欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

金属材料论文大全11篇

时间:2023-04-12 17:42:39

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇金属材料论文范文,希望它们能为您的写作提供参考和启发。

金属材料论文

篇(1)

1.2银汞合金牙科银汞合金耐腐蚀性被认为是因为其表面表浅、纤薄的类膜状结构,此结构主要由氧化锡、水合锡和氢氧化锌组成,此层薄膜的形成和消失会引起银汞合金腐蚀率的改变[18]。有研究结果显示浸泡于人工唾液中银汞合金的表面薄膜仍存在,而浸泡在含氟漱口水中后银汞合金的表面薄膜丧失,表明氟离子会降低银汞合金的抗腐蚀性能[19]。

1.3贵金属合金银钯合金的腐蚀行为与非贵金属合金不同,它与口腔中含有的氯化物硫氢酸根作用形成复合物,在其表面会形成难溶的盐层,释放非贵金属离子极少[20]。但也有研究表明,在含氟漱口水中其表面薄膜可迅速丧失,耐腐蚀性能明显降低,表现出对氟离子的高度敏感性[21]。高贵金属合金有着良好的抗腐蚀性能,Ayad等[22]对不同组分的高贵金属合金的研究表明:其零电势电位和腐蚀电流密度均值的差异无统计学意义。在含氟环境中的研究也证实,氟离子对高贵金属合金耐腐蚀性能的影响相较于非贵金属而言极小[23]。

1.4对比研究不同金属的耐腐蚀性是不同的,而氟离子对它们的耐腐蚀性的影响也有所差异。大量研究表明,氟离子对镍铬合金、银钯合金、纯钛的耐腐蚀性能影响较大,对高贵金属及高钴铬钼合金的影响相对较小,而钛合金中所含金属成分的不同对其在含氟环境中的耐腐蚀性能亦有影响。程玮等[24]通过动电位极化曲线法对钴铬合金、纯钛、高钴铬合金的电化学腐蚀行为的研究发现:氟离子可影响口腔中的钴铬合金、纯钛、高钴铬钼合金的耐腐蚀性,高浓度的氟会降低金属的耐腐蚀性,氟离子对3种合金抗腐蚀性能的影响从大到小依次为:纯钛、钴铬合金、高钴铬钼合金。对3种合金表面粗糙度及形貌的观察也证实:在不含氟人工唾液中,钴铬合金、高钴铬钼合金轻微腐蚀,出现腐蚀孔,而纯钛表面未见明显腐蚀孔[25]。当人工唾液中添加氟离子后,3种金属腐蚀程度增加,且随着氟离子浓度升高而加重,纯钛和钴铬合金尤为明显,可见较大腐蚀孔,高钴铬钼合金较其余两种合金腐蚀轻微。袁俊等[23]运用电化学技术对不同烤瓷合金金属电化学腐蚀性能的研究发现:氟离子环境使经过处理的烤瓷金属的耐腐蚀性能下降,腐蚀速度加快。4种金属的腐蚀电位值排列的顺序为:金合金、纯钛、钴铬合金、镍铬合金,即氟离子对金合金的腐蚀倾向最小,而对镍铬合金最大。金合金与纯钛耐腐蚀性能较强,其次是钴铬合金,镍铬合金最差。此研究中的钴铬合金在含氟环境中的耐腐蚀性能低于纯钛,原因可能是在烤瓷加工后,钴铬合金中的Cr、Mo元素减少,从而使得其耐腐蚀性能下降[26]。Mareci等[21]通过电化学阻抗谱分析法测得银钯合金、镍铬合金、纯钛、Ti12Mo5Ta钛合金浸泡于人工唾液和含氟漱口水后合金表面薄膜情况,同时电镜观察合金表面形貌的变化,发现在含氟漱口水中的金属耐腐蚀性均降低,其中耐腐蚀性能由高到低为Ti12Mo5Ta、纯钛、镍钛合金、银钯合金,浸泡于含氟漱口水中的银钯合金的表面薄膜完全丧失,表明银钯合金在含氟环境中的耐腐蚀性能显著降低,而Mo元素的加入可提高钛材料对氟离子的抵抗性。同时有研究表明在纯钛材料中加入Pt、Pd、Cu、Ag、Cr等元素也可增强钛在含氟酸性环境中的耐腐蚀性能[27-28]。

2影响氟离子对牙科金属耐腐蚀性的因素

2.1氟离子浓度在不同氟离子浓度中,牙科金属的耐腐蚀性能所受到的影响是不同的。研究表明,氟离子的浓度与其对牙科金属耐腐蚀性能的影响成正相关,低氟离子浓度的环境很少对耐腐蚀性能较高的金属(如高钴铬钼合金、金合金等)产生影响,而随着浓度的升高,氟离子的作用则趋于显著,高氟离子浓度对金属耐腐蚀性能的影响明显增加[2,24,29]。

2.2pH值目前已有文献证实在酸性条件下,金属表面的氧化膜生成速度减慢,且更易于溶解,金属的抗腐蚀性能下降。不同学者的研究显示,pH值与氟离子对金属的抗腐蚀性能的影响有着协同作用,在微酸环境中氟离子对金属材料耐腐蚀性的影响增大,偏酸性的人工唾液可加快金属和氟的反应而加速其腐蚀,氢离子浓度的增加还可使金属表面钝化速度减慢而降低其抗腐蚀性能。

2.3表面处理一般把金属表面防护和改性称之为金属材料表面处理,恰当的表面处理可以改善牙科合金的耐腐蚀性。翁维民等[36]的研究发现镍铬合金表面的氮化钛涂层能提高镍铬合金在含氟环境中的耐腐蚀性能,同时也可提高其耐磨性。在钛金属表面制备致密的氮化钛硬质薄膜,也可隔绝氢氟酸与钛金属的接触,镀膜后钛金属表面腐蚀倾向减小,腐蚀速度减慢,耐腐蚀性增加。对纯钛进行阳极表面氧化处理的研究也证明,阳极表面氧化处理可增强纯钛在含氟环境中的耐腐蚀性能。

篇(2)

2实验结果

2.1现场腐蚀产物分析图1为A变电站服役13a接地网镀锌扁钢的腐蚀产物的XRD分析结果。由图1锈层X射线衍射可以看到,红壤中服役13a的接地网镀锌扁钢材料锌层已经完全腐蚀,腐蚀产物中铁的不同氧化物为主要腐蚀产物成分,腐蚀产物主要。主要是黏附在腐蚀产物中的土壤成分。图2为镀锌扁钢锈层微观形貌图,该接地扁钢腐蚀产物有4层,从外到内依次为图中标出来的a、b、c、d。对4处腐蚀产物进行能谱分析,所对应的能谱图见图3。从各腐蚀层的能谱分析结果可以看到:a层腐蚀产物以铁的氧化物为主,但夹杂了一些SiO2之类的土壤成分;紧挨着的b腐蚀层则以铁的氧化物为主,比较干净;c腐蚀层能谱中出现了S;而d腐蚀层不仅出现了S,还出现了Cl。Cl-是土壤腐蚀性最强的一种阴离子[5,6],Cl-能够破坏接地材料的钝态膜,加速接地材料腐蚀的阳极极化过程,并能穿透金属腐蚀层,生成可溶性产物Fe2(OH)3Cl,从而加速接地材料的腐蚀[7]。c层能谱中S的存在说明了SO42-参与了阴极反应,这可能与硫酸还原菌的存在有关[8]。

2.2室内电化学实验A站的土壤理化性质测试结果如表1中所示,图4为镀锌Q235在不同浓度Cl-与SO42-下的腐蚀电流曲线图,腐蚀电流随Cl-与SO42-的变化规律基本一致,都是先增大后减小。随着Cl-与SO42-浓度的增大,土壤的电导率增加导致了金属腐蚀速率增加,该过程为电阻控制过程。但土壤电导率增加有限,当Cl-与SO42-浓度继续增大时,土壤与镀锌Q235界面之间形成的腐蚀产物影响了离子的扩散[10],因此无论是Cl-还是SO42-,镀锌Q235碳钢的腐蚀电流都出现了小幅下降。但是,Cl-能够吸附在氧化膜上,与氧化膜中的阳离子结合形成可溶性氯化物[11],酸性的红壤环境更有利于氯化物的溶解,SO42-离子则没有这种作用,因而其腐蚀电流下降的比Cl-更为迅速。从图4中还可以看到,当SO42-含量高于0.01%时,镀锌钢腐蚀电流基本维持在200µA左右,在SO42-含量为0.25%时达到最大值250µA;当Cl-含量达到0.5%时,腐蚀电流增加到最大值254µA;当继续增大Cl-含量时,腐蚀电流基本上维持在200µA左右。在腐蚀电流峰值附近,1份SO42-与2份Cl-对土壤腐蚀性具有基本等效的贡献。

2.3室内腐蚀加速实验结果5座变电站接地网层土壤理化性能测定结果如表1所示。

2.3.1腐蚀速率分析由图5镀锌Q235在该地区5座变电站土壤中的腐蚀速率图可以看到,随着腐蚀时间的增加,镀锌Q235在5座变电站土壤中的腐蚀速率均呈现先增大后减小最终略有增大并趋于稳定的规律。腐蚀初期以局部腐蚀开始,由于点蚀的增多使得腐蚀速率增加。当镀锌层受腐蚀后露出碳钢基时,碳钢基体与镀锌层就会构成微电池[12],形成类似于牺牲阳极的阴极保护形式,起到保护碳钢基体的效果,基体的腐蚀速率较小。随着镀锌层的逐渐腐蚀,这种保护效果逐渐变弱,碳钢基体逐渐受到腐蚀,腐蚀速率增大,在红壤介质中,碳钢处于类似于酸性溶液体系的环境,其腐蚀速率较为平缓。

2.3.2腐蚀产物分析图6a~e为镀锌Q235在该地区5座变电站土壤中加速腐蚀65d后的腐蚀形貌图,图7为镀锌Q235在A座变电站土壤中加速腐蚀65d后腐蚀产物的X射线衍射图。由图6可知,镀锌Q235试片在5座变电站红壤中均发生了较为严重的腐蚀,部分试片表面黏附有土壤,与现场开挖情况较为一致。图7镀锌Q235在A变电站红壤中的XRD分析结果表明,镀锌Q235碳钢在A座变电站红壤中的腐蚀产物主要是ZnO、Fe2O3、FeOOH。该腐蚀产物中检测到ZnO,而现场开挖接地扁钢腐蚀产物检测不到锌的氧化物,这可能与接地网镀锌扁钢服役时间较久导致镀锌层已经完全腐蚀掉有关。图8给出了5个站现场开挖腐蚀数据与室内加速腐蚀数据的相关性趋势,其中现场腐蚀速率理论计算得到。结果表明,室内模拟加速腐蚀实验加速比平均达到6.4,在不改变土壤腐蚀介质情况下,该实验具有较好的加速效果,即65d的加速腐蚀即可达到现场埋设1a以上的腐蚀效果。此外,相关性分析发现,二者的相关性系数达到0.88,表明该加速腐蚀实验具有与现场较好的相关性。

篇(3)

二、建立创新教育机制,培养学生创新能力

鼓励学生在教师指导下积极开展多样化的科技创新活动[5]。如参加指导教师的课题研究,申报并参加大学生创新创业训练计划项目,参加全国及辽宁省“挑战杯”大学生课外学术科技作品竞赛、全国及辽宁省普通高等学校本科大学生机械创新设计大赛、全国大学生英语竞赛、全国大学生数学建模竞赛等。通过组织各种类型、各种形式和不同层次的课外活动,将各类工程实践活动、创新实践训练、学科竞赛活动、学术前沿讲座、社会实践、公益活动等课外活动作为第二课堂课程模块纳入到课程体系中统一实施和管理。从2006年开始,我们以学校“6S”,即ST(科技训练)、SC(系列竞赛)、SP(社会实践)、SW(社会工作)、SL(系列讲座)、SA(特色活动)为指导,以“挑战杯”“机械设计竞赛”活动为契机,以课外教学环节为突破口,开展了多项大学生课外竞赛活动。近年来,金属材料工程专业参赛学生项目获机械创新设计大赛国家二等奖一项;“挑战杯”大学生课外学术科技作品竞赛国家三等奖一项;全国大学生英语竞赛二等奖、三等奖各一项;辽宁省级奖项几十项。通过创新竞赛的开展,活跃了创新教育的氛围,为金属材料工程专业学生的个性发展提供了平台,为学生毕业后从事科学研究活动奠定了一定的基础。此外,金属材料工程专业对学生实行实验室全天开放,先进的科研设备和仪器用于学生科研训练,促进了学生创新能力的提高。

篇(4)

2两组分液态完全互溶系统的相图

虽然二组分系统的气—液平衡相图依据组分在液态的互溶情况各有其特点,但液态完全互溶系统构成了这部分内容的学习基础[4]。对于这种相图,我们除了让学生掌握相图中各相区的组成、相态和杠杆规则外,还注重让学生学习气相线和液相线的绘制方法和细节信息。其绘制过程如图3所示,先配制不同比例的二组分混合物,再升高温度测试混合物的熔点,通过描点—连线得到相图。从而培养学生设计实验绘制相图读取相图细节信息的全面能力。通过学习绘制相图,可使学生对相图的全部信息有较深刻的认识、理解及较好的运用。为了便于学生掌握此类相图及其应用,在教学中我们通过物相点随温度的变化的实例,讲解其液相与气相及组成在该过程的演变情况。重点分析了第一个气泡点产生的压力、组成及最后一滴混合液消失的压力、组成,以及其逆过程这一难点。并将相图理论与工业精馏装置联系起来,激发学生对该部分内容的学习兴趣。

3具有转变温度的二组分固态部分互溶、液态完全互溶的液固平衡相图

具有转变温度的二组分固态部分互溶、液态完全互溶的液固平衡相图,是学生学习中最难掌握的内容。我们通过讲解物相点的降温过程的物相变化和步冷曲线的绘制,并借助动画展示具体过程,使该部分内容更加形象和生动,便于理解和掌握。同时,提高了学生的学习兴趣和动手能力。

4相图在金属材料中的应用

4.1在金属材料设计中的应用在工业生产和科研实践涉及到的金属材料通常为多组分的平衡系统,所以其相图更为复杂。为了得到材料的拟服役性能,需要对材料进行设计和加工。相图在材料设计中起着至关重要的作用,例如,在设计奥氏体不锈钢时,为了得到单一奥氏体组织,需扩大相图中奥氏体区,使其在冷却过程中不发生γ-Feα-Fe的转变。根据相图,改变系统的组成,增加稳定奥氏体元素,如Ni、C等是最常用的方法。当然,为了系统的平衡,其他元素也需做相应的改变。应用相图时,为了提高设计组织的准确性,需要考虑平衡相图与实际相图的差别。

4.2在金属材料加工中的应用在金属材料的热加工过程中,随着加工温度的不同,其物相也发生相应的变化。可通过控制轧制参数和冷却过程,改变材料的相变温度和组织类型,得到高性能的金属材料。例如,在钢铁生产中,热轧钢板控制轧制与控制冷却(TMCP)工艺,通过加大压下量增加累积位错,为相变过程提供更多的高能量相变形核点,以得到细小晶粒组织,提高钢的强韧性。通过控制冷却速率,可改变相变后的组织形态,在650℃以上发生相变得到珠光体和铁素体组织,在450~600℃区间主要得到贝氏体组织的钢材,在更低温度下发生相变得到马氏体组织,不同的组织赋予材料的不同的性能[5]。4.3在金属热处理中的应用相图不仅在金属材料的设计和加工中具有指导下作用,而且在材料的热处理过程中也具有重要的应用价值。例如,在金属材料的退火、淬火和正火中具有重要作用。淬火过程主要是控制冷却速率,使相变温度发生在较低温度区,得到低温转变组织。正火温度需在γ-Fe相区,需要根据相图和化学成分判断其奥氏体化温度,从而确定正火的加热温度。严格的说,确定热处理的升温速率和降温速率也需要参考相应的相图。通过相图在金属材料领域的应用的介绍,学生对本专业和学习物理化学的重要性均有了清晰的认识,他们的学习积极性也显著提高。

篇(5)

2原子层沉积金属及其反应生长机理

由以上ALD基本反应原理可以看出,典型的ALD反应过程近似是一种置换反应,比如沉积金属氧化物、硫化物和氮化物等,最常见的方法就是金属前驱体与其对应的氢化物(H2O,H2S和NH3)反应,金属前驱体与这些反应助剂交换它们的配体,从而获得相应的化合物。对于沉积纯金属而言,需要的则是还原金属态,移除与金属原子连接的配合基。因此,探究金属前驱体及相应反应助剂的选择、金属前驱体在已沉积表面的吸附情况、反应初始循环的化学过程等,了解和掌握原子层沉积金属的反应生长原理,就变得十分关键。而在ALD生长过程中引入原位表征与监控方法,无疑是一种有效的手段,可收集获取与表面化学反应、生长速度、化学价态和光学特性等相关的重要信息。目前原位探测手段主要包括:傅里叶变换红外光谱仪(Fouriertransforminfraredspec-troscopy,FTIR),能够实时观测每个半反应后的表面基团,为具体的表面吸附及化学反应提供有力的证据;石英晶振仪(quartzcrystalmicroba-lance,QCM),可分析每个脉冲结束后表面的质量变化,吸附时质量的增加,副产物移除时质量的减少,还能一定程度地反映出化学反应中热量变化情况;四极质谱仪(quadrupolemassspectroscopy,QMS),能够探测脉冲过程中反应腔内的物质组成,分析反应产物及反应进行状态。另外还可配备原位光电子能谱仪,对生长过程中表面的化学组成和价态进行表征,原位椭偏仪对沉积薄膜厚度和光学特性进行测量。下面结合原位监控手段,就ALD沉积贵金属、过渡金属和活泼金属的反应机理和特点分别进行介绍。

2.1贵金属在ALD生长中,贵金属一般是利用贵金属有机化合物和氧气进行反应生成。因为与形成化合物相比,以铂为代表的贵金属更容易生成稳定的金属单质。氧气作为其中一个反应物将增强这种趋势,金属前驱体的有机配体被氧化,两个半反应过程中均有燃烧产物CO2和H2O放出,使ALD生长贵金属的反应就像是氧气燃烧掉了金属的烃基,故命名为燃烧反应。这类贵金属的反应主要发生在常用于非均相催化的第八族贵金属中,其机理目前已经有较为详尽和确切的研究[9],图3[9]显示了ALD沉积金属铂和铱过程中原位QCM和QMS监测的结果。使用的金属有机前驱体分别是甲基环戊二烯三甲基铂和乙酰丙酮铱。图3(a)和(d)为QCM随铂/氧/铂/氧的脉冲变化而探测到的厚度变化,图中Δm0表示铂前驱体吸附在衬底表面后带来的厚度增长,Δm1表示经氧气脉冲反应,该循环沉积铂或铱的净增长厚度。图3(b)和(e)为QMS探测到质荷比为15的物质,即CH3的信号强度,其脉冲信号分别对应铂源和铱源脉冲。图3(c)和(f)为QMS探测到质荷比为44的物质,即CO2的信号强度,其脉冲信号对应氧气脉冲。CH3与CO2是ALD过程中最主要的两种含碳气态副产物。图3中t为时间,d为沉积厚度。铂前驱体脉冲时QMS观测到CH4,说明铂前驱体发生配位基互换,吸附到羟基等衬底活性氧表面。同时QCM显示出铂前驱体脉冲时质量增加,氧气脉冲时则略微减小,综合考虑到没有探测出CO,只有CO2,CH4和H2O三种气相产物,可以认为发生的是完全燃烧反应。铂前驱体脉冲和氧气脉冲过程中都有CO2和H2O放出,这是因为氧气脉冲后有部分氧气残留吸附在浅层表面,从而在下一个金属前驱体脉冲时直接氧化少量有机配体,大部分有机配体留至再下一个氧气脉冲通入时燃烧掉。贵金属非常抗氧化,但分子氧可以在它们表面可逆吸附和解离,铱、铂和钌尤其如此,使氧化、燃烧其配体可以高效进行。由此,贵金属ALD过程中自终止半反应,并非是由于表面羟基给配体加上了氢,而是在表面铂等金属催化下,配体发生了脱氢[10]。式(3)中,铂前驱体配体置换吸附在表面,部分配体与表面吸附氧发生燃烧反应;式(4)中,氧气脉冲烧掉剩余配体,在铂表面又留下含氧基,包含催化和表面化学的作用,以此形成循环反应。图3(d)[9]是ALD沉积铱反应中原位监测结果,可以看出其生长过程与铂非常近似。在其他一些研究中,钌和铑的ALD沉积也被证实与此反应机制相符。值得注意的是,氧化物表面ALD沉积贵金属总是会有一个较长的成核孕育期,因为金属与氧化物表面是不浸润的,多相催化的相关研究已经指出,金属在氧化物表面倾向于形成团簇[14]。而成核孕育期因为要移除键合在氧化物表面的金属配体有一定困难,加之氧化物表面的贵金属原子有发生扩散和聚集的倾向,从而形成分立的金属颗粒。因此沉积贵金属的初期总是先形成分散的金属岛,然后再逐渐长大,金属颗粒彼此连接形成连续薄膜[11]。图4[15]为ALD沉积Pt不同反应循环次数影响Pt纳米晶形成的透射电镜TEM照片,非常形象地展示了这个过程。影响成核的因素十分复杂,成核情况与衬底表面亲水性、电负性、表面组成和粗糙度都有一定关联。其中,所沉积的金属与衬底的润湿性是非常关键的因素,因此,衬底表面的基团种类十分重要。如衬底基团的亲水性会给ALD带来活性反应位,因此表面亲水性的羟基越多,成核越快。在浸润性好、成核快的衬底上,金属膜层才更容易长薄长均匀[16]。在不同的应用中,对金属成核还是成膜的要求会有所不同,如金属纳米晶存储器中,就希望获得高密度均匀分布的金属纳米晶。因此,实际ALD生长应用中,还需要结合具体需要进行分析调控。

2.2过渡金属不同于抗氧化的贵金属,ALD沉积其他金属都需要选择合适的还原剂。常见的还原剂如氢气、氨气及其等离子体,都已被用于ALD沉积过渡金属的反应中。目前ALD生长过渡金属的反应机制,主要分为三类:氢还原反应、氧化物还原和氟硅烷消去反应。由于铜互连在微电子工业中的重要性,因此最初在ALD中利用氢还原反应生长的金属是铜,铜很难黏附在SiO2表面,由于在其上成核密度较低,导致膜层表面粗糙度较大,均方根RMS值为6nm。若先行ALD沉积其他金属籽晶层钴、铬和钌等,铜膜粗糙度就会有明显改善,在ALD生长的钴膜上,铜膜的RMS值减少到2nm,晶粒粒径也会明显变小[17]。另外高温制备微电子器件时,铜还会扩散到SiO2或Si衬底内,因此在铜和Si之间需要一个超薄的阻挡层,热稳定性好又具有高黏附力,厚度还应小于5nm。ALD沉积的金属薄膜钌和钨可作为铜互连的扩散阻挡层。金属铜理想情况应该在100℃以下沉积,低温限制了表面迁移率,使金属原子在膜层很薄时最大限度减少晶核团聚成岛状的趋势,膜层长厚时就更为平整光滑。但由于许多铜前驱体活性较低,通常都需用200℃以上的高温沉积或需用等离子体源来增强反应活性[18]。目前ALD沉积铜的前驱体和还原剂种类很多,生长条件也各不相同。以[Cu(sBu-amd)]2的脒基配体与硅衬底的反应为例,由红外光谱探测分析可知,铜前驱体通入后,配体受热激发与表面羟基发生加氢反应,桥接结构置换为单配位基Si-Cu-O键结构。随后氢气脉冲通入还原,铜失去了脒基配体,同时有一部分硅氧键恢复,意味着铜原子得以扩散并聚集成为结晶的纳米颗粒。因为铜与硅氧衬底的键断裂,从而部分恢复了原始表面的反应位,使配位基置换反应得以继续进行。然而检测也发现有明显的CuO和COOH残留,CuO可能来自沉积后非原位探测造成的空气氧化或者是Cu与COOH的键合,说明即使在氢气作用下发生了还原反应,仍没能完全还原全部配体[19]。除此之外,沉积铜还可以采用其他还原剂,比如铜前驱体先与甲酸反应生成二价铜甲酸盐,再由联氨还原成铜,此反应能在120℃的低温下沉积,生长窗口为100~160℃,得到的膜层纯度高、电阻率低,表面粗糙度仅为3.5nm[20]。该沉积过程中铜符合ALD自限制生长模式,存在一个ALD工作窗口,如图5[20]所示。图5中,vGPC为每个循环的生长速率,tp为脉冲时间,θ为温度。ALD沉积铜还有其他的间接方法,即先沉积金属氧化物或氮化物,再通入还原剂将其还原为金属态。前面提到铜很难吸附在微电子相关特定结构的任何表面,采用这样先氧化的办法,还可以改善表面吸附性。异丙醇、福尔马林、氢气和甲酸等都可以充当还原剂,文献[]中还提到这种方法降低了膜层的粗糙度。同样采用先氧化后还原方法ALD沉积的金属还有镍。在ALD沉积金属氧化物的过程中,有机金属前驱体与表面的氧化物或金属—OH基团发生反应。如可以利用乙酰丙酮镍和臭氧反应得到氧化镍膜层,再用氢气还原得到金属镍膜[24]。但是也有研究指出,这样还原得到的Ni结构略微有所缺陷,膜层内有小孔。如果直接沉积金属镍,一般的还原条件均难以满足,需要的沉积温度较高,沉积速度也非常缓慢。氢还原反应适用的金属还包括过渡金属钴。一般来说,对于金属前驱体,亲水的羟基终端比疏水的氢终端活性更高,前驱体更易发生吸附,也就更适合做ALD初始反应的表面。但钴的常用前驱体tBu-AllylCo(CO)3的表现却完全相反,它在—OH终端的SiO2表面完全没有吸附,而对—H终端的Si衬底则表现出强烈的活性。这里,Co前驱体不是在吸附到—H终端Si衬底表面的同时就失去一个配体,它首先桥接在Si—H之间形成Si—Co键,再被这个表面氢除掉一个丙烯基,如图6[19]所示。羟基终端不能形成这样的机制,所以该前驱体与Si衬底氢终端吸附结合的活性反而更强,这一机制也保证了钴膜的高纯度[25]。另外一些关于前驱体修饰的研究,还注意到中性配位体的益处。羰基就可作为中性配位体,连的羰基越多,金属可用的电子密度越小,金属-羰基键就越弱,可以增强前驱体的挥发性。羰基配体的最典型的实例就是八羰基二钴前驱体,用氨等离子体还原,制备金属钴。这类利用氨等离子体还原的反应机理目前还不是很清楚,但是通过观察反应副产物,表明ALD沉积这些过渡金属时,氨解反应具有一定的作用。除此之外,还有一类还原反应是利用主族元素氢化物作还原剂,这类氟硅烷消去反应的过程通常是σ键置换、氧化加成/还原消除反应,适用于金属钨和钼的ALD沉积。用硅烷或者硼烷还原金属氟化物,能得到标准的半反应式沉积[26]。但是钨和钼两种元素在具体的反应上还是有所不同,乙硅烷输入时钼质量有所损失而钨有所增长,较高温度下钼的沉积速度会相应增加,这可以认为是由前驱体的热分解所致。此外,如果温度过高或硅烷曝光过多将可能导致硅烷嵌入Si—H键出现Si的CVD反应,而且此类反应的机理对其他金属元素不能通用,比如钽若用此种反应就会形成硅化物薄膜。

2.3活泼金属正电性金属包括铝、钛、铁、银和钽等。以银为例,由于它的化合物都是+1价,只有一个配合基键合的金属离子很难发生吸附,所以需要一些电中性的加合物配位基,通过它们的置换,辅助金属阳离子吸附到衬底。不过这种配位基的键合往往很弱,ALD成功沉积银的报告中使用的银前驱体是(hfac)Ag(1,5-COD)[29],其中COD即为上述辅助银离子吸附的中性配体。当COD被置换,实验观察到吸附在衬底的银有足够的表面迁移率和寿命,能在随后的高纯氮气清洗的步骤时沿衬底表面扩散并成核。在下一步丙醇的脉冲过程中,由于醇类的催化氧化析氢作用,多余的hfac配体得以移除,从而得到沉积的金属银。图8[30]是ALD在沟槽结构衬底上沉积银薄膜的扫描电镜照片,这里使用的前驱体是Ag(O2CtBu)(PEt3)[30]。然而文献[31]中也指出,由此得到的膜层生长速度缓慢,薄膜质量不甚理想,没有一般金属薄膜有光泽,看起来偏暗,同时电阻率也很高。其他的如铝,三甲基铝在200℃下自然分解的产物应该是Al4C3,这时如果提供氢气气氛,或者借助等离子体、光子等提供额外的能量,理论上有可能形成金属铝。然而目前的研究工作还非常粗略,而且反应要求沉积气氛压力低、还原气体纯度高,才能保证Al在沉积过程中不被氧化。这些活泼金属具有广阔应用前景,这不仅是由于其优异的导电性能,还在于其有可能在铜互连中用于黏附层和阻挡层,更是由于近来倍受关注的银表面等离激元的性质。但它们都较难还原或难与碳氮氧结合成较强的化学键,其常见的前驱体在热ALD中需要的生长温度太高,一般适用的衬底和结构都不足以承受如此高温,所以基本都需要使用氢等离子体以降低反应活化能。但是即便如此,利用等离子体沉积得到的活泼金属膜层一般都很薄,并且一旦暴露于空气中就极易氧化,一般需要原位沉积保护层防止氧化,所以总体来说获得的活泼金属薄膜的金属性都不强。目前ALD反应沉积活泼金属,只有少量沉积成功的报告和一些很初步的工艺探索,实验结果大多还不尽如人意,因此,其ALD沉积反应路径和机理尚有待于继续开拓和探究。

3原子层沉积金属面临的挑战

在上述已经成功沉积的金属中,最好的镍、钴膜层和仅有的锰、钛薄膜都是利用PEALD沉积的,可见PEALD在沉积金属薄膜中的重要地位。但是,PEALD对微电子器件的制备并非完美无缺,等离子体的高活性可能对某些应用所需的特殊衬底造成损伤,又因为等离子体极易在表面复合,从而不宜沉积高深宽比的衬底。总而言之,ALD沉积过渡金属普遍面临的难题是用来还原金属前驱体的反应物的还原性不够强。之前提到的主族元素氢化物是比较有潜力的反应机制,如硼烷中B—H键能够将氢转移到金属原子上,生成过渡金属氢化物,而这些氢化物大多不稳定。另一种可能的途径是寻找一些电子输运能力强的反应物,如二茂钴Co(C5H5)2,升华温度很低且有足够的电化学势来还原一些过渡金属离子。若要付诸实践,这些方法还需进一步检验,保证副产物都是气态且不会有其他杂质沉积[31]。除上述金属之外,金也是很重要的金属,不仅在于它的高导电率,还在于其特殊的催化和光学性质。而金的沉积对ALD技术来说,目前还是个挑战。与银相同,金的化合物也都是+1价,金配合物的热稳定性都不高。现在也有各种激活方法,比如激光活化、离子体增强、电子或离子束辅助等,但至今为止,还没有一种反应模式能够成功应用于ALD沉积金属金中。至于其他碱金属、碱土金属和稀土金属,其沉积难度更是有过之而无不及。但这些元素的应用需求也很有限,局限在有机发光二极管和锂电池中。而元素周期表右侧那些主族金属,目前也尚未见ALD沉积的报道。从电负性和还原性的角度来看,这些主族金属与第四周期的过渡金属相似,应该比那些活泼金属容易沉积。对ALD来说,沉积尽管同样富于挑战,但也并非不可能,还需要更深入与广泛的研究来丰富ALD沉积金属的种类。表1总结了目前为止ALD沉积金属的主要种类与反应类型,并附列了代表性文献。

篇(6)

1.2激光热处理技术激光热处理技术主要是利用激光对金属材料进行热处理。由于激光穿透力强,因此可以实现其他热处理方式达不到的效果,使金属材料表面硬度增强,性能提高。使用电脑控制激光热处理技术,可以大大提高效率,实现热处理自动化。

1.3真空热处理技术真空热处理技术利用真空作为金属材料热处理的环境,可以缩短时间,提高效率,减少有毒气体的排放,有明显的节能效果和环保效果。目前,在一些发达国家,真空热处理技术还在不断研究和更新,力求在无氧环境的基础上填充惰性气体作为热处理环境,使热处理效率更高。

1.4超硬涂层技术超硬涂层技术可以提高材料表面硬度,使其更加耐用,提高性能,是目前应用范围较为广泛的热处理技术之一。随着现代金属材料加工技术的不断发展,超硬涂层技术采用电脑进行实时监控,方便该技术更好地应用。

1.5振动时效处理技术振动时效处理技术依靠振动原理稳定金属材料性能,可以有效防止金属材料变形。振动时效处理技术采用计算机设备进行监控,既可以减少生产时间,提高效率,还能够降低成本,节能减耗,克服了传统热处理技术的不足。

2金属材料热处理工艺与技术展望

随着金属材料热处理工艺与技术的不断发展,诞生了许多热处理技术。其中,可控气氛热处理就是较为成熟的热处理技术之一。可控气氛,顾名思义,就是一种可以控制和保护的气氛,是一种保护金属材料的气体介质。可控气氛可以有效保护金属材料的表面性能,使热处理过程更为完善。对于钢制工件而言,可控气氛热处理极为适合,可以给钢材料提供更为妥善的保护。这是因为钢在热处理高温中很容易被氧化,表面破坏较为严重,但可控气氛热处理却能够避免钢被氧化。对于其他金属材料而言,可控气氛热处理同样适用,在尺寸上可以调控,使操作更加灵活。目前,可控气氛热处理的应用较为广泛,但依然有很大的局限性。因此,未来的金属材料热处理工艺和技术需更加普及,才会有更广泛的发展空间。

篇(7)

2影响因素

腐蚀疲劳涉及力学、化学、材料学等多个学科,科研工作者通过研究发现影响腐蚀疲劳的因素主要有力学因素、环境因素以及材料因素。力学因素包括应力大小、应力比、频率、应力幅和波形等;环境因素包括环境类型、酸性和温度等;材料因素包括材料成分、机械性能、组织形态、加工工艺和杂质分布等。

2.1力学因素研究表明交变载荷对腐蚀疲劳裂纹扩展的影响主要表现在:(1)使疲劳裂纹反复张开和闭合,增强了裂纹尖端与腐蚀的介质交换;(2)改变裂纹尖端的应变速率(3)造成累积疲劳损伤[12]。在力学影响因素中,交变载荷的应力比R和频率f对腐蚀疲劳裂纹扩展的影响非常重要:增加R和降低f都会加快腐蚀疲劳裂纹扩展速率。R不仅会影响腐蚀疲劳裂纹扩展速率,还会影响腐蚀疲劳的门槛值,一般情况下随R的增大,门槛值会减小[11,12]。另外,波形也会对腐蚀疲劳裂纹萌生和扩展产生显著的影响,而在常规疲劳过程中,波形对疲劳性能影响很小。腐蚀速率也会随着应力的增大而加快,即随着交变应力的平均值和振幅的增大而加快。

2.2环境因素在腐蚀环境中,理论上讲即使应力再低,只要加载次数足够大,金属材料也会发生破坏。这主要表现在腐蚀介质降低了材料的疲劳极限。一般升高温度会加快裂纹扩展速率,但是若温度上升引起材料严重孔蚀,产生许多浅裂纹源,从而降低了应力集中,反而提高材料的耐腐蚀疲劳性能。随着介质的酸性增加,溶液的腐蚀性增强,金属材料的临界应力强度因子降低,加快了腐蚀疲劳破坏,从而降低腐蚀疲劳寿命。腐蚀产物对裂纹扩展速率的影响包括两个方面:一是腐蚀产物能够减少腐蚀介质向裂纹尖端的转移,对电流可以起到屏蔽作用,从而减缓裂纹扩展;二是腐蚀产物在裂纹尖端会形成腐蚀电偶,从而加速腐蚀电化学过程。

2.3材料因素材料特性对腐蚀裂纹扩展速率影响至关重要,不同的材料耐腐蚀性不同,直接影响耐腐蚀疲劳性能。当材料含有杂质时,会产生应力集中,加快点蚀的发生从而增大腐蚀疲劳破坏。材料特性也决定着腐蚀疲劳门槛值的大小来影响裂纹扩展速率。不同晶相组织的电位差异会导致腐蚀疲劳端口裂纹开裂,且呈折线状,裂纹之间相互连接、交叉、分叉呈现出多裂纹特征。

3寿命预测

目前,对于腐蚀疲劳裂纹扩展寿命的预测方法研究比较多,在工程中应用最广泛的方法依然是1963年由Paris提出的疲劳裂纹扩展公式,也就是著名的Paris公式,它建立了应力强度因子和疲劳裂纹扩展速率之间的关系,是当今工程应用上预测疲劳裂纹扩展寿命理论的基础。式中,a是裂纹长度,单位为mm;N是应力循环次数,单位为cycle;da/dN是裂纹扩展速率,单位为mm/cycle;C、n是与材料-环境相关的常数,ΔK是应力强度因子幅,单位为MPam,计算式为。式中Kmax、Kmin分别是裂纹处应力强度因子的最大值和最小值Δσ是裂纹处应力幅值。Wei[13]认为腐蚀环境和交变载荷对裂纹扩展过程是相互独立的作用,因此提出了叠加模型。在K>KISCC的情况下,腐蚀疲劳裂纹扩展速率为机械疲劳裂纹扩展速率和应力腐蚀裂纹扩展速率的叠加。Austen[15]认为虽然机械疲劳和应力腐蚀同时对腐蚀疲劳裂纹扩展起到作用,但二者并非叠加关系,而是由发展较快的一个过程来表示腐蚀疲劳裂纹扩展过程,也就是过程竞争模型。式中,Bcf是与环境、材料相关的常数,ΔKthcf是腐蚀疲劳的门槛值。之所以腐蚀疲劳裂纹扩展速率模型能够适用腐蚀疲劳环境下,主要是(da)/dNcf与裂尖ΔK相关,另外可将空气看成一种较弱的腐蚀介质。

篇(8)

“基础性”项目包括:(1)铝合金固溶时效:了解固溶及时效处理的基本操作、析出产物的形成及析出过程中合金性能的变化;淬火加热温度、保温时间及淬火速度对铝合金时效效果的影响,掌握最佳热处理工艺参数的确定方法。(2)碳钢的基本热处理工艺:掌握钢的退火、正火、淬火、回火的工艺操作方法,了解含碳量、加热温度、冷却速度、回火对碳钢性能的影响规律。(3)低碳钢的渗碳:掌握金相法测定渗碳层厚度的方法,了解表面渗碳热处理后的组织分布特征。(4)Gleeble热-力模拟:利用Gleeble热-力模拟试验机获得金属材料应力-应变曲线,结合组织观测,分析实验结果,了解金属材料在形变热处理过程中变形程度、变形温度和组织与性能的关系。“基础性”项目一般3人一组,完成后每人必须提交研究总结报告。“综合性”项目,主要是基于45号钢,由学生查阅文献,自己完成从热处理工艺的制定和操作、性能检测、组织观察分析和数据分析的全过程。综合性项目一般5人一组,完成后每人必须提交研究总结报告,同时以小组为单位,以PPT口头汇报的形式将过程和实施结果展现给同学和老师。“研究性”项目,主要是学生利用课余的时间,对一些新型金属材料(非常规使用材料,一般为指导教师正在专注研究的材料)的热处理制度进行探索性的实验研究,确定其热处理的温度、实践等工艺参数,使学生具有综合运用热处理课程等所学相关专业知识分析问题和解决问题的能力,培养学生的创新思维和创新能力。“研究性”项目一般5人一组,完成后每人必须提交研究总结报告,同时做PPT口头汇报,接受同学和老师的问询。

2项目教学的实施效果及应注意的几个关键问题

笔者在“金属材料热处理”课程中引入项目教学后,取得了明显效果,主要体现在四个方面:一是激发了学生学习兴趣,加深了对课程内容的理解。学生积极与老师交流,主动通过网络检索查阅资料,通过调研获得项目有关的实践应用方面的信息,深入钻研的精神进一步养成;二是形成了合作学习的良好氛围。小组成员间相互帮助,共同提高和进步,增强了团队合作意识,提高了学习效率;三是产生了成就感,增强了自信心。学生认真完成每个具体的项目任务,解决每个实际问题,内心就会产生成就感,自信心也明显增加,反过来也促进了对理论知识的学习;四是强化了操作技能,锻炼了综合职业能力。由于中小学阶段主要强调的是应试教育,学生的动手能力普遍不强,更谈不上职业能力。项目教学在锻炼学生动手能力方面有立竿见影的效果,对学生适应未来工作岗位非常有好处。总结长期的教学实践,笔者认为要想使项目教学在“金属材料热处理”课程中充分发挥作用,教师应把握好以下几个关键问题。

2.1充分发挥教师的主导作用教师的主要职能应从原来的“教”转变为“导”,具体体现为引导、指导、诱导和教导。教师应帮助学生提出问题、发现问题,但是解决问题和完成任务的主角是学生。对项目实施中遇到的关键知识点,教师应简明扼要地提出,由学生通过自学方式完成。对于部分靠学生自身能力和经验难以理解清楚的或者难以解决的问题,教师要及时给予启发性的辅导,最好不要直接告诉结果。教师要充分激发学生的学习动力,促进学生的自主学习和个性化发展。对于项目中的各个子任务,教师要严格督促学生按时间节点要求保质保量的完成,对项目实施的整体情况要有很好的把控。

2.2充分激发学生的学习主体性在项目教学中,学生不再是被动的学习者,学生的学习拥有很强的阶段目的性。学生为了解决实际问题,可以运用互联网、文本资料、认知工具,或者与同学讨论交流实现对信息的分析和处理,展开思维活动,不再完全依赖教师的讲解。因此,项目教学拥有天然地激发学生自发学习的特点。但是,学生个体在智力水平、思维模式、学习习惯方面存在很大差异,教师应根据每个学生的情况充分激发学习的主体意识,只有这样项目教学的效果才能充分体现,进展起来也会事半功倍。

篇(9)

2脉冲电流对金属材料性能的影响

有关研究人员通过实验发现,脉冲电流不仅能够使金属材料的流变应力大大降低,同时可以有效延长金属材料的疲劳寿命。通过研究高密度脉冲电流对a-Ti和多晶铜等金属材料的疲劳性能的影响,发现针对a-Ti的低周疲劳,高密度脉冲电流不仅能够彻底消除软化过程中的硬化峰,同时,还能够有效降低其疲劳初期的软化速率。脉冲电流能够使多晶铜的沿晶断裂倾向大大降低,有效延长高多晶铜的疲劳寿命。有研究人员认为,高密度脉冲电流不仅在一定程度上影响了次滑移系中的位错运动,同时,还影响了驻留滑移带中的位错运动,从而使滑移的均匀性得到有效提升。并且,随着所施加应力的不断降低,脉冲电流对多铜晶疲劳寿命的影响也会相应地有所增加。另外,有大量研究证明,用脉冲电流进行处理,可以有效减少驻留滑移带的平均间距和平均宽度,并且有效减小驻留滑移带和基体界面处的应力集中,从而大大延长其疲劳寿命。除此之外,脉冲电流还能够有效阻止疲劳裂纹进一步扩展,使金属材料的疲劳寿命大大延长。

篇(10)

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2014)25-0271-02

本科毕业论文是完成本科教学计划,实现本科培养目标的重要阶段,是人才培养不可缺少的重要环节[1]。与其他专业相比,无机非金属材料专业具有如下特点:①工作量大。该专业的学生通常选题为陶瓷粉体、混凝土、纳米材料等方向,而上述材料的制备需要进行系统的实验方能获得较为理想的结果。在制得产物后,需要借助分析仪器进一步对材料的物相、形貌等进行一系列的表征,方能确认实验产物。有时还需继续研究产物的性能;②结果具有不确定性。虽然依据已有文献,可大致推断出生成产物,但在实验时往往采用新的方法或者对原有的工艺进行改进,因此实验过程是全新的,只有通过分析仪器的检测方能最终确定实验产物的实际组成及形貌,故而经常会出现实验结果与预期不尽相同的情形,需要补做实验或对数据进行深入的理论分析。无机非金属材料专业的毕业论文是完全依赖实验结果而成文的,实验结果的好坏直接决定毕业论文的质量。因此,在选题后如何开展毕业论文的实验、制得产物后如何进一步对其进行检测与表征、获得实验数据后如何进行毕业论文的撰写,是无机非金属材料专业的本科生需要重点学习和掌握的,也是指导教师需要重点把握和指导的内容。本文从高校无机非金属材料专业本科毕业论文指导的三个方面:毕业论文实验、数据分析、论文撰写分别作以介绍,并对无机非金属材料专业毕业论文撰写中常见的问题进行分析。

一、毕业论文实验

由于选题决定了整个毕业论文的方向和内容,在进行选题时,需要指导教师提供一个大致的研究方向与课题,让学生下载相关文献阅读,在短时间内对课题的可行性、可操作性进行评估,并依据自身的水平判断自己能否胜任。有的课题在设计之初就是探索性的实验,需要学生的积极配合与主动参与。如果是一个前沿性的课题,可参考的文献比较少,学生觉得开展实验有困难,则对其完成论文将是一项不小的考验和挑战。因此,需要指导教师与学生共同探讨,确立一个合适选题[2]。在对课题进行充分调研的基础上,使学生了解课题的意义与价值,熟悉国内外研究进展情况,详细掌握本课题材料的常用制备方法或者本制备方法制备过哪些材料。通过前期调研,制定符合学生和实验室情况的实验方案,并严格按照进度计划开展实验。在实验时,要求每个学生必须准备一个实验记录本,详细记录每次实验的日期、试剂及用量、使用仪器条件、实验过程、反应现象、产率等数据,以备实验结果出现问题或需要重复结果时有依据可查。应指导学生规范操作,比如使用易挥发、腐蚀性强、有毒物质必须带防护手套,并在通风橱内进行,中途不许离岗等等。只有在规范的操作下,才能得到正确的实验结果。任何一个步骤的疏漏,都会导致结果的偏差。例如,在纳米材料的制备过程中,通常应该使用去离子水和无水乙醇分别洗涤3次,而有个学生为了节省时间只用去离子水和无水乙醇各洗一次,当制备完样品进行检测的时候,发现反应原料残余的离子没有洗净,影响了产物的纯度,导致该学生耗费了更多的时间来补做实验,重新检测。不仅耽误了实验进度,浪费了实验试剂,同时也增加了检测费用。这一方面是由于学生态度不够认真,操作不规范导致的,另一方面也督促指导教师,需要随时把握学生实验进度,在关键的操作环节予以指导和点拨,这样才能保证前期实验结果准确,实验按照设定的计划完成。

二、数据分析

对于无机非金属材料专业来说,通常需要借助于X-射线衍射、差热―热重分析、红外光谱、扫描电镜、透射电镜等检测手段对材料进行表征。其中,前三种检测手段的数据通常是以“.CSV”格式提供的,需要使用Origin软件绘图;后两种检测手段的数据通常是以照片形式提供的,但有时由于技术原因导致照片不够清晰等,需要掌握photoshop软件的相关应用。在性能检测后,大部分实验数据都是以图表的形式体现在毕业论文中的,需要教会学生使用相应的操作软件。下面分别对各软件涉及数据处理的使用要点作以简单介绍。

1.Origin使用要点。Origin的使用教程有很多,可让学生自行下载学习。在毕业论文撰写的过程中,需要向学生强调图片格式的问题,例如做出的图片如何插入文档等。在Origin绘图后,通常会出现一个只有左侧坐标轴和下部坐标轴的图形,坐标轴刻度向轴外。大多数学生在将图插入文档时往往忽略了这一点,没有注意到图形没有四周的边框和刻度问题,直接将图片粘贴到文档里,导致图形格式不够规范。因此,需要在Origin中将坐标轴设置好。

2.HighScore使用要点。在X-射线衍射检测后,指导教师可让学生使用Origin绘出产物的谱图,并与参考文献中理论产物的数据进行比较。如果无杂峰出现,且衍射峰出峰位置、相对强度与参考文献均一致可直接认定产物;如果是未知产物,只知道物质中所含的元素,通常使用“HighScore”软件进行物相匹配,获得产物的晶相结构。在出现的一系列与产物衍射峰相匹配的卡片中,选择与理论产物最为接近的即可。若为混合物,则应逐个点击出现的卡片进行对比分析,确定衍射峰的归属。

3.Photoshop使用要点。使用扫描电镜、透射电镜检测样品后,当噪点较多或者是对焦不准确使照片不够清晰,对比度较差时,可使用Photoshop对照片进行简单处理。首先,打开图片后,选择工具栏上的“滤镜”―“杂色”―“蒙尘与划痕”(一般选默认值即可)―“好”;其次,选择工具栏上的“图像”―“调整”―“曲线”―按住曲线中间黑点进行调节,至满意为止―“好”。此外,还可用Photoshop将图片加上标尺等。

三、论文撰写

1.绪论。绪论部分需要查阅大量的参考文献,指导教师需向学生强调应查找最新的、与课题紧密相关的中文及外文文献,包括专著、资料等,查阅的资料要有学术性、前沿性、理论性。直接查阅的文献不应少于10篇,在撰写绪论部分时要紧扣论文题目,注意行文逻辑顺序,通常按如下层次撰写:①引言:介绍研究内容及其作用(意义)有何价值及应用;②国内外研究进展:该项工作(或者该项方法等)目前在国内、国外的研究进展情况,存在哪些不足或在哪些地方尚需改进;③本课题阐述:介绍该项工作目前在哪些领域进行了应用,或该方法目前已应用在哪些材料制备中;④本文的研究目的与内容。

2.材料与方法。在本科生的毕业论文中,通常可将材料与方法单列一章,详细介绍本实验使用的试剂、仪器及样品制备及检测方法。若论文研究内容较多,在制备不同条件下样品时,使用的仪器与试剂有较大变化,需要各列成章,则“材料与方法”内容可放入各章中分别介绍即可。

3.结果与讨论。此部分为整个毕业论文的核心部分,不仅是对前期实验结果的一个汇总,更能够体现本科生进行数据分析的能力。因此,需要学生考察不同条件下样品的性能进行比较,从而得出最佳条件,并将绘制好的图片放入,对其中的数据进行分析、比对。

4.结论。结论部分往往是提纲挈领的,是对整个实验结果讨论后的升华与凝练。结论部分反映出学生的论文工作是否有意义,对其他实验是否有借鉴作用。

5.摘要。论文的摘要是整个论文画龙点睛的部分,需要重点介绍:课题的意义、实验方法、实验现象、结论。通常摘要部分应该在完成前面几部分内容后最后撰写。在论文撰写过程中应力争做到“三符”:符合格式规范、符合认知顺序、符合严谨行文。

四、毕业论文撰写过程中的常见问题

1.实验记录不清。在刚开始做实验的时候,很多学生能够把实验数据记录得很好,但是随着实验的开展,由于忙于实验操作,往往就遗漏了数据的记录,导致数据记录不详尽。因此,需要指导教师反复向学生强调做好实验记录的重要性,并定期进行检查。

2.格式不够规范。格式规范的毕业论文,不仅能够准确反映论文的真实数据,同时也是学生自身综合素质的体现,很多学生的毕业论文中存在角标不规范、标题格式不正确、参考文献引用混乱等问题,因此,需要引导学生在撰写论文的过程中养成良好的习惯,认真检查每一处错误。

3.理论深度不足。通过专业课程的学习以及毕业论文实验的操作后,大部分本科生没有将各项知识融会贯通的能力,因此,在数据分析时,需要教师加大力度指导,使学生知其然知其所以然,从而加深对课题意义和价值的进一步理解。

总之,在无机非金属材料专业毕业论文撰写的过程中,需要指导教师全程指导、用心指导。高质量的本科毕业论文不仅仅反映了学生的综合能力,也体现了学校的整体教学水平。广大论文指导教师都应重视这项工作,不断积累经验,集思广益,从而推动学校教学水平的进一步提高。

参考文献:

篇(11)

中图分类号:TU5 文献标识码:A

随着科学技术的发展,低温技术也迅速地渗透到各个科学技术领域内,而且成为尖端科学技术的一个组成部分。低温技术的发展和应用,又伴随低温用材料,首先是金属材料的研究。近年来低温金属材料的机械性能的研究已成为材料学科的一个重要分支,各国科学工作者已做了不少工作。

一、金属材料的特点

温度降低,通过金属材料低温拉伸试验表明,金属材料会变得比降低温度前脆。

常温下的脆性破坏与金属材料的冷脆断裂基本相同。断裂前无明显塑性变形,断口齐平,突然发生,裂纹起源于构件应力集中或材料组织中的缺陷处,并快速扩展。构件的冷脆破坏危害性极大,无法控制和预告,一旦发生,整个结构瞬间崩溃。

在低温下并非所有的金属都会发生冷脆,金属的晶格类型与冷脆性有关。

金属晶格有面心立方晶格、体心立方晶格、密排六方晶格等3种类型,见图1。

图13种常见金属晶格结构

立方体的8个顶角和6个面的中心在面心立方晶格上各有一个原子,铜、镍、银、金、铝及高温、合金下的铁(奥氏体钢)属于这种晶格;立方体的8个顶角和中心在体心立方晶格中各有1个原子,例如室温下的铁(普通钢材) 以及钨、铬、钼、钠;密排六方晶格棱体的中心平面有3个原子,12个顶角和上下底面的中心处各有1个原子,锌、镁、钛(α-Ti)均属这一类型。

二、金属材料的低温蠕变的机理

金属材料的低温蠕变是位错理论的发展。由活化能Q1和活化体积V1来分析比较各种金属材料的低温蠕变。Q1和V1分别有如下的表达式:

式中,ε′为蠕变应变速率(s-1);:为作用在位错上的有效应力(MPa );Q1为活化能( J/mol);V1为活化体积(m3);k为玻尔兹曼常数:T为温度(K)。

Q1、V1也可通过不。同应力加载速率和不同温度下的拉伸试验近似求出:

式中,Q:为由拉伸试验计算出的活化能(J/mol ) :V:为由拉伸试验计算出的活化体积(m3); τ′为形变应力(MPa)。部份金属材料的活化能Q、活化体积V值见表1(表1中的Q0系零应力下克服障碍所需的活化能)。

图 2金属材料的典型蠕变曲线

这些理论用于解释不同金属材料在不同温度下的蠕变机理。位错交截机理就是加工硬化机理,塑性形变就是晶粒中位错的滑移。在位错的双扭折成核机理中,位错系克服晶格阻力进行运动。这个晶格阻力也称为皮尔斯(Peierls)势能,见图1。在此机理中,活化能和活化体积都比较小,图2中的b为金属物理中的柏格斯矢量(单位为m)。其中活化能约为扭折能量的数量级,在面心立方(FCC)金属中,活化能小于0,1eV:活化体积为扫描面积乘以位错高。在体心立方金属中,双扭折成核机理用于解释低温塑性形变的原因。因为这时的皮尔斯势能比密集堆积的应力大,是位错运动的主要阻力。在面心立方、六方金属中也同样存在这种机理。通过对铜的内摩擦试验,测出铜的双扭折能量为0,04eV:而蠕变试验中测量出来的数值为0,045eV。这就说明铜在低温下的稳态蠕变可用双扭折成核机理来解释。

图3双扭折理论中,位错线克服皮尔斯势能示意图

三、金属材料的低温蠕变数据及变化规律

表1给出了部分金属材料的低温塑性形变的数据。图4给出了不同温度和应力下铜的蠕变速率。

图4铜的稳态蠕变速率

当所受的应力增加时,低温蠕变应力和蠕变速率都增加。温度越低,蠕变速率也越低。表1和表2为面心立方金属材料的低温塑性形变数据和六方金属材料的低温塑性形变数据

表1面心立方金属材料的低通塑性形变数据

表2六方金属材料的低温塑性形变数据

四、金属的韧性—脆性转变

总希望在工程应用中,避免危险的脆性断裂,结构件处于韧性状态。这不仅取决于材料本身的合金种类、组织结构、结晶粒度、成分等,还取决于工作温度、应力状态、加载速率等外部因素。

(一)、温度、应力和加载速率的影响

切口试件的切口根部处于易发生脆性断裂,多向拉伸应力状态,且韧—脆转变温度提高,这不利于构件的安全服役。低于临界温度,发生脆性断裂;在室温或高温下,普通碳钢断裂前有较大的塑性变形,是韧断。加载速率提高,易增加脆性倾向,激发解理断裂。因此,诱发材料脆断的3个因素是低温、切口和高速加载。

(二)、金属材料微观结构的影响

对冲击韧性和韧—脆转化温度由于钢的成分、组织和冶金质量有很大的影响。晶格类型的影响。面心立方晶格的金属韧性好、塑性性,是因为该金属滑移系多,而且不会解理断裂,易出现多系滑移,也没有韧—脆转变。它的韧性状态,常用于低温结构工程,可以维持到低温。

体心和密排六方晶格的金属韧性较差、塑性,韧—脆转变受加载速率及温度的影响很大,在高加载速率和低温下,易激发解理断裂、发生孪晶。溶于体心立方晶格中微量的氧、氮及间隙原子都会阻碍滑移,促进其脆断。

实践证明,在低温下金属的性能与常温表现不同,随着温度的降低或升高,物体的某些机械性质发生变化。常温下,金属材料中原子的结合弹性好,较疏松,对金属的外部冲击能量能吸收较多;原子在低温情况下,由于弹性差,结合得较紧密,外来能量只能吸收极少,材料因其原子周围的 “粘结力”减弱和自由电子活动能力而呈现脆性。因此,低温下的材料容易脆断。

低温韧性指标规定: -40℃时,冲击韧性必须不小于3 (kg·m) /cm2。服役的零件,在低温下最低工作温度一定要比材料的临界脆化温度大。工作温度对于重要零件,一定要高于韧-脆转化温度67℃。

五、低温材料的应用

工程上,一般将达到永久形变的0,2%形变作为材料的屈服数据,因此,也可将蠕变形变达0,2%永久形变作为蠕变的极限。从表1至表3可知不少材料的α值很小。代入公式后算出约需15年才可达到0,2%永久形变。这样的低温结构材料是很稳定的。蠕变对其没有什么影响。但在稳态蠕变中,铜的蠕变速率为10-10/s。只需0,63年就可达到0,2&永久形变(77~90K)。一旦超过这一极限,材料将进入第三阶段蠕变,很快会导致材料断裂。因此,低温蠕变数据为判断金属材料的低温寿命的重要数据之一。

低温用钢按化学成分不同分为3类:中合金钢、低合金铁素体钢及高合金奥氏体钢。工程结构寒冷地区的材料通常采用低合金铁素体钢。

面心立方晶格的奥氏体不锈钢和铝、铜合金是非冷脆材料的“主力”,是非常优良的低温材料,尤其是不锈钢。从食品冷冻工业到-100℃的分离装置、天然气分馏;从液态空气分离设备到液体燃料火箭推进器,都有广泛的应用。

碳、磷、氧等杂质元素会导致冷脆性的加剧,因此低温钢冶炼对杂质含量必须控制。而加入定量的硅、镍、锰等元素对低温性能可以改善,它们降低临界脆性温度,使晶粒变细。为了消除各个方向性能上的差异,提高低温钢的质量,生产低温钢板可以采用横向和纵向交替轧制的方法。

低碳马氏体型低温用钢属于该类钢的主要合金元素9%Ni(1Ni9),从公布的资料来看,合金元素镍可以部分替代元素碳而改善铁素体的低温韧性、从而降低TC。为了保证钢的韧性和塑性,必须限制碳、氮的含量。

结束语

目前,美、苏各国都在尽力研制新牌号的钛合金,他们只注重性能,不注重成分。相信随着科技的发展,我国在低温用材料的研究方面,会更加深入,更加广泛的研究与应用。