欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

变频器论文大全11篇

时间:2023-04-14 16:51:45

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇变频器论文范文,希望它们能为您的写作提供参考和启发。

变频器论文

篇(1)

2变频器过热

这几台使用不到一年的变频器,复位开车后还是可以正常的运行,只不过几个小时候又发生同样的故障,检查电动机没有发现问题,但注意到变频器的通风口风量很小,于是把变频器拆开检查,发现这几台变频器有的因为散热风扇烧坏,有的因为风扇保险烧坏,更换风机后,此类情况就没有在出现。4)过压和欠压。一台施耐德的变频器出现过压,总是在停机时跳“OU”,这个时候我们可以重点检查制动回路,测量放电电阻没有问题,测量制动管被击穿,把制动管换掉之后,便没有出现这个问题。出现欠压情况的DANFOSS变频器,在加负载后出现“DCLINKUNDERVOLT”,经过仔细检查问题不是特别的复杂,应该重点检查整流桥,经过检查整流桥发现有一路桥壁开路,更换后问题解决。

3故障出现的原因和应对方法

3.1不能调高频率的变频器

分析原因后得出结论,是因为电动机安装在外面,现场对于电动机保护不当,下雨时不能对电动机及时防雨,造成了电动机受潮,雨后也未能对电动机烘干,造成了电动机内部局部发生短路现象。这样的情况比较容易解决,只要做好对电动机的保护工作,增加电动机防雨系统,及时检查电动机,如有受潮的情况及时烘干。

3.2变频器频率上不去

变频器调频,发现频率调不上去时,首先看各项参数是否正常,如果参数问题排除,可以检查给定方式,如果都排除了,那么就知道是模拟量输出电路出现了问题,仔细检查模拟量输出电路,找出问题所在,排除问题。

3.3变频器过热

这个问题最终很显然是因为变频器的通风排热系统出现问题,散热风扇的质量过于粗制劣造,造成不必要的麻烦。应该选用正规厂家合格的有质量保证的变频器,及时的跟变频器厂家沟通散热排风扇的质量问题。

3.4过压和欠压

变频器过压和欠压是两个不同的故障,所以有不同的原因和应对方法。变频器过压报警,主要原因是因为减速的时间太短,或者制动单元出现了问题。变频器在减速的时候,电动机转子绕组切割旋转磁场的速度加快,转子的电流增大,电机从而处于发电的状态。这个时候,我们就要认真检查制动回路,发现问题,然后换掉出现问题的部分。欠压报警主要原因在于整流桥某一个部位的损坏,刚才也已经举了一个例子,是整流桥有一路桥臂开路。出现变频器欠压的问题,就要仔细检查整流桥,查看问题的部位并撤换掉。

3.5变频器的运行环境

在一些工厂内,空气中的粉尘和蒸汽含量很高,所以变频器一半在现场的控制柜中保护,为了更好的散热,就在控制柜上安装了冷却风扇[3]。变频器的各个部分的电缆都从控制柜的底部连接变频器,导致控制柜封闭不严,粉尘和蒸汽可以通过控制柜的底部进去到控制柜影响变频器。

4针对变频器出现故障的原因提出对策和建议

1)变频器的控制柜。建议把变频器的控制柜移到室内,把变频器的防护等级提高到IP54,防止粉尘和蒸汽进入到变频器内。2)变频器的选择。根据不同的负载选择恰当的变频器,保证变频器的正常运行。3)变频器电源柜的改变。可以把供电给变频器的电源柜改为馈电柜,从而可以避免操作人员对变频器进行多次强制复位,保护变频器不受人为破坏。4)关于长期不用的变频器和变频器电容器。长期用不到的变频器,要定期进行带电运行,这样可以对变频器内件进行充电式的保护。如果有时间和条件,对使用多年的变频器的电容器进行测试。

篇(2)

变频器必须具备以下几个条件:过载能力较大;过载时间足够;具备较大的启动及转动转矩;具备恒定转矩特性。

(2)对于风机、泵类的负载

选择变频调速系统时需符合以下两个条件:设备经济性、可靠性较高,能够提供稳定的转速;可以针对机电设备的情况选择变频控制模式。

(3)对于恒功率负载

选择变频器时需符合以下两个条件:输出为定值控制;该变频器能够满足对其进行针对性设计的需求。因此,为了确保电机处于经济运行状态,必须根据负载的机械特性,选择合适的变频调速电机。而使用中的变频调速电机,要尽量避免长时间空载、轻载,同时要加强设备维护检修,使其保持在最佳工作状态,

二改进四象限变频器,提高煤矿机电设备的灵活性

采煤作业环境复杂多变,大量机电设备处于负荷频繁波动状态,这些因素给煤矿安全生产带来了很大困扰。当前煤矿机电设备采用四象变频器技术大大缓解了这个现象。四象限变频器将整流电路由原来的全波整流桥调整为由智能功率模块构成的可控整流桥,以便更好地完成采掘工作。四象限变频器与普通变频器的区别在于电机处于发电状态时,其逆变电路和整流电路将会发生互换,从而实现将电机所产生的电量输送至其他设备的目的。

1在采煤机中的应用

我国采煤机变频调速系统已由之前的“一拖二”改进为现在的“一拖一”。我国自主研发的采煤机已处于世界领先水平,例如采煤机ACS-800变频器,可以确保加速时不过流、减速时不过压。整个过程可根据电机功率进行计算,还能根据现场情况做适当调整,从而实现降低能耗、提升工作效率的目的。

2在提升机中的应用

在煤矿提升装置中应用时,普通变频器存在较大的弊端,问题主要在于电机制动产生的能量会过多消耗在电阻上。变频技术的创新,可以将电机处于二、四象限运行过程中发电产生的电能回馈给电网侧使用,从而让提升机实现匀速、加速工作与平稳启动、关闭,并借助数字控制系统有效提升工作效率,这对保障工作人员的人身安全起着重要作用。

3在胶带输送机中的应用

胶带输送机具有大功率、高电压等特点,主要通过胶带与轮毂之间的摩擦作用实现煤炭传送。可以采用变频节能技术对上山胶带输送机进行改造,原理和提升机相似,改造可以改变胶带输送机的启动模式,彻底实现软启动,让机电设备实现平稳运行。变频节能技术还能降低机电设备的发热量,在降低能耗的基础上延长胶带的使用寿命,最终提高胶带输送机的工作效率。

三使用变频技术改善

各电路元件间的逻辑关系,优化电路变频器由键盘、电机、电源板、控制主板等构成,结构相对复杂。采用变频节能技术改善电路元件之间的逻辑关系,不仅可以优化电路,为煤矿机电设备提供适宜的运行环境,而且能够在一定程度上延长煤矿机电设备的使用寿命。变频节能技术实现这一功能的关键在于通过IGBT等功率开关器件以及PWM控制技术,实现从交流到直流再到交流的转换。变频器电路一般包括主电路和控制电路两个部分,主电路的正常运行需要控制信号配合。通常电压检测电路会设置一个电压上限值,如果检测到的直流母线电压超过该上限值,电压检测电路便向变频器发出控制信号,使变频器的过压保护启动。

篇(3)

Abstract:Theapplicationoftheinvertersintheindustrialproductionisbecomingmoreand

moreuniversal,anditsinterfaceisbeingpaidmuchattention.Thesourceandspreadingrouteinthe

applicationsystemoftheinverterareintroducedinthispaper,somepracticalresolventsareputforward,andtheconcretemeasuresinthesystemdesignandinstallmentareexpounded.

Keywords:InverterInterfaceRestrain

[中图分类号]TN973[文献标识码]B文章编号1561-0330(2003)06-00

1引言

变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。

2变频调速系统的主要电磁干扰源及途径

2.1主要电磁干扰源

电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

2.2电磁干扰的途径

变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。

(1)电磁辐射

变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。

当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

(2)传导

上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

(3)感应耦合

感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。

3抗电磁干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

(1)隔离

所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

(2)滤波

设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。

(3)屏蔽

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

(4)接地

实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。

单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。

以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

(5)正确安装

由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下:

①确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。

②安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。

③使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

④确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

⑤用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

⑥如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。

4变频控制系统设计中应注意的其他问题

除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。

(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。

(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。

(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。

(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。

(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。

(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。

(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。

(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

5结束语

以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器不久也会面世。

参考文献

[1]韩安荣.通用变频器及其应用(第2版)[M].北京:机械工业出版社,2000

[2]吴忠智,吴加林,变频器应用手册[Z].北京:机械工业出版社,1995

[3]王定华等.电磁兼容性原理与设计[M].四川:电子科技大学出版社,1995

篇(4)

变频器是运动控制系统中的功率变换器。目前的运动控制系统包含多种学科的技术领域,总的发展趋势是驱

动的交流化、功率变换器的高频化、控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,因提供可控的高性能变压变频的交流电源而得到迅猛发展。

变频器的快速发展得益于电力电子技术、计算机技术和自动控制技术及电机控制理论的发展。变频器的发展水平是由电力电子技术、电机控制方式以及自动化控制水平三个方面决定的。当前竞争的焦点在于高压变频器的研究开发生产方面。

随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而且厂家仍在不断地提高可靠性,为实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。辨别变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响;二要看对电网的谐波污染和输入功率因数;最后还要看本身的能量损耗(即效率)。这里仅以量大面广的交—直—交变频器为例,阐述其发展趋势:主电路功率开关元件的自关断化、模块化、集成化、智能化;开关频率不断提高,开关损耗进一步降低。

在变频器主电路的拓扑结构方面。变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的转动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。

脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。

交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。微处理器的进步使数字控制成为现代控制器的发展方向。运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。

近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低、体积缩小、结构紧凑、使用便捷、可靠性提高。

篇(5)

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

关键词:变频器能量回馈电容反馈制动

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中图分类号]TP273[文献标识码]B文章编号1561-0330(2003)06-00

1引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

2能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

3回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

4新型制动方式(电容反馈制动)

4.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

4.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

4.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

篇(6)

2基于PLC的变频器调速系统总体设计

2.1系统技术要求

首先,基于PLC的变频器节能自动通风系统中,通风机能够开展软启动,灵活地切换运行方式,通风机的运行状态可以在工频以及变频之间进行调整。其次,运行状态为变频的通风机能够以管网阻力的具体实际情况为依据对自身的转速进行自动化的调节,使风机的风量始终能够满足实际的需求,另外,还能够以有害气体的浓度为依据对通风机的转速进行自动化的调整,减少或者杜绝了有害气体浓度过高造成的影响。发生异常情况时,变频器调速系统能够及时的进行报警,并采取行之有效的处理措施,对风机的状态进行适当的调整。最后,综合应用上位机控制软件以及PLC进行监控系统的设计,能够以在线控制的方式对通风机的局部运行情况进行监视、控制以及管理,并以有关的参量为依据开展实时性的监控。

2.2系统整体设计方案

基于PLC的变频器调速系统是以PLC为主控单元,以变频通风机为被控元件,以有害气体浓度为主控参数的,以模糊控制为具体的控制算法。PLC能够运用传感器及时的在内存中录入有害气体的浓度,通过模糊控制对变频器的输出进行调节,以此对风机的转速进行全面的控制,实现清新空气、环保节能的效果。一般情况下,通风系统包含了触摸屏、气体传感器、PLC、变频器以及通风机等基本的设施设备和技术,其工作方式具有自动、手动以及工频三种,其中,手动调频方式为开环控制系统,自动调频方式为闭环控制系统。在发生故障等异常情况时,工作方式能够进行自动化的调节,有利于维护生产运行的稳定性以及安全性。

2.3系统硬件选择

系统设计经过验证具有一定的可行性后,设计意图的实现必须依靠硬件的有力支撑,所以,硬件的选择相当关键。首先,PLC型号的选择要充分的考虑系统的实际需要,特别是要充分的考虑系统的稳定性、可靠性以及控制的精度。另外,PLC还要具备较快的执行速度和较为齐全的通讯功能,只有这样,才能切实的满足工厂自动化的需求,全面的提高系统的控制能力以及灵活性,保障指令具有较快的执行速度。其次,在选择变频器时,要综合全面的考虑变频器的性能、功能、运行状况以及参数设定,为系统提供更加丰富的应用功能,切实的提高控制力度和速度,实现对电路、电压以及相关设备的保护,有效的规避故障问题。在选用通风机时,要考虑其具体的配置和运行状况,尽量的选择具有较高强度、较轻重量以及较好的通风机。在选择触摸屏时,要重点考虑触摸屏的显示和保密功能、参数的修改以及设置功能,要优先选用具有较快的触键反应、较丰富的系统和用户画面的触摸屏,另外,要能够对变频器的工作状态进行实时的监控和控制。最后,由于系统监测精度同有害气体浓度息息相关、密不可分,所以,气敏传感器的选用相当关键。在选用气敏传感器时,要充分考虑工艺、材料以及敏感性,能够对有关场所和设备的气体检验提供报警、提醒等功能。

3基于PLC的变频器调速系统软件设计

系统设计质量的高低同硬件以及软件的组合有着紧密的联系,所以,系统软件设计也是一个不容忽视的环节。1)通信程序设计原则。通信系统作为通风系统中不可或缺的构成,对系统的整体性能有着深刻的影响。通信系统不仅可以以其良好的可靠性、稳定性以及较大的容量服务于通风系统,还能在故障发生时提供一定的解决措施,有利于维护系统的正常稳定运行。一般情况下,通信设计的原则包含开放性、标准性、可行性以及经济性等,本文在此就不进行深入的研究了。2)系统主程序设计。系统控制程序主要包含五个部分。其中,主控制程序主要是对工频、手动以及自动等运行方式进行控制,调用程序以及设置时间,当有害气体浓度超过一定的范围时及时的进行报警,当发生异常情况或者有关的设备发生故障时,进行报警并提供相应的解决措施,能够充分的保障系统的正常运行。子程序0可以初始化有关的参数,执行完控制程序后,当风机运行是以自动变频的方式时,子程序0就会得到应用。当有害气体浓度极限值超出了有关的范围时,在子程序调用前,还应对拓展模块的存在性进行仔细的检验,对电源的实际状况进行检查,一旦发生异常情况时,就要及时的关闭主程序;当一切正常后接下来就调用子程序2,子程序2的主要功能在于对有害气体的浓度进行采集,并计算有关数值的平均值。当有害气体浓度值超过一定范围时,中断程序就要进行断电标志的设置,否则,就进行寄存器的录入,将电压值转化为数字量,并通过模拟控制器对通风机变频方式进行调节。在主程序中,中断程序的执行次数是以设置的中断控制时间为依据的。

篇(7)

2项目教学法的具体实施过程

2.1项目任务的确定

任课教师在项目任务的确定上,要对于项目操作过程中所涉及到的跨学科知识进行分析,编写《项目任务书》。

2.2制定项目计划

将《项目任务书》分发到每一名学生手中,对项目要求、学习任务等等进行讲解。之后,将学生分为若干个小组。项目计划的制定主要由学生来完成。学生通过讨论,将计划制定出来,其中的内容要涉及到项目操作的步骤和程序。教师对于项目计划进行审核合格后,可以进入到具体的项目实施中。每一个小组的成员都要将项目进展以及阶段性成果记录下来。

2.3项目计划的实施

根据项目计划的具体内容,小组成员都要将所分配的任务按时完成。首先,学生要根据自己的任务进展情况具有针对性地收集和整理资料,做好项目设计,在进行实际操作和调试过程中,对于所遇到的问题,要独立解决,或者小组合作解决。最终完成项目任务。

2.4项目的检查评估

项目完成,学生自我回报项目成果,自我评估,小组间互相评估,最后是教师点评。项目成果的评价阶段,是学生知识运用能力提高的阶段。当学生感受到成就感的时候,就会激发自我学习的积极性。

3项目教学法在变频器教学中的合理应用

3.1根据课堂教学目标确定项目任务

基于变频器教学要充分考虑到该技术的实际应用性,在开展项目教学的时候,要从变频器的应用领域中选定项目任务作为课堂教学目标。在提出变频器项目任务之前,要对于学生有关原理知识以及相关知识的掌握程度进行分析,了解学生需要掌握的操作技能,结合应用领域中变频器的使用,具有针对性地设定项目任务。此外,项目选择要符合学生的接受能力,且与学生的未来职业存在着必然的联系。比如,在《物料识别与分拣系统的控制》课堂教学内容中,要将项目定位在企业自动化生产线的末端,系统运用变频器对电动机自动调速。从系统的运行来看,采用变频器控制,可以推动气压驱动启动电磁阀,使得整个系统自动运行。项目教学的优点在于,可以直观地展示顺序控制,使学生对于项目程序充分了解,并在每一个环节中,都能够自主解决疑难问题。

3.2制定项目计划

项目计划的制定,是对项目内容细化的过程。任课教师要对项目展开过程中每一个环节所涉及到的知识进行研究,融合学生已经掌握的专业基础知识,以学生自主讨论的方式对课堂上所涉及到的知识内容进行研究。学生讨论的目的是确保整个项目顺利完成,因此,教师要与学生共同制定项目计划,并做好分工。学生讨论主要采用分组的方式,5人一组,根据学生的知识容量强弱搭配。要求学生有能力根据控制要求进行I/O分配。将电气安装图绘制出来后,根据图纸设计进行外部接线。对于控制系统的功能,还要以小组为单位独立调试。

3.3项目的检查与评估

在项目实施的过程中,要进行阶段性总结,并回顾项目内容,以针对项目中所遇到的问题以讨论交流的方式得以解决。比如,项目操作中,学生通常会遇到操作性问题,此时,教师不宜给予直接的指导,而是提醒相关的知识,引导学生运用所学过的理论知识解决操作问题。当每一个小组的项目完成后,要鼓励学生将代表作展示出来,进行小组间交流。此时,要引导学生针所完成的项目进行评估。根据学生的项目完成情况,要将任务评价表设计出来。学生根据评价表中指定的评价内容自我评价,然后是小组综合评价,最后由教师检查评价,并将评价结果记录在表中。评价要做到阶段性评价与整个项目评价相结合,一改学生仅仅对于项目结果的重视,而更注重项目过程中所涉及到的知识。

篇(8)

Abstract:Thispaperanalyzedtheproblemofharmonicwave,matchingofloadand

calorificationforinvertersinrunning,andmadetherelativelythemeasure.

Keywords:inverterharmonicwaveloadingcalorification

1前言

自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:

①谐波问题

②变频器负载匹配问题

③发热问题

以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。

2谐波问题及其对策

通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:

(1)

式中:n—谐波的次数n=1,3,5……;

a1—开关角,i=1,2,3……N/2;

Ed—变频器直流侧电压;

N—载波比。

由(1)式可见,各项谐波的幅值为

(2)

令n=1,则得出变频器输出电压的基波幅值为:

(3)

从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

①增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

②安装电抗器

安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。

③变压器多相运行

通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-、-组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。

④调节变频器的载波比

从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。

⑤专用滤波器

该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。

3负载匹配问题及其对策

生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。

①恒转矩负载

恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。

摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。

位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。

②风机泵类负载

风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:

(4)

这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:

(5)

(6)

式中:tACC—加速时间(s);

tDEC—减速时间(s);

GD2—折算到电机轴上的转动惯量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—电动机的电磁转矩(N.m);

TL—负载转矩(N.m);

nAS—系统加速时的初始速度(r/min);

nAE—系统加速时的终止速度(r/min);

nDS—系统减速时的初始速度(r/min);

nDE—系统减速时的终止速度(r/min)。

从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。

泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:

喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。

憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。

水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。

③恒功率负载

恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。

4发热问题及其对策

变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:

①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。

②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。

我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。

以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。

对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:

对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。

5结论

本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。

6参考文献

篇(9)

货梯以其承重能力强的特点,可在最短时间、最效率的空间,提供承载货物的最大值,求得最大的经济效益。因此,货梯已成为工厂、仓储、百货商场、物业中心等单位运输货物的最佳拍档。

目前,货梯占整个电梯市场份额大约20%左右,而且这个比例在近年来一直在增长。随着货梯不断的被投入市场,客户对于货梯的控求也越来越高。原有被使用于客梯生产的变压变频技术也被广泛地用于货梯生产,使货梯在低速状态下,能够运行平稳。牵引式电梯为最常见的货梯驱动方式,如图1所示。这种驱动方式,是利用主电机拖动所产生的动力,经偏位轮带动车厢,可顺畅无阻地升降。其它方面,只须考虑建筑物对于电梯的支撑力量是否足够即可。变频器在这种驱动方式的电梯中扮演非常重要的角色。

图1牵引式电梯结构示意图

2货梯运行时对驱动系统的工艺要求

2.1电梯主电动机的运行状态

电梯主电动机的4象限运行如图2所示。

(1)第1象限(正转电动状态)

轿厢满载(轿厢重量>对重重量)上升。

(2)第4象限(反转发电状态):轿厢下降。

图2电梯主电动机的4象限运行

(3)第2象限(正转发电状态):轿厢轻载(轿厢重量<对重重量)上升。由于对重的重力将拉着轿厢上升,使电动机的转速超过同步转速,处于发电机状态。

(4)第3象限(反转电动状态):轿厢轻载下降。

2.2对电梯的控制要求

短暂掀动安装在轿厢内或井道外的触点按钮,经过适当的电磁辅助装置来激发电机起动装置,进而起动轿厢,而电梯则通过轿厢机械装置自动停梯,响应外部召唤。作为驱动设备的变频器是否能够提供足够的起动/制动转矩、是否能使四象限运行的平稳;又是否能快速及时的响应顺序信号,都是评判货梯中驱动设备性能好坏的标准。

3台安的V2是货梯的首选驱动设备

3.1台安V2系列变频器的特点

(1)采用先进的电流向量控制技术。

台安的V2系列变频器,这款采用先进的电流向量控制技术,具备动态Auto-tuning功能,开路形式即不附PG卡1Hz能达到200%扭矩输出;当采用闭回路形式即

图3V2的T-N曲线

附PG反馈卡时,0Hz时就能有180%的扭矩输出,图3所示为V2的T-N曲线。

图4V2在100%负载,输出1Hz时的正弦波电流波形

(2)频率响应快

V2核心芯片采用32位RISCCPU控制,频率响应速度为28Hz(3.5ms),提供更快、更及时的响应指标,使各项保护更稳定。在货梯这种应用场合中使用,可驾轻就熟、游刃有余。图4所示为V2在100%负载,输出1Hz时的正弦波电流波形

V2系列变频器驱动接线图5所示。

图5V2系列变频器的接线

3.2使用时的注意事项

(1)采用向量不带PG的控制形式,驱动部分时序图如图6所示。

图6驱动部分时序图

(2)低速时可提供高转矩输出

货梯一般动作形式需要使用两段速运转,启动与停止时为低速,可确保停止时定位精度;也可使启动状态也不会造成轿厢晃动。低速运行时有必要增加相应的转矩补偿,停止时要使用直流制动功能。

(3)互锁功能提供更高的安全系数

V2拖动货梯的主驱动电机使轿厢电梯作垂直运行时,电机一定要与外部机械抱闸装置配合使用,以确保变频器停止输出时,箱体不会出现下坠。因此V2的多功能输出端子R1B/R1C必须与R2A/R2B串联,接至外部机械制动装置,实现开/关安全互锁功能。而且在安装时要特别注意变频器与机械制动的衔接一定要准确无误。

为实现以上操作需要设定的参数见附表:

(4)减速时失速防止

减速状态下,制动电阻可将电机在发电状况下反馈给变频器的能量予以吸收,所以必须将变频器“减速中失速防止功能设为无效”。注意:如果设定“减速时失速防止”有效,可能会引起变频器无法在设定的减速时间内停下。

(5)Autotuning(自学习)电机自适应调节

执行电机参数自学习之前,要确定电机与负载分离。否则,变频器在空载试验中观测到的电机参数与电机的实际情况有出入,会影响电机的输出效应。

(6)制动电阻过热保护

当制动电阻被频繁使用时,可外加电子热继电器来防止制动电阻出现过热情况,这项功能需设定相应的顺序操作电路。

(7)瞬停再起动功能

货梯这类负载在瞬间停电的状态时,不可使用瞬间停电再起动功

能及自动复归功能。设定变频器参数时,要将这两项参数设为无效。

(8)转矩限制功能

可将转矩限制设定值设为电机额定转矩输出的参考值。

(9)通讯功能

V2除内建世界通用的ModbusRTU模式RS485通信端口;另可通过扩展的通信适配卡,与各种通信接口联机,可被接入应用总线技术的电梯控制系统,电机的运行信息就可以和智能化大厦所有自动化信息系统联网,方便智能大厦的群控管理。

(10)宽电压范围运行

V2使用电压范围相当广,适用于世界各地使用(特别针对国内电网波动较大的情形)

3相200V级:200~240VAC+10%/-10%

3相400V级:380~480VAC+10%/-10%

4结束语

V2低频时良好的输出特性,保证了货梯轿厢在低速时起/停平稳;V2的控频精度高,使轿厢在各个轨道位置定位也非常准确。又更因为其优良的性价比,使V2颇受货梯厂欢迎。另外,V2内建的通讯功能,可方便的提供给用户其想要掌控的电梯运行信息。总之,货梯装置在引入V2系列变频器以后,能以较低的使用成本获得理想的运行效果。

篇(10)

2变频器在游梁式抽油机控制中的应用

目前,在胜利油田采用的抽油设备中,以游梁式抽油机应用最为普遍,数量也最多。一方面,游梁式抽油机运动为反复地上下提升,一个冲程提升一次,其动力来自于电动机带动的两个重量相当大的钢质滑块,当滑块提升时,类似于杠杆的作用,将采油机杆送入井中,滑块下降时,采油杆提出带油至井口,由于电机转速一定,在滑块下降过程中,负荷减轻,电机拖动产生的能量无法被负载吸引,势必会寻找能量消耗的渠道,导致电机进入再生发电状态,将多余的能量反馈到电网,引起主回路母线电压的升高,势必会对整个电网产生冲击,导致电网供电质量下降,功率因数降低,面临被供电企业罚款的危险;频繁的高压冲击会损坏电机,对电动机没有可靠的保护功能,一旦电机损害,造成生产效率降低、维护量加大,极不利于抽油设备的节能降耗,给企业造成较大的经济损失。另一方面,游梁式抽油机引入两个大质量的钢质滑块,导致抽油机的起动冲击大等诸多问题。除了上述两方面问题之外,油田采油的特殊地理环境决定了采油设备有其自有的运行特点,在油井开采前期储油量大,供液足,为提高功效可采用工频运行,保证较高的产油量;在中、后期,由于石油储量减少,易造成供液不足,电机若仍工频运行,势必浪费电能,造成不必要的损耗,这时须考虑实际工作情况,适当降低电机转速,减少冲程,有效提高充盈率。为了解决上述问题,可将变频技术引入到游梁式抽油机控制中去。根据电机理论可知,其转速公式为:

其中:p为电动机的极对数,s为转差率,f为供电电源频率,n为电动机的实际转速。从式可以看出,电机转速与频率近似成正比,改变频率即可以平滑地调节电机转速,从而可以连续地改变提油机的抽油速度。根据电动机工作电流的大小确定电动机的工作频率,这样可以根据井况的变化,方便的调节抽油机的冲程,达到节能和提高电网功率因数的目的。同时变频调速器具有低速软启动,转速可以平滑地大范围调节,对电动机保护功能齐全,如短路、过载、过压、欠压及失速等,可有效地保护电机及机械设备,保证设备在安全的电压下工作,具有运行平稳、可靠,提高功率因数等诸多优点,是采油设备改造的理想方案。

目前,对游梁式抽油机的变频器改造主要有以下3个方面:

(1)以提高电网质量,减小对电网影响为目标的变频改造。这主要集中在供电企业对电网质量要求较高的场合,为了避免电网质量的下降,需引入变频控制,其主要目的就是减小抽油机工作过程对电网的影响。这种应用在胜利油田的临盘采油厂已经提上应用日程。

(2)以节能为第一目标的变频改造。这一点比较普遍,一方面,油田的抽油机为了克服大的起动转矩,采用的电动机远远大于实际所需功率,工作时电动机的利用率一般在20%-30%之间,最高不会超过50%,电动机常常处于轻载状态,造成了电动机资源的浪费。另一方面,抽油机的工作情况是连续变化的,这些都取决于地底下的状态,若始终处于工频运行,势必也会造成电能的浪费。为了节能,提高电动机的工作效率,需进行变频改造。

(3)以提高电网质量和节能为目的的变频改造。这种情况综合了上面两种改造的优点,是应用中的一个重要发展方向。

在实际的应用过程中却出现了许多问题,这些问题主要集中在游梁式抽油机的发电状态产生的能量的处理上。对于第一种情况,采用普通变频器加能耗制动单元可比较方便的实现,这是以多耗电能为代价的,

这主要是因为发电能量不能回馈电网造成的。在未采用变频器时,电动机处于电动状态时,电动机从电网吸收电能(电表正转);电动机处于发电状态时,电动机释放能量(电表反转),电能直接回馈电网的,并没有在本地设备上耗费掉。综合表现为抽油机的供电系统的功率因数较低,对电网质量影响较大。但是在使用普通变频器时,情况发生了变化。普通变频器的输入是二极管整流,能量不可反方向流动。上述这部分电能没有流回电网的通路,必须用电阻来就地消耗,这就是必须使用能耗制动单元的原因。对于第二种情况和第三种情况,必须妥善的处理电动机发电状态产生的电能,必须将其反馈到电网,否则通过调节抽油机的冲程节省的电能可能不能抵消变频器制动单元消耗的电能,造成变频运行时反而耗能,与节能的目标背道而驰。为了解决这个问题,有必要对普通变频器进行改造,在结构上引入双PWM结构的变频器,保证发电状态产生的电能回馈电网;在控制方法引入自适应控制以适应游梁式抽油机多变的工作环境。

3变频器在电潜泵控制中的应用

油田中应用较多的另一种采油设备是电潜泵。电潜泵是井下工作的多级离心泵,同油管一起下入井内,地面电源通过变压器、控制屏和电潜泵专用电缆将电能输送给井下电潜泵电机,使电机带动多级离心泵旋转,将电能转换为机械能,把油井中的液体举升到地面。

由于电潜泵是在地面以下2000多米的井底工作,工作环境非常恶劣(高温、强腐蚀等),传统的供电方式-全压、工频使它故障频繁,运行成本大增。一方面,电潜泵在工频启动时,启动电流大,电机电缆的压降较大,使得电机电缆在启动过程中的反压较高,使绝缘性能降低,每次开机都会使电潜泵寿命大打折扣,大大影响了电潜泵的使用寿命。电潜泵损坏后提到地面上来修理,仅工程费一项就达5万元,价值10万元的电缆平均提上放下5次就须更换,电潜泵平均每10个月就须维修一次,维修费用约8万元,使用成本较高。另一方面,电潜泵在正常工作时,普遍存在着电机负载率较低的情况,“大马拉小车”现象严重。潜油电泵的功率因数较低,耗电量多,工频工作时,电潜泵始终工作在额定转速下,如果井下液量供不应求,容易造成“死井”,一旦死井则损失惨重。为了解决这个问题,电潜泵应能够根据地质情况的变化,调节抽油量。传统的调节方式是靠更换油嘴来调节产量,这样既造成能量损失又不能精确地控制。有时使得电机与泵长期在高压状态下运行;有时使得油井出沙严重,使设备寿命缩短,因而有必要引入变频控制系统,调节油压、调节产量。

针对电潜泵的特殊情况,我国的成都佳灵电气制造有限公司和山东风光电子有限责任公司都有现成产品提供,并在胜利油田中有一些应用,并取得一定的效果。对电潜泵井进行变频改造后,实现了电潜泵的软启动、软停车,有效地保护了电潜泵与电缆;通过调节频率可方便的调节油压,避免了电潜泵在高压下长期运行;延长了电潜泵的寿命,节约了油井维修、维护费用,使电泵机组在最佳工况下运行。大大提高了电潜泵采油系统的效率。同时,提高功率因数,提高了电网的供电能力,节电效果明显。大面积推广电潜泵变频技术改造,将带来良好的经济效益和社会效益。应用中也暴露出来一些问题,一方面,因为是新产品,在产品的软硬件设计和设备配套上由一些不足,这时就要将新的控制方法引入到实际应用中去发展变化适应多变的工作环境,提高配套产品的质量;另一方面,控制系统的一次性投资较高,有的甚至要高于电潜泵的投资,只有进一步降低成本,才能促进变频器控制在电潜泵中的应用。

4变频器在注水泵控制中的应用

油田开发过程中地层能量不断衰减,常用注水方式以保持地层能量,进行油田开发。一方面,注水压力的高低是决定油田合理开发和地面管线及设备的重要参数。考虑到后期开发注水井的增多,注水工艺设计和机电设备配置都比实际宽裕,加之地质情况的变化,开关井数的增减,洗井及供水不足的影响,经常引起注水压力的波动,注水量不均匀,不稳定。注水压力低,注水量满足不了油田开发的需要,必然会造成油层压力下降;注水压力过高,浪费动力,也造成超注,导致水淹,水窜;注水压力控制难度大,也给油田生产和管理带来诸多不便,因而要求油田注水压力恒定。另一方面,由于储油地层的压力及油气水分布不断在发生变化,其数值很难准确预测和控制,考虑到油田开发中的需要,在工艺和机电设备的配置上都按照油田最大可能的需求来设计,这一点在注水系统的设计当中显得尤为突出。油田注水设备多采用高压离心泵匹配高压电机,大功率系统运行常是“大马拉小车”,效率低下。注水压力靠泵出口闸门手动控制,即靠改变管网特性曲线来调节泵的排量,泵、电机匹配难以达到在泵的最佳工况点运行,管网效率低,电能损失高达50%以上。正是从恒压注水和节能的两个方面考虑,在油田注水系统中引入变频控制。

通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。通过上述分析可以知道,通过改变电动机转速可方便地改变水的流量,保证水压恒定;通过改变电动机转速,在降低水流量的同时,可有效降低系统的电能损耗。

通过变频改造的注水系统具有如下优点:

(1)实现了电机软起动、自由停车。电机均通过变频器或软起动从0~50Hz作缓慢加速起动,可减少机泵因突然高速起动所带来的影响,减少了直接起动时起动电流对电网的冲击。

(2)提高了功率因数,改善了电机电源质量,电机的功率与实际负荷相匹配,系统达到节能运行的目的。

(3)消除了泵的喘振现象,使泵运行处于最佳工况状态。

(4)实现了压力自动控制,被调节量得到更平稳的调节,增强了系统的稳定性和可靠性。

目前变频调速技术在注水系统中,主要应用在供水水源井电潜泵、注水站注水泵、配水间增压泵工艺中。应用变频调速技术,对注水设备的电机转速进行调节,达到稳压、稳流供注水。同时软起软停的功能代替了减压启动,使电机起停平稳,减少了对电网和机械设备的冲击,不会造成管网压力、流量、流速的剧烈变化,不需要阀门截流,因此对防止汽蚀、水击、喘振极为有利,可以延长管网、泵、阀门的维修周期和使用寿命。在注水泵变频改造中涉及的品牌比较多,进口品牌有ABB、AB、三菱、东芝、富士及西门子等,国产品牌有佳灵、安圣等,在这个领域的应用技术已经比较成熟。

5变频器在油气集输控制中的应用

在油田生产中,与注水泵类似,输油泵的额定排量往往大于实际需要排量,现大马拉小车现象。一方面,如果完全采用阀门调节输油量,一旦油量变化较快,输油阀门调节频繁,增加了工作人员的劳动强度且所需人员也较多。若阀门调节不当,易造成被抽干或冒罐现象。泵出现干抽烧损,冒罐则造成原油白白浪费。另一方面,为保证输出油量的恒定,需要保证管压恒定,阀门的开度直接影响到管压,太大太小都不行。如果使用变频调速器,可以彻底解决这个问题。它通过减小电机电源频率实现降低电机转速。电机带动泵运行,电动机转速降低,对于柱塞泵来说,就是降低了柱塞的运行频率,减小了泵的实际排量;对于离心泵来说,降低了叶轮转速,同样降低了泵的排量。因此,当需要排量变化时,可以通过调节变频器的输出频率,达到控制排量的目的,保证管压恒定。泵的排量降低了,电动机的负荷也就随之减小,这样电机输出功率出随之减小,这样电机的效率可以有很大提高,电机损耗及电机输出功率得到有效减小,达到节能的目的。

6总结

总之,变频调速技术作为高新技术、基础技术和节能技术,其应用已经渗透到石油行业的各个技术部门。在游梁式抽油机控制和电潜泵控制中的应用还处于开始阶段,在应用中也出现了许多问题,这些都待于进步解决。只有充分考虑油田油井的实际情况,才能促进变频技术在采油设备中的应用。在油田注水和油气集输中的应用与生活中的恒压供水类似,其应用技术已经成熟,应用也十分普遍。变频调速技术在油田中的应用应该集中解决以下两个方面的问题:

(1)解决变频器的控制问题。这个必须解决变频器如何适应多变的工作环境,对某一台抽油机控制的成功并不代表对所有油井都成功,因而必须提高变频器控制技术适应不同井况的能力。

(2)解决变频控制成本较高的问题。与一般控制柜相比,变频控制的成本太高。无论上双PWM变频器还是电潜泵专用变频器,都面临着这个问题,因而必须提高相关产品的配套能力,在保证可靠性的前提下降低成本。

参考文献

[1]王占奎.变频调速应用百例[M].北京:科学技术出版社,2000.

[2]俞伯炎等.石油工业节能技术[M].北京:中国石油出版社,2000.

[3]常玉连.调速技术应用于油田注水泵的探讨[A].中国石油物资装备总公司编.1997年石油装备学术年会论文集[C].北京:石油工业出版社,1997.

[4]朱益飞.提高孤东油田抽油机井系统效率的探讨[J].油田节能,2000,(1).

[5]胡景生.电网经济运行节电技术综述[J].节能,2000,(4).

[6]刘维震,廖成锐等.胜利油田注水泵的应用现状及发展[J].石油机械,1999,(2).

篇(11)

Abstract:Theapplicationoftheinvertersintheindustrialproductionisbecomingmoreand

moreuniversal,anditsinterfaceisbeingpaidmuchattention.Thesourceandspreadingrouteinthe

applicationsystemoftheinverterareintroducedinthispaper,somepracticalresolventsareputforward,andtheconcretemeasuresinthesystemdesignandinstallmentareexpounded.

Keywords:InverterInterfaceRestrain

1引言

变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。

2变频调速系统的主要电磁干扰源及途径

2.1主要电磁干扰源

电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

2.2电磁干扰的途径

变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。

(1)电磁辐射

变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。

当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

(2)传导

上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

(3)感应耦合

感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。

3抗电磁干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

(1)隔离

所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

(2)滤波

设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。

(3)屏蔽

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

(4)接地

实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。

单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。

以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

(5)正确安装

由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下:

①确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。

②安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。

③使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

④确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

⑤用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

⑥如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。

4变频控制系统设计中应注意的其他问题

除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。

(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。

(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。

(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。

(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。

(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。

(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。

(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。

(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

5结束语

以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器不久也会面世。

参考文献

[1]韩安荣.通用变频器及其应用(第2版)[M].北京:机械工业出版社,2000

[2]吴忠智,吴加林,变频器应用手册[Z].北京:机械工业出版社,1995

[3]王定华等.电磁兼容性原理与设计[M].四川:电子科技大学出版社,1995

推荐精选