欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

数字信号论文大全11篇

时间:2023-04-06 18:38:45

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数字信号论文范文,希望它们能为您的写作提供参考和启发。

数字信号论文

篇(1)

1.2频率分辨率频率分辨率在信号谱分析中是一个非常重要的概念,它反应了将两个相邻谱峰分开的能力,是分辨两个不同频率分量的最小间隔。频域采样间隔F=fs/N=1/NT=1/Tp,而文献中指出F=fs/N称为计算分辨率,即该分辨率是靠计算得到的,但它不反映真实的频率分辨率能力。F=1/Tp称为物理分辨率,补零仅仅提高了物理分辨率,而要得到高分辨率谱,则要通过增加数据记录。这让学生很难理解,教师也不好描述,以Matlab程序辅助图形讲解,如图2所示的两个模拟信号,通过图2可观察到的信号截取的有效长度对频率确定的影响。(a)只能观察到正弦信号很短的时间,不能测量其频率。(b)观察到周期的一半,可以估计出其频率,但有很大的不确定性。(c)观察到两个周期,不确定性被大大降低。

2例题图示引导法

双线性变换法与脉冲响应不变法相比其主要优点是避免了频率响应的混叠现象,但它的优点以频率的严重非线性为代价的。对于分段常数型的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段的边缘的临界频率发生了畸变,需要进行预畸变。

3类比法

拉普拉斯变化可以理解为是一种广义的傅立叶变换,它把频域扩展为复频域,扩大了信号的变换范围,并为分析系统响应提供了统一的规范方法。即H(s)为H(j赘)的推广。具体方法是:信号(ft)之所以不能满足绝对可积的条件,是当t寅∞或t寅-∞时,(ft)不为零,若用一个实指数函数e-滓t去乘(ft),只要滓的数值选择适当,就可以使收敛条件成立,e-滓t称为收敛因子。此时傅立叶变换公式变为。与所学过的知识,类比讲述,学生很容易掌握并且不容易忘记。这样的例子还很多,包括时域采样定理与频域采样,FIR滤波器的窗函数法和频率采样法等知识点的类比法。

篇(2)

TheDevelopmentandApplicationsofDigitalSignalProcessing(DSP)-chip

Abstract:Duetothelimitationofoperationspeed,realtimeperformanceofdigitalsignalprocessing(DSP)systemisfarfromthatofanalogsignalprocessingsystemindecadesago.Sinceearly80’s,DSPchipshavebeengreatlyimprovedinthefollowingaspects:operationspeed,computationprecision,fabricationtechnics,cost,chipvolume,operationalpowersupplyvoltage,weightandpowerconsumption.Furthermore,developmenttoolsandmethodshavebeendevelopedgreatly.ModernDSPchipscanbeoperatedveryfast,whichmaketheimplementationofmanyDSPbasedsignalprocessingsystempossible.NowDSPchipshavebeenwidelyappliedsuccessfullyincommunication,automaticcontrol,aerospaceandmedicine.DSPbasedtechnologyhasverypromisingfutureinmannedspaceflightarea.

Keywords:digitalsignalprocessing(DSP);chip;development;application

数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。数字信号处理系统的优越性表现为:1.灵活性好:当处理方法和参数发生变化时,处理系统只需通过改变软件设计以适应相应的变化。2.精度高:信号处理系统可以通过A/D变换的位数、处理器的字长和适当的算法满足精度要求。3.可靠性好:处理系统受环境温度、湿度,噪声及电磁场的干扰所造成的影响较小。4.可大规模集成:随着半导体集成电路技术的发展,数字电路的集成度可以作得很高,具有体积小、功耗小、产品一致性好等优点。

然而,数字信号处理系统由于受到运算速度的限制,其实时性在相当长的时间内远不如模拟信号处理系统,使得数字信号处理系统的应用受到了极大的限制和制约。自70年代末80年代初DSP(数字信号处理)芯片诞生以来,这种情况得到了极大的改善。DSP芯片,也称数字信号处理器,是一种特别适合进行数字信号处理运算的微处理器。DSP芯片的出现和发展,促进数字信号处理技术的提高,许多新系统、新算法应运而生,其应用领域不断拓展。目前,DSP芯片已广泛应用于通信、自动控制、航天航空、军事、医疗等领域。

DSP芯片的发展

70年代末80年代初,AMI公司的S2811芯片,Intel公司的2902芯片的诞生标志着DSP芯片的开端。随着半导体集成电路的飞速发展,高速实时数字信号处理技术的要求和数字信号处理应用领域的不断延伸,在80年代初至今的十几年中,DSP芯片取得了划时代的发展。从运算速度看,MAC(乘法并累加)时间已从80年代的400ns降低到40ns以下,数据处理能力提高了几十倍。MIPS(每秒执行百万条指令)从80年代初的5MIPS增加到现在的40MIPS以上。DSP芯片内部关键部件乘法器从80年代初的占模片区的40%左右下降到小于5%,片内RAM增加了一个数量级以上。从制造工艺看,80年代初采用4μm的NMOS工艺而现在则采用亚微米CMOS工艺,DSP芯片的引脚数目从80年代初最多64个增加到现在的200个以上,引脚数量的增多使得芯片应用的灵活性增加,使外部存储器的扩展和各个处理器间的通信更为方便。和早期的DSP芯片相比,现在的DSP芯片有浮点和定点两种数据格式,浮点DSP芯片能进行浮点运算,使运算精度极大提高。DSP芯片的成本、体积、工作电压、重量和功耗较早期的DSP芯片有了很大程度的下降。在DSP开发系统方面,软件和硬件开发工具不断完善。目前某些芯片具有相应的集成开发环境,它支持断点的设置和程序存储器、数据存储器和DMA的访问及程序的单部运行和跟踪等,并可以采用高级语言编程,有些厂家和一些软件开发商为DSP应用软件的开发准备了通用的函数库及各种算法子程序和各种接口程序,这使得应用软件开发更为方便,开发时间大大缩短,因而提高了产品开发的效率。

目前各厂商生产的DSP芯片有:TI公司的TMS320系列、AD公司的ADSP系列、AT&T公司的DSPX系列、Motolora公司的MC系列、Zoran公司的ZR系列、Inmos公司的IMSA系列、NEC公司的PD系列等。

通用DSP芯片的特点1.在一个周期内可完成一次乘法和一次累加。

2.采用哈佛结构,程序和数据空间分开,可以同时访问指令和数据。

3.片内有快速RAM,通常可以通过独立的数据总线在两块中同时访问。

4.具有低开销或无开销循环及跳转硬件支持。

5.快速中断处理和硬件I/O支持。

6.具有在单周期内操作的多个硬件地址产生器。

7.可以并行执行多个操作。

8.支持流水线操作,取指、译码和执行等操作可以重叠进行。

DSP芯片的应用

随着DSP芯片性能的不断改善,用DSP芯片构造数字信号处理系统作信号的实时处理已成为当今和未来数字信号处理技术发展的一个热点。随着各个DSP芯片生产厂家研制的投入,DSP芯片的生产技术不断更新,产量增大,成本和售价大幅度下降,这使得DSP芯片应用的范围不断扩大,现在DSP芯片的应用遍及电子学及与其相关的各个领域。

典型应用(1)通用信号处理:卷积,相关,FFT,Hilbert变换,自适应滤波,谱分析,波形生成等。(2)通信:高速调制/解调器,编/译码器,自适应均衡器,仿真,蜂房网移动电话,回声/噪声对消,传真,电话会议,扩频通信,数据加密和压缩等。(3)语音信号处理:语音识别,语音合成,文字变声音,语音矢量编码等。(4)图形图像信号处理:二、三维图形变换及处理,机器人视觉,电子地图,图像增强与识别,图像压缩和传输,动画,桌面出版系统等。(5)自动控制:机器人控制,发动机控制,自动驾驶,声控等。(6)仪器仪表:函数发生,数据采集,航空风洞测试等。(7)消费电子:数字电视,数字声乐合成,玩具与游戏,数字应答机等。

在医学电子学方面的应用如同其它数字图像处理一样,DSP芯片已在医学图像处理,医学图像重构等领域,如CT、核磁成象技术等方面得到了广泛的应用,已取得了令人满意的效果。在助听,电子耳涡等方面也取得了相当的进展(文献[1,2])。国内、外也有关于脑电、心电、心音和肌电信号处理方面基于DSP芯片系统的报道(文献[4~7]),我们对1996年以前国外生物医学工程的部分核心期刊,如IEEETransactionsonBiomedicalEngineering,ComputersandBiomedicalResearch等核心期刊进行检索,有关基于DSP芯片处理系统的报道很少。对国内生物医学工程的核心期刊,如《中国医疗器械杂志》、《中国生物医学工程杂志》、《生物医学工程学杂志》和《中国生物医学工程学报》等刊物进行检索,未见有关基于DSP芯片系统方面的报道。对我所的光盘数据库进行检索,未见有关在航天医学方面应用的报告。

我们认为在生理信号处理领域基于DSP芯片的技术可以解决我们在实际工作中遇到的某些问题,如当生理信号数据量很大(如脑电,肌电等)且处理算法相对复杂时,现有的微机在实时采样、处理、存储和显示方面往往不能满足实际应用要求,而基于DSP芯片的高速处理单元和微机构成主从系统可以较好地解决这类问题。

载人航天领域中信号传输带宽的限制需要对生理数据进行实时压缩;大型实验中对庞大的数据进行实时处理依赖于数字处理系统的构成;载人航天中对数据处理精度,可靠性要求以及功耗、工作电压、体积、重量等方面的限制需要我们在构造处理系统中选择性能优良的芯片。我们认为将DSP技术应用于载人航天领域具有十分重要的意义。

结束语

以DSP芯片为核心构造的数字信号处理系统,可集数据采集、传输、存储和高速实时处理为一体,能充分体现数字信号处理系统的优越性,能很好地满足载人航天领域设备测量精度、可靠性、信道带宽、功耗、工作电压和重量等方面的要求。目前,DSP芯片正在向高性能、高集成化及低成本的方向发展,各种各类通用及专用的新型DSP芯片在不断推出,应用技术和开发手段在不断完善。这样为实时数字信号处理的应用——尤其是在载人航天领域中的应用提供了更为广阔的空间。我们有理由相信,DSP芯片进一步的发展和应用将会对载人航天信号处理领域产生深远的影响。

[参考文献]

[1]李小华,李雪琳,徐俊荣.基于DSP的数字助听器的研究.95年生物电子学[C],医学传感器等联合学术会议文集,北京,1995:438~439

[2]候刚,徐俊荣.用于植入式多道电子耳涡的一种数字实时语音特征分析系统的研究[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:471~476

[3]邱澄宇,何宏彬.用于心电信号数据压缩的数字信号处理器[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:463~466

篇(3)

1.2多项式法多项式法是根据序列x(n)和h(n)构造多项式,序列x(n)和h(n)的元素作为多项式的系数,例如:根据序列x(n)={1,3,2}构造多项式x2+3x+2,根据序列h(n)={10,20}构造多项式10x+20,把两个多项式相乘(x2+3x+2)*(10x+20)=10x3+50x2+80x+40,相乘所得的多项式的系数构成的序列{10,50,80,40}即为线性卷积的结果。

1.3竖式法竖式法是把序列x(n)和h(n)按照最后一位对齐,进行竖式乘法运算[4],但各个元素相乘后不进位,例如序列x(n)={1,3,2}和h(n)={10,20}按照竖式法计算线性卷积如图1所示,则线性卷积结果为{10,50,80,40}。

1.4FFT快速算法当循环卷积的长度L大于或等于线性卷积的长度N+M-1时,循环卷积的结果和线性卷积的结果相等,所以只要FFT快速算法的计算点数大于线性卷积的长度,就可以采用FFT快速算法计算出线性卷积,在MATLAB软件中提供了FFT快速算法的函数,通过调用fft函数和ifft函数完成线性卷积计算[5]。上述计算线性卷积的方法中,图解法适于讲解线性卷积的运算规律,多项式法和竖式法适合于快速计算出线性卷积的结果,FFT快速算法适合采用MATLAB软件编程实现。

2循环卷积的计算方法

2.1图解法图解法主要是在坐标系上,严格按照计算(4)式的六个步骤:补零、周期延拓、翻转、移位、相乘和求和,得到循环卷积结果[6],采用图解法比较直观理解循环卷积的计算过程。

2.2矩阵相乘法由于循环卷积在对序列x(m)经过补零、周期延拓、翻转得到的序列x[((-m))L]=x(L-m)为循环倒相序列,循环右移序列x[((n-m))L]为对循环倒相序列进行循环右移n位后得到的循环移位序列,然后把得到的循环移位序列与h(m)相乘并求和得到yc(n),由于相乘求和运算可由矩阵相乘代替,即由循环移位序列构成L点循环卷积矩阵,与由h(m)构成的L维列向量相乘,得到yc(n)。采用矩阵相乘法计算循环卷积简单明了,在数字信号处理教材中大多采用此方法为例讲解循环卷积的计算[1]。

2.3线性卷积法由于循环卷积和线性卷积满足的关系如(5)式所示[1]。当循环卷积的长度L大于或等于线性卷积的长度N+M-1时,线性卷积yl(n)做周期延拓无重叠,此时循环卷积和线性卷积相等,此时线性卷积的结果为循环卷积的前N+M-1项,循环卷积的后L-N-M+1项为零。当循环卷积的长度L小于线性卷积的长度N+M-1时,线性卷积yl(n)做周期延拓有重叠,循环卷积的结果有两部分组成,一部分是线性卷积不重叠的部分,n的取值区间为N+M-1-L≤n≤L-1,此时循环卷积和线性卷积相等;另一部分为重叠部分,n的取值区间为0≤n≤N+M-L-2,重叠部分的循环卷积计算如(6)式所示。上述计算循环卷积的方法中,图形法适于讲解循环卷积的运算规律,矩阵相乘法和线性卷积法适合于快速计算出循环卷积的结果。

篇(4)

1.2可变相位信号30Hz信号(F)和载波f0经边带测角器产生30Hz的调幅边带波信号。可变相分量以30Hz的速度进行旋转,由此可见,当点位不同时,基准信号与可变信号的相位差也不同,相位差与VOR台的具置有关系。通过比较接收机中的基准相位信号和可变相位信号,确定用户的方位。

二、接收信号数字处理

在甚高频全向信标系统的定向原理中,30Hz信号比相是其核心。根据9960副载波可以得出基准相位信号,通过相位比较器可以对相移θ进行检测,并确定方位。然后将基准相位30Hz信号和可变相位30Hz信号进行过0点检测,通过计数器得出相位差,将计算结果处理成数字方位的格式,并将其送到无线电磁指示器(RMI),通过RMI进行全方位显示。

相位差θ和计时器计时时间t的关系式。以基准信号为基准,若发现其正向过零点,则利用计数器开始计数,直到可变信号正向过0点时,结束计数,将检测到的相差点数计算出来,并将计数器清零准备下次计数,若系统采样率为fs,则VOR方位角度分辨率。因为甚高频通信系统会被邻频或同频干扰,在信号处理的过程中会出现系统误差的情况,导致比相信号的不稳定和抖动,所以,在解算相位差时,不能只进行一次求解就得出,而要经过多次的换算取所有结果的平均值,但这样又会引发其他问题,即当两个相位基本一致的时候,相位差会一致在0度左右摆动,这样角度就可能会在360度和0度之间转换,那么,经过多次计算得出的角度将会出现误差,解决这一问题的主要方法有。式中,Z:最终输出的相位差。经过上述公式处理方式,可以有效避免信号在0度附近摆动形成的计算误差是。

篇(5)

2内屏蔽层接续工艺改进

目前内屏蔽层接续工艺主要有2种,一是采用双铜环对屏蔽铜网和内屏蔽层进行压接,此种方式的缺陷在于容易造成芯线“皮-泡-皮”绝缘层的损伤。二是采用一截铜网与待接续的内屏蔽层重叠搭接,再用塑料扎带进行绑扎紧固,该方式不能保证内屏蔽层与铜网之间的可靠连接,尤其是当灌入冷封胶时,冷封胶逐渐渗入到内屏蔽层与铜网之间的接触面形成绝缘层。在这种情况下,如果有外界干扰电流在内屏蔽层上引起较大的纵向电动势,就会在内屏蔽层与铜网的接续处造成发热,甚至产生烧损电缆的严重后果。因此,必须采取技术手段实现内屏蔽层与接续铜网之间的可靠电气连接。为保证可靠接续,采用一种含有低熔点金属的焊锡膏进行快速焊接。具体方案如下:将内屏蔽层剥开2cm,在内屏蔽层与四线组之间缠绕一圈云母纸。在内屏蔽层与接续铜网接头处的接触面上,均匀涂抹一种含有低熔点金属的焊锡膏。将排流线(内屏蔽层与四线组间或在内屏蔽层外有一根铜导线称为排流线)缠绕绑扎在铜网与内屏蔽层的接头处,起到一定的固定作用。4.用电子气焊枪加热使焊锡膏熔化,实现内屏蔽层、接续铜网、排流线三者的可靠接续。经过反复实践操作,得出“锡膏焊接法”的特点:一是焊锡膏可以直接涂抹在屏蔽层与铜网的接触面上,比使用普通焊锡丝操作起来更方便;二是焊锡膏含有助焊剂和焊料粉,与普通焊锡丝相比更易融化,所需加热时间更短,四芯组外包裹云母纸,起到隔热、防火和绝缘的作用,仅这两点就可以避免损坏芯线绝缘层;三是焊锡膏在加热过程中有较强的去氧化膜功能和较好的粘附性能,焊接质量可靠。

3成端工艺改进

内屏蔽铁路数字信号电缆在结构上与普通铁路信号电缆相比,增加了内屏蔽层及排流线。内屏蔽铁路数字信号电缆引入室外信号箱盒进行成端时,要求将内屏蔽层及排流线引出并接地,这就是内屏蔽铁路数字信号电缆成端工艺的关键点。目前,施工单位常用的工艺,是采用铜压接管来压接内屏蔽层、排流线和引出线。然而,内屏蔽铁路数字信号电缆芯线的“皮-泡-皮”绝缘层在外力作用下容易损伤,作业人员难以掌握恰当的压接力度,一旦力度过大就会损伤芯线绝缘层,如果施工时只是破皮而未完全破损,那么这一隐患点就难以及时发现,只会在日后的运营过程中随着列车震动造成的摩擦最终破损而导致芯线对地绝缘不良。因此,解决这一问题的关键在于施工过程中要尽量避免对芯线“皮-泡-皮”绝缘层的挤压。经过大量工程实践摸索,建议采用一种含有低熔点金属的焊接材料进行焊接,来替代原来普遍采用的铜环压接或普通焊锡丝焊接工艺,具体操作如下:首先将内屏蔽层与四线组剥离开,再采用一种基于低熔点金属构成的焊锡膏将7×0.52塑料铜芯线与内屏蔽层进行焊接,焊接完成后认真整理内屏蔽层,可采用棉布隔离内屏蔽层与四线组,以防铜屏蔽层割伤芯线,由此杜绝损伤电缆芯线。

篇(6)

2、1.TS流分析

MPEG传输码流有着极其复杂的结构,但是MPEG协议分析工具可以用逻辑方式解析结构,从而可以对实况传输码流进行实时分析,观察任何结构上的细节。节目专用信息插入的频率分析:用不同的方式给出各个子表格如PAT、PMT、NIT、SDT、BAT、EIT等的发送频率,复用传输码流的码率为20Mb/s。第一项(P.inbytes)是以字节为单位表示的子表格在传输流中出现的最大平均周期;第二项(P.insex.)是以秒为单位表示的子表格在传输流中出现的最大平均周期;第三项(Tablelength)是用字节为单位表示的子表格平均长度;第四项(Rate)表示子表格发送的码率。通过分析PCR节目时钟参考和时间标记数据来检查定时是否正常。来自复用器输出的PCR数据可能是精确的,在数据复用之后,对PCR抖动进行检测显得很重要。2.2PES分析T-STD缓冲器占有量分析:在MPEG中,一个给定的基本码流必须满足解码器的缓冲能力,MPEG编码器不能超出T-STD的缓冲能力而使数据上溢或下溢。传输流中包含有VBV(视频缓冲校验)的系数,该系数规定了一个基本数据流需要的缓冲量。T-STD分析以图形方式显示缓冲占有量,可以观察到各个缓冲器的占有率和占用字节的多少,这样可以很方便地从曲线图中观察到数据的上溢和下溢。

3、数字电视信号质量的监督和测量

针对数字电视信号的特点,在ETR101290标准中,按照错误对信号影响的因素,以此为标准把错误划分为第一优先级、第二优先级和第三优先级3个优先等级。第一优先等级错误通常会造成解码器无法正常解码的现象,会出现节目关联表错误、同步字节错误以及传输流同步丢失。第一优先级参数直接影响节目图像和伴音的内容。出现第二优先级错误时会损伤已解码图像,或者引起断续解码,这一优先级参数包括传输错误、节目时钟基准错误等内容。第二优先级参数直接影响传输的可靠性。第三优先级错误指示编码器、复用器的问题但不影响可解码性,对图像质量影响较小,包括网络信息错误、服务信息重复周期错误、业务描述表错误等参数。第三优先级参数影响显示结果。目前服务器是数字电视信号监测系统进行监测工作的主要平台,数字电视信号监测系统硬件基础为数字电视信号采集卡。检测主机除包含服务器及数字电视信号采集卡外还有相关软件包,数字电视信号通过DVBPSI接口或DVBASI接口连接到监测主机。监测工作的首要步骤是基带数字电视信号通过信道调节器解出,然后监测主机通过ASI接口对基带数字电视信号的数据流进行监测分析,按照监测规定,对数据流的监测结果通过数据报表、参数显示或报警等显示。

篇(7)

一、传输网络技术参数

经过MPEG-2信源编码和MPEG-2TS传输流复用后生成的MPEG-2传输复用包经过扰码、RS编码及卷积交织后,进行64QAM调制形成中频调制信号,中频调制信号经过上变频转为射频信号然后送入HFC网传送到用户。

数字电视和模拟电视的频谱结构及能量分布完全不同。由于QAM中的调幅是平衡调幅,抑制了载波,因而从频谱分析仪上看,一个数字频道的已调信号,像一个抬高了的噪声平台,均匀地平铺于整个限定带宽内。伴音信号在MPEG-2编码时,已经与图像信号以包的形式复用到了一起,因而,一个数字电视频道,不但没有所谓图像载波,也没有伴音载波。

1.1数字电视的信号电平

数字电视信号没有图像载波电平可取,整个限定的带宽内是平顶的,无峰值可言。所以,QAM数字频道的电平是用被测频道信号的平均功率来表达的,称为数字频道平均功率。在用户端电缆信号系统出口处要求:信号电平为47dBμV-67dBμV(比模拟电视信号的要求低10dB),数字相邻频道间最大电平差为≤3dB,数字频道与相邻模拟频道间最大电平差为≤13dB。

1.2数字电视的噪声电平

测量模拟频道噪声时,在模拟频道取噪声测试点,只要偏离图像载频即可。但是数字电视的频谱分布决定了测量数字频道噪声不能使用模拟频道的测量方法。数字频道内有用能量也像噪声,没有什么特点把它们分开,所以测量噪声,要到被测频道的邻频道去取样,并且这个邻频道应当是空闲的。

1.3误码率

数字电视信号是离散的信号,接收到的数字电视信号要么是稳定、清晰的图像,要么就是中断(包括马赛克、静帧),具有“断崖效应”的特点。信号的这种变化,只与传输的误码率有关,所以把误码率作为衡量系统信号质量劣变程度的最重要的指标。

1.4信噪比

信噪比(S/N)指传输信号的平均功率与噪声的平均功率之比。载噪比(C/N)指已调制信号的平均功率与噪声的平均功率之比,载噪比中的已调制信号的功率包括了传输信号的功率和调制载波的功率。在调制传输系统中,一般采用载噪比指标;而在基带传输系统中,一般采用信噪比指标。

数字调制信号对网络参数的要求主要反映在载噪比上,载噪比越大,信号质量越好,反之信号质量就差,模拟电视会出现“雪花干扰”,数字电视会出现马赛克,严重时会造成图像不连续甚至不能对图像解码。在有线网中,用户端电缆信号出口处数字频道载噪比达到31dB以上,就可传送64QAM信号。

1.5调制误差比

数字调制信号的损伤通常用星座图来观察。在星座图中,噪声呈云状,差拍干扰呈环状,IQ不平衡的星座图不是正方形。调制误差比(MER)包含了信号的所有类型的损伤,如各种噪声、载波泄漏、IQ幅度不平衡、IQ相位误差、相位噪声等。MER的测试结果反映了数字接收机还原二进制数码的能力,它近似于基带信号的信噪比S/N。在用户端电缆信号出口处调制误差比MER要求达到30dB以上。

二、数字信号的监测

数字电视平台节目监测系统拟视音频及数字矩阵系统、数字测试仪器及电视墙三个大的部分构成。数字TS码流经过数字ASI矩阵系统切换,送入解码器解码还原成模拟视音频后,送入电视墙,进行主观效果监测,同时可进行与一般模拟视音频信号相同的测试,经ASI矩阵切换的数字TS码流也可直接送入数字码流分析仪进行实时分析,或者经过录制后,离线分析等。数字码流经QAM调制后输出的RF射频信号经混合器混合,送入大网播出,同时分出1路至机顶盒接收,机顶盒输出电视信号或者音频广播信号至视音频矩阵,然后送入电视墙。同时也可进行模拟指标测试。从混合器再分出l路射频信号经数字电视测试接收机处理后输出TS流至码流分析仪,实现对QAM调制后的数字信号的测试。

数字码流监测可以根据其来源分为:编码器输出TS流、数字卫星接收机输出TS流、多协议适配器输出TS流、复用器输出TS流、独立加扰器输出TS流、其它TS流及QAM调制后经解调恢复的TS流。在本监测系统中,QAM调制后经数字电视测试接收机解调后恢复出的TS流可直接送入数字码流分析仪进行数字分析;其余各种来源的TS流须经数字矩阵的切换处理后再进行测试。

在本系统中,有编码器输出的TS流、数字卫星接收机输出的TS流、适配器和解密器输出的TS流、其它输出的TS流、复用器输出的TS流以及独立加扰器输出的TS流,其中复用器、独立加扰器、解密器以及部分数字卫星接收机输出为MPTS,而独立加扰器输出为经过加扰加密的TS流。具体监测方式如下:编码器、数字卫星接收机、多协议适配器、音频编码器、复用器、独立加扰器等设备的TS流送入数字ASI切换矩阵切选输出。矩阵的输出可切选至数字码流分析仪分析,也可直接接入解码器,用作还原AV,送至电视墙做主观测试等;对于独立加扰器的输出需切换到码流分析仪进行分析。

对比测试原则采用溯源法,跟踪对比测试的原则,主要体现在电视墙的主观效果上。

(1)对编码器、接收机的信号根据处理过程分成源AV信号或直接输出AV信号、初步处理TS流信号(包括编码输出及数字接收机输出TS信号)、复用器复用后TS流信号和QAM调制混合后信号四种,对节目同时段对比跟踪测试。即为源AV信号或直接输出AV信号与后面的信号经过还原的视音频信号进行对比测试,体现在每一环节信号质量的比较、变化、跟踪监测。

篇(8)

 

线性调频信号具有非线性相位谱,能够获得较大的时宽带宽积;与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟;所用的匹配滤波器对回波信号的多卜勒频移不敏感,因而可以用一个匹配滤波器处理具有不同多卜勒频移的回波信号。这将大大简化信号处理系统,因此它在工程中得到了广泛的应用。采用这种信号的雷达可以同时获得远的作用距离和高的距离分辨率。

一、线性调频信号的产生方法

随着数字技术的发展,以前由模拟方法完成的许多功能逐渐被数字方法所取代,复杂的雷达信号的产生也基本完成了由模拟技术到数字技术的质的转变。因为与模拟方法相比,数字方法具有灵活性好、可靠性高、失真补偿方便,及易于实现相参等明显优越性,现己成为产生高性能线性调频信号的主要方法。数字方法产生线性调频信号的方法主要包括两种,波形存储直读法和直接数字合成法(DDS)。

波形存储直读法是一种经典的基带信号产生方法。它是预先根据采用频率、基带带宽、时宽等信号参数,通过线性调频信号的数学表达式分别计算出两路正交信号的采样值,按照顺序预先写入高速内存中。通过对采用时钟进行计数而顺序产生高速内存译码地址,依次从高速内存中读出预先写入的两路正交信号的采样值。I、Q两路分别经过数模变换、低通滤波产生两路正交线性调频基带信号。这种方法具有原理简单、成本低廉、对器件依赖小等优点,并具有较好的幅相预失真补偿能力,但是存在电路结构比较复杂、需要高速控制电路配合,也增加了软件的复杂度。经正交调制和倍频器,对基带信号进行带宽扩展和频谱搬移,输出所需带宽和频段的线性调频信号。直接数字合成(Direct Digital Synthesis,简称DDS)方法。用这种方法产生的线性调频信号的技术日益受到重视并广泛应用,它是根据线性调频信号的频率线性变化、相位平方变化的特点而设计的。直接数字合成法采用两级相位累加结构来得到线性调频信号的二次变化的相位,然后根据相位值查存储在ROM里的正弦、余弦表,将查得的值经D/A转化得到相应的I、Q两路基带线性调频信号。这种方法通过数控电路能对DDS输出波形、频率、幅度、相位实现精确控制,可在调频带宽内对雷达系统的幅度和相位进行校正,产生近乎理想的线形调频信号。只要改变某些电路的参数设置,就可以改变线性调频信号的时宽和带宽。但由于DDS的全数字的全数字结构,杂散电平高是其自身固有的缺陷。

二、线性调频脉冲信号压缩的实现方法

线性调频脉冲信号的压缩通常有两种方式:模拟压缩和数字压缩。目前模拟式脉冲压缩器件有:具有大带宽、小时宽的声表面波(SAW)器件;中等时宽和中等带宽的体声波反射阵列压缩器等。随着高速、大规模集成电路器件的发展,对于大时宽大带宽信号的脉冲压缩通常采用数字方式压缩。

数字脉冲压缩系统较之模拟方法具有一系列优点:数字法可获得高稳定度、高质量的线性调频信号,脉冲压缩器件在实现匹配滤波的同时,可以方便地实现旁瓣抑制加权处理,既可有效地缩小脉冲压缩系统的设备量,又具有高稳定性和可维护性,并提高了系统的可编程能力。科技论文,压缩方法。因此,数字处理方法获得了广泛的重视和应用。

1、线性调频脉冲信号的时域数字压缩实现

线性调频信号的时域数字脉冲压缩处理,通常在视频进行,并采用I、Q两路正交双通道处理方案,以避免回波信号随机相位的影响,可减少约3dB的系统处理损失。中频回波信号经正交相位检波,还原成基带视频信号,再经A/D变换形成数字信号,进行数字脉冲压缩处理。I、Q双路数字压缩按复相关运算(即匹配滤波)进行,双路相关运算输出经求模处理、D/A变换,输出模拟脉冲压缩信号;I、Q双路相关输出的数字信号还可送后级信号处理。

2、线性调频脉冲信号的频域数字压缩实现

由于高速A/D变换器、大规模集成电路技术以及快速傅立叶变换技术的应用,使宽带信号的实时处理成为可能。科技论文,压缩方法。采用DSP及FPGA的频域数字脉冲压缩处理的优点是处理速度高、工作稳定、重复性好,并且具有较大的灵活性。

3、线性调频脉冲压缩方案

根据线性调频信号的特点及其脉冲压缩原理,数字脉冲压缩系统首先要将回波信号经A/D采样变成数字信号,再进行脉冲压缩。时域数字脉冲压缩实际上是将回波数据与匹配滤波器进行复卷积,而频域数字脉冲压缩则是通过对回波数据进行FFT后,与匹配滤波器的系数进行复数乘法运算,然后再经过IFFT得到压缩脉冲的数字数据。对于N点长度的信号,在时域实现数字脉压,需要进行L2次复数乘法运算,而频域卷积法仅需2L1og2L次复数乘法运算,大大减小了运算工作量。另外,考虑到抑制旁瓣加权函数,若在时域实现数字脉压,不仅要增加存储器,而且运算量将增加一倍,在频域实现抑制旁瓣加权函数,不需增加存储器和运算量。

三、线性调频脉冲信号的加权处理

线性调频信号通过匹配滤波器后,输出脉冲的包络近似Sinc(x)形状。其中最大的第一对旁瓣为主瓣电平的一13.2dB,其他旁瓣电平随其离主瓣的间隔x按1/X的规律衰减,旁瓣零点间隔是1/B。在多目标环境中,这些旁瓣会埋没附近较小目标的主信号,引起目标丢失。为了提高分辨多目标的能力,必须采用旁瓣抑制的措施,简称加权技术。科技论文,压缩方法。加权可以在发射端、接收端或收、发两端上进行,分别称为单向加权或双向加权。科技论文,压缩方法。其方式可以是频率域幅度或相位加权,也可以是时间域幅度或相位加权。科技论文,压缩方法。此外,加权可在射频、中频或视频级中进行。科技论文,压缩方法。为了使发射机工作在最佳功率状态,一般不在发射端进行加权。目前应用最广的是在接受端中频级采用频率域幅度加权。

引入加权网络实质上是对信号进行失配处理,所以它不仅使旁瓣得到抑制,同时使输出信号包络主瓣降低、变宽。换句话说,旁瓣抑制是以信噪比损失及距离分辨力变差为代价的。如何选择加权函数这涉及到最佳准则的确定。考虑到信号的波形和频谱的关系与天线激励和远场的关系具有本质上的共性,人们应用天线设计中的旁瓣抑制原理,曾提出海明加权、余弦平方、余弦四次方加权等几种最佳加权函数。但是这些理想的加权函数都较难实现。因此,只能在旁瓣抑制、主瓣加宽、信噪比损失、旁瓣衰减速度以及技术实现难易等几个方面进行折衷的考虑选取合适的加权函数。

结语:随着数字技术和大规模集成电路技术的飞速发展,数字脉冲压缩(也称脉压)技术以其性能稳定、抗干扰能力强、控制方式灵活以及硬件系统更小型化等优点,逐步取代早期的模拟脉压技术,成为现代脉压系统的发展趋势。特别是近年来高性能通用数字信号处理器的出现,为雷达脉冲压缩处理的数字化实现提供了一种工程实现途径。数字脉压系统的实现可以满足体积小、功耗低和成本低等条件,其相关问题的研究成为国内外广大学者研究的热点问题之一。

参考文献:

1、王世一《数字信号处理(第1版)》[J]北京:北京理工大学出版社1997;

2、任培红《脉冲压缩信号的特点、产生、及压缩方法》[J]电讯技术1999(2);

篇(9)

中图分类号:G424 文献标识码:A

Knowledge Penetration and Extension of Digital Signal

Processing Theory and Practice Teaching

CAO Xinli, TIAN Yi

(School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073)

Abstract This paper takes mathematical principles to the domain transform domain digital signal processing when students are learning in a digital filter network for example, correspond by comparing before and after signal processing algorithms and theory on the actual hardware implementation, allows students to easily from the Z transform, discrete Fourier transform learning theory easy to draw circuits and program their hardware implementation is achieved. In the study of digital signal processing algorithms in the process, to students whose mathematical formulas penetration corresponding hardware circuits and structures, can make subsequent DSP applications while learning courses, easy to understand and design. Theoretical and experimental study by personal experience, feel the penetration and extension of signal processing system in the teaching curriculum.

Key words digital signal processing; DSP; course system; penetration

在电子信息工程学科中,数字信号处理的实现和仿真课程已经很好地融合进来。很多高校的信息类专业相继开设了数字信号处理,DSP应用的相关理论课程,并开设了matlab信号分析与处理等课程设计和实验。如何在理论和实践课程教学中完成对数字信号处理知识的渗透于延伸,让学生更好的认识到数字信号处理技术的理论和实践和有机结合呢?

1 数字信号处理的作用

数字信号处理是研究把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理,提取有用信息便于应用的客观规律性。

在信号处理中,很多信号比如声音信号,在时域上看是杂乱无章的,没有任何规律的,当转化成频域信号后,很容易看出来信号的相关性质,对信号的处理也更为方便。模拟信号在远距离传输时信号衰减大,且抗干扰能力差;数字信号设备灵活、精确、抗干扰能力强、远距离传输速度快且不失真。

数字信号处理可以将有用信号从杂乱无章的干扰中提取出来,恢复原始信号并可以对其增强。它对声音,图像,其他现实中的物理量进行信号调理、信号传输、信号接收还原、信号滤波等作用,保证信号传输质量,在电信和其它学科中具有重要的意义。

数字信号处理算法是对其离散信号与系统的变换和滤波的理论基础,在此算法基础上,用硬件或软件的方法将其实现,这是整个数字信号处理的过程。下面我们来分析变换理论和具体实现之间的对应。

2 数字信号处理中数字滤波网络算法原理

在数字信号处理中,以IIR数字滤波网络为例。对于一个输入输出关系已经给定的系统,其系统函数或差分方程已知,可以用不同结构的数字网络来实现该系统。由Z变换的相关知识,我们可以知道对N阶差分方程进行Z变换,得到系统函数的一般表示式:

(1)

如果要设计IIR级联型数字滤波网络,就要根据级联型网络结构特点,将H(z)变换成级联型一阶节和二阶节的形式。

(2)

这样,就把系统函数分解成了N1个一阶节和N2个二阶节。有了这样的结构,就可以得到IIR级联型网络方框图,如图1。

图1 IIR级联型网络方框图

3 数字滤波网络二阶节的硬件实现

第二节中是数字滤波网络IIR级联型网络结构的算法原理和系统函数分解公式,那么这样的数字滤波网络结构怎样用硬件实现呢?

从图1看出,IIR级联型网络是由M个二阶节组成的,一阶节可以看做二阶节的特殊情况。在每一个二阶节中,有四个加法环节(如图1中的圆圈标示),有两个延时单元,有四个标量乘法环节。其中的加法环节和标量乘法器可以有专用数字信号处理芯片中的加法器和乘法器实现,延时单元可以由触发器实现,比如D触发器。

现在以一个二阶节为例,根据方框原理图(图2)说明其硬件构成。

(3)

(4)

所以从到有两个延时电路——延时一个周期和两个周期,即为,;两个乘法电路,;两个加法电路。用硬件实现如图3所示。同样地,从到的电路结构与前面类似,延时电路可以与前面公用。

图2 IIR级联型网络二阶节方框图

图3 IIR级联型网络二阶节的硬件实现

4 数字信号处理课程理论与实践教学的知识渗透与延伸

学生在数字信号处理的理论课程中了解了相关的算法原理后,并和实际的硬件电路实现对应了解,就掌握了从理论到实践的转换过程。

所以在讲授数字信号处理的每一个知识点时,都应该按照这样的思想去引导学生:(1)清晰透彻的讲授每一章节的离散信号与系统的算法原理,从时域分析到频域分析,到时频变换,快速算法,到数字滤波结构及实现。在每一个知识点上,都把相应的数学原理和对应的硬件结构对应起来,使学生了解知识的实际用途。(2)在学生掌握算法原理的基础上,引导其在相应的仿真工具上进行算法的仿真,得到相应的系数和性能,分析算法的优缺点,并对算法进行改进。(3)根据前面学习的理论算法和硬件实现的知识渗透,使学生能够快速轻松地选择相应的数字信号处理器件,实现其算法原理,从而达到理论和实践的较好结合,使得学生在数字信号处理领域,有了较深入和较高层次的认识,达到学以致用。

5 结论

论文以一个实际的《数字信号处理》教学范例——IIR级联型网络结构的原理,说明了教学的顺序和层次,从理论知识的学习,到具体实现的渗透,使得学生在彻底掌握理论变换算法的基础上,更深层次地与实际动手相结合,很好地对学生进行知识的渗透与延伸,在后续的DSP原理与应用,信号分析与处理中可以较为轻松深入地掌握,达到较好的教学效果。

参考文献

[1] 张洪涛,万红,杨述斌.数字信号处理[M].武汉:华中科技大学出版社,2006.

[2] 吴镇扬.数字信号处理(第二版)[M].北京:高等教育出版社,2010.

篇(10)

1 2ASK调制方法

调制信号为二进制数字信号时,对载波信号的振幅进行调制,这种调制称为振幅键控调制即ASK(Amplitude Shift Keying)。在2ASK调制中,载波的幅度只有两种变化状态,即利用数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波不连贯的输出。有载波输出的部分用“1”表示,无载波输出的部分用“0”表示。

2ASK(二进制振幅键控)信号的码元可以表示为:

e0(t)=b(t)cosωct (1-1)

式中,wc为载波角频率,s(t)为单极性NRZ矩形脉冲序列

b(t)=ang(t-nTb) (1-2)

其中,g(t)是持续时间为Tb、高度为的矩形脉冲,常称为门函数;an为二进制数字,当an=1,出现概率为P;当an=0,出现概率为(1-P)。

在二进制数字振幅调制中,载波的幅度随着调制信号的变化而变化,实现这种调制的方式有两种:

1.1 相乘法

通过相乘器直接将载波信号coswct和数字信号s(t)相乘,得到输出信号,输出的信号称为调制信号,这种直接利用二进制数字信号的振幅来调制正弦载波的方式称为相乘法。相乘器用来进行信号的频率搬移的,相乘后输出的信号通过滤波器滤除高频谐波和低频干扰信号,从而得到振幅键控信号。

1.2 开关法

开关法又称键控法,是2ASK的一种常用的方式。这种方法是使载波在二进制信号“1”和“0”来控制开关,当基带信号为高频信号“1”时,开关打开,当基带信号为低频信号“0”时,开关关闭,模拟双向开关在电路中起接通信号或断开信号的作用,这种二进制振幅键控方式称为开关键控方式,以二进制数字信号去控制一个初始相位为0的正弦载波幅度,可得其时域表达式如下:

e(t)=As(t)coswct (1-3)

式中的各参数含义如下:A为载波振幅,s(t)为二进制数字调制信号,Wcω为载波角频率,e(t)为2ASK已调波。

2 2ASK调制电路总体设计

如图1所示。

ASK编码调制原理是:当基带信号为0时,不输出,当基带信号为“1”时,则输出。本案例基于FPGA进行电路设计。从上文公式可以看出,ASK为模拟信号,而要用FPGA技术实现ASK的调制解调,而FPGA只能产生数字信号,就需要用到FPGA产生分频器、M序列产生器、跳变检查电路、正弦波信号产生电路,除此之外,还有一个独立的DAC数模变换器。

首先,针对分频电路,对时钟信号进行分频作为载波信号,对该正弦信号进行抽样,每个有效周期内采100点,然后进行计数得到输出。

m序列是最常用的伪随机序列,是由一个带有两个反馈抽头的3级以为寄存器,这样就使m序列具备随机特性,预先可确定性,循环特性等特点,通过移位寄存,得到多项式F(x)=x3+x+1,最后得到“1110010”循环序列,在电路中,通过变化始终的频率,可以方便的改变输入码元的速率。

为了在示波器上面[第一论文 网专业提供论文写作和教育的服务,欢迎光临DYLW.NET]显示一个连续的波形,便于观察,采用跳变检测器,在基带信号上升沿或者是下降沿到来的时候,对应输出波形位于正弦波形的sin0处。

基带信号只需要计数器对时钟信号进行技术,就可以得到所需要的序列信号。

2ASK是模拟调制,这里采用DAC变换器可以满足要求,根据奈奎斯特定理可以知道,当以fs》2f进行抽样时,可以保留原始信号的所有信息,调制系统中,调制信号和已调信号都是模拟信号,所以在实验中对正弦信号每个周期抽样100个点,相当于fs=100f,完全可以显示出模拟正弦波信号。

参考文献

[1]樊昌信,曹丽娜主编.通信原理(第六版)[M].北京:国防工业出版社,2005.

篇(11)

 

频移键控(FSK)是用不同频率的载波来传送数字信号,并用数字基带信号控制载波信号的频率。具有抗噪声性能好、传输距离远、误码率低等优点[1]。在中低速数据传输中,特别是在衰落信道中传输数据时,有着广泛的应用。但传统的用硬件实现FSK的方法,特别是相干解调需要提取载波,设备相对比较复杂,成本比较高。本文基于 FPGA 芯片,采用 VHDL语言提出了一种 FSK调制解调器的实现方法。

1 . FSK调制

FSK调制的核心部分包括分频器、二选一选通开关等。图1[2]中的两个分频器分别产生两路数字载波信号;二选一选通开关的作用是:以基带信号作为控制信号,当基带信号为“0”,选通载波f1;当基带信号为“1”时,选通载波f2。从选通开关输出的信号就是数字FSK信号,调制信号为数字信号。

图1 FSK调制方框图

FSK调制VHDL程序仿真图如图2所示,载波f1和f2分别是通过对clk的12分频和2分频得到的。

图2 FSK调制VHDL程序仿真图

2.FSK解调

在解调器的设计中,已调信号是连续的波形,有两个不同的频率,在 FPGA实验平台上,已调信号可以通过矩形脉冲来代替,在一定的时间内,通过检测时钟上升沿来确定输入信号的频率,从而判断出基带信号。在本设计中,先设计一个同步信号,即当同步信号start为高电平时开始解调。论文格式。

图3 FSK解调方框图

图4是依照图3[2]编写VHDL语言解调程序得到的时序仿真图,在仿真图中,clk是输入的时钟信号,start信号为高电平,编辑输入调制信号x,通过时序仿真得出结果。论文格式。从图中可以看出,输出信号 y有延迟。计数器q计数时钟信号clk的上升沿,m计数输入调制信号的上升沿,计数器q计数到11时清零,若计数器q为10时,m计数小于等于3则判基带信号为“0”,否则判为“1”。论文格式。

图4 FSK解调VHDL程序仿真图

3.结论

整个设计使用VHDL语言编写,以EP1K30144-3为下载的目标芯片,在MAX+PLUSⅡ软件平台上进行布局布线后进行波形仿真,得到了正确的波形。结果正确无误,经验证满足预期的设计指标要求,且其整个工作过程可通过软件波形仿真,或是实际硬件电路通过示波器来直观、清晰观察。传统的FSK调制解调方式都是采用硬件电路实现,电路复杂、调试不便,采用VHDL语言用FPGA来实现的调制解调方式,设计灵活、修改方便,有效地缩小了系统的体积,增加了可靠性,具有良好的可移植性及产品升级的系统性。

参考文献

[1] 陈华鸿.频移键控(FSK)及其最新应用[J ].现代计算机,2000(9) :36-39.