欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

路线设计论文大全11篇

时间:2023-04-14 16:51:47

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇路线设计论文范文,希望它们能为您的写作提供参考和启发。

路线设计论文

篇(1)

当工作人员无法从塔身内部进入外部进行工作时,可以从外侧向内进入电场,这种方式类此于将工作人员使用吊臂从安全路径进入电场这种作业方式分成上、中相进行,中相的横担较长于上相,在进行上部工作时一般将增长平梯和摆梯。在进行作业时将绝缘横梯作为作业人员进入电场的绝缘悬臂梯,在其端部及中部要设置固定性较好的拉绳并将其固定在架空地线支架上,并且在绝缘悬臂梯的两端进行悬臂的设置。在进行设置时要考虑等电位的安全距离,进行等电位电工时要从上往下进行,当作业人员确定好所站的位置时就应该将牵引摆梯的绳子拉近至带电导线,从而有助于作业人员进入等电位。当工作人员无法进入下相横担时,一般是因为导线位置无法形成安全距离,当采用悬臂横杆时可使用其导线将工作人员的位置适当移动,从而保证安全距离;另外在进行下相工作时要尽量保证其余上、中相之间的距离,尽量保证相邻的两层横担之间具有3.5米的安全距离,从而保证作业人员的安全。

2多回路线

多回的耐张塔上的工作会因为上一相线的引流线具有一定的柔性和驰度从而会对作业人员的安全距离形成威胁。使用杠杆原理可以使用工具将引流线向外旋转从而保证作业人员可以进行安全行动。可以在工作中使用限距支撑绝缘杆,其杆上刻有刻度另外端上有金属钩可以在引流线上固定,除此之外其防滑套可以保证固定在横担上的稳定性。该工具的存在是为了能在进行挑移引流线工作时能帮助作业人员进行安全距离的及时控制。在进行耐张引流线跳移时,可以借助于绝缘杆,使用绝缘杆将引流线推至适宜位置,将会存在一个较大的水平分力。这将会导致引流线变形,从而会影响引流线与瓷瓶串之间的距离,会导致在作业工程中存在一定的安全隐患。可以使用相关的措施来改变情况的产生。在可选装的杠杆上安装特制的旋转钩杆,并安装与横担的端部同时在绝缘杠杆的导线端设置加工索指套,在进行操作过程中,可以使用引流线弧垂值进行数值调整。在进行工作时可以通过杠杆的转动完成引流线位移的调整。但值得注意的是位移值的设置要满足一定要求,即其杠杆在固定与横担的上、下横担,从而有助于作业人员的横担工作。除此之外,在正常工作中一般耐张杆不会有太大的尺寸变化,但由于实际中会存在线路的曲折系数,会使用角度较大的转角杆塔,从而可能导致引流线塔旋转尺寸较大。在进行转角杆塔内角侧进行工作时,可以使用引流旋转来加大安全距离。外角侧引流的选装会造成横担的头部尺寸进行缩小,从而会导致安全距离不足。由此可见其转角度数会对带电作业的影响是重大的。

篇(2)

二、电力线路基础设施设计

杆塔是电力线路结构中非常重要的一部分。它的劳动消耗量、工期以及造价在整个工程中占很大比重。其运输量大约占整个工程的3/5,工期大约占整个工程工期的一半,费用大约占整个工程的1/3。因此施工、设计、基础选型的优劣会对工程线路的建设有直接影响。电力线路杆塔基础分为两类,一是铁塔基础,二是电杆基础。它的型式应根据运输、施工、水文、工程地质、沿线地形以及杆塔型式等进行综合判断。送电线路按其承载力特征可分为倾覆基础、岩石锚桩基础、钻孔灌注桩基础、掏挖扩底基础、爆扩桩基础以及大开挖基础等类型。应充分利用工程所在地材料并严格遵守技术要求。

三、杆塔进行定位时需要注意的问题

在对电力系统进行设计时,应积极解决塔杆定位中遇到的问题,并尽最大可能的采取一些措施,避免出现档距过大的情况。如果出现以上问题,很可能是塔杆在受力时遭到了严重的破坏。这样不仅给相关电力设备和塔杆的维修造成不便,还给施工造成了很大困难。当塔杆需要把位置设立在山地时,不仅要保证线路架设塔杆时立杆拉线和焊接排杆符合要求,还要充分保证山地周围边坡的稳定性。当塔杆需要把位置设置在陡坡上时,一定要充分考虑基础的稳固性和安全性,还要观察是否有被雨水或洪水冲刷,导致严重后果的可能性存在。

四、杆塔定位后需要对其进行校验

1.交差跨越间距的校验当电力线路与铁路、河流、电力线、通讯线等交差跨越时,必须与被跨越物体之间保持足够的安全距离。定位之后,可以直接在断面图上进行测量。但是为避免因为模板和图纸的误差对间距造成影响,使间距不够,在数据接近规定值时,应该运用计算方法求出间距的准确数值。当跨越杆塔是直线型杆塔时,还要对邻档断线时被跨越物和电力线路的净空间距离进行校验。由断线的张力,就可以求出相应弧垂,然后可以得到断线之后的跨越间距。如果满足不了规程的要求,则应该采用高杆塔或者调整杆位来解决。2.直线杆塔摇摆角的校验有些杆塔处于较低的位置,它的垂直档较小,当有风吹电力线路时,悬挂串摇晃幅度较大,如果当摇摆角度超过杆塔的允许范围时,将引起很多状况,比如杆塔构件与带电部分安全间距不够,所以必须对杆塔摇摆角进行校验。在平地上,摇摆角超过允许范围的情况非常少,但是在丘陵地带和山区,摇摆角超过允许范围的情况就较多。这种情况下,解决的办法一般有5种:一是将单联悬挂串更改为双联悬挂串或加挂重锤。二是孤立档距应该考虑降低电力线路的设计应力。三是采用Y形或V型的绝缘子串。四是换用允许摇摆角度大的或是较高的杆塔。五是调整杆塔的位置。

篇(3)

1.1电阻测量法

1.1.1分段测量。分段测量是在机电设备电气线路故障中十分常用的测量方法,以线路里自然断开的点为分段点,把线路分成2段或是3段,先分别测出每段线路的阻值,倘若阻值无穷大,就说明该段存在断路故障,然后就可以逐级检查该段线路,直到准确找出故障点。

1.1.2分阶测量。这里的分阶测量同电压测量法里的分阶测量比较类似,主要不同就是电阻值的测量。在这里需要注意的是:测量时要断开电路电源,避免烧坏万用表;断开被测量电路和其他电路,避免其他电路尤其是同被测量电路并联的电路影响测量结果,误导后续工作;如果测量值和理论值相近或是相等,就表示线路接线没有故障,倘若测量值比理论值大很多,就表示线路里有接触不良的情况,如果测量线圈等负载,且电阻值为零,就说明线圈有短路情况;测量时要注意万用表的实际量程[1]。

1.2短接测量法

1.2.1局部短接。在电压正常的情况下逐一短接相邻的两个标号点,如点1-2、点2-3,如果短接到某两个点KM1出现吸合,就表示这两点间有断路情况。但这种方法只适用在一个故障或是线路元件少的时候。

1.2.2分段短接。通常将短接线一端固定在L1点,另一端逐段移动,减少短接次数,节省更多时间。如短接线一端固定在L1点,另一端移动到3号点,倘若KM1出现吸合,就表示故障范围在点3-L1之间;再将短接线移动到点1或是点2,直到确定故障具置,而点3-5就可以不用测量了。倘若KM1没有出现吸合,就表示故障在点3-5之间,这时就应将短接线移动到点4-5实施分段短接,直到确定故障位置。倘若断路点在点6-L1之间,那么短接的时候就要同时按下开关SB2[2]。这种方法通常用于测量次数多或是只有一个故障的线路。

1.3电压测量法

1.3.1分阶测量。分阶测量属于实用性较强的方法,主要是把万用表的一个表笔同被测量电气设备一端连接起来,另一端就分别连接电路里不同点位点,基于不同点万用表的实际读数确定电路的故障位置。如果万用表两个表笔间不存在故障,那么万用表的读数与电源的电压就应一样。点同被测量点间的电压为零,就表示这两点间有断路情况,这时就要借助万用表在两点间逐个测量,确定断路点。

1.3.2分段测量。分段测量基本原理同分阶测量基本原因一样,在分段测量里是逐段检测电气设备,这种检测方式适用于断路范围比较广的电路检测,可以节省很多检测时间。通常来说,逐段检测法常被运用到大型电气线路的断路检测。

篇(4)

1线形设计中的安全问题

1.1直线。过长的直线段,易使驾驶员因景观单调而产生疲劳,一旦有突显信息出现,就会因措手不及而肇事。另外,驾驶员在长直路段爱开快车,致使车辆进入直线路段末段后的曲线部分速度仍较高,若遇到弯道超高不足,往往导致倾覆或其它类型的事故。

1.2平曲线。平曲线即弯道,平曲线与交通事故的关系很大。在圆曲线上,由于横向力的存在,对汽车的安全行驶会产生不利影响。大半径曲线比小半径曲线的事故率低;连续曲线当半径协调时,事故率比不协调时低。

1.3纵坡度。调查表明,在平原地区、丘陵地区和山区高速道路上,发生于坡道部分的交通事故分别占17%、18%和25%。分析山区高速公路坡道上交通事故率高的原因,主要是下坡时,驾驶员为节油常采取熄火滑行的操作方法,一旦遇到紧急情况来不及采取应急措施。

1.4线形组合。行车安全性的大小与不同线形之间的组合是否协调有密切的关系不良的线形组合往往是诱发安全隐患的重要原因。如线形的骤变,在直线路段的凹形纵断面上,在凸形竖曲线与凹形竖曲线的顶部或底部插入急转弯的平曲线,在凸形竖曲线的顶部或凹形竖曲线的底部设置断背曲线,纵坡长度过短,出现锯齿形纵断面等等。

2线形设计中的其他问题

2.1公路选线与公路平面、纵断面、横断面等线形设计密切相关,山区高速公路的线形设计往往忽视了与选线工作的重要性,线形和选线之间缺乏联系。

2.2山区高速公路线形设计的各个阶段,忽视运用先进的手段对线形设计方案做深入细致地研究,没有经过充分论证和比选就确定设计的最优方案。

2.3山区高速公路线形设计时缺乏与农业基本建设的配合,出现了占多农田,占多高产田的现象。

2.4山区高速公路线形设计忽视环境保护,忽视对工程地质、水文地质进行勘测,没有查清其对高速公路的影响,缺少采取相应的措施。

3线形设计问题的对策

3.1安全问题的对策。在平曲线上应该保持期望车速的连续性,如果由于经济和环境的原因在某一地点标准降低,就应通过清晰的标志、标线和其他警告设施提前告之驾驶员前方潜在的危险,并引导他们安全通过危险位置。曲线的偏角不能太小。曲线偏角过小时,曲线长度看起来将会比实际的短,使驾驶员对公路产生急转弯的错觉,这种错觉偏角越小越显著。尽可能使用缓和曲线,使用道路曲线能自由流畅。缓和曲线是从安全角度出发设计的一条驾驶员易于遵循的路线,能使车辆在进入或离开圆曲线时不致侵入邻近的车道。慎用直线,直线长度的长短直接影响车辆的行车安全。直线过长时,在长直线上行车过于单调乏味,容易造成驾驶人员的疲乏和放松警惕。与地形相适应的路线不仅能诱导驾驶员的视线,而且能使司乘人员心情舒畅,提高驾驶的安全性。在纵断面设计中,影响交通安全的因素有纵坡、坡长和竖曲线半径,采用较小的纵坡和大半径的竖曲线,能同时为驾驶员提供良好的视距及超车机会,有利于行车安全。因此,在竖曲线设计中就尽量避免连续的短竖曲线(特别是在直线路段)和长而浅的凹型竖曲线上应确保道路的横向排水系统。横断面设计要素包括路面、路肩、路拱、路缘带、边沟、中间分隔带等对行车安全都有影响,其中尤以行车道宽度和路面状况对道路安全的影响最大。因此,规划设计人员在规划设计中要始终贯彻以人为本的理念,为用户提供安全、快速、便捷、舒适的公路交通基础设施。

3.2其他问题的对策。山区高速公路线形设计,首先,根据山区特征顺应地形设计,即是线形设计要达到平面顺适,纵面均衡,横面合理,降低路堤高度,减少切割,尽量保护山体平衡体系。其次,根据山区地质水文条件设计线形,由于山区地形复杂,线形设计时应尽可能多地收集有关地质水文方面的资料,并进行实地踏勘,较全面地掌握有关地质水文情况,根据地质水文条件,使线形设计尽量避开不良地质地段和复杂的地质构造带,减少地质灾害发生的机率。线形必须经过不良地质地段时,在满足技术标准的前提下,尽量利用纵断面的变坡点控制填挖高度,减少开挖面,使路基设计时较容易采取有效措施防治地质灾害。对于受地形、地质水文条件及技术标准限制,纵坡控制难度较大时产生的高填深挖路段,因形成的大面积新坡面在雨水冲击下易产生山体崩塌、滑坡,一定要进行多方案比较,不仅从经济上作路基高填深挖与桥隧方案的比较,还要从技术上分析方案的可行性,全面分析地质情况,综合考虑环境因素,使工程经济、合理。如果各方案在技术经济上相当时,从保护自然环境考虑,宜选用桥隧结合方案。另外,高速公路工程穿山越岭跨江过河,连接城乡,工程沿线地形地貌变化多端,地质水文条件复杂多变,公路线形设计必须适应多变的环境,坚持人与自然相和谐、尊重自然、保护环境的原则,坚持以人为本,坚持安全第一,注重道路的功能需求,使线形顺适,平、纵、横组合合理,满足技术经济标准,有良好的视线诱导,注重环境保护,结合工程沿线植被及气候等自然条件,合理利用自然资源。线形设计应避开自然保护区、水源、人文景观、居民区等生态及社会环境敏感区,尽可能绕开森林、湿地、水利设施和基本农田,少拆迁电力、通讯设施及建筑物,由于山区土地资源十分珍贵,所以更应充分利用荒山、荒坡地及劣质地,在满足技术标准的前提下控制填挖,尽量减少对自然景观和植被的破坏,在不可避免的情况下要同步做好恢复工作,使公路自然融入周围环境,形成和谐的人工景观。超级秘书网:

参考文献:

[1]白冰,王飞.浅谈山区高速公路线形设计的原则和优化[J].科技信息,2009(5).

篇(5)

(2)对应设置传输线,传输线的设计应该设置成为具有高度对应项,使电厂按照详细规划和变电站的设计相一致的特定方案,限制区域要使用相同的塔架设回直立设施。

(3)要选择合适的导线长度。两个分站之间的线路长度是尽可能短,以避免电力功率的损耗。并且选择材料上要注意材料本身的电阻值、密度、延展性等问题,避免由于导线材料选择不当造成导线自重过大造成危险,也应该避免相应电阻值过大的导线材料造成导线发热出现火灾。

(4)根据高差和间距设置,以避免电线塔间距输电线路选线过大,由于地面沉降,如过度的风偏的现象最终造成导线垂低等不良后果。

2输电线路工程设计与施工的管理和控制要点

根据所处环境的不同,输电线路的施工非常容易受到各种外界因素的影响和破坏,因而,发生事故的概率很大。另外,导线在外的特点要求导线与地面、建筑物等设施之间要有一定的安全距离,因此造成输电线路占地空间和线路廊道的增大,从而对土地的利用情况产生影响。下面,本文从几个方面介绍输电线路工程设计与施工过程中的管理和控制要点:

2.1输电线路导线的选择

传输线导体的主要作用是传导电流,传送功率,这是该部分的主要部分。电源线被设置在所述塔,不仅需要承受导线本身的重量,而且还由雪,雨,阳光和温度的影响,并因此,电线线路的选择设置应该选用机械强度高电气性能更好。许多类型的传输线导体,该ACSR最广泛的应用,主要是由于该ACSR通常是由多股铝导线绞合的形成引起的,是最好的导体的电流传输,钢丝的内部绳股,使强度提高该行也起到了非常重要的作用。在电力输送网格系统中,电压电平越高,传输容量,也能对外部环境的影响更加敏感。为了提高电力传输的质量和降低高频通讯以及所选择的电晕丝的干扰是非常重要的。在正常情况下,使用为确保引线组成的两个或更多个高压输电线路,并根据传输容量、电流强度、供电密度、发热的情况下、损失的最大金额去共同决定导线的横截面的选择电力和其他条件。有关符合导线质量扭曲的机械张力,以满足密封性要求和均匀性的金属丝的表面内的规定的购买请求应光滑,腐蚀斑点的条件和包含物不可以存在。

2.2输电线路路径的设计

1)图上选线

图上选线主要是指通过收集到的输电线路周围区域的航测图、地形图等信息,根据以往的经验,标识出其中的起点、终点和其他必经的地点等位置,然后参考水文地质、民航、交通气象等相关资料,使线路路径的选择尽可能的避开较大的设施和其他影响区域,另外,考虑到不同地区的交通条件,要根据路径最短的原则,规划多个可实施方案,然后将这些方案进行经济和技术上的对比,进而选择一个最优的线路路径方案。

2)现场选线

这一步骤的任务是将图纸路线落实到实际现场中,并进行实地踏勘。该阶段要求工作人员具有较强的毅力和耐性,因为一个线路可能需要进行多次的走访和勘察才能最终确定。输电线路的选择要尽可能的避开地质不良区域、果木林园、森林等地带,同时还要检查已经存在的线路的覆冰情况,避免线路经过严重覆冰的区域。最后,要对交通运输的便利性进行充分考虑,以方便线路工程的施工和维护。

2.3输电线路杆塔的设计施工

传输线塔是用来支持导线的设备,使之能不管在什么样的天气条件下,都能够满足的安全要求并确保电磁场的电绝缘性。传输线塔支撑结构,因此,塔架构造周期,运输时间和成本,以及建设成本等占有相当大的部分。因此,要加强选择和塔的施工队伍设计的重点。着重注意设计的塔结构,成本,尺寸,等等。根据情况的内容。线路初步设计时,应严格按照该设计过程中的成本估算的有关规定,利用塔模型尽可能之前已经实施的,如果你需要使用新塔将不得不反复研究,计算和科学实验,从而避免不必要的损失。

2.4输电线路的其他内容

首先,在输电线路工程设计过程中,我们应遵循实事求是的原则。例如,输电线的选择方面,线应及时更新有关的技术;在施工设备上线的选择,尽量使用节能,高科技材料的;在设计方面行路,他们必须利用已经成熟的手段。要加强重点输电线路路径优化程度,不断学习新的技能,并使用这些技能输电线路的设计和施工服务。其次,根据输电线路的建设,要运用经济和先进的开挖基坑与人工挖孔桩基础技术,可有效降低混凝土的用量,节约工程投资,减少开挖方量,减少水和土壤,破坏周围的塔的基底部的植被。此外,使用根据实际情况作适当的施工方法施工人员的要求,提高输电线路基础工程的质量。最后,整个设计和建造输电线路工程,加强对相关环节的管理。设计与施工输电线路工程的重要组成部分,施工人员加强管理,包括工作人员和工程材料的管理,防止废弃物胡乱丢弃现象的发生,而且还可以防止员工松弛状况出现。

篇(6)

2电线线路路径设计分析

在220kV架空输电线路设计过程中,电线线路路径的设计是整个输电线路设计的关键,直接影响着输电线路设计的经济性、可行性以及可靠性,是整个输电线路的成败关键。通常对输电线路路径的设计是本着电力系统的稳定性和可靠性的原则,然后设计出施工简单,且成本较低的路径。而对于输电线路路径的设计主要从两个方面分析,一个是图上选径,另一个是现场选径。对于图上选径,输电线路路径设计人员首先要集中输电线路附近的地形图,然后依据经验,把输电线路的起点、所经过的必须点以及终点标记起来。其次在分析各个地点附近的自然环境和交通条件等,不断的分析修改,争取找到科学合理的输电线路路径,然后制定方案。最后,等到准备好一切的基本工做,输电线路路径设计人员可以依据设计方案选择合适的材料和设备。对于现场选径,也就是让输电线路路径设计人员对实地进行考察,然后把图纸中的路径设计落实到现场。然而在这个过程中,需要输电线路路径设计人员付出很大的耐性,因为通常一个路径往往需要勘测多次才能确定。除此之外,在现场选径的过程中,要避免穿过森林、花园以及农田。同时也要考虑现场的自然环境,避免经过覆冰现象严重的地带。

3电线杆塔的设计分析

在220kV架空输电线路的设计过程中,杆塔主要用来支撑220kV架空输电线路,在杆塔的选取设计过程中,工作人员应该充分考虑其建设的造价、施工工期以及其运输的费用等。由于不同型式的杆塔,在施工过程中的运送、施工、占地等都不相同,所以在选择杆塔时,要考虑当地的地质以及气象等,设计符合要求的杆塔,确保架空输电线路正常完工,且成本花费较低,工期比较短。通常在220kV架空输电线路设计时,依据当地的实际情况,尽量选用已经被运行的成熟的杆塔,避免使用新型的杆塔,因为要是使用新的杆塔还要进行一定的测试,然后要对其进行研究分析,这样不仅会浪费大量的时间,还会浪费一定的金钱,造成不必要的损失。

篇(7)

二、设计防雷保护

防雷技术是否完善能够关系到整个电力系统能否正常运行,是电力系统维护的重要部分。我们需要实施防雷结构设计,针对不同的电力系统结构,解决雷电打击的问题。防雷保护需要把握好不同装置之间的搭配运行,借助于各类防雷装置引进防雷技术,并且工作人员需要借助于不同的施工技术维护高压输电线路。①屏蔽保护。借助于计算机装置性能,在设计保护方案时做好各方面的检测处理,重点屏蔽外来的干扰信息,保护电力系统设备。②设备保护。防雷保护需要依赖各种相关的设备,特别是计算机装置。所以需要电力系统工作人员每隔半个月左右需要对所有设备进行全面的检修,工作人员需要及时处理装置出现的问题,如果不能维修好及时更换装置,保持装置的可用性,增强防雷效果。③接地保护。接地就是通过接地装置将设备的某一部分通过与土地连接,是世界上最古老的安全保护措施,接地装置可以把高压输电线路上的强电压、强电流引入地下,达到防雷保护。

三、选择合适的横担

选择横担非常重要,一般要根据现场具体条件分别考虑导线的粗细、导线的根数、档距的大小。选择的导线的过粗、导线的根数过多、档距太大,就会浪费材料;选择的导线的过细、导线的根数过少、档距的太小,不符合相关标准,会有潜在的隐患。通常在单相线路习惯用∠50×5×500或∠50×5×800型横担,在三相四线制线路中选择∠50×5×1500型横担,在选择横担时,既要考虑档距和导线截面,还要考虑气候条件和架设导线的根数等因素。一般气候条件正常的情况下,档距在标准范围之内,导线在50mm2以下,应该选择∠50×5×500,∠50×5×800或∠50×5×1500型号的横担。如果档距过大或者导线截面在50mm2及以上,恶劣的气候之下,应该选用∠63×6型横担。

四、输电线路的智能化设计

将现代先进的计算机技术、传感技术、网络技术同物理电网结合起来,形成新型智能化的高压输电线路。为了高压电网的稳定性、安全性、经济性和高效性,高压输电线路必须实现智能化的高压电网。智能高压电网具有:经济、安全、稳定、兼容、可靠、高效等优点,主要强调让电网具有自我恢复和自我预防的自愈功能,及时发现和解决故障隐患,快速进行自我恢复或者隔离故障,掌握电网的运行状态,避免事故的发生。

篇(8)

际施工中在对路径进行选择时会受到多种因素的影响,如果单纯的考虑路径系数的大小,工程的造价不仅无法保证处于最低水平,可能还会导致成本增加,无法保证线路路径的经济性。所以在对线路路径进行选择时,需要综合多方面的因素进行综合考虑,通过多个方案进行比较,从而选择科学合理的路径方案,确保路径方案的最经济性。每个路径方案的优劣需要从多个方面进行考虑,不仅需要考虑路径的长度,而且还要对沿线的交通条件、地形、地势、地质及水文情况进行全面考虑,对于气象、矿产资源及需要跨越的河流、森林及各种障碍物进行分析,选用最优化的曲折系数和线路转角,通过对不同路径选择方案进行对比,从而分析出每个路径方案的优劣,选择最优的方案,这不仅确保了造价的最小化,而且运行的安全性和经济性都能得以保障,施工更加方便。

1.2防雷设计

目前在线路设计中,由于线路电压等级的不断降低,导致避雷线在线路中所占造价比重不断加大。在对线路防雷设计时,需要根据送电线路的电压等级不同、该地区已有线路运行情况及雷电活动情况来对需要采用的避雷线根数进行确定,同时还要对避雷线的档距、中央导线、保护角和避雷线的最小距离进行准确的确定,确保防雷的效果。当前在送电线路中往往利用接地型避雷线来进行防雷,这种防雷措施充分的保护了送电线路的安全性,而且所采用的避雷线的保护角也较小,这样就取得了良好的遮蔽效果。

1.3气象条件的选择

在进行线路设计时,需要充分的考虑到当地的气象条件,这不仅需要具体参考当地的气象资料,而且还要对已有线路的运行情况进行综合考虑,考虑到当地自然变化的规律,同时还要对一些自然现象出现的可能性进行考虑,通过诸多因素的综合分析后,看其是否具有经济上的可操作性,对线路客观可能存在的危险程度、线路施工、运行和检修等工作的安全性、经济效益及计算的便捷性进行分析,确保设计出来的线路能够在危险情况下正常运行,避免其在发生危险时出现倒杆事故。一旦风速过大或是过电压产生时,就避免导线对地发生闪络事故,确保线路与地面具有绝对安全的距离,施工中要加强安全防范措施,确保人身和设备的安全。

1.4大跨越设计

大跨越设计通常是指线路在跨越通航湖泊、大河流、海峡等的设计时,其杆塔高度在80m以上或是档距在800m以上,并且在发生事故时,会严重影响到航运或者是进行修复会特别的困难,所以在进行导线选型或是杆塔设计需予以特殊考虑。对线路跨越较大的山谷,是作为大档距来设计,一般情况下只对导线及特殊的气象条件进行处理。(1)跨越地点及气象条件。说明各跨越地点的杆塔位处的地形、主河道变迁、地势、通航、水文、地质、跨越档距的大小等情况,选出几个跨越方案。并选择电线覆冰、最大风速气温等。(2)导线和避雷线选择。按照避雷线和导线的电气和杆塔高度、机械性能、跨越挡距的大小、导线和避雷线的荷载条件以及间距,选择导线、避雷线。(3)绝缘子串及金具。除了应当按照对一般线路考虑的条件外,还应按杆塔高和线路荷载增加绝缘子片数,选择或新设计金具和绝缘子串。

1.5推行限额设计

1.5.1线路设计与工程造价具有极为重要的联系,所以在设计过程中,需要不断强化设计人员的造价控制意识,使设计人员在设计中时刻注意关注工程的造价。科学的进行方案的选择,将施工设计预算严格控制在规定的概算范围内,而且还要对设计变更进行有效的管理,树立动态的管理理念,从而在设计的全过程中都将造价控制进行具体的落实。造价人员也可以全程参与管理,通过为设计人员提供具体的经济指标,从而确保论证和测算的准确性,确保投资方案的经济性,更加准确和合理地进行投资,确保工程与限额设计达到相符,实现投资的优化设计。

1.5.2建立健全设计单位的经济责任制,设计部门要与实行“节奖超罚”建设单位签订设计承包合同,分别明确双方的权利及义务,在设计过程中出现的工程浪费以及由于工期延误而超出投资限额的损失,要按照合同对设计人员责任进行相应的追究,进行赔偿。设计阶段控制造价还充分体现了事前控制的思想。设计阶段是项目即将实施而未实施的阶段,为了避免施工阶段不必要的修改,应把设计做细、做深入。

篇(9)

在工作开展之处,必须对参考依据进行仔细研究,如上级部门下发的任务书、指导性文件、设计规范文件、设计合同等。

(2)对设计工作中的细节有一个初步的了解

及线路输送电力的容量、电压等级、导线截面、线路总长度、中间落点、连接方式等,同时对设计范围有一个初步的规划,如工程的预算、工程需要应用的设备等。

(3)根据下发施工任务的要求

对设计的各部门进行安排,同时让各个设计部门明确好各项工作开始的时间和完成的时间。

(4)主要经济和材料耗用指标

主要包括全线的本体造价及综合造价,每公里的本体造价及综合造价。除此之外,还应当说明每公里耗用的避雷线、导线,以及其与避雷线

2电力线路设计问题的研究

(1)优化电力线路设计工作

首先,应该明确电力线路设计的依据,也就是设计的原则,需要根据不同作业施工地区的实际情况来有针对性地进行设计,严格依照各种文件条款的规定展开线路设计。其次,优选电力线路路径。在明确了设计思路与设计依据后,就要做好路径方案的选择,要从线路路径长短、能够被开发利用的各种交通线路以及交通线路周围的地形、地质状况,河流布局以及常年的气候特点等方面出发进行优化布局和选择,其中要重点避开工业污染严重、地形复杂、地表障碍物繁多等地理空间环境,同时要结合线路转角、曲折系数等方面来选择最优路径。将一切因素进行综合考虑、集中处理后,再选择最优电力施工线路。

(2)线路机电部分的设计

线路机电部分的设计在整个电力线路设计中也占据着十分关键而重要的地位,这其中要顾及气象条件、导线架设等因素。要求我们在设计中注意以下几点,第一,注重优选气象条件。当电力线路的长度过长,遇到气象环境较为复杂的地区时,需要对这些气象区进行分段处理,具体需要重点参考的因素有:当地的年平均温度、最高温与最低温、风力最大值、电线覆冰值、雷雨时间、电线内外电压等等。第二,导线的技术标准。要根据电力线路与系统的设计需要等来科学选择导线,其中包括截面、型号、规格、价格、质量等因素的考虑,其中要明确导线的主体机械与电气特征。第三,科学组装。因为电力系统的杆塔结构、绝缘子类型、导线等都各有差异,因此,需要采用各类组装模式。通常来说,单串绝缘子串就能够达到标准、满足要求,当遇到一些特殊的地理环境,例如:交通线路、复杂地形区、高寒区等时,则可以用双串绝缘子串来达到标准。第四,导线的防震。为了增强导线的防震抗震功能,要从以下因素出发来优选导线,例如:安全系数、使用应力最大值、平均运行应力等等,同时也要顾及电力线路所经由地方的环境特点,例如:地形状况、气候条件等等,对应提供抗震方法。其中要重点考虑施工地区的风力状况、线路架设高度、地形等因素,因为这些因素会严重影响导线震动规模。

(3)科学选择杆塔类型

电力线路的杆塔类型大致包括:直线型、转角型、耐张型等等,具体的线路设计作业中,可以着重选择那些能够经得住施工考验的成熟杆塔,而且要明确选择一种杆塔类型的原因,这就需要明确不同类型杆塔的特点,以及这种杆塔的适宜条件,所需的钢材、混凝土数量等等,也要将线路所经由路径的环境因素纳入考虑范围,经过多重比较分析与鉴别之后,再决定选择哪一种类型的杆塔。

篇(10)

2基础设计存在问题

N21A铁塔基础作用力为T=90t、N=120t、HX=25t、HY=10t。根据原设计的初步假想,采用大板基础或人工掏挖基础;但根据地质报告情况,此处铁塔基础位于山脚下,地质按一定坡度进行分布,如果采用大板基础,基础底板需置于持力层,此处选择在强风化层,但是考虑到地质按照一定坡度分布,如果仅置于强风化层的表面,则基础抗侧滑强度不足,但如果基础底板置于强风化层下方,则基础埋深在5m以上,由于无法进大型施工机械,且需进行钢板桩护基,无形中增加了施工危险及施工成本;即便是修通道路进入大型施工机械,则成本比原设计所用灌注桩基础要大很多。根据地质情况也无法采用采用人工掏挖基础,因为上半部分为淤积地质。采用人工掏挖基础危险系数相应增大很多,淤泥下方为强风化、中风化采用人工掏挖基础也不现实。

3基础设计处理方法

由于电力工程《架空送电线路基础设计技术规定》仍然采用安全系数法,故此处设计仅需满足设计中所要求的下压、上拔、倾覆演算的要求即可,经过现场多次勘查,结合地质报告,最后征得施工部门意见确定此基础设计的条件如下:基础埋深要小大于2.5m(基础维护可以采用松桩处理);如果需采用灌注桩基础,则灌注桩基础深度不能深于中风化(不能采用冲钻,因为此合同为总包合同,如果超出原合同部分则由施工部门自行承担)。基础材料用量、地基处理措施等费用不能超出原设计范围。根据以上条件,结合本基础所处地基情况,以及原设计所用费用经综合考虑,采用斜柱基础与灌注桩基础相结合的方式,基础侧向位移采用松桩挡土墙处理方法。根据斜柱基础与大板基础的对比知道,基础作用力相同的情况下斜柱基础受力形式更加好,且节约材料用量。数学模型的建立,本工程所用基础由于没有具体的数学模型,所以参考承台灌注桩基础,基础下压由斜柱基础底板承担,基础上拔由斜柱基础和基础下灌注桩部分(仅考虑自重部分)承担,基础水平作用力由斜柱基础和基础下灌注桩部分共同承担;考虑到基础所处地质情况结合钻探资料,基础侧位移需做挡土墙,而此条线路改造根据火炬开发区的规划及供电局的规划,此段线路需要近期改造拆除(施工图已出),所以此次改造为临时改造方案,故挡土墙处理采用松桩挡土墙。斜柱基础下方仍采用松桩地基处理。最终设计的基础形式如图2所示。上部斜柱基础埋深1.5m,下部灌注桩基础在基础底部以下4.7m,入中风化岩层0.5m以上。

4设计中需思考的问题

本工程是为了解决复杂地质情况下施工工艺问题而进行的基础变更,基础采用的是斜柱基础与灌注桩基础相结合的处理方式,在上拔演算中由于数学模型建立方面缺乏经验,此次上拔演算中未考虑到灌注桩基础摩擦力。虽然本工程已经竣工运行将近两年多时间,但是却给我们设计人员一个提示,就是我们在新型设计方面还存在一定的不足,还需要继续学习实践,搜集更多的同行所做的优秀设计作品,为我们以后的设计打下良好的基础。

篇(11)

作者:董铁柱 谭青海 罗金忠 王红宣 童武 单位:青海省电力设计院

由于扩径导线是在常规钢芯铝绞线中抽取铝芯的方式来生产的,其内层铝线和邻外层铝线不是紧密排列的,股层之间的缝隙较大,导线受压后容易产生变形和压痕,故须在张力放线中制定专用技术措施。如放线张力一般控制在1~1.5t。放线速度一般控制在1m/s左右。压接断线时应使用专用割线器割断,防止断线时造成导线端头变形。导线压接时,导线端头用不少于7根铝线均匀插入导线内层及邻外层的间隙,插接长度不少于压接长度,插入的铝线从同层铝线中截取。

目前常用的跳线有普通软跳线、铝管式硬跳线及笼式硬跳线3种形式。普通软跳线具有形式结构简单、安装方便的优点,但由于跳线摇摆严重,跳线弧垂大,造成了塔头尺寸的浪费。而铝管式硬跳线由于在铝管式跳线中的设备线夹与导线连接处有电晕现象且可听噪音较大,引起当地居民投诉。故最终采用笼式硬跳线,空气间隙风偏后导线对杆塔的最小空气间隙,应满足工频电压、操作过电压及雷电过电压的要求。按《110kV~750kV架空输电线路设计规范》要求,各间隙值应按下式进行高海拔修正:式中,H为海拔高度,m;m为海拔修正因子。绝缘子串750kV输电线路的绝缘配合,应使线路在工频电压、操作过电压、雷电过电压等各种条件下安全可靠地运行。绝缘子片数主要由工频电压决定,按工频电压确定绝缘子串片数有2种方法,即污耐压法和泄漏比距法。工程实际中一般采用泄漏比距法。高海拔地区,绝缘子片数按下式进行修正:nH=ne0.1215m1(H-1)(4)式中,nH为高海拔地区每串绝缘子所需片数;H为海拔高度,km;m1为特征指数,它反映气压对于污闪电压的影响程度。750kV线路悬垂串采用“IVI”型式,按照上述方法进行海拔修正后的绝缘子片数本线路按27m/s和30m/s风速设计了2种拉“V”塔。拉“V”塔的呼高为36m、39m、42m。拉“V”塔在高海拔地区首次大规模使用,在实际应用中以42m呼高为主使用。

采用拉V塔有效降低工程造价,以本工程为例,实际共使用拉V塔627基,占全部直线铁塔的44.4%,节约塔材约2652t,节约资金2100万元。2.7Q420高强钢应用目前线路所采用的钢材主要是Q235和Q345两种,其中Q235为碳素结构钢,Q345为低合金钢。Q235和Q345钢材具有强度稳定性好、离散度低的优点,冶炼、轧制、设计、加工经验均非常成熟,但缺点是屈服点低。国外先进国家输电线路应用的钢材,屈服强度可达450MPa。750kV线路中铁塔荷载较大,主材采用Q345对塔重影响较大,如果主材采用Q420,一方面,在一定程度上减小了基础作用力,另一方面可以减少主材双肢,从而也减少双肢所需的构造单元,使得塔重进一步减轻。Q420钢单价比Q345钢单价高不到10%,因此只要使用Q420能使塔重降低2%就是经济的。经过计算,JG1可降低塔重3%~4%,JG2和JG3可降低塔重7%~9%,DG可降低塔重10%以上,减少塔身双肢主材的出现。电力天路工程已投运,通过该工程的设计,为青藏高原高海拔750kV线路的设计积累了一些经验,但该地区750kV线路的设计标准还需在运行经验的基础上不断改进、优化。

推荐精选