,观测频率每周一次。在抗滑桩施工前监测点初始位移量最大,分别为1054mm、963mm,监测点初始位移量为810mm,数值也很大。在实施抗滑桩工程后,监测点滑动速率显著下降,特别是监测点,抗滑桩施工前后位移变化量分别为7mm、10mm,在个监测点中位移变化量最小,而且比其余监测点位移变化量小很多,说明抗滑桩工程的实施有效地降低了滑坡的蠕动速度,保证了抗滑桩南侧滑坡体的稳定以及其南侧滑坡体上办公楼和工业建筑的安全。另外也说明,抗滑桩北侧滑坡体还有剩余的下滑力。监测点由于紧邻东侧抗滑桩,滑动速率相对较小,位移变化量为29mm;监测点处于滑坡主滑方向上,其初始位移量最小,在滑坡东部实施抗滑桩工程后,由于受力骤然增大,滑动速率显著增加,位移变化量为53mm;监测点位于滑坡西部边缘一带,与东部抗滑桩工程处于一条直线上,抗滑桩施工前后,其位移变化量为58mm,位移变化量最大;监测点处于滑坡前缘,位移变化量介于30~50mm之间。
0.引言
地质灾害的主要类型有山体滑坡、崩塌、泥石流,一般集中在汛期发生。引发地质灾害原因,一是人为因素,因修建乡村道路时对护岸、边坡加固不力;二是地质构造因素,岩层软硬相间,断层纵横交错,岩浆岩穿插,地表风化等是地质灾害形成的内因;三是气候异常,雨量集中,造成土壤严重超饱和吸水,稳定失衡;四是地形陡峭,植被破坏,水土流失严重。其中气候、天气因素的影响是气象部门关注和工作的重点。我国地质灾害动态监测数据库系统的起步相对其他行业较晚,发展也较慢。为了提高地质灾害防御能力,充分发挥气象科技对国民经济和社会发展的保障作用,建立统一的地质灾害动态监测数据库标准体系、地质灾害动态监测数据库、数据库管理系统和动态信息系统在技术上和数据获取方面的条件都已经成熟,也是及时和必要的。本文就地质灾害监测系统的构建谈几点粗浅认识。
1.地质灾害监测系统的构建
1.1系统概述
本系统是一种软件与硬件结合的自动化网络式管理系统。以C/S结构为主体,GIS技术为支撑,三维地理信息系统为展示分析平台,以水文、地理为依据,空间数 据和属性数据为基础,集数据采集、管理、分析、表达、三维地图全方位表达为一体,利用数据库管理技术和高级编程语言,以灾害预警及管理为主要目的,实现 图、文、表一体化。
1.2系统构成
整个系统由终端设备、底层软件、上层软件三大部分组成,通信服务器接收终端通过GPRS或CDMA传输终端信息至中心。
1.3系统功能
基于三维地理信息系统场景对汛情信息、工情信息、防汛调度信息、山体滑坡灾害信息等进行分析,为地质灾害监测预警提供功能完善的信息查询和决策支持。
1.3.1雨量监测系统
采用“DSD1雨量遥测仪”,遥测仪采集的雨量资料通过GSM 网络进行无线通讯,数据采集时间密度为每分钟一次,并每十分钟一次向中心站传输数据,基本保证了地质灾害点雨量监测实时化的要求。中心站自动接收监测点传输的数据,并通过数据库对监测点降水资料进行管理。同时建立了基于雨量点地理信息和降水资料的图形化显示系统和信息服务系统,在互联网上以Web的形式提供灾害点地理情况、交通情况、危害到人员安全情况、以及预防地质灾害发生预案等信息,实现了地质灾害点降水实况的显示、查询服务和雨量资料的共享。同时,在政府及国土、水利、防汛抗旱等部门的领导计算机内收藏“地质灾害雨量监测站网”网址,实现了地质灾害点自动雨量站数据实时显示,便于决策部门根据网站提供的实时雨量、雨强信息,进行地质灾害应急指挥。
1.3.2自动雨量站点
降水资料数据库的建设为监测点地质灾害分析和预报提供了基础数据。为更好地开展地质灾害预警和,气象局与国土资源局根据地质灾害点的降水强度确定可能引发地质灾害的预报等级,并完善了制作流程、渠道。并根据不同级别通知报政府和相关部门,并向社会公开,同时向县、乡镇、村、隐患点负责人、监测人,逐级通知到位。
1.3.3预报预警
在预报和预警手段方面,利用气象台提供的预报得出未来一周逐日的降水量预报,并根据降水量预报制作地质灾害等级。当出现雷雨、大风等短时灾害性天气,可能诱发地质灾害时,则利用雷达资料共享服务器下载的雷达PUB资料进行临近预报分析,为各地质灾害监测点提供地质灾害预警信息,并通过短信平台向责任人。
1.3.4信息
在地质灾害信息方面,充分利用短信平台、电视天气预报栏目等手段向社会地质灾害等级预报。同时,为做好天气预报信息和预警信息的,根据气象部门提供的异常暴雨天气预报或监测点出现异常变化时,由国土资源局提出有关短期预报和临灾预报,报人民政府。紧急情况时,经人民政府批准,由电视台、广播电视播送临灾预警信息。
1.4系统特点
1.4.1实时数据同步
本系统开发的数据汇聚平台通过实时对终端数据的分析,采用开放式的接口进行设计,能根据灾害的网络情况及数据源灵活设置数据的流转方向,支持多种数据路由,实现数据同步传输。
1.4.2科学设定预警指标
提出了临界报警的思路,系统支持二套预警指标、四种预警级别。
1.4.3历史资料自动生成
为加强灾害的决策分析功能,系统通过极值分析引擎,希望能自动分析计算各监测站1小时、3小时、6小时、24小时等时段长的历史极值。
1.4.4数据高度共享
采用面向服务的架构(SOA)技术,可实现用户和应用对各种数据源(水雨情、工情、预报、社会经济信息等)的透明操作。利用数据共享空间站提供的功能,各子系统可实现跨数据库的数据交换和访问,实现跨部门的信息共享,满足防汛指挥机构“联合作战”对信息共享的要求。
1.4.5以防为主
在山体滑坡灾害易发区建立快速、准确的降雨实时监测,通过系统对预设信息的分析,并辅之以性能可靠、操作简便的预警响应系统,以人的生命安全为第一目标,把重点放在防灾、避灾上,做到灾前有预警、转移灾中有救援,灾后有抢险,掌握防灾工作的主动权。
2.结束语
综上所述,地质灾害监测系统经过开发与应用,达到了初期的设计目标,实现了地质灾害的监测管理信息化,为国土资源决策提供了依据。该系统把地质灾害点的数据系统化、信息化,建成信息系统进行统一管理,方便了地质灾害信息的快速、全方位查询。把地质灾害点信息与地形、地貌图结合起来,让信息更加直观,使用更加方便。系统采用了WEB架构设计,将所有的功能都集中在服务器上实现,各级用户端通过IE浏览器来进行访问、维护,不需要安装任何软件或插件,操作简单方便。使用本系统,可以更方便、快捷的浏览、查询地质灾害信息,实现地质灾害监测信息化,有效的提高地质灾害监测与管理的工作效率。
[中图分类号]×43
[文献标识码]A
[文章编号]1009-5549(2010)05-0101-01
一、地质灾害类型及其表现
地质灾害是指在自然或者人为因素的作用下形成的,对人类生命财产、环境造成破坏和损失的地质作用(现象)。主要类型有崩塌、滑坡、泥石流、地裂缝、地面沉降、地面塌陷等。
(一)主要分类方法
地质灾害的分类,有不同的角度与标准,十分复杂。就其成因而论,主要由自然变异导致的地质灾害称自然地质灾害;主要由人为作用诱发的地质灾害则称人为地质灾害。就地质环境或地质体变化的速度而言,可分突发性地质灾害与缓变性地质灾害两大类。前者如崩塌、滑坡、泥石流等,即习惯上的狭义地质灾害;后者如水土流失、土地沙漠化等,又称环境地质灾害。根据地质灾害发生区的地理或地貌特征,可分山地地质灾害,如崩塌、滑坡、泥石流等;平原地质灾害,如地质沉降,如此等等。
滑坡:是指斜坡上的岩体由于某种原因在重力的作用下沿着一定的软弱面或软弱带整体向下滑动的现象。
崩塌:是指较陡的斜坡上的岩土体在重力的作用下突然脱离母体崩落、滚动堆积在坡脚的地质现象。
泥石流:是山区特有的一种自然现象。它是由于降水而形成的一种带大量泥沙、石块等固体物质条件的特殊洪流。识别:中游沟身长不对称,参差不齐;沟槽中构成跌水;形成多级阶地等。
地面塌陷:是指地表岩、土体在自然或人为因素作用下向下陷落,并在地面形成塌陷坑的自然现象。
(二)地质灾害发生前的表现
崩塌前兆是:崩塌的前缘不断发生掉块、坠落、小崩小塌的现象;崩塌的脚部出现新的破裂形迹;不时听到岩石的撕裂摩擦声:出现热、气、地下水异常;动物出现异常。
滑坡前兆是:滑坡前缘出现横向及纵向裂缝,前缘土体出现隆起现象;滑体后缘裂缝急剧加宽加长,新裂缝不断产生,滑坡体后部快速下座,四周岩土体出现松动和小型塌滑现象;滑带岩土体因摩擦错动出现声响,并从裂缝中冒出气或水:在滑坡前缘坡角处,有堵塞的泉水复活或泉水、井水突然干涸;动物出现惊恐异常现象;滑坡体上的观测点明显移位;滑坡前缘出现鼓丘;房屋倾斜、开裂和出现醉汉林、马刀树等。
地面塌陷的前兆:泉、井的异常变化;地面变形;建筑物作响、倾斜、开裂;地面积水引起地面冒气泡、水泡、旋流等;植物变态;动物惊恐。
滑坡、崩塌、泥石流三者除了相互区别外,常常还具有相互联系、相互转化和不可分割的密切关系。
泥石流发生的前兆是:沟内有轰鸣声,主河流水上涨和正常流水突然中断。动植物异常,如猪、狗、牛、羊、鸡惊恐不安,不入睡,老鼠乱窜,植物形态发生变化,树林枯萎或歪斜等现象。
如发现上述的一些征兆,尤其是发现山体出现裂缝,则可能存在发生崩塌、滑坡的隐患,长期降雨或暴雨则可能诱发泥石流。
二、地质灾害监测的基本方法
崩塌、滑坡防治的基本方法主要是各种加固工程如支挡、锚固、减载、固化等,并附以各种排水(地表排水、地下排水)工程,其简易防治方法是用粘土填充滑坡体上的裂缝或修地表排水渠。泥石流灾害防治的基本方法是工程设计和施工中要设置完善的排水系统,避免地表水入渗,对已有塌陷坑进行填堵处理,防止地表水注入。
地质灾害简易监测,是指借助于简单的测量工具、仪器装置和测量方法,监测灾害体、房屋或构筑物裂缝位移变化的监测方法。一般常用监测方法表现为以下几种:
1.埋桩法。埋桩法适合对崩塌、滑坡体上发生的裂缝进行观测。在斜坡上横跨裂缝两侧埋桩,用钢卷尺测量桩之间的距离,可以了解滑坡变形滑动过程。对于土体裂缝,埋桩不能离裂缝太近。
2.埋钉法。在建筑物裂缝两侧各钉一颗钉子,通过测量两侧两颗钉子之间的距离变化来判断滑坡的变形滑动。这种方法对于临灾前兆的判断是非常有效的。
3.上漆法。在建筑物裂缝的两侧用油漆各画上一道标记,与埋钉法原理是相同的,通过测量两侧标记之间的距离来判断裂缝是否存在扩大。
4.贴片法。横跨建筑物裂缝粘贴水泥砂浆片或纸片,如果砂浆片或纸片被拉断,说明滑坡发生了明显变形,须严加防范。与上面三种方法相比,这种方法不能获得具体数据,但是,可以非常直接地判断滑坡的突然变化情况。
地质灾害群测群防监测方法除了采用埋桩法、贴片法和灾害前兆观查等简单方法外,还可以借助简易、快捷、实用、易于掌握的位移、地声、雨量等群测群防预警装置和简单的声、光、电警报信号发生装置,来提高预警的准确性和临灾的快速反应能力。
三、地质灾害的应急避险
关键词:
大数据;地质灾害;监测;预警
滑坡是斜坡上部分岩土整体地向下方滑动[1]。滑坡等常见的地质灾害,破坏工程设施,造成大量人员伤亡,可能发生滑坡的区域,道路和建筑等随时受到巨大威胁[2-4],很多城市都面临着滑坡等地质灾害的威胁。由于互联网、物联网、三网融合等等通信技术,云计算等IT技术的发展,社会已经进入了大数据时代[5]。网络等工具的利用,使得人们获取信息资源更加方便,也使得更好地进行地质灾害的监测和预警成为可能。
1地质灾害新特点
1.1原因新特点随着城市建设规模的日益扩大,施工因素和人为因素造成的地质灾害也越来越多。比如2015年12月20日,深圳光明新区发生滑坡,垮塌体就是堆积量过大、堆积坡度过陡的人工堆土,失稳垮塌后造成多栋楼房倒塌,原有山体并没有滑动。人工开挖边坡,在坡体上部加载(如丢弃矿渣和建筑垃圾等),破坏自然斜坡的稳定性,更容易导致滑坡发生[6]。因此地质灾害不仅限于自然灾害。深圳滑坡的人工堆土垮塌的地点就属于堆放渣土和建筑垃圾的受纳场。为此,深圳公安已依法对企业负责人、滑坡事故相关责任人,共12人采取了强制措施。
1.2地点新特点地质灾害越来越多的发生在城市内部和城市周边。因此更值得注意,这种离人口稠密区更近的地质灾害,容易造成更大的人员伤亡和财产损失。
2大数据时代的监测工作
2.1信息获取大数据影响了人们的生活与工作方式、改变了企业的运作模式,也导致科研模式发生了根本改变[5]。大数据时代的突出特点是数据的共享和高效利用。一旦把调查数据输入系统,就可以输入任一调查点的模糊名称,检索该调查点的滑坡、崩塌、泥石流等地质灾害和不稳定斜坡坡等潜在的地质灾害的信息[7]。大数据思维从海量信息到便于人们理解的分析结论,用于地质灾害监测系统中海量数据的分析,可以大幅度提高地质灾害监测的准确度和实效性。在大数据时代,人们通过网络等途径可以获得更加全面、更加专业、更加及时的信息。比如香港大学著名教授岳中琦,在科学网连续博客,第一时间深入而详细地解析了12•20深圳滑坡,不但提供了科学严谨的分析,还提供了大量清晰准确的现场图片。无论是“看门道”的专业人士,还是“看热闹”的公众,都可以在其博客中获得大量的有效信息,岳教授为科研及科普工作都做出了卓有成效的贡献。
2.2利用多方面资源做好地质灾害监测传统的资料管理手段和人工作业方式,在现时性、准确性、科学性和高效率等方面已经无法适应当前地质灾害防治,尤其是灾害应急工作的需要,更加无法满足将来的需求[8]。利用网络可以更好地做好地质灾害的检测工作。比如12•20深圳滑坡,卫星地图能揭示事发地点十年变迁:2010年之前,事发地点是个矿场,地貌是山谷和深坑;2013-2014年因积水深坑变成了湖泊;2015年,因为填埋建筑垃圾湖泊逐渐消失,而山谷开口始终正对着滑坡体冲击的工业园区,由于与水相比,建筑垃圾的密度更大,直接导致了滑坡的发生。还可以利用网友公布在论坛等媒体的无人机照片卫星地图,研究地貌变化,对地质灾害的实时、动态监测做出贡献。尤其是在山区发生地震后,坡体植被的破坏,为泥石流和滑坡等地质灾害的发生提供了条件。及时的公开和分析航拍照片,对专家和公众共同做好地质灾害预测工作有着积极意义。
3利用网络做好地质灾害预警
地质灾害的预警比报道更加有积极意义。由于专业的地质人士数量有限,监控不可能全覆盖。而通过网络获得地质灾害的征兆和苗头,通知有关部门,可以及时采取治理措施,把地质灾害控制在萌芽状态,减少人员伤亡和财产损失。比如成都理工大学黄润秋教授等人获取信息后,及时采取有效措施,通过打入锚杆等工程措施,消除了威胁丹巴县城的滑坡风险,保住了丹巴县城。同时,通过微博和微信等工具公布信息,可以及时疏散群众,减少人员伤亡。2012年8月17日18时至18日凌晨,四川省彭州市银厂沟景区12小时内降雨量达247mm,为50年来最大的暴雨,引发多处泥石流和滑坡,中断了交通、通讯、电力、供水,严重威胁群众和游客安全。彭州市准确预警、在灾害发生前及时公布信息,6小时内组织群众两次主动避险,紧急疏散转移了15000余人,成功避免了1200人因灾伤亡。
4结语
针对人为因素造成地质灾害的新特点,大数据时代的信息获取更加方便,也有着大量地质灾害的监测和预警成功的案例。因此,利用网络和社交软件等工具,可以更好地做好地质灾害监测和预警。
参考文献:
[1]张先清,王泽,田荣燕,等.青藏高原东缘某滑坡治理案例分析[J].山西建筑,2015,41(5):62-63.
[2]王文奇,刘保县,李丽,等.中国西部山区交通设施震害分析[J].四川理工学院学报,2015,28(1):41-45.
[3]李艳梅,王文奇,王泽,等.中国西部山区交通设施地震震害及其对策[J].成都纺织高等专科学院学报,2015,32(1):26-28,46.
[4]Harris,MarkAnglin.FragilityofadarkgrayshaleinnortheasternJamaica:effectsandimplicationsoflandslipexposure[J].Envi-ronmentalEarthSciences,2010,61(2):369-377.
[5]王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1126-1138.
[6]王文奇,李丽,王泽,等.地震次生灾害对西部山区交通设施的破坏及其对策[J].成都纺织高等专科学院学报,2015,32(2):57-60.
一、概述
地质灾害监测主要任务为监测地质灾害时空域演变信息、诱发因素等最大程度获取连续空间变形数据应用于地质灾害稳定性评价、预测预报和防治工程效果评估地质灾害监测是集地质灾害形成机理、监测仪器、时空技术和预测预报技术为一体综合技术当前地质灾害监测技术方法研究与应用多是围绕崩塌、滑坡、泥石流等突发性地质灾害进行。
二、地质灾害监测方法技术现状
(一)常规监测方法技术趋于成熟设备精度、设备性能都具有很高水平目前地质灾害位移监测方法均可以进行毫米级监测高精度位移监测方法可以实现0.1mm精度
(二)监测方法多样化、三维立体化。
由于采用了多种有效方法结合对比校核以及从空中、地面到灾害体深部立体化监测网络使得综合判别能力促进了地质灾害评价、预测能力提高。
三、新技术新方法
随着现代科学技术发展和学科间相互渗透合成孔径干涉雷达(InSAR)、激光扫描、光纤应变分析等技术相继不同程度应用于地质灾害调查与监测中而光纤应变分析技术之布里渊散射光时域反射技术(BOTDR)应用于地质灾害监测处于刚刚起步阶段BOTDR是目前国际上近几年才发展成熟起来一项尖端技术起初应用于航天领域发达国家相继应用于电力、通讯、工程等领域应变检测和监控工程领域主要应用于桥梁、大坝、隧道等大型基础工程安全监测和健康诊断并取得了很多成功应用经验;在日本开始将BOTDR技术应用于边坡工程变形监测中;我国工程领域引入BOTDR技术相对较晚目前主要应用于桥梁、隧道等构筑工程变形监测中并取得了一定成果;在三峡水库区巫山开始将BOTDR应用于滑坡监测与常规地质灾害监测技术相比BOTDR技术具有多路复用分布式、长距离、实时性、精度高和长期耐久等特点通过合理布设可以方便对目标体各个部位进行监测;由于其具有技术应用前景已经一些发达国家如日本、美国、加拿大、瑞士等国家竞相研发课题。
四、地质灾害监测技术方法发展趋势
(一)高精度、自动化、实时化发展趋势。
光学、电学、信息学、计算机技术和通信技术发展同时给地质灾害监测仪器研究开发带来勃勃生机;能够监测信息种类和监测手段将越来越丰富同时某些监测方法监测精度、采集信息直观性和操作简便性有所提高;充分利用现代通讯技术提高远距离监测数据信息传输速度、准确性、安全性和自动化程度;同时提高科技含量降低成本为地质灾害经济型监测打下基础监测预测预报信息公众化和政府化随着互联网技术发展普及以及国家政府地质灾害管理职能灾害信息将通过互联网进行实时公众可通过互联网了解地质灾害信息学习地质灾害防灾减灾知识;各级政府职能部门可通过所信息了解灾情发展及时做出决策。
(二)新技术方法开发与应用。
调查与监测技术方法融合:随着计算机高速发展地球物理勘探方法数据采集、信号处理和资料处理能力大幅度提高可以实现高分辨率、高采样技术应用;地球物理技术将向二维、三维采集系统发展;通过加大测试频次实现序列地质灾害监测智能传感器发展:集多种功能于一体、低造价地质灾害监测智能传感技术研究与开发将逐渐改变传统点线式空间布设模式;由于可以采用网式布设模式且每个单元均可以采集多种信息最终可以实现近似连续三维地质灾害信息采集。
五、地质灾害监测技术优化
(一)问题提出。
监测方法适应性:对于各种监测方法所使用监测仪器设施均有各自应用方向和使用技术要求;针对不同地质灾害灾种、类型其使用技术要求(包括测点布设模式、安装使用技术要求等)不同地质灾害发展阶段:对于崩塌、滑坡等突发性地质灾害不同发展阶段所适用监测方法和仪器设施各异监测数据采集周期频度不同监测参数与监测部位:实践证明一、不同监测参数(地表位移、深部位移、应力、地下水动态、地声等)在不同类型灾害体监测中具有不同程度表现优势;另一、同一灾害体不同部位监测参数随变化趋势特点并不相同即存在反映灾害体关键部位特征监测点又存在仅反映局部单元(不具有明显代表性甚至是孤立)特征监测点因此监测参数和监测部位优化选择是整个监测设计工作基础自动化程度:决定于设备集成度、控制模式、数据标准化程度和信息方式经济效益:决定于地质灾害规模、危害程度、监测技术组合、设备选型等因素。
(二)优化原则。
监测技术优化原则:针对某一类型地质灾害确定优势监测参数和监测部位进行监测内容、监测方法优化组合使监测工作高效、实用经济优化原则:首先不过于追求高、精、尖监测技术而应选择发展最为成熟、应用程度较高监测技术;其次对于危害程度较大大型地质灾害体可选择专业化程度较高监测技术方法由专业人员进行操作、维护对于危害程度低规模小灾害体可选择操作简单、结果直观宏观监测技术由群测群防级人员进行操作
六、结束语
地质灾害监测是集多种学科为一体综合技术体系只有充分把握地质灾害形成发展规律才能正确把握技术开发方向只有充分掌握地质灾害物质组成、动力成因类型、变形破坏特征、外形特征、发育阶段等因素依据不同监测技术方法应用特点做好监测技术优化工作才能保证监测效果同时应以科学发展观实施地质灾害监测和技术开发
参考文献:
地质灾害作为自然灾害之一,对人类的生存与生活有着极严重的影响,其产生的原因除了自然的地质活动外,人类的活动对其也有一定的影响作用。地质灾害可以分为多种类型,包括突发性灾害和缓变性灾害,前者常见的有泥石流、地震、崩塌、滑坡、地表塌陷、地裂缝等,后者有地面沉降、土地荒漠化、水土流失及海水入侵等。为了预防地质灾害的发生,更好的获取灾害信息,相关技术人员利用测量技术对灾害进行监测、防治工作。特别是通过现代测量技术,我们所获取的信息更加丰富准确,操作也更为简便,例如应用遥感技术我们不需要进行实地采样,也不用安排人员留守观测,通过计算机的控制就可以完成工作。如今,采用这些技术进行地质灾害的监测,在实现突发与缓变等各种类型地质灾害的灾前预警、灾情实时监控以及灾后评估方面都有着良好的效果。同时,在很大程度上减少了灾害带来的经济损失,对我国的社会经济建设也有一定的贡献。本文结合测量技术在常见地质灾害里的作用,对测量技术地质灾害监测中的应用进行分析。
1 传统测量技术的应用
这里所说的传统测量技术地质灾害监测,就是通过各种专业仪器测量灾害的产生及发展过程,记录数据并传输到预报中心,进行分析研究后找出灾害的发展规律,并判断是否需要发出灾难预警。地质灾害的主要监测对象是地质形变,对形变的监测又可细分为内部形变监测与外部形变监测。其监测对象是将测量技术作为主要监测手段的外部形变。这类监测通常采取的测量方法是在平面上用经纬仪和三角测量法监测,高程测量采用全站仪测量或三角高程法和水准测量法。然后,建立误差单位为毫米级的小型平面控制网及高程控制网,以此测量出监测样本上各控制点在垂直与水平方向上的微小位移量及其形变形式,从而获得有用的形变数据,并最终达到有效防治地质灾害的作用。传统的测量技术缺陷在于,监测时需要安排人员进行实地观测,并且要记录大量的测量数据、进行大量的计算,加上工作周期长、经费偏高等各种问题,造成其工作效率不高。此外,在环境恶劣的荒野、深山、原始森林等地区,实时、实地测量是无法实现的。
2 现代测量技术的应用
2. 1 GPS 在地质灾害监测中的应用
GPS 即全球定位系统,通过接收定位卫星的信号进行测时定位、导航,采用静态差分定位技术,缩短观测时间,减小误差提高精确度。利用GPS 技术监测地质灾害,监测站之间无须要求通视,大幅度削减了工作量。并且通过卫星通信技术能够将监测到的数据传送至数据处理中心,以此来实现远距离的监测工作。目前,GPS 技术已在地震、地表塌陷、滑坡等突发性地质灾害的监测中被广泛应用。其优点在于它非常高效,且精准度已经达到百万分之一甚至可能更高,同时它还有全天候、自动化、多功能而且操作简便等特点。这些诸多优点让它在工程测量中得到广泛应用。GPS 技术在地表外部形变监测中的应用有很多,大致的操作过程以岩体的外部形变监测为例,先在距离岩体较远的地方选取一个稳定点放置GPS 信号接收机,然后选取目标点并放置接收机,经过计算分析可以得出各目标点的位移。利用GPS 系统进行连续监测,就能实现对目标的实时自动监测。GPS 技术取代传统水准测量法,可以降低劳动强度,缩短周期,准确及时地捕获有效信息,在获得高效率、高精度的数据同时,降低监测成本。
2. 2 GIS 在地质灾害监测中的应用
GIS 技术全称地理信息系统技术,它融合了地理学、地图学以及计算机技术和测绘技术,是一项在计算机软、硬件支持下,采集、记录并储存相关的地理信息实现数据库的系统化,并将地理要素进行转化,对计算得出的相关数据进行分析处理的空间信息系统。测量人员按照测量需求,可以使用GIS 技术很快的获取数据,再将结果用数字或图形的方式显示出来。它的主要作用是对空间数据进行分析,对决策和预报有辅助作用。其地理信息拥有空间性、区域性、动态性的特征,其地理数据是用符号来表示地理特征与现象之间的关系,即用文字、数字图像等来表示地理要素的质量、数量及其分布特征与规律。时域特征数据、空间位置数据及属性数据三部分是地理数据的主要组成部分。GIS 技术的应用有效地解决了记录和计算量过大的问题,通过标准的矢量化扫描、数字化摄影测量的方式来测量地球表面物体,可以给我们提供及时且准确的标准化数字信息。还可以应用系统中的有关功能做到空间定点分析,按不同比例尺编制专题图像。
2. 3 RS 在地质灾害监测中的应用
RS 技术全称遥感系统技术,它可以实现同步观测和实时数据信息的提供,并具有很高的综合性,同时在地形观测与资源勘查中RS 技术也是最有力、高效的手段。它可以全天候的获取信息,且周期短、视域宽广、信息量丰富,还能够真实的展现地表物体的大小、形状甚至颜色,立体直观的影像有更好的观察效果。目前RS 技术已广泛的应用于地质、农林业、气象、水文、军事等领域。在地质灾害的监测中,RS 技术可以对灾害做出快速的应急反应,几小时内系统便能获取灾情数据,并迅速对灾情做出评估,其详实评估不超过一周即可完成。
3 结束语
近些年来,由于地质灾害变得日益严重,尤其是突发性的灾害,给人们带来了不可估量的损失。同时,与地质学密切相关的测绘学经过这些年的不断发展,开发出许多现代化的测量技术,为了对地质灾害做出预测并及时开展抢险救灾工作,利用测量新技术对地质灾害进行调查是非常必要的。例如: 被我们统称“3S”技术的遥感技术、全球定位系统、地理信息系统,在灾害的检测及预防中发挥着卓越的作用,并取得了显著的效益。现代测量技术获取数据的速度快、范围广,若正确的对其加以应用,在地质灾害的防治和救灾等方面都有着至关重要的意义。
参考文献
[1]韩世静,安钧鉴. 3S 技术在土地资源管理中的应用[J]. 沿海企业与
科技,2011(04) .
[2]谢慧芬. 遥感技术在地质灾害监测和治理中的应用[J]. 测绘与空
中图分类号:P228.4 文献标识码:A
一、引言
我国是一个地质灾害多发的国家。随着经济建设的蓬勃发展,交通、水利、资源开发等大量工程项目的实施及自然环境变化的影响,滑坡等自然灾害日趋严重,危胁着人民群众的生命财产安全,阻碍我国社会经济的可持续发展。大量滑坡的存在,迫切要求有一种成本低、易推广和有效的监测手段对于这些潜在或是正在滑动的滑坡体进行监测和报警,以避免当大面积滑坡产生时所造成的难以预料的巨大损失。
二、GPS在滑坡地质灾害监测中的应用
(一)滑坡地质灾害
滑坡是指在一定环境下斜坡岩土体在中立的作用下,由于内、外因素的影响,使其沿着坡体内一个(或几个)软弱面(带)发生的剪切下滑现象。滑坡按其自然类别或与工程的关系可分为自然边坡滑坡、水库库岸滑坡、铁路、公路边坡滑坡等。发生滑坡的原因,既有斜坡的内部结构、土石性质等内部因素,也有斜坡边界条件、地表与地下水影响、地震与工人开掘爆破等外部因素。
(二)滑坡的变形监测
滑坡监测包括滑坡体整体变形监测,滑坡体内应力应变监测,外部环境监测如降雨量、地下水位监测等等。其中,变形监测是滑坡监测的重要内容,也是判断滑坡的重要依据。
常规的滑坡变形监测方法是用大地测量方法,即:平面位移采用经纬仪导线或三角测量方法,高程用水准测量方法。20世纪80年代中期出现全站仪以后,利用全站仪导线和电磁波测距三角高程方法进行变形监测。但上述方法都需要人到现场观测,工作量大,特别在南方山区,树木杂草丛生,作业十分困难,也很难实现无人值守监测。
GPS卫星定位系统出现以后,由于GPS定位是利用接收空中卫星信号测距进行定位,国内外专家学者研究表明应用IGS精密星历和最新版本的GAMIT高精度GPS数据处理软件处理数据,中短边相对中误差优于1.4×10-7,长边相对中误差优于1.8×10-9,最弱点点位中误差水平分量优于2mm,可以满足测量控制及滑坡监测精度的要求,而高程监测可直接使用通过网平差获得地高精度的大地高差。监测站点之间不用通视,大大减少了工作量。而且利用无线通信技术可以将观测数据传到数据处理中心,以实现远距离监测。
(三)GPS滑坡监测网的布设、观测与数据处理
应用GPS定位技术监测滑坡体的水平与垂直位移,通常包括布设监测网,数据采集,数据处理与分析等3个作业阶段。
布设滑坡监测网通常可以采用自定义的滑坡监测坐标系。在实际工作中,通常假定一个基准点坐标作为位置基准。基准点应埋设在滑坡体外的基岩上,基准点的个数不应少于2个。基准点之间的边长,通常可采用高精度的全站仪精确测定,并以此作为监测网的尺度基准。为了检验基准点的稳定性,还应定期复测边长。监测网的方向基准,通常可选用滑坡体主轴线的方位,这样使坐标系统X轴方向与滑坡位移方向大体一致,为分析、研究滑坡变形带来了方便。
变形监测点应沿着滑坡体的主轴线与其两侧均匀布设。在选埋基准点与监测点观测墩时,应注意选择具有良好的天空观测环境的地点。通常处在蠕变阶段的滑坡体,其位移量是比较小的。在观测设备上最好选用双频GPS接收机,并配备扼流圈天线。
由于滑坡体面积一般不大,所以不论是基准点还是检测点,相邻点间的边长一般在数十米到数百米之间,因此数据处理可采用随机配备的GPS商用软件包和广播星历。但要求软件具有设置自定义坐标系的功能,并且有进行二维坐标变换的功能。
三、GPS滑坡地质灾害监测的优点分析
根据前面的理论分析与实例研究,可以得出,利用GPS定位技术进行滑坡地质灾害监测时具有下列优点:
(一)测站间无需保持通视
由于GPS定位时测站间不需要保持通视,因而可使变形监测网的布设更为自由、方便。可省略许多中间过渡点,且不必建标,从而可节省大量的人力物力。
(二)可同时测定点的三维位移
采用传统的大地测量方法进行变形监测时,平面位移通常是用方向交汇,距离交汇,全站仪极坐标法等手段来测定;而垂直位移一般采用精密水准测量的方法来测定。利用GPS定位技术来进行变形时则可同时测定点的三维位移。
(三)全天候观测
GPS测量不受气候条件的限制,在风雪雨雾中仍能进行观测。这一点对于汛期的崩塌、滑坡、泥石流等地质灾害监测是非常有利的。
(四)易于实现全系统的自动化
由于GPS接收机的数据采集工作是自动进行的,而且接收机又为用户预备了必要的入口,故用户可以较为方便地把GPS变形监测系统建成无人值守的全自动化的监测系统。这种系统不但可保证长期连续运行,而且可大幅度降低变形监测成本,提高监测资料的可靠性。
(五)可获得高精度(mm级)
mm级的精度已可满足一般崩滑体变形监测的精度要求。需要更高的监测精度时应增加观测时间和时段数。
四、结束语
据不完全统计,全国受到滑坡危害和可能受到滑坡危害的地区约占陆地面积的1/5~1/4。平均每年至少造成15~20亿元的经济损失,使大约1500~2000人丧失。利用GPS技术进行滑坡地质灾害的监测,具有常规测量方法无法比拟的特殊优势,因而在滑坡、崩塌、泥石流等地质灾害的监测中已经得到了很广泛的应用,成为一种新的更有效的监测手段。
二、实时监测
1、监测内容
街道指挥机构负责监测、收集本辖区内降雨、水位、泥石流等信息,接受传递上报。按照“政府负责、站点预警、群策群防”和“谁受威胁、谁负责监测”的原则,对本辖区内主要隐患点建立山洪灾害防御的群测群防体系和日常监测制度。
2、监测要求
结合街道具体情况,主要以雨量监测为主,群防群测为主,专业监测为辅。
三、通信
当灾害来临时,应立即采用电话及时进行报告。一旦通讯线路遭到破坏,应立即采取措施并派人向指挥部报告。一旦出现汛情,防汛指挥部指派专车、专人承担信息的传递,以保证抢险物资、队伍及时到位。
四、预报预警
1、预报内容
气象预报(天气、降雨量)、山洪—泥石流水(泥)位预报。
气象预报按照气象部门提供的预报进行预报;山洪—泥石流水(泥)位预报应按国土资源部门提供的预报信息进行预报。
2、预警内容
降雨是否达到临界雨量值、可能出现大的暴雨等气象监测和预报信息;山洪水雨情监测和预报信息;可能发生泥石流的监测和预报信息等。
3、预警启用时机
(1)当接到暴雨天气预报,防汛指挥部负责人和各工作组人员应引起高度注意和重视,值班、值勤和监测人员必须在岗。当预报或监测所发生的降雨接近或达到相应的临界雨量值(临界雨量值及
预警标准划分表)时,应即时相应的暴雨预警信息。
(2)当洪道出山口水位接近或达到临界水位时,应当即时预警信息,街道防指启动预案将危险区人员向安全区转移撤离。
4、预警信息处理办法
(1)街道防汛办:
A、在收到区防汛办的信息后,处理办法:
三级预警:将信息通知至街道防指全体成员和社区防御工作组,街道防指副指挥上岗指挥。街道防指监测组、信息组投入工作,其他各应急组集结待命。同时将防灾组织及准备情况及时上报区防汛办。
二级预警:将信息通知到街道防指全体成员和社区防御工作组,街道防指指挥长上岗指挥。街道防指成员全部在岗,监测组、信息组密切掌握情况,其他各应急组进入社区,与指定安全区所在街道防指及时沟通协调,并组织危险区居民随时准备转移撤离到指定的安全区,为转移撤离和抢险救灾做好一切准备工作。同时将防灾组织及准备情况上报区防汛办。
一级预警:将信息通知到社区、户,街道防指各成员、各防汛工作组及各部门和单位负责人全部按岗就位,按指挥部统一指挥安排,以最快的速度开展防灾救灾行动。按既定的撤离路线和安全区安全转移群众,全面投入抢险救灾工作。同时将防灾救灾组织及准备情况及时准确地上报区防汛办。
B、与区信息中断后,处理办法:
街道根据当地的降雨情况,自行启动预案,并设法从相邻街道与区防汛指挥部取得联系。
C、与社区信息中断后,处理方法:
各责任人直接下到社区,组织指挥避灾、救灾。
(2)社区防御工作组:
A、在收到区、街道防汛办信息后,处理办法:
三级预警:将信息及时通知至社区主要干部。社区防御工作组指导员、组长及各成员上岗指挥;巡查信息员密切注意天气变化,加强巡查和信息联系;其他各应急队人员进岗待命。同时将防灾组织及准备情况及时准确地上报街道防汛办。
二级预警:将信息及时通知到所有社区干部、各应急队和危险区、警戒区内各住房,巡查信息队加大巡查密度和信息联系,做好人员转移等各项准备工作。同时将防灾组织及准备情况及时准确地上报区、街道防汛办。
1.地质灾害监测中高分辨率遥感的研究现状
我国的地质灾害种类多、分布广、危害大,成为世界上地质灾害最为严重的国家之一。特别是崩塌、滑坡、泥石流等突发性地质灾害频繁发生,给人们的生命财产造成了巨大的损失,引起社会的不稳,而其造成的间接损失更是无法估计[1]。地质灾害是指在地球的发展演变过程中,由各种自然地质作用和人类活动所形成的灾害性地质事件。随着社会经济的快速发展以及工业化的起飞,人类活动对地球的作用越发明显,直接或间接地引起更多更严重的地质灾害。
为了有效地预防对地质灾害的发生,需要一种先进的技术对地球环境进行连续监测,而遥感技术的出现解决了这个问题。遥感技术通过对地质进行连续观测,能及时发现并提前预报灾情的发生。随着现代航天技术和高分辨率遥感技术的飞速发展,卫星遥感图像的获取越来越容易,同一地区图像获取周期越来越短,图像的精度越来越高[2]。高分辨率遥感技术的出现不仅为地球资源与环境监测研究开辟了广阔的前景,而且为地质灾害的调查和研究提供了崭新的手段。高分辨率遥感影像在地质灾害监测得到广泛的应用。
赵琪等通过分析高分辨率遥感影像来获取建筑物的属性信息,并结合现场调查数据,建立震害矩阵预测震害,最后通过计算综合地震危险指数来评价该区域的综合抗震能力[2]。2008年5月12日,四川省汶川县发生Ms8.0级特大地震。汶川特大地震造成了滑坡、崩塌,并严重损毁了交通基础设施,给全国人民带来了极大的损害。陈世荣[3]等在应急期间缺乏地面调查的情况下,利用高分辨率遥感图像对道路震害损毁进行了快速及较为准确的评估。长期以来,我国对矿山的开发利用管理不全,部分矿区开发秩序混乱,乱采乱挖现象常发生。矿山开发引发了一系列的问题,如水污染、环境破坏、塌矿等严重影响了周围人们的生活及带来了极大的安全隐患。为了对矿区进行有效地管理,保护矿区,高分辨率遥感技术能够实时、高效地监测矿山开发的水土环境。通过利用高分辨率遥感影像提取矿山开发信息实现对矿区的直接的监测[4]。在建立矿山地质灾害遥感标志的基础上,对高分辨率数据进行空间分辨率融合和信息增强,对多种地质灾害进行识别和提取。马超,徐小波[5]等提出利用高分辨率星载SAR进行矿区灾害的监测。唐川、张军[6]等首先对美国高分辨率的“快鸟”影像进行土地覆盖类型遥感解译,然后根据泥石流危险程度和土地覆盖类型特征,构建城市泥石流灾害的损失评估模型,最后结合GIS计算完成泥石流灾害损失计算和评价。滑坡遥感检测对于灾害调查有重要的意义,在对试验区滑坡遥感图像特征进行分析的基础上,胡德勇等[7]提出了基于对象的高分辨率遥感图像滑坡检测方法,并将该方法用于高植被覆盖的热带雨林地区。然而,传统的光学影像容易受到天气的影响,导致图像不清晰,因此,基于单一遥感数据源提取信息非常有限。然而,多源遥感影像的融合能提供一个比较好的方法。薛东剑、何政伟等提出采用光学遥感和雷达数据进行地质灾害区的滑坡监测。刘圣伟、郭大海[8]等提出利用精度更高的,受天气影响很少的、穿透率很高的机载激光雷达技术进行滑坡灾害调查和监测。结果表明机载激光雷达坡度和地表粗糙度图像能够提供精确的微地貌特征量;多期机载激光雷达数据进行滑坡动态监测,可以掌握一定时间段内滑坡体的变形趋势。
2.高分辨率遥感技术监测矿山水土环境
大量实践结果表明,利用高分辨率遥感技术对地质灾害进行分析、识别、监测,建立地质灾害动态监测系统,是预防减少灾害的一个有效的途径。其中高分辨率遥感技术在地质灾害监测中的基本过程包括:
图1 地质灾害遥感监测基本过程
以高分辨率遥感技术监测矿山开发区的水土环境为例,概述利用高分辨率遥感技术反演矿山开发土壤重金属的污染。多数学者认为土壤中的重金属元素含量很低,对土壤光谱曲线影响很微弱,甚至没有影响,那么通过直接分析重金属元素的特征光谱来估计其含量比较困难。Kooistra等[9]通过研究发现莱茵河流域土壤中的Cd,Zn与有机质含量之间存在很好的正相关,并利用了可见光-近红外发射光谱和偏最小二乘回归法预测土壤镉、锌的含量。由于土壤组成成分复杂,而且每个组分对光谱的影响是非线性,使得土壤辐射过程很复杂,直接建立土壤组分与光谱特征之间的物理模型非常困难。因此,首先利用主成分分析找出影响最重要的几个组分来代表土壤中所有的组分,而且选出的几个组分之间互不相关。然后利用多元逐步回归分析方法研究选取的多个自变量与一个因变量之间关系,通过回归系数来确定自变量的影响程度。偏最小二乘回归方法融合了多元回归和主成分分析的特点,通过实施因变量Y对提取自变量X的主成分t进行逐步回归,直至达到满意的精度为止。偏最小二乘拟合能够处理严重的共线性,适合于样本个数小于变量个数的情形。同时相对于PCA,其进行波段变换时不仅考虑自变量本身,而且同时也考虑因变量。因此,偏最小二乘回归比PCA更有效。然而,偏最小二乘在变量投影时,并没有去除噪声波段或者不相关变量。
3.结论
本文分析了高分辨率遥感影像在地质灾害监测中的应用,并以矿区土壤重金属污染遥感监测为例,利用光谱信息进行土壤重金属污染的遥感反演,得到以下一些结论:
(1)高分辨率遥感技术能有效地、实时地、大范围地监测地质灾害及其过程。
(2)在土壤重金属遥感反演过程中,大多数研究者都采用经验统计算法,并没有充分考虑土壤重金属分量特征,精度偏低。
(3)由于土壤中重金属元素含量很低,对土壤光谱曲线影响很微弱,因此需要借助于其他矿物之间的相关关系反演土壤重金属含量。今后的发展应该是利用航天航空高光谱,从不同空间尺度讨论利用遥感信息反演土壤重金属含量。 [科]
【参考文献】
[1]池长艳.基于高分辨率遥感影像的滑坡灾害危险性评价研究[D].山东科技大学,2009.
[2]赵琪,翟永梅,李铁铮.高分辨率遥感图像在城市快速震害预测中的应用研究[J].灾害学,2012(2):72-76.
[3]陈世荣,马海建,范一大,等.基于高分辨率遥感影像的汶川地震道路损毁评估[J].遥感学报,2008(6):949-955.
[4]征刘,赵旭阳,党宏媛.矿山开发的水土环境效应遥感监(下转第175页)(上接第120页)测研究进展[J].石家庄学院学报,2012(3):83-88.
[5]马超,徐小波,刘春国,等.高分辨率星载SAR矿区灾害监测的应用潜力[J].河南理工大学学报(自然科学版),2011(6):684-689.
[6]唐川,张军,万石云,等.基于高分辨率遥感影象的城市泥石流灾害损失评估[J].地理科学,2006(3):358-363.
1 应急监测特点
所谓应急监测从阶段上讲就是介于群测群防与专业监测之间的应急措施,它在地质灾害刚发现或发生时,为专业人员提供应急状态下灾害体形变信息传送,专业人员以此来判断灾害体变形特征、发展趋势、破坏形式,有效地避免各种损失和伤亡。抢险救助的紧迫性与广泛关注度的状态,决定地质灾害应急监测不能像专业监测那样按部就班地展开,也不能像群测群防那样简易观测,必须做到响应迅速、应急布设。面对突发的地质灾害灾情或险情,如何在工作区环境恶劣、安全风险高、灾害体信息有限等情况下,通过憷速制定监测方案、快速部署监测设施、快速获取监测数据,及时准确地为应急抢险决策提供数据支持,井做到布得精、留得住、便维护、测得准、可遥测,仅靠灾害发生时制定切实可行的监测内容、方法、方案是不够的,还需前瞻性地做好事前应急监测准备(预巢、装备等)和事中快速响应。
2 应急监测技术
应急监测所处阶段的特殊性和形式、状态的独特性决定,不是目前所有的地质灾害监测方法、手段都适宜,应根据地质灾害体特性和所处环境,选择合理的内容、采取可行的方法、制定影善的方案开展应急监测。
2.1 监测内容
地质灾害体的形变发展是一个空间多维复杂的过程,特殊阶段决定应急监测内容不能像专业监测那样面面俱到,只能利用应急调查短期所掌握的有限灾害体特征,实现应急监测的快速部署、准确获取、实时监控。应急监测多以地面监测为主、多方法并存为原则,内容上以便捷免维护的地面位移监测为主,兼顾深部和环境印证监测。因地表绝对位移监测即可获得变形数量,又能测得位移方向,全而地反映了灾体的位移矢量特性,在应急监测中优先考虑。而深部形变监测需进行开挖或钻孔施工,周期长、安装复杂,只在时间和安全有保障的条件下使用。其他监测内容则根据灾体的具体特点,选择性地采用(表1)。
2.2 监测方案
应急监测方案的制定,必须建立在对灾害体全面调查分析基础上,针对灾害体性状、特征准确预判其变形发展状态和趋势,是制定适宜的应急监测方案、有效开展应急监测的关键。依据地质灾害的种类、规模、危害、变形等特性,如何从错综的形变行迹中选择有代表性的部位和监测方法组成监测网,通过各类传感器及时准确地感知灾体的变化,实时获取变形信息,分析预测灾体发展趋势,是应急监测的核心。不同种类、特性的地质灾害采取的监测内容和方珐是不同的,必须兼顾考虑应急监测方案的有效性、实时性、系统性。而突发性、不可预见性致使对象不明确和监测的应急特性,要求应急监测工作不能“等米下锅”,需通过对现有地质灾害专业监测工作的统计分析,假定可能突发灾害的种类、规模等,超前拟定应急监测方案库,建立监测没备库。
通常对危害、规模特大的地质灾害,一般布设3条纵贯灾害体的监测剖面和适当的短辅助剖面;规模、危害重大的灾害,多布设一条主纵剖面和必要的短辅助短剖而。并在地面有代表性部位、控制性主干裂缝上布置适量的裂缝和位移监测点;对降雨敏感型灾害体布置雨量自动监测;有条件的在主监测剖面上设置地下深部位移和地下水监测,关键部俅设置远程视频监控系统,以此构成纵横交织的综合应急监测网,实时掌握灾害体的变形发展状况。
进行监测设备选型、组网时,需针对灾害体所处环境、可能发生的最大形变量来选择仪器适应性、量程和精度.并不是精度越高越好、没备越尖端就越先进。如移动通讯网络没有覆盖的地区,就只能采用北斗系统、星载雷达、全站仪等开展地面绝对位移监测;通常裂缝变形监测只需要达到毫米精度,对于细小墙体裂缝和地面、危岩体宽大裂缝所用监测仪器足不同的;对降雨没有相关性的采空区地面塌陷、抽采型地面沉降等灾害,无需进行降雨量监测;在施工安全没有保障的灾害体上进行钻孔施工,开展深部位移监测是不现实的;现场远程视频监控的可视化、实时性,常被用于泥石流的应急监测和应急指挥系统的远程监控等。所用设备还要能适应当地湿度、温度等环境条件,便于维护保养、能实现全天候自动监测要求等。
2.3 信息采集与传输
监测信息采集与传输通常按照灾害体的平面范围和监测点的分布,有分布式和集中式两种。对于监测点相对集中.便于电缆组网埋设的,常采用集中式信息采集和传输;而对于布线困难、监测点分散的灾害点,则选择分布式或与局部集中相结合的信息采集和传输方式。信息传输是应急监测网络化、系统化、信息化的重要环节,是将采集的信息通过传输平台传递到各个管理中心的过程,当前的传输方式有人工、网络、通讯、卫星等。