绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇电网系统论文范文,希望它们能为您的写作提供参考和启发。
(1)相对性。安全系统是相对的,换而言之便是没有绝对的安全系统;同时,操作系统和网络管理之间存在相对性,安全性基于系统的不同部件之间能够发生转移。(2)相关性。这里指的是配置的相关性。日常管理过程中,不一样的配置会产生全新的问题,一般的安全测评只能证明特定环境和特定配置的安全性,例如新设备的应用等。(3)时效性。主要体现为新的漏洞及攻击方式逐渐呈现,比如:NT4.0便从SP1逐渐发展至SP6;现在安全的系统在未来其安全性将会面临考验。(4)复杂性。对于信息安全来说,属于一项较为系统的工程,需融合技术手段及非技术手段,并且与安全管理、培训及教育密不可分,大致上分析便知其复杂性较高。(5)不确定性。指的是攻击的不确定性。如攻击时间的不确定性、攻击手段及目标的不确定性等。
1.2信息网络安全的实现要点
(1)需要对网络系统的硬软件及数据进行有效保护,对于系统遭到破坏、更改或泄露等情况需实现有效规避。(2)对于外部非法入侵行为需采取有效防止措施,同时加强内部人员的管理及教育,使内部人员的安全意识得到有效提高。(3)信息安全管理者需重视信息网络安全现状所存在的问题,例如行为管理的脆弱性,又如网络配置及技术的不完善性等。在认识到问题的基础上,制定有效的改善策略,进一步提高电力系统信息网络的安全性。
2电力系统信息网络安全架构策略探究
2.1防火墙技术
电力系统当中,为了防止病毒入侵,便需要防火墙技术的介入。目前具备的防火墙指的是设置在不同网络或网络安全域间的一系列部件的组合,它属于不同网络或者网络安全域间信息的唯一出入口,可以企业的安全政策为依据,进一步对出入网络的信息流实现有效控制,同时自身还具备比较强的攻击能力。另外,它还是提供信息安全服务的重要基础,也能够使信息网络更具安全性。近年来,防火墙技术已经广泛应用于局域网和Internet之间的隔离。
2.2NAT技术
应用NAT技术,能够让一个机构里的全部用户以有限的合法IP地址为途径,进一步对Internet进行访问,这样便使Internet上的合法IP地址得到了有效节省。另外,以地址转换为手段,还能够使内网上主机的真实IP地址实现隐藏,进而使网络的安全性得到有效提高。
2.3防病毒技术
利用防病毒产品,能够防止恶意程序的入侵,并起到抵御病毒的作用,进一步使网络当中的服务器及PC机获得了有效防护。防病毒产品具备功能强大的管理工具,能够对文件进行自动更新,让管理及服务作业更具合理性。另外,还可以使企业的防病毒安全机制更具完善性,具有优化系统性能及解决病毒攻击等优势,为电力系统信息网络的安全性提供了重要保障。
2.4网络加密技术
网络加密技术是指对原有的数据或明文文件通过某种特定算法进行有效处理,使其成为一段不可读的代码,然后只允许输入相应的密钥后才可显示出原来的内容,通过此途径为数据的安全性提供保障,同时使数据更具完整性及保密性。
2.5指纹认证技术
对于电力系统来说,其信息网络安全的身份认证显得极为重要。在现有的硬件防火墙的条件下,可以进一步应用最新的身份认证技术,即为指纹认证技术。基于电力信息网络管理过程中,把具有合法特质的用户指纹存入指纹数据库当中。使用指纹技术,便可以使认证的可靠性增强。主要原理是,把用户的密钥与用户指纹特征统一存储在密钥分配的KDC当中,用户在应用密钥时通过自动指纹识别确认身份后从KDC中获取。
2.6数据加密技术
防火墙及防病毒系统技术能够对电力系统起到保护作用,同时通过数据加密技术也能够对电力系统起到保护作用。数据加密技术是一种对网络传输数据的访问权进行限制的技术,在加密设备与密钥加密过程中会产生密文,把密文向原始明文还原的过程为解密,是基于加密处理的反向处理,但是对于解密者来说,需使用同样类型的加密设备及密钥,才能够进一步对密文进行有效解密。
3电力系统信息网络安全构架
通过防火墙、病毒网管及认证服务器,使非授权用户入侵网络的情况得到有效防止,进一步使网络系统的可用性得到有效体现。充分应用CA中心,能够对用户起到权限控制作用,并且在结合内容审计机制的基础上,能够对网络资源与信息实现有效控制。通过防毒管理中心,并利用漏洞扫描器,使系统内部安全得到有效保证,进一步保证了信息的完整性。通过VPN与加密系统,保证了信息不会泄露给没有获得授权的实体,进而使信息更具保密性。另外,利用入侵检测及日志服务器,能够为网络安全问题提供检测方面的有效依据,使信息实现可审查的特征,进一步充分保证了信息的可靠性及安全性。
(1)同轴电缆传输系统主要包含同轴电缆网、干线系统放大器间隔配置、放大器级连等;附属设备包括用于干线分路的过电型分支器、分配器等。同轴电缆由内是用介质使内外导体绝缘并且保持轴心重合的电缆,由内导体、绝缘体、外导体和护套四部分组成。通过结构可以分为封闭竹节型、藕芯型以及物理发泡聚乙烯绝缘型三种类型。同轴电缆开始为实芯聚乙烯绝缘同轴电缆,后来发展为化学发泡聚乙烯绝缘同轴电缆,纵孔聚乙烯同轴电缆,现在多采用物理发泡聚乙烯型绝缘电缆。同轴电缆特性阻抗一般为75Ω,电缆衰减特性与信号的频率、电缆粗细、长度有关,低频信号、细芯的电缆衰减量大,因为衰减量与电缆的长度成正比,用干线放大器来补偿电缆对信号电平进行补偿,使干线能够远距离传输。温度升高,衰减量升高,温度系数约为0.2%/℃。同轴电缆信号传输距离越远,级连越大,系统指标下降越多,系统维护就比较困难,服务水平就会下降。
(2)光缆传输系统是由光缆、光源发射机、光线放大器、和光线接收器组成。从切面看,光缆包括导电线芯、光纤、加强的构件、还有保护层四部分。光纤按电磁场分布可分为单模光纤和多模光纤,单模光纤的工作带宽较宽,有线电视多采用单模光纤。1970年,在美国首先发明出来20dB/km光纤;1989年在美国开始出现有线电视光纤传输;1992年我国开始出现电视信号光纤传输。光缆传输技术具有损耗小(1310nm:0.4dB/km,1550nm:0.25dB/km),可以实现电视信号的长距离传送,保证电视信号质量完好。光纤频带比较宽,在最低损耗区的频带宽度数值为30000GHz,由于单个光源占用的带宽比较小,采用相干光通信技术,可以在30000GHz范围内容纳上百万个频道,使有线电视信号能够均匀地传输到各个节点。光纤传输只传输光,不导电,不受电磁场影响,所以抗干扰能力强。
(3)微波传输系统是由微波发射系统和微波接收系统组成,微波发射系统有微波发射机、电缆、合成器、还有发射天线等,接收系统有微波接收天线、供电器、变频器等。微波传输场合有国家微波干线的大微波、卫星、单路与多路FM(调频)微波、AM(调幅)微波、多路微波分配系统MMDS。微波传输优点有:频带宽,空间传输2500-2700MHz,接收分配111-750MHz;传输质量高,稳定性强,适应性和灵活性强。微波传输缺点是发射与接收应在视距范围内进行,信号怕遮挡,易受干扰,反射出重影等。
(4)混合传输比如光纤同轴混合网-HFC,它是由光纤作为干线、同轴电缆作为分配网,构成光纤同轴混合网(HFC)。HFC具有光纤和电缆共同的优良特性,它们通过有效的结合,使有信号能够高效高质的传输、分配。在双向有线电视中,由前端向用户终端传送的信号叫下行信号或正向通路信号;信号从用户端向前端传送的通路成为反向通路或上行通路。HFC采用频分复用的技术,将5-1000MHz的频段分为上行通道和下行通道:5-65MHz为上行通道,可作为非广播业务,为了提高抗干扰能力,采用QPSK(或16QAM)调制。87-1000MHz为下行通道87-550MHz,全部用于模拟电视广播;550-750MHz为下行数字通信信道。
2用户分配系统
2配电通信网网络架构
配电通信网络承载的业务内容比较广泛,有用电信息采集业务、配电自动化业务。其中,在电信信息采集业务中,有包含诸多业务,例如双向营销互动业务、视频通讯业务等等。这个时候的网络构架应该根据不同的网络业务需求进行搭建,需要满足实时性、安全性的组网技术要求。因此,在进行信息系统平台搭建时,应该融入多网融合,这个融合可以包含专业的营销管理系统,将该整个系统纳入配电通信网内,进行科学规划,这样可以将配电信息快速传输到用户营销侧,使得用户及时掌握电网运行情况,从而进行用电调整。用户接入网中的数据通过光纤、宽带无线和电力线载波通信方式接入配电通信网。配电通信网中的lOkV变电站负责接收用户用电信息。在整个输变电络中,有诸多组成,像配电室、开关站以及环网柜等等。选择自动化配置和自动化配变检测。当下,配电通讯网络,一般选择的是“光纤为主、无线宽带为辅、公网为补充”组网方式,这个方式最大特点是将大量的数据汇集在通信骨干网中。营销系统结合以后,就可以更加紧密关注变化。而且可以将更多注意力转移到用户中,了解用户的需求,根据实际需求,进行配电调整,实现电网运行水平提高,保障精细化、合理化以及高效化管理目标实现。
3电力营销与用户接入网网络架构
电力营销以及用户接入网过程中,已经形成一体化的信息通信平台,这平台能够发挥出巨大作用。可以实现对于户接入网监控目的,进行监控家用电器用电情况以及开关情况。最终的信息会于无线传感网将其智能反应在外网上,这些信息的积累是实现主动营销策略最关键依据。这个过程中,应该保障信息传输准确性和实时性。使用多个智能表计将其集中连接起来,实现对小区内用电信息进行采集,集中器会将前端设备进行屏蔽,给予统一的连接接口,最终传输到上层变电站中,这样就可以整合整个小区用电信息,并且可以快速传输给电网。
2站用电微网系统关键技术
站用微电网是由光伏发电、风力发电以及储能装置和监控、保护装置汇集而成的变电站供电的小型发配电系统,它能够不依赖大电网而正常运行,实现区域内部供需平衡。当站用电正常供电时,首先消纳微网系统电能,实现系统电能消耗的减少和节约,当变电站电网系统出现故障,站用微电网可以为变电站提供必要的电源,从而保证控制系统正常运行,降低变电站故障恢复时间。
2.1站用电微网系统组成
1)风力发电系统,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;
2)光伏发电系统,利用太阳能电池板将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;
3)储能系统,使微网既可以并网运行,也可以独立孤网运行,并保证功率稳定输出。储能电池组在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用;
4)逆变系统,由几台逆变器组成,把蓄电池中的直流电变成标准的220V交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;5)监控系统,系统可以监控分布式能源运行数据,调整运行策略,控制运行状态。智能能量控制管理部分是保证电源系统正常运行的重要核心设备。
2.2站用电微网系统功能系统主要实现以下功能
1)微网系统包含光伏发电、小型风力发电机和储能设备。通过微网控制系统监控分布式能源运行数据,调整运行策略,控制运行状态;
2)微网系统独立运行时,储能设备作为独立运行时的主电源;当光伏发电系统和风力发电系统全部退出运行时,主电源的功率大于微网内所有负荷的功率时,微网系统会根据实际情况对所供负载进行容量调节和超限保护;
3)对于主从控制的微网,如果分布式电源的出力大于负载,会出现多余功率到送给主电源情况(如果不允许倒送),因此在微网独立运行时,可根据实际情况调节分布式电源出力的控制策略;
4)通过微网监测平台,全方位实时展示分布式电源运行状态、风、光信息及微网运行过程,为分布式电源及微网技术的推广应用,起到示范作用。
2.3引入微网系统条件
将微网系统引入站用电系统时,主要考虑其发电单元可利用的自然资源情况。参考风电场和太阳能光伏电站的设计条件以及相关规程规范,站用电系统中引入微网时,该变电站应满足以下条件:
(1)变电站所在地区10m高度处,年平均风速在5.6m/s以上;
(2)变电站所在地区太阳能总辐射的年总量在1050~1400kWh/(m2a)以上;
(3)变电站所在地区太阳能资源稳定程度指标在4以下。
3站用电微网系统设计
3.1功能定位
1)作为站用电系统电源的补充,减小站用电系统从电力系统的受电比例;
2)作为变电站启动电源,取代常规变电站站外电源。在变电站完全停电时,利用微网系统发出的电能启动站用电系统,完成主变压器和站用变压器的充电,再利用站内电源完成整个变电站的启动。在整个启动过程中,尽可能利用微网系统。本文考虑经济性因素,推荐变电站微网系统应以取代站外电源作为启动电源为目标,在现阶段技术条件下,采用站外电源和微网系统共用的过渡方式。
3.2接线方案
站用电系统结构如图1所示,储能设备、光伏发电和风力发电以图2的形式并列接入交流低压母线。微网与外部电网有一个统一的联络开关。控制策略采用主从控制设计,即在并网运行时,主电网作为主电源;在孤网运行时,蓄电池储能设备作为主电源。图1站考虑到微网系统的可靠性要求相对较低,而站用直流系统的可靠性要求较高,因此推荐为微网系统单独设置蓄电池,而不将站用直流系统的蓄电池与微网系统蓄电池合用;考虑到站用电负荷的特性,具有一定的分散性,且常规负荷均为交流负荷,因此推荐微网系统采用交流并网模式。
3.3设备选型及布置方案
1)风力发电机根据运行特征和控制方式可分为变速恒频风力发电系统和恒速恒频风力发电系统,根据风轮轴的位置可以分为垂直轴风力发电机和水平轴风力发电机。现风力发电机多采用变速恒频系统,而采用垂直轴还是水平轴则需要结合自然条件和功能需求确定。布置风电机组时,在盛行风向上要求机组间隔为5~9倍风轮直径,在垂直于盛行风向上要求机组间相隔3~5倍风轮直径。风电机组具体布置时应根据风向玫瑰图和风能玫瑰图确定风电场主导风向,对平坦、开阔场址,可按照以上原则,单排或多排布置风电机组。在多排布置时应呈梅花型排列,以尽量减少风电机组之间尾流影响。
2)太阳能光伏电池单晶硅、多晶硅太阳电池由于制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高,被广泛应用于大型并网光伏电站项目。太阳能光伏电池一般均安装在户外,电池板必须采用能经受雨、风、砂尘和温度变化甚至冰雹袭击等的框架、支撑板和密封树脂等进行完好保护。光伏方阵有3种安装形式:
1)安装在柱上;
2)安装在地面;
3)安装在屋顶上。采用哪一种安装形式取决于诸多因素,包括方阵尺寸、可利用空间、采光条件、防止破坏和盗窃、风负载、视觉效果及安装难度等。
3)储能装置
目前,国内变电站或配网运行的储能系统大多采用铅酸蓄电池,其维护量较小,价格低廉,但使用寿命和对环境的影响是其较大缺点。
4站用电微网系统应用实例
依托辽宁利州500kV变电站,对站用电微网系统的应用开展研究。根据站用电负荷需求以及站址位置的自然资源条件,提出了微网系统的配置方案。
4.1站用电负荷分析
根据本站的建设规模以及对站用辅助设施的用电量计算分析,本站在远景规模下的最大用电负荷为633.6kVA。变电站启动负荷主要考虑2台500kV断路器和2台66kV断路器伴热带负荷。经计算,变电站启动所需功率为20kW,容量为10kWh。
4.2风机配置
根据本站站址位置风资源实测结果,并考虑以下因素:
1)站址内设备众多,高空线缆密布,东西侧为进出线方向;
2)作为站自用电风机,不宜距离用电地点过远;
3)站址区域地形影响;
4)风机安全距离取两倍塔高,防止意外情况发生时造成周围建筑、设施二次损害;
5)办公楼楼顶的光伏设施不能被遮挡,因此风电机组的高度受到限制,不宜超过40m。本站考虑选用1台50kW风力发电机。
4.3太阳能光伏电池板配置
通过对站址太阳能资源评估成果计算,本区域固定倾角形式的光伏板在倾角为38.4度左右时,接受的太阳能辐射量最大,同时考虑与楼宇的协调性和光伏板间距等,最终决定光伏板倾角为30度。为保证全年真太阳时9时至15时内前后光伏板组件互不遮挡,结合光伏板的尺寸和布置形式,根据冬至日上午9时的太阳高度角和方位角进行计算,得到各光伏板间的南北行距为2m,该间隔同时可以供维护人员过往使用,板与板东西间隔预留5cm。综合上述布置要求,共布置98块190Wp光伏板,计18.62kW。经估算,系统25年运行期年平均发电量为24.64MWh,多年平均等效利用小时数为1323h。
4.4储能装置配置
考虑储能装置的经济性及变电站内可利用的占地面积,采用蓄电池作为储能装置,容量按满足变电站启动要求考虑。蓄电池放电功率按20kW、放电时间按0.5h考虑,经计算,考虑一定裕度,蓄电池容量取200Ah。
4.5微网系统的控制与保护
1)监控系统:系统可以监控分布式能源运行数据,调整运行策略,控制运行状态;
2)控制系统:保证站用电系统优先使用分布式发电装置发出的电能,并满足蓄电池智能充放电要求;
3)保护系统:配置有硬件故障保护和软件保护,保护功能配置完善,保护范围交叉重叠,没有死区,能确保在各种故障情况下的系统安全。
5经济技术分析
根据辽宁利州500kV变电站微网系统的配置方案,同时对原站外电源引接方案进行优化,对站用电微网系统引入进行经济技术比较。
5.1站外备用电源经济技术比较
前期设计方案中,站用备用电源采用66kV接网方案,站内外总投资约525万元。该方案可靠性较高,投资也较高。将站外备用电源优化为从变电站附近的10kV线路“T”接,站内设10kV箱式变电站1座。该方案站内外投资共约为256万元,比66kV站外电源方案节省投资约269万元。此方案可靠性比66kV站外电源方案略低,但能够满足本站对备用电源可靠性要求。
5.2站用电微网系统投资分析
依托工程微网系统发电装置总投资约为253.2万元,总计站用电系统投资509.2万元,比前期可研方案略低,但由于增加了新型能源发电方式,可靠性水平比可研方案明显增加。新型能源年发电量约为139.6MWh,每年节约资金139.6MW×0.6元/kwh=83760元,在变电站全寿命周期内,具备可回收性。新型能源产生的发电效益,不但明显减少了站用电系统电量消耗,也为降低网耗做出贡献。
2电力通信光传输网发展的现状
2.1电力通信光输网现存问题
我国的科学技术在新形势下,得到了很大的提高,出现了许多的先进的设备、系统、管理手段等。基于新形势的大背景下,人们对光缆和设备也进行了深入的研究,采用诸多先进的技术和管理方式来进行优化,因此我国电力通信光传输网发展到现阶段中,存在有诸多的问题需要进行改进。首先,在电力通信光传输网中,光缆设备是其必不可少的部分,我国在电力通信光传输网中较多的采用的是ADSS光缆。而这类型的光缆若使用时间较长,再加上容易受到周边环境的干扰,就这致使其存在有腐蚀隐患。这样的隐患在很大程度上是落后于我国电网建设的,阻碍着我国的电力通信光传输网的进一步发展。其次,电力通信光传输网中,除去光缆设备这一基础设施外,光传输网络也是重中之重的。但是在现今这个社会中,我国的光传输网络的可靠性和安全性不高。另一方面,在光传输网中,网络资源并没有得到充分的利用,致使网络资源受到了很大的浪费。再加上光传输网络中的设备在建成后也在逐渐的老化,因此设备的各个性能不能满足电力通信光传输网络的发展。
2.2电力通信光输网优化的必要性
在以上的陈述中,可以看出我国的电力通信光传输网存在有设备以及光传输网这两方面的问题,而这两类问题还仅仅是显著存在的,在很多的细微之外任留有别的漏洞。基于此,就要求对电力通信光传输网进行优化,既就通信资源管理系统的引入。只有将通信资源管理系统应用到我国的电力光传输网中,才能够进一步使得电力通信优化,获得到相应的效益,还能够促使我国的电力通信水平得到较大的进步。从另一角度来讲,随着社会的不断发展,人们对于生活品质的要求更高,通信水平的提高也就成为了人们追求的一项。因此对电力光传输网进行不断的优化,并且将通信资源管理系统引用到电力通信中,才能够进一步满足人们对通信业务的要求。因此,对于电力通信光传输网的优化已经成为了一项势在必行的任务,如何将通信资源管理系统应用到电力通信光传输网中也就成为了电力通信界的重中之重。
3如何将通信资源管理系统应用到电力通信光传输网中
3.1通信资源管理系统构成
要深入探究如何将通信资源管理系统应用到电力通信光传输网中,就首先要对通信资源管理系统的构成进行简要的分析。电力光传输网中存在有可靠性和安全性不高的缺陷,而电力通信资源管理系统的引进,能够为电力通信信息增加其可靠性、安全性以及精准性。这样的优势是因为:电力通信资源管理系统是采用了典型的客户端加服务器的形式,这样就能够将系统中的数据统一的储存在数据库的服务器中,而用户端计算机则进行资源管理软件的安装。通信资源管理系统由一下几块模板构成:(1)数据库设计:客户端/服务器的模式。(2)GIS系统,既地理信息系统。(3)系统软件体系结构。(4)硬件组成。
3.2设备管理
在通信资源管理系统中,除去结构构成外,还需要有硬件设备,这样才能够引入到电力通信光传输网中。硬件设备的设置,主要是为了将电信通信系统进行硬件配置,进而对电力通信光传输网进行修改等的操作。与此同时,还能够为其统计和分析光传输网中重大数据。而硬件设备的管理是以地理信息系统为基础的,并且在此基础上,分为传输设备、PCM设备、交换机设备等。只有将设备管理引进到电力通信光传输网中,才能够为电力通信光传输网的整体系统提供其自身的硬件设备的配置、查询以及维护信息的数据,到达统一化管理。
3.3资源管理
在通信资源管理系统中,除去对电力通信光传输网进行设备管理外,还能够对其内部以及周边的资源进行一个有效的整合管理。这也就是指:通信资源管理系统中,存在有一个报表管理模块。这一部分,能够促进电力通信光传输网的工作人员对整个网络系统中的运行日志以及通信动态进行查询,进而对通信网络中的数据进行统计和分析,最终促使工作人员根据资料和数据得出最好的传输线路的方案。在形成方案之后,就能够对电力通信光传输网中的各项可用资源进行一个合理并且精准的调度,使得传输网中的资源都能够获得到很好的利用,减少电力通信光传输网中诸多资源的浪费。通过对资源的合理调度,这样才足以满足每个用户的电力通信业务的要求,客户得到了满意服务,才能够为电力通信光传输网络带来更多的经济效益。最终促进我国的电力通信光传输网获得更大的发展空间。
3.4线路管理
在电力通信光传输网中,最为关键的部分就是传输网中所用的线路了。线路遍布整个网络中,每一项线路都代表着很多的电力通信业务,牵涉到很多用户的电力通信的使用。因此对于线路的管理也就成为了最为关键的一项任务。在对线路进行管理时,通信资源管理能够达到传输电路调度一起传输线路的管理。通信资源在对电路进行管理中,是要求其建立在整个局站之间的,并且还要求在对电力通信光传输网进行操作时,要按照现有的手工业生产的各种业务流程来展开,这样就能够促使在整个电力通信光传输网的管理中,自动地形成电路的开通方式调度单。
该方案下,在电网调度系统正常运行的过程中,电网备用调度系统不进行实际工作,只要保持数据与电网调度系统的同步即可。如果电网调度系统出现故障无法运行,则需要通过人工启动的方式来启动备用调度系统,并通过人工操作来实现电网备用调度系统对电网调度数据和信息的收集,以达到恢复电网调度的目的。该方案备用系统启动速度慢,会在一定程度上影响电网调度的恢复速度。
1.2温备用方案
该方案下,在电网调度系统正常运行的过程中,电网调度系统会将电网调度中的实时数据经过处理之后输送给备用系统,由备用系统对数据进行分析和储存。如果电网调度系统出现故障无法运行,则需要通过人工启动的方式来启动备用调度系统,然后备用系统就可以自行接入调度系统中,恢复电网的调度。虽然该方案恢复电网调度的速度并不是很快,但是在常规状态下却能够很好的反映出电力系统的运行状态,并对电网调度进行有效控制。
1.3热备用系统
该方案下,在电网调度系统正常运行的过程中,电网调度备用系统也会对电网调度中的实时数据进行收集、分析和整理,如果电网调度系统出现问题,电网调度备用系统可以迅速自行启动,在最短的时间内恢复电网调度。与前两种备用方案相比,该方案能够更好的保证电网调度的正常运行,在最短的时间内恢复电网调度。但是,应用这种方案却会增加电网的通信通道,增加电网的通信压力和备用系统的建设成本。
2电网备用调度系统构建方案
2.1传输系统
“十二五”之后,各省就开始积极构建电网备用调度系统,并且,为了确保电网备用调度系统的顺利构建和应用,一些省份纷纷建立起以ASON技术为核心的大带宽,具有自动化和智能化特点的目标网架,构建了包含骨干层、主干层以及接入层三个结构层的光纤传输网络结构,并以网格状的形式笼罩全省。在光纤传输网络中,骨干层、主干层以及接入层都各自组成了环网,其中,骨干层是由省调以及220千伏以上的变电站组成网,主干层是由地调以及地方110千伏的变电站组,而接入层,则是由更低一级的地调和其相对应的110千伏的变电站,三者相互联系,进而形成一个笼罩全省的网格状网络结构。另外,为了提升电网调度信息交换的高效性,在主干层的地方变电站中,还会建立第二汇聚点,实现上下级电网调度信息的顺利交换。
2.2调度交换系统
通常情况下,根据省级电网备用调度系统的调度需要,在构建调度交换系统的过程中,起码需要满足省调主调、省调备调、地调主调以及地调备调之间调度交换的需要。
2.2.1省调电话交换网
由于在构建调度交换系统的过程中,一些交换设备比较陈旧,无法满足以2M中继方式为基础的调度交换网的构建,所以,在正式构建省调电话交换网之前,应该先对设备进行处理,确保设备能够满足建设需求。当所有交换设备满足建设要求之后,就在以综合数据网基础上,建立省调交换系统,并设立IP调度台和IP电话,实现调度交换。同时,在建设调度交换系统的过程中,为了满足通信网容灾以及备调建设的要求,还应该在调度交换网建设的基础上构建电话汇接系统,实现调度数据的顺利交换,支持调度交换系统的正常运行。
2.2.2地方调度电话交换网
在实现省调交换网构建的基础上,对地方的交换设备进行更换和更新,构建地方调度电话交换网,并使其与省调2M中继网络进行组网。在以综合数据网为基础的前提下,模仿省调交换网的交换方式监,建立地方调度电话网,并在地方设立IP调度台,在地方调度电话交换网笼罩的范围内设立IP电话。然后,构建以电话汇接系统为核心的第二汇聚点,在第二汇聚点汇接地方调度各调度对象语音信息,并实现第二汇聚点至上级网络两个汇聚点语音信息的汇接上传。
二。配电网馈线保护的技术现状
电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:
2.1传统的电流保护
过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。
电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
2.2重合器方式的馈线保护
实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。
目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。
2.3基于馈线自动化的馈线保护
配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。
这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。
三。馈线保护的发展趋势
目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:
1)电流保护切除故障;
2)集中式的配电主站或子站遥控FTU实现故障隔离;
3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。
这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。
四。馈线系统保护基本原理
4.1基本原理
馈线系统保护实现的前提条件如下:
1)快速通信;
2)控制对象是断路器;
3)终端是保护装置,而非TTU.
在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:
参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。
当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:
Step1:保护起动,UR1、UR2、UR3分别起动;
Step2:保护计算故障区段信息;
Step3:相邻保护之间通信;
Step4:UR2、UR3动作切除故障;
Step5:UR2重合。如重合成功,转至Step9;
Step6:UR2重合于故障,再跳开;
Step7:UR3在T内未测得电压恢复,通知UR4合闸;
Step8:UR4合闸,恢复CD段供电,转至Step10;
Step9:UR3在T时间内测得电压恢复,UR3重合;
Step10:故障隔离,恢复供电结束。
4.2故障区段信息
定义故障区段信息如下:
逻辑1:表示保护单元测量到故障电流,
逻辑0:表示保护单元未测量到故障电流,但测量到低电压。
当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。
为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。
4.3系统保护动作速度及其后备保护
为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。
在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。
4.4馈线系统保护的应用前景
馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:
(1)快速处理故障,不需多次重合;
(2)快速切除故障,提高了电动机类负荷的电能质量;
(3)直接将故障隔离在故障区段,不影响非故障区段;
(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。
四。系统保护展望
继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。
以实际地理位置为背景的电力设备分布图,不仅能在设备管理上为用户增加设备空间位置的信息,而且通过实时信息能准确地反映配电网的实时工作状况。因此,GIS已成为配电网自动化不可缺少的组成部分。
一、数据组织
地理空间数据是指以空间位置为参考的数据,地图是空间数据的一种表达方式,空间位置通常是用空间实体与某中参数坐标系统的关系来表达。
各种地理空间实体,如居民区、街道、市政管线、电话亭、电力线路等,在计算机中的表达一般抽象为点、线、面这3种最基本的实体,任何空间实体都可以用点、线、面,再加上说明和记号来表示。
这种空间数据的组织能满足配电网自动化的要求,根据实际地理位置布置设备、线路,展示配电网的实际分布,采用层的概念组织图形和管理基础数据,自由分层,层次之间又可以灵活的自由组合。
与空间图形数据对应的还有属性数据,既对图形相关要素的描述信息,如配电线路的长度、电缆型号、线路编号、额定电流、配变型号、编号、名称、安装位置、投运时间、检修情况和实验报告等。
这些属性数据的用途为结合图形进行档案资料的查询提供具体信息。对已经在管理信息系统(MIS)中录入和使用的部分属性数据,可通过共享途径直接获取,末录入的则必须在GIS中进行录入和编辑。
属性数据可存于任何关系型数据库中,如:SQLSERVER,SYBASE,ORACLE等传统的关系型数据库不能管理具有地理属性的空间数据,所以大多以文件形式存储。从数据的多用户、访问安全性以及数据操作的高效性来讲,这种储存形式力不从心。各大GIS公司相继推出这类产品。如:ESRI公司的SDE(空间数据库引擎),通过SDE把地理空间数据加到商业关系型数据库:MAPINFO公司的SPATIALWARE上,可以将地理数据存储到RDBMS中,ORACLE81SPATIAL使得ORACLE81数据库具有空间数据的管理能力。
二、配电网GIS的建立
目前开发配电网GIS有两种趋势,一种是把GIS作为整个配电网自动化的基础平台,另一种是把GIS作为其中的组成部分,与SCADA等其他系统共同完成整个配电网自动化的功能。笔者认为第二种方案比较可行。原因是目前大部分地区SCADA系统的功能已经完成,并且投入运行,作为新增加的GIS只要通过数据库的关联,就能实现信息的共享,而且又能保证各个子系统的独立性,使整个系统的可维护性增强。同时减少了开发GIS子系统的工作量,免去了资金的重复投入。
三、配电网自动化中GIS实现的功能及其特点
GIS在配电网自动化中的应用可以分为离线和在线两个方面。
3.1离线应用方面主要包括:
A.图形的操作:在以地理图为背景的配电网分布图上,可以分层显示变电站、线路、变压器、开关到电杆以及到用户的地理位置。由于这些图形均为矢量图,可完成无级放大、缩小和漫游,并且地理的比例尺及视野可以任意设定。
B:空间数据测量:测量两点、多点之间的距离和任意定义区域的面积。通过鼠标定位,既可得出该点的坐标,可完成配电线长度的测量,也可以统计供电区域的面积。
C:设备档案管理:管理所有的配电系统设备档案和用户档案,根据要求进行各种查询统计。主要根据属性数据与空间数据关系,进行双项查询。条件查询(从数据库查询图形,按设备的属性数据库查找设备地理位置,对典型设备可以进行查询、显示、列表、统计)和空间查询(从图形查询属性数据,在图形上对任意设备进行定点查询和多边形小区查询,并且显示、列表和统计)
D:设备检修管理:根据检修管理指标,自动地进行校核,自动列出各项指标的完成情况,提醒工作人员安排设备检修工作,并提出设备检修计划。
E:用户报装辅助决策:通过直接在地图上部设报装用户位置,系统根据报装容量,电流强度等自动的搜索设定范围内(范围值可以在界面上灵活设置)满足要求的变压器,选择不同的变压器系统自动在图上画出最佳的架设路径,并给出具体的长度。
F:开操作票:把开操作票的任务放在GIS界面上完成,直观、简单地在地图上用鼠标电击选取操作对象,就能把操作对象的名称及其当前状态填入相应的操作票表单中,再在标准动作库及术语库中选择操作目标结果,就能方便、准确地开操作票。
G:模拟操作:可以做计划内停电检修前的预演。分为拉开关、停线段、停馈线等不同方式,根据不同的操作自动搜寻停电范围,预演操作结果,确认后打印停电通知单。
3.2在线应用
在线方面应用主要包括:
A:反映配电网的运行状况:读取SCADA系统实时状态量,通过网络拓扑着色,反映配电网实时运行状况。对于模拟量,通过动态图层进行数据的动态更新,确保数据的实时性。对于事故,推出报警画面(含地理信息),显示故障停电的线路及停电区域,做出事故记录。
B:在线操作:在地理接线图上可直接对开关进行遥控,对设备进行各种挂牌和解牌操作。
C:负荷管理:根据地图上负荷控制点的位置,结合独立运行的负荷监控实时系统,以用户的负荷控制终端的基本数据为数据,实现各种查询和分析功能,用图表方式显示结果。根据负荷点的地理分布及其各种实测数据,进行区域负荷密度分析,制定负荷专题图,通过不同时期的对比,辅助电网规划。
D:停电管理:他是配网自动化中管理系统的重要组成部分,利用打来的故障投诉电话弥补配电自动化信息采集的不足,根据用户停电投诉电话中故障地点的数量和位置,进行故障定位,确定隔离程序;并且分析故障停电的范围,排除可能的故障点顺序。根据维修队伍的当前位置,给出到达故障地点的最佳调度路径,可以迅速、准确地找到并隔离故障点,恢复供电。
E:与用户抄表与自动记费系统接口:远方抄表与自动记费系统向GIS传送用户地址、用户的名称以及用电负荷等信息,GIS可以显示抄表区域和区域的负荷情况,使数据更加直观。
四、系统的开发
应根据GIS在配网自动化中的应用功能进行模块划分,由于GIS数据量大,维护工作比一般管理系统复杂,需要一定的专业知识,另一面,根据供电企业部门的职能划分,对GIS也提出了不同的要求。因此对建立整个配网GIS来说,根据功能大致可分为3个自系统。
A:系统编辑,系统自维护,主要完成配电网图形的编辑和数据库的维护。
B:实时运行子系统,能够对配电设备进行各种操作,并实时反映操作结果。
C:浏览,查询子系统,查看当前电网状况,完成各种查询、统计和分析。
随着平台及应用技术的不断发展,GIS的应用越来越来深入,广泛。
界面交互层是系统实现交互查询的重要部分,当酒店相关管理人员输入查询信息的时候,其界面交互层中包含ASPX以及HTML的文件可以有效地封装相关存储数据。对于用户来说,由于输入的信息量大,查询的页数非常多,因此很难加强对其管理,也很难提高运行效率。在Web系统中,采用一定的方式解决其查询中存在的问题,系统只需要在变更查询需求和查询条件就可以实现查询的多样性。同样,查询思路和查询形式一样的时候,其显示的页面文件一般都以文件和用户的特定要求进行,主要更新文件内容就可以达到准确查询的目标。界面交互的时间,不论查询系统和转换器有多复杂,系统的维护效率也逐渐变得简单,其维护的简单程度和成本等都会逐渐降低。
1.2业务逻辑层
业务逻辑层是查询过程的请求界面,具有逻辑。逻辑功能在应用过程中,属于逻辑算法的部分,在运行的过程中要与逻辑算法结合在一起,当系统足够稳定的时候,系统的逻辑算法在会根据所查询的信息总结进行系统规划,整体的规划过程就是一个系统运行和切换查询的过程。当应用系统信息的时候,业务逻辑层是最难利用的部分,对信息系统进行抽象和测试,在一定程度上可以做到重复以及添加修改等工作,虽然系统内部的操作多想不同,但是在利用的过程中,可以面向一类系统的内部运行进行操作测试,实现其数据的共性分享,解决了系统内部逻辑性问题。在查询的过程中,可以将每一个操作对象抽象成为一个查询代码,其存储的形式以及界面的层次也在系统中被分类和认证。结合系统分类以及有效性验证,需要加强对系统逻辑性和数据界面进行处理,提升系统的扩展功能;同时,加强逻辑性在其中的应用,也能够提高系统的稳定性;同时,实现系统功能的全面扩展。
1.3数据访问层
数据访问层是数据元操作查询中的基础部分,在查询过程中主要是为了设计异构组件进行,当系统的稳定性和集成性都比较强的时候,可以利用集成有关的数据系统进行。这种组件的重要性是为了实现数据访问的透明,其集成和信息系统的应用可以和相关数据接口服务进行,其主要目标是将SQL的语句放置到服务器中,当数据操作和存储形式达到相关数据中,文件的类型和文件性质就会产生变化,采用NET的查询形式,可以实现参数的动态变化,最终达到系统以及业务需求的逐渐提升。系统在运行的过程中,其业务形式和查询过程都在逐渐被应用。另外,访问数据层是Web查询系统的交换层,系统在运行过程中,以查询条件作为运行的核心部分,在应用过程中,将系统的稳定性作为运行的重要阶段,系统的运行和测试,将与访问数据层作为基础,加强对该层的维护,有利于提升系统的稳定性。
2Web系统查询系统的关键技术分析
2.1Web查询生成器
Web系统的查询技术涉及很多方面,在查询分析过程中,使用比较频繁的是查询生成器。当查询要求量比较大的时候,其使用和框架在专门的设计中一般都以控件的类型存在,组件的类型都与C语言的类型和注入的动态,都以查询条件为主,可以轻松实现查询页面和查询控件的有效提升。针对通用查询技术的主要功能在于查询操作的共性,无论业务咨询和查询控件怎样运行,都可以有效地提升系统效率。为了提高系统的实用程度,一般都将语句放置在服务器的前端,将查询结果换成XML文件的显示格式,当打开界面查询方式的时候,系统的稳定性也更强。
2.2异构类访问数据查询
异构数据访问组件属于数据类型不同的组件,其分布形式和地区都具有不同的地理为主,在解决实际问题的时候,一般都以专门设计异构组件为主,这样的设计形式可以实现开发人员的有效访问。在微软EL的基础上,可以对酒店的信息进行系统处理,系统中的异构数据空间和异构组件进行规范化管理,在复制数据组件方面,无论是哪种组件和数据形式都可以达到随时访问的要求。异构组件的访问形式,对不同数据的操作模式是不同的,可以有效地提高系统的复用度,是提高系统稳定和运行效率的主要组成部分。在完成系统框架设计以后,查询的重点在于找出与查询条件,总结查询业务中的共性特点。在查询系统中,为了能够提高信息的复用程度和实用方便,将查询的重点放在SQL的基本组件中,语句是查询工作的重点,以关键词相关的内容和语句都可以作为查询的重点内容;同时,也可以总结查询的抽象性内容。当SQL语句在完成自身查询对象设定的时候,一般都会利用一个广泛的应用技术作为查询的重点;同时,也会将查询的结果封闭在一个特殊的XML文件中,并利用文件转换器,将文件的内容和形式转换成一个全新的模式应用到其中。整个查询过程属于利用多个查询项目综合在一起的查询方式,需要与查询的代码和查询的相关条件结合在一起。
2.3访问组件查询
访问组件查询也属于多个查询功能的重点。一般情况下,应用数据组件进行查询都是与数据分布在不同位置作为查询的内容,框架的查询过程需要以访问数据作为核心内容,在专题和数据结构设计中,相关设计人员会将简单的设计组件原理设计到其中,在满足日常设计数据类型的基础上,将Web查询的应用发挥到更加快速的查询过程中。酒店在应用查询的过程中,将组件访问作为基础访问内容,这样在查询系统的而过程中,无论组件中的数据有多复杂,也不管数据的代码有多奇特,只需要配置相关的连接字符就可以将数据访问应用到其中,查询人员结合查询特点,就可以访问到相关数据,系统数据部规范的情况下,可以设置相关代码,以便提升其功能的类似性质,最终提升查询的效率。不同数据的查询模式不同,但是都需要采用统计的数据进行,酒店的Web查询系统都是以组件作为查询的基础。
二。配电网馈线保护的技术现状
电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:
2.1传统的电流保护
过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。
电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
2.2重合器方式的馈线保护
实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。
目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。
2.3基于馈线自动化的馈线保护
配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。
这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。
三。馈线保护的发展趋势
目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:
1)电流保护切除故障;
2)集中式的配电主站或子站遥控FTU实现故障隔离;
3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。
这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。
四。馈线系统保护基本原理
4.1基本原理
馈线系统保护实现的前提条件如下:
1)快速通信;
2)控制对象是断路器;
3)终端是保护装置,而非TTU.
在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:
参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。
当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:
Step1:保护起动,UR1、UR2、UR3分别起动;
Step2:保护计算故障区段信息;
Step3:相邻保护之间通信;
Step4:UR2、UR3动作切除故障;
Step5:UR2重合。如重合成功,转至Step9;
Step6:UR2重合于故障,再跳开;
Step7:UR3在T内未测得电压恢复,通知UR4合闸;
Step8:UR4合闸,恢复CD段供电,转至Step10;
Step9:UR3在T时间内测得电压恢复,UR3重合;
Step10:故障隔离,恢复供电结束。
4.2故障区段信息
定义故障区段信息如下:
逻辑1:表示保护单元测量到故障电流,
逻辑0:表示保护单元未测量到故障电流,但测量到低电压。
当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。
为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。
4.3系统保护动作速度及其后备保护
为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。
在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。
4.4馈线系统保护的应用前景
馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:
(1)快速处理故障,不需多次重合;
(2)快速切除故障,提高了电动机类负荷的电能质量;
(3)直接将故障隔离在故障区段,不影响非故障区段;
(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。
四。系统保护展望
继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。
(2)为电力企业的发展创新提供了新的思路我国的电力企业大都属于国有企业,在长期的发展中形成了很多的固有模式,在新形势下,对于企业的发展是不利的,企业要革新发展模式,就必然会引入当代先进的科技来做活力的注入,网络技术借助计算机系统对电力信息通信系统进行了全面的创新,以自动化、智能化的方式实现了新的运行,对新型电网系统的运作效率有很好的提高作用。
(3)对电力资源的输送智能化有很重要的实际意义电力资源的地域输送是电网系统管理的重要组成部分,网络技术的应用为输送组织管理提供了一个新的模式,也就是新型的智能化模式,这种模式有效促进了电力系统中各个部门的衔接协调性,使整个电力运作更加有效率。
2当前我国电力信息通信网络的现状
(1)网络结构的构成不合理。从目前我国电力企业通信网络的发展来看,其结构大体上呈现出星型结构和树形结构,这种构成方式使得电力资源在共享上没有达到预期的效果,而且长此以往,很多电力基础设施的维护工作也无法做到彻底,这就为后期的电力工序活动开展带来一定的不便,遗留下安全隐患。
(2)电力信息通信网络的资源传输质量不高。经济的迅速发展,导致电力企业的电能资源输送管理出现了很多的不足,在很多的通信网线上只是简单的包装,没有进一步的屏蔽层包装,加大了外界因素的干扰,而且在线质的选择上大多采用的是单股的铜线,这种材质很容易折断,加上地域间的差异性和需求性的不同,SDH节点的数目就会增多,这在很大程度上降低了传输线路的质量,影响到信息通信的有效性。
(3)地域间发展失衡。我国地域辽阔,各个地区间由于经济水平的差异,在电力建设上形成不均衡的现象,有的地方经济条件好,选用的建设材料质量好,基础设施也就更稳固,而有的地区由于资金缺乏,建设材料也只是根据资金状况来决定,而且这种差异性也随着电力系统的发展变得越来越明显。
3网络技术的具体应用分析
(一)信息业务中的体现。
(1)语音业务。这一业务主要包括基于电力在调度过程中的电话以及行政电话,而且,它为电力系统的其他行政工作与调度之间建立了一个很好的平台,对其安全性也有了进一步的优化;
(2)应用在在电网中对于变电站的监控信息与电网在调度过程中自动化程序的实时数据基础上;
(3)对继电保护作用中的信号和电网管理系统中信息的实现的应用。