绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇抗震设计论文范文,希望它们能为您的写作提供参考和启发。
我国现行的桥梁抗震设计规范还很不完善,无论是铁路桥或公路桥,还是采用基于强度设防基础上的设计方法,即根据折减后的弹性地震反应进行抗震设计,而结构的延性要求没有明确规定,仅从墩柱的箍筋配筋率及构造方面提出要求,以保证结构的延性。因此对我国现行震规进行修订和补充,使其提高到一个新的先进水平已是刻不容缓。90年代初在上海南浦大桥的抗震设计中,首次提出了二水平的抗震设计方法。之后,用同样方法先后对20余座大桥、城市立交桥和城市高架桥进行了抗震研究,20余年来积累了很多科研成果,对桥梁抗震的设计思想也日趋成熟。在此基础上于1998年开始,范立础教授将正式主持“城市桥梁抗震设计规范”的制订工作。
减震和隔震设计思想是利用材料或装置的耗能性能,达到减小结构地震反应的目的,是一种经济有效的方法。近年来世界各国在结构的减隔震设计方面也做了很多研究,如弹性支座隔震体系是目前能采用的最简单的隔震方法,其中普通板式橡胶支座构造简单、性能稳定,已在桥梁上广泛应用,法国跨度320m的伯劳东纳(Brotonne)预应力混凝土斜张桥的两个塔墩顶上各用了12块橡胶支座,该桥已通车20年,使用情况良好。
2斜张桥梁抗震设计方法
常用的结构抗震设计方法有震度法和动态分析法两种,动态分析法中又包括反应谱法和时程分析法。
动态分析法比震度法有了较大的改进,它同时考虑了地面运动和结构的动力特性。其中反应谱方法中一个重要概念是动力放大系数,或称标准化反应谱。其定义为:β(ω,ξ)=|U+Ug|max/Ug,max
式中,右端项的分子为单质点体系动力反应的绝对加速度反应,分母为地面加速度反应的峰值。
应用反应谱计算结构地震反应,首先要计算结构的动力特性和各阶振型参与系数,然后按各阶振型对某项反应的贡献程度进行线性叠加,得到这项反应的最大值。我国“震规”中的验算方法就是建立在反应谱理论的基础上的,但反应谱理论在大跨度桥梁抗震验算上的应用还存在一些问题,如“震规”中加速度反应谱,或桥址场地设计加速度反应谱的适用范围大都在5s以内,而大跨度桥梁是长周期结构,它们的基本周期大都大于5s,在长周期范围动力放大系数β的取值对大跨度桥梁的地震反应的准确性至关重要。项海帆教授早在八十年代初就对公路工程抗震设计规范中的反应谱提出了长周期部分的修正意见,王君杰副教授也提出了“长周期地震反应谱的取值和规范化应以强震记录位移反应谱的统计结果为依据”的观点,并以此为基础提出了对当前公路工程抗震设计规范中的反应谱的长周期部分的修正和补充方法,增加了表达长周期地震反应谱特性的参数;其次大跨度桥梁地震反应组合中,如何考虑地震动的空间变化也是一个需要考虑的问题,因为对于大跨度桥梁,地震动的空间变化效应是不可忽略的。另一个在大跨度桥梁抗震分析中需要解决的问题,就是在多分量地震动作用下振型组合问题,目前常用的组合方法有SUM法(最大值绝对值之和法)、SRSS法(最大值平方和的平方根法)、CQC法(基于平稳随机振动理论导出的完全二次组合法)等。由于CQC方法计入了振型间的相关性,较好地考虑了密集振型间的强耦合性,而大跨度桥梁的动力特性具有自振周期长、频率密集和阻尼较小的特点,因此CQC方法对大跨度桥梁的地震反应分析更为适用。除此以外,在反应谱分析中给出的反应值基本上还是弹性反应,不能做到真正的非线性分析。总之,反应谱方法在大跨度桥梁的方案设计阶段,对结构的抗震性能进行粗略的评估还是可行的,但是对于重要结构或大跨度桥梁的地震反应分析则应进行专题研究。
一个很重要的步骤,就是在桥址地震危险性分析的基础上,进行结构的时程反应分析,这在大多数工程抗震设计规范中都提出了这一要求。时程分析法与反应谱法相比具有能进行结构的非线性地震反应分析、考虑复杂场地的非一致激励影响、能给出任意截面(或结点)的任意一种反应的时间历程等特点,而这些方面在大跨度桥梁地震反应分析中是必须考虑的。但在进行时程分析时也应该注意到地震波选用的随机性,因为地震是一个随机事件,它发生的时间、空间、强度、频谱成分、波形等等都是不确定的。而时程分析法还是一个确定性分析法,它是根据地震危险性分析中的人工地震波作为分析依据。所以,为了提高分析结果的可靠性,一般要求在同一钻孔位置给出一组(一般3~5条)地震波,然后取各条地震波反应的最大值。
我国建筑行业相比欧美一些建筑业比较发达的国家起步比较晚,而且在建筑行业起步初期人们只是一味的重视建筑的美观性,认为只有修建的奢华和富丽堂皇才能彰显出自己的社会地位和身份象征。只有符合人们审美趋势的建筑才是好的建筑,就比如苏州园林和一些南方比较具有代表性的园林等等。因此在这样的社会背景下一个阶段中阻碍了建筑业的发展,局限了建筑业的发展方向。人们对他的牢固性和抗灾害性能没有更高的要求,这也就使得一些建筑师为了迎合大众的口味,不至于被社会所淘汰而没有进行创造设计,因此设计的建筑也没有长足的发展,抵挡不了天灾的发生,对人们的生命财产构成了一定的威胁。
1.2没有处理好建筑设计与抗震设计之间的关系
建筑设计是在建筑施工之前就需要完成的工作,设计图纸就像一张标注明确的地图,它会指导人们应该去哪里,如何去哪里。因此建筑设计是十分重要的,一张表美的建筑图纸就相当于工程量完成了三分之一,将抗震理念融入到这张图纸中也是对抗震设计提出了更高层次的要求。但是由于目前的技术有限,建筑师还不能很好的将抗震设计融人到建筑设计中去,不能使两者更好的协作,发挥很好的作用。因此说不能协调建筑设计与抗震设计的关系是抗震设计常见的最根本问题。
1.3缺乏实践
为了提高建筑的抗震性,一些建筑师盲目的从国外引进先进的经验和技术,并没有结合我国建筑构造的自身特点加以创新改造,而是为了讲究工作效率,赶进度,生搬硬套地将这些所谓的先进前沿技术强加于一些本不符合的建筑物上,没有起到应有的抗震作用反而在一定程度上弄巧成拙,破坏了建筑本身的美感,更严重的还会使建筑物在地震时产生扭转建筑物的作用,对人们的生命财产造成更大程度上的伤害。因此建筑师这种急于求成缺乏实践精神的建造理念,不会对建筑物的抗震性能起到很好的作用。
1.4建筑设计问题
对于一些建筑的设计本身就存在不合理的问题,因此我们从以下几个方面进行探究:第一,建筑体型的设计,目前人们越来越追求建筑美感,因此将部分建筑的外立面都涉及成凹凸不平或者一些没有规则的不光滑表面,如果发生地震对这种建筑物的破坏是最大的,表面平滑的建筑则相对可以减少地震对他的破坏,尽可能的做到建筑物与钢架结构相对比较匀称。第二,平面设计,对于一些建筑物人们会使用一些柱子、内墙进行装饰。但是在确定柱子的数量与距离上就需要好好的下功夫去研究,比如人民大会堂的柱子多少根,每根之间的间隔距离是多少这都是很有讲究的,不对称性、不协调性对抗震起到了负面的作用。第三,竖向布置问题,越来越多的大型商场随着人们物质生活的需要而产生,并且大型商场是人们比较容易聚集的地方,如果没有很好的抗震性能则技术衾浼会对人们的生命财产造成很大的威胁。很多商场现在都是高层建筑,下层一般柱子相对较多、墙体较少,但是高层一般柱子较少、墙体较多,如果柱子与墙体分布不合理,这在地震中会起到特别不好的作用,也会加大对人们的伤害。下层柱子与上层柱子应该互相对齐,在空间上起到很好的支撑作用,对稳定整个商场的空间结构都起到了不可估量的作用。
1结构的抗震设计局限
由于地震和地面运动有很大的不确定性,导致结构在其使用期限内可能遭遇预期强度等级的地震,也有可能遭遇远远大于预期强度等级的地震,这就使结构工程师很难准确了解结构的抗震需求。当前,多数国家对结构抗震设计原则为:对于一般的工程结构,设计时以本区域内多遇地震作为结构弹性阶段承载力和变形验算依据,以保证结构在小震作用的结构正常使用功能;同时以大震作为结构在极限状态下的验算依据,以满足在结构在强震下不至于倒塌危及生命安全。虽然这种设计方法较为简单,设计结果较为经济,但也在某种局限了结构的抗震设计。首先,仅仅以正常使用状态和极限状态作为设计阶段,并不能保证结构在除此两状态之外的处于其它状态时的损伤程度和功能完整性,这就要求我们对结构的其它状态的性能水平进行更深入的研究。其次,这种设计仅仅要求结构满足基本的抗震设防目标,局限了业主对结构抗震方面提出更高的设防要求,安全度已与目前的经济和社会发展不符,故我们有必要对结构的设防目标进入更进一步的研究。因此,对结构采用多级性能水平和多级抗震设防目标的基于性能的抗震设计具有重要的理论意义和实用价值。
2结构的地震反应分析了方法
自1899年日本学者大森房吉首次提出用于结构抗震设计的静力法以来,结构的地震反应分析方法经历了从静力法到动力的反应谱法和动力时程分析法这三个阶段的演变过程,在动力阶段中又可分为弹性与非弹性(非线性)两个阶段。根据所考虑的地震动特点,结构地震反应分析方法可以分为确定性方法和随机振动方法。确定性方法利用地震记录或由其他方法确定的地震波进行结构的地震反应计算,随机振动方法则把地震视为随机过程,把具有统计性质的地震动作用在结构上来求出结构的反应。到目前为止,国内外的抗震设计规范绝大多数都采用确定性方法,因此本文也仅考虑确定性方法。
由大森房吉提出的弹性静力法理论假设结构各个部分与地震动具有相同的振动,因此,地震力等于地面运动加速度与结构总质量的乘积;在大森房吉之后,佐野利器于1916年提出震度法,认为以结构10%的总重量作为水平地震力来考虑地震作用。该法把结构的动力反应特性这一重要因素忽略了,具有很大的局限性,只有当结构可近似地视为刚体时,该方法才适用。
由于缺乏对地震动特性的认识和结构振动分析理论的了解,基于动力学的地震反应分析理论一直未能得到发展;直到1930年之后,人们逐渐认识到地震动特性对确立合理的抗震设计方法的重要性,从1931年起,美国开始进行地震观测台网的布置,并在1940年ImperialValley地震中成功地收集到了包括El-Centro地震记录在内的大量地震记录资料,为抗震动力学方法的发展提供了宝贵的资料。1943年,M.A.Biot提出了反应谱的概念,并给出了世界上第一条弹性反应谱曲线。G.W.Housner于1948年提出基于加速度反应谱曲线的弹性反应谱曲线,1956年N.M.Newmark率先将该法应用于实际工程设计,并在实际地震中得到了验证,自1958年第一届世界地震工程会议之后,反应谱法被许多国家所接受,并逐渐被采纳应用到结构抗震设计规范中。我国1959年的抗震规范草案就采用了反应谱理论并在以后的各次规范修订中不断完善和发展。在弹性反应谱的概念提出不久之后,就提出了非线性反应谱的概念,试图将这一简单的概念应用于非线性地震反应分析中,目前,除新西兰抗震规范采用非线性反应谱以外,非线性反应谱基本没有直接得到应用。
动力时程分析方法是将地震动记录或人工地震波作用在结构上,直接对结构运动方程进行积分,求得结构任意时刻地震反应的分析方法,根据是否考虑结构的非线,该法义可分为线性动力时程分析和非线性动力时程分析两种。该方法是借助于强震台网收集到的地震记录和模拟电子计算机,于20世纪50年代末由美国的G.W.Housner提出的:日本于20世纪60年代初,在武藤清教授的领导下,也开始了这项研究工作。随着计算机的发展,该方法在国外于20世纪60、70年代得到了迅速的发展。我国于20世纪70年代末和80年代初在这方面开展了大量的研究工作。随着计算手段的不断发展和对结构地震反应认识的不断深入,该方法越来越受到重视,特别是对体系复杂结构的非线性地震反应,动力时程分析方法还是理论上唯一可行的分析方法,目前很多国家都将此方法列为规范采用的分析方法之一。
3对性能的抗震设计的不同定义
“基于性能”一词源于英文Performance-based。基于性能的抗震设计(PBSD)理论是20世纪90年代由美国科学家和工程师首先提出的,最早应用于桥梁抗震设计中。基于性能抗震设计的基本思想是使被设计的建筑物在使用期间满足各种预定功能或性能目标要求。这一思想影响了美国、日本和欧洲地震工程界。各国同行表现出了极大的兴趣,纷纷展开多方面的研究。
SFAOCVision2000对PBSD的定义是“性能设计应该是选择一定的设计准则,恰当的结构形式、合理的规划和结构比例。保证建筑物的结构与非结构构件的细部构造设计,控制建造质量和长期维护水平,使得建筑物在遭受一定水准地震作用下,结构的损伤或破坏不超过某一特定的极限状态”。
ATC-40对PBSD的定义为“基于性能的抗震设计是指结构的设计准则由一系列可以实现的结构性能目标来表示,主要针对钢筋混凝土结构并且建议采用基于能力谱的设计原理”。显然,ATC-40建议使用能力谱方法对钢筋混凝土结构进行抗震设计。
FFMA273和FFMA274对PBSD的定义为基于不同设防水准地震作用,达到不同的性能目标。在分析和设计中采用弹性静力和弹塑性时程分析来实现一系列的性能水准,并且建议采用建筑物顶点位移来定义结构和非结构构件的性能水准,不同的结构形式采用不同的性能水准。而且FFMA273利用随机地震动概念提出了许多种性能目标.,适合于多级性能水准结构的分析与设计方法从线性静力延伸到弹塑性时程分析。
1995年的Kobe地震后,日本启动了“建筑结构现代工程开发”研究项目,对性能设计涉及的内容进行了概述;1996年,日本建筑标准法按照基于性能的要求进行了修订;1998年,日本的建筑标准法加入了能力谱方法。
我国一些学者也对PBSD进行了定义:“基于性能的结构抗震设计是指根据建筑物的重要性和用途确定其性能目标;根据不同的性能目标提出不同的抗震设防标准,使设计的建筑在未来地震中具备预期的功能。”
PBSD已成为近几年美国、日本、新西兰等国家在抗震方面的主要研究课题。美国学者认为,基于性能的抗震设计方法应该编成指南或规定,而不是规范提供给设计人员和业主,从现行的以保障生命安全为宗旨的抗震设计规范向基于性能的抗震设计规范的选择性设计规定的转变应该是“演进”而不是“革命”,其基本思想还可以通过每三年一次的规范修订融入现行规范中去。美国国际规范委员会(ICC)1997年5月出版国际建筑规范2000(InternationalBuildingCode.IBC)草案已强调了与性能要求有关的内容。近年来,基于性能的抗震设计思想及研究成果已经纳入美国大学本科生和研究生的结构抗震设计课程教学工作中,主要内容即以Vision2000为基础。日本也在多方资助下于1995年开始了为期3a的“新建筑结构体系开发”研究项目,成立了由国内著名学者参加的新建筑构造体系综合委员会。该委员会下设性能评价、目标水准和社会机构3个分委员会。为推进和协调这一项目的进程,还建立了“新构造体系促进会议”,讨论、规划和协调各方而的工作。英国等欧洲国家和智利等拉美国家也对PBSD开展了研究。1996年在中美抗震规范学术讨论会上也对PBSD进行了交流,提出了把PBSD引入到结构优化设计领域的概念。有学者建议,中国21世纪的抗震设计应顺应国际发展的趋势,发展适合于中国国情的PBSD。
4目前国内外地震工程界学界对PBSD开展的研究工作
(1)多级性能水准的确定与统一。生命安全水准、结构损伤水准和确保使用功能水准为当前规范普遍接受的3级性能水准。生命安全水准要求建筑在罕遇地震作用下不倒塌;结构损伤水准要求建筑损伤控制在可修复的范围内;确保使用功能水准要求结构不产生影响建筑直接使用的变形等。PBSD要求细化这3级性能水准并建立相应的结构设计准则。
(2)多级地震设防水准的确定与统一:当前规范普遍采用3级性能水准所对应的最高设防水准。在建筑使用期内遭遇一次地震危险的水准和可能遭受多次地震危险的水准3级地震设防水准。PBSD同样要求细化这3级地震设防水准。
(3)可行的结构设计与分析方法:PT3SD要求建立适合于在多级水准地震作用下实现多级性能水准的结构设计与分析方法。
(4)结构安全性评估方法的完善:当前由静力推覆分析方法和能力谱分析方法结合形成的静力弹塑性方法被普遍用来评估罕遇地震作用下建筑的抗震性能。
基于性能的抗震研究是一个非常庞大和复杂的问题,就目前的发展水平,还存在以下问题需要进一步研究解决。
在结构性能方面,虽然提出了不同性能水平,但只是对结构和非结构性能的破坏程度的描述,对结构“不坏、可修、不倒”定义模糊,未给出明确的量化指标,是本文主要研究问题之一,有待进一步研究。
在结构多级性能目标方面,如何进一步考虑建筑场地特征和近震的影响,以及设防水平与震后重建时间、费用之间的定量关系。
对于高层建筑或沿高度侧向刚度有变化的建筑,采用何种目标侧移曲线,侧向力分布模式是否考虑高阶振型的影响,都需要作进一步深入的研究。
如何针对复杂的混合塑性铰分布破坏机制建立位移延性和曲率延性的转化关系,从而获得结构曲率延性需求,有待进一步研究。
参考文献
摘要;文章阐述了抗震设计方法的转变,并介绍了两种不同设计方法的优缺点,对能量分析方法在抗震结构计算中的应用进行了分析。
关键词:推覆分析方法;结构能量反应分析;地震动三要素;耗散能量
目前世界各国的抗震设计规范大多数都以保障生命安全为基本目标,即“小震不坏、中震可修、大震不倒”的设防水准,据此制定了各种设计规范和条例。依此设计思想设计的各种建筑物在地震中虽然基本保证了生命安全,却不能在大地震,甚至在中等大小的地震中有效的控制地震损失。特别是随着现代工业社会的发展,城市的数量和规模不断扩大,城市变成了人口高度密集、财富高度集中的地区,一般的地震和1995年的日本阪神地震,造成了巨.大的经济损失和人员伤亡。严重的震害引起工程界对现有抗震设计思想和方法上存在的不足进行深刻的反思,进一步探讨更完善的结构抗震设计思想和方法已成为迫切的需要。上个世纪九十年代,美国地震工程和结构工程专家经过深刻总结后,主张改进当前基于承载力的设计方法。加州大学伯克利分校的J.P.Moehlelll提出了基于位移的抗震设计理论;日本建设省建筑研究院根据建筑物的性能要求,提出了一个有关抗震和结构要求的框架,内容包括建议方案,性能目标,检验性能水准等:我国学者已认识到这一思潮的影响,并在各自研究领域加以引用和研究,如王亚勇、钱镓茹、方鄂华、吕西林分别发表了有关剪力墙、框架构件的变形容许值的研究成果,程耿东采用可靠度的表达形式,将结构构件层次的可靠度应用水平过渡到考虑不同功能要求的结构体系,王光远把这一理论引入到结构优化设计领域,提出基于功能的抗震优化设计概念。
我国现行的结构抗震设计,主要是以承载力为基础的设计,即用线弹性方法计算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。结构的计算分析方法基本上可以分为弹性方法和弹塑性方法。当前在建筑结构抗震设计和研究中广泛地采用底部剪力法和振型分解反应谱法等。这些方法没有考虑结构屈服之后的内力重分布。实际上结构在强震作用下往往处于非线性工作状态,弹性分析理论和设计方法不能精确地反映强震作用下结构的工作特性,让结构在强震作用下处在弹性工作状态下工作将造成材料的巨大浪费,是不经济的。随着人们认识的提高,结构的地震反应分析设计方法经过了两个文献的转变:(1)静力分析方法到动力分析方法的转变:(2)从线性分析方法到非线性分析方法的转变。其中动力分析方法就经过了从振型分解反应谱法到时程分析法、从线性分析到非线性分析、从确定性分析到非确定性分析的三个大的转变。作为一种简化实用近似方法,目前的推覆分析方法(Push—overAnalysis)受到众多学者的重视。它属于弹塑性静力分析,是进行结构在侧向力单调加载下的弹塑性分析。具体做法是在结构分析模型上施加按某种方式(研究中常用的有倒三角形、抛物线和均匀分布等侧向力分布方式)模拟地震水平惯性力作用的侧向力并逐步单调加大,使结构从弹性阶段开始,经历开裂、屈服直至达到预定的破坏状态甚至倒塌。这样可了解结构的内力、变形特性和能量耗散及其相互关系,塑性铰出现的顺序和位置,薄弱环节及可能的破坏机制。这种方法弥补了传统静力线性分析方法如底部剪力法、振型分解法等的不足并克服了动力时程分析方法过程中,计算工作量大的问题,仅用于近似评估结构抵御地震的能力。但是,传统的推覆分析方法基本上只适用于第一振型影响为主的多层规则结构,对于高层建筑或不规则的建筑,高阶振型的影响不容忽视,并且对于非对称结构,还必须考虑正、反侧反推覆的不同所带来的影响。此外推覆分析方法无法得知结构在特定强度地震作用下的结构反应和破坏情况,这限制了它在抗震性能设计中的使用地震动能量是刻画地震强弱的综合指标,它综合体现了地面最大加速度和地震持时两个反映地面运动特性的重要因素。结构地震反应的能量分析方法是一种能较好地反映结构在地震地面运动作用下的非线性性质及地震动三要素(幅值、频谱特性和持时)对结构抗震性能影响的方法。地震时,结构处于能量场中,地面与结构之间有连续的能量输入、转化与耗散。研究这种能量的输入与耗散,以估计结构的抗震能力,是结构抗震能量分析方法所关心的问题。结构在地震(反复交变荷载)作用下,每经过一个循环,加载时先是结构吸收或存储能量,卸载时释放能量,但两者不相等。两者之差为结构或构件在一个循环中的“耗散能量”(耗能),亦即一个滞回环内所含的面积。能量等于力与变形的乘积。一个结构(构件)所耗散的地震能量多,不仅因为它承担了较大的地震作用,还因为它产生了较大的变形。从这个意义上来看,耗能构件是用它自身某种程度破坏所作的牺牲,来维持整个结构的安全。所以,每次大的地震作用之后,人们看到那些没有其它途径耗散所吸收的地震作用的能量的结构,只有通过结构自身的破坏来释放所有的多余能量。因此,结构的抗震设计应当注意保证结构刚度、强度和变形能力的协调与统一,如结构的延性设计就是在传统的单一强度概念条件下进行的弹性抗震设计的基础上,充分考虑结构和构件的塑性变形能力,在设防烈度下允许结构出现可能修复的损坏,当地震作用超过设防烈度时,利用结构的弹塑性变形来存储和消耗巨大的地震能量,保证结构裂而不倒。
能量法在近半个世纪的研究中发现较快,但由于地震本身的复杂性能量与结构反应之间的关系仍需我们进行进一步的探索。
单层砖柱厂房具有选价低廉、构造简单、施工方便等优点,在中小型工业厂肩中得到广泛应用。砖柱厂房是以砖柱(墙)做为承重和抗侧力构件,由于材料的脆性性质,其抗震性能比钢筋混凝土柱厂房差;由于砖往厂房内部空旷、横墙问距大,地震时的抗倒塌能力不如砌体结构的民用建筑。因此根据砖柱厂房的震害特点,找出杭震的薄弱环节,提出相应的抗震措施,提高其抗震能力是必要的。
1.地震震害及其特点:
地震震害表明:6、7度区单层砖柱厂房破坏较轻,少数砖柱出现弯曲水平裂缝:8度区出现倒塌或局部倒塌,主体结构产生破坏;9度区厂房出现较为严重的破坏,倒塌率较大。
从震害特点看,砖柱是厂房的薄弱环节,外纵墙的砖柱在窗台高度或厂房底部产主水平裂缝,内纵墙的砖柱在底部产生水平裂缝,砖柱的破坏是厂肩倒塌的主要原因。山墙在地震时产生以水平裂缝为代表的平面外弯曲破坏,山墙外倾、檩条拔出,严重时山墙倒塌,端开间屋盖塌落。屋盖形式对厂房抗震性能有一定的影响,重屋盖厂房的震害普遍重子轻屋盖厂房,楞摊瓦和稀铺望板的瓦木屋盖,其纵向水平刚度和空间作用较差,地震时屋盖易产生倾斜。
2.适用范围及结构布置
2.1单跨和等高多跨的单层砖柱厂房,当无吊车且跨度和柱顶标高均不大时,地震破坏较轻。不等高厂房由于高振型的影响,变截面柱的上柱震害严重又不易修复,容易造成屋架塌落。因此规定砖柱厂房的适用范围为单跨或等高多跨且无桥式吊车的中小型厂房,6-8度时厂房的跨度不大子15m且柱顶标高下大于6.6m,9度时跨度不大于12m且柱顶标高不大于4.5m。
2.2厂房的平立面应简单规则。平面宜为矩形,当平面为L、T形时,厂房阴角部位易产生震害,特别是平面刚度不对称,将产生应力集中。对于立面复杂的厂房,当屋面高低错落时,由于振动的不协调而发主碰撞,震害更为严重。
2.3当厂房体型复杂或有贴建的房屋(或构筑物)时,应设置防震缝将厂房与附属建筑分割成各自独立、体型简单的抗震单元,以避免地震时产主破坏。针对中小型厂房的特点,钢筋混凝上无檀屋盖的砖柱厂房应设置防震缝,而轻型屋盖的砖柱厂房可不设防震缝。防震缝处宜设置双柱或双墙,以保证结构的整体稳定性和刚度,防震缝的宽度应根据地震时最大弹塑性变形计算确定。一般可采用50~70mm。
3.结构体系
3.1地震时厂房破坏程度与屋盖类型有关,一般来说重型屋盖厂房震害重,轻型屋盖厂房震害轻,在高烈度区影响更为明显。因此要求6-8度时宜采用轻型屋盖,9度时应采用轻型屋盖。人之地震震害调查表明:6、7度时的单跨和等高多跨砖柱厂房基本完好或轻微破坏,8、9度时排架柱有一定的震害甚至倒塌。因此《建筑抗震设计规范》(G8Jll一89)规定:6、7度时可采用十字形截面的无筋砖柱,8度1、2类场地应采用组合砖柱,8度3、4类场地及9度时边柱宣采用组合砖柱,中柱直采用钢筋混凝土柱。经过地震震害分析发现:非抗震设计的单层砖柱厂房经过8度地震也有相当数量的厂房基本完好,所倒塌的厂肩大部份在设计和施工上也存在先天不足,因此正常设计正常施工和正常使用的无筋砖柱单层厂后,在8度区仍然具有一定的抗震能力。可见对8度区的单层砖柱厂房都配筋的要求是偏严的,在抗震规范的修订稿中将8度1、2类场地“应”采用组合砖往改为“宜”采用组合砖柱,允许设计人员根据不同情况对是否配筋有所选择。一般来说,当单层砖柱厂房符合砌体结构刚性方案条件,经抗震验算承载力满足要求时,可以采用无筋砖柱。
3.3对于单层砖柱厂房的纵向仍然要求具有足够的强度和刚度,单靠砖柱做为抗侧力构件是不够的,如果象钢筋混凝土柱厂房那样设置柱间支撑,会吸引相当大的地震剪力。使砖拄剪坏。为了增强厂房的纵向抗震承载力,在柱间砌筑与柱整体连接的纵向砖墙,以代替柱间支撑的作用,这是经济有效的方法。
3.4当厂房两端为非承重山墙时,山墙顶部与檩条或屋面板恨难连接,只能依靠屋架上弦与防风柱上端连接做为山墙顶部的支点,这不仅降低了房屋整体空间作用,对防止山墙的出平面破坏也不利,因此厂房两端均应设置承重山墙。
3.5厂房的纵横向内隔墙宣做成抗震墙,其目的充分利用培体的功能,避免主体结构的破坏。当内隔墙不能做成抗震墙时,最好采用轻质隔墙,以避免墙体对柱及柱与屋架连接节点产生不利影响,如果采用非轻质隔墙,则应考虑隔墙对柱及其与屋架节点产生的附加剪力。
3.6无窗架不应通至厂房单元的端开间,以免过份削弱屋盖的刚度。天窗架采用砖壁承重时,将产生严重的震害甚至倒塌,地震区应避免使用。
4抗震承载力计算
4.1横向抗震计算
单层砖往厂房横向抗震计算的计算简图,可按下列规定选取:(1)当厂房柱为无筋砖柱或边柱为组合砖柱、中柱为钢筋混凝土柱时,可采用下端为固接、上端为铰接的徘架结构模型;(2)当厂肩边柱为无筋砖柱、中柱为钢筋混凝士柱,在确定厂房自振周期时,砖柱下端按固接考虑,在计算水平地震作用时,砖柱下端按铰接考虑。这主要是考宅到在地震作用下,随着变形的不断增加,无筋砖柱下端开裂并退出工作,囚而全部横向地震作用由中部的钢筋混凝土柱承担。轻型屋盖单层砖柱厂房的横向抗震计算,可以忽略空间工作影响·采用平面排架进、厅计算。对于钢筋混凝上屋盖和密铺望板的瓦木屋盖厂肩,其空间作用不能忽略,应按空间分析的方法进行计算:但为了简化,对于一定条件下的厂房可以按平面排架进行计算,考虑到其空间工作影响,对计算的地震作用效应要进行调整。
4.2纵向抗震计算
对于钢筋混凝土屋盖的等高多跨砖柱厂房,当考虑屋盖为刚性时,纵向地震作用在各柱列之间的分配与柱列的侧移刚度成正比:当考虑屋盖的弹性进行空间分析时,侧移刚度较大柱列分配的地震作用比按刚性屋盖分配的地震作用小,而侧移刚度较小柱列分配的地震作用比按刚性屋盖分配的地震作用大。设计中为了利用刚性屋盖假定时纵向地震作用分配形式简单的优点,可以针对不同屋盖形式对柱列的侧移刚度乘以修正系数,做为纵向地震分配时的柱列刚度,并对所计算的厂房自振周期进行修正,以考虑屋盖的弹性影响。
对于纵墙对称布置的单跨厂房,在厂房纵向沿跨中切开,取一个柱列单独进行纵向计算与对厂房进行整体分析结果是相同的。对于轻型屋盖的多跨厂房虽然屋盖仍具有一定的水平刚度,考虑到屋盖与砖墙的弹性极限变形值相差较大,为了计算简便,仍可假定各纵向往列在地震时独立振动,按柱列法进行计算。
5抗震构造措施
5.1单层砖柱厂房采用钢筋混凝上屋盖时的抗震构造措施可参照钢筋混凝土柱厂房的有关规定。采用瓦木屋盖时,设有满铺望板的抗震能力比无望板强得多,望板能起到阻止屋架倾斜的作用。地震震害表明,未设上弦及下弦水平支撑的楞摊瓦屋盖,屋架产主倾斜甚至倒塌的震害较多,因此要有足够的屋盖支撑系统,保证屋盖沿纵向有足够的刚度和稳定,以满足抗震的要求。
5.2圈梁对增强厂房的整体性起到了重要作用,但预制圈梁抗震性能差,地震时在连接外容易拉断,因此要求圈梁应现浇且在厂房柱顶标高处沿房屋外墙及承重内墙闭合。对于8、分度区还应沿墙高每隔3-4m增设一道圈梁,可提高砖墙的抗震性能,并能够限制地震时墙体裂缝的开展,减轻墙体破坏。当地基为软弱粘性土、液化土、新近填土或严重不均匀土层时,地震易出现裂缝,如果裂缝穿过厂房将使房屋撕裂,基础顶面应设置基础圈梁,以减轻地震灾害。当圈梁兼做门窗过梁或抵抗不均匀沉降影响时,圈梁的截面和配筋除满足抗震构造要求外,还应根据实际受力计算确定。采用钢筋混凝土无檩屋盖的砖柱厂房,地震时在屋盖处圈梁下一至四皮砖的砖墙上易出现水平裂缝,因此8、9度时,在墙顶沿墙长每隔1m左右埋设1根8竖向钢筋,并插入顶部圈梁内,以避免上述震害的产生。
5.3地震中屋架与砖柱连接不牢,柱头产主破坏甚至屋盖坍落的震例是较多的。为了加强屋架与砖柱的连接,柱顶垫块应与墙顶圈梁整体浇注,屋架与垫块的预埋件采用螺栓连接或焊接。当垫块厚度或配筋过小时。预埋件的锚固不能满足要求,垫块厚度丁应小于240mm,井配置两层直径不小于8间距不大于100mm的钢筋网。烈度较高时,屋盖承受的地震作用较大,与垫块整体浇注的圈粱受到较大的扭矩,垫块两侧各500mm范围内圈梁的箍筋应加密,其间距不应大子100mm。
(2)局部抗震设计。局部抗震设计主要包括以下几个方面:其一,在详细的分析了地震的破坏机理之后,发现地震纵波的传播速度比地震横波快,地震纵波在建筑结构的主体部位以及连接构件之间形成了一个相对容易被破坏的环节,当地震横波抵达后会直接作用在工业与民用建筑结构主体,导致工业与民用建筑出现倒塌的问题,通过对工业与民用建筑发生的地震资料进行分析,工业与民用建筑的后砌墙结构和楼板很容易出现损坏与坍塌的问题,因此,应该充分的考虑建筑主体结构与连接构件之间的质量,科学的设计截面形式以及接触面积,同时深入探讨和设计后砌墙和模板之间的连接状况,有效的提高工业与民用建筑结构设计的抗震能力;其二,科学的选择建设场地,工业与民用建筑场地对建筑的抗震性能具有直接的关系,全面的分析工业与民用建筑场地的岩土工程、工程地质遗迹地形地貌等环境条件,确定最为合理、科学的场地条件,尽可能的降低建筑上部结构对建筑接触的影响,以此降低在地震作用下对建筑结构的损坏程度,因此,在选择建筑场地时,应该尽可能的避免选择软弱粘土区、采空区、非岩质陡坡区等,如果需要在软土地基中上建筑工业与民用建筑,应该采取合理的地基处理基础有效的提高地基的整体性与刚性,以此保证工业与民用建筑在地震作用下具备较强的抗震能力;其三,提高施工质量,根据近几年较大地震的相关资料显示,影响工业与民用建筑抗震能力的原因与施工质量具有直接的关系,因此,为了保证人们的生命和财产安全,工业与民用建筑的抗震设计人员以及施工人员,应该以国家、社会以及人们的生命财产安全为出发点进行抗震设计和施工,以此保证工业与民用建筑具备足够的抗争能力。
2强化工业与民用建筑结构抗震设计的有效措施
(1)选择合适的抗震结构形式。目前,我国工业与民用建筑的结构形式相对较多,主要包括钢筋混凝土结构、砖混结构、钢结结构等形式,各种建筑结构形式的抗震性能存在一定的差异。因此,为了提高工业与民用建筑的抗震性能,应该根据建筑现场的具体状况,选择具有较强承载能力、变形能力、柔性以及抗争能力的抗震结构形式,防止工业与民用建筑在地震作用下受到破坏。
(2)选择合适的建筑场地。全面的熟悉和了解我国相关的抗震减灾法,尤其是对于可能发生自然灾害的地区的工业与民用建筑工程来说,更应该重视工业与民用建筑的抗震性能,通过评价工业与民用建筑的抗震性能符合国家的相关标准之后,设置相应的抗震标准。通常状况下,抗震设防主要分为甲、乙、丙、丁四种,对于容易发生地震灾害的工业与民用建筑,在选择建筑场地时,应该选择能够降低或者消除地震影响的地理位置,尽量避免在容易影响工业与民用建筑工程安全的区域建造工业与民用建筑,特别是软弱地基,在地震的作用下很容易出现液化现象,降低工业与民用建筑地基的抗震能力,导致工业与民用建筑出现倾斜甚至倒塌的问题。
1前言
我国位于四川西部的南北地震构造带,其地震的频度高、强度大。我国大陆地震活动目前正处于本世纪以来的第五个活跃期。四川已经缺震7级以上地震近23年,缺震6级以上地震近10年。目前,四川的地震形势十分严峻。
地震造成人民生命财产损失的主要原因,是由地震引起的建筑物(绝大部分是砖房)和工程设施的破坏,以及次生灾害。国内外历次地震的经验告诉我们:抓好抗震设防地区建设工程的抗震设计,是减轻未来地震灾害损失最积极、最有效和最根本的措施。
据文献[4]记载,全国城镇民用建筑中以砖砌体作为墙体材料的占90%以上;据有关部门近两年对四川省的16个城镇各类公建房屋统计显示,多层砖房(含底框砖房)所占(面积)比例达89%;筠连县城的这类房屋,预计所占比例在90%以上。所以,砖房是我国房屋建筑的主体。同时,砖房在历次地震中的震害又是严重的。据对1976年我国唐山7.8级地震震害统计,砖房是100%破坏,其中85%以上倒塌。砖房之所以地震破坏比例如此大,主要原因是砖砌体是一种脆性结构,其抗拉和抗剪能力均低,在强烈地震作用下,砖结构易于发生脆性的剪切破坏,从而导致房屋的破坏和倒塌。如果在多层砖房的设计中再过度追求大开间、大门洞、大悬挑,甚至通窗效果等,必将大大削弱房屋的抗震能力
2目前多层砖房抗震设计中存在的主要问题
(1)城市住宅砖房建设中,房屋超高或超层时有发生,尤其是底层为“家带店”的砖房,高度超过限值1m以上。
(2)在“综合楼”砖房中,底层或顶层有采用“混杂”结构体系的,即为满足部分大空间需要,在底层或顶层局部采用钢筋砼内框架结构。有的仅将构造柱和圈梁局部加大,当作框架结构。
(3)住宅砖房中为追求大客厅,布置大开间和大门洞,有的大门洞间墙宽仅有240mm,并将阳台作成大悬挑(悬挑长度大于2m)延扩客厅面积;部分“局部尺寸”不满足要求时,有的不采取加强措施,有的采用增大截面及配筋的构造柱替代砖墙肢;住宅砖房中限于场地或“造型”,布置成复杂平面,或纵、横墙沿平面布置多数不能对齐,或墙体沿竖向布置上下不连续等等。
(4)多层砖房抗震设计中,未作抗震承载力计算的占多数,加之缺乏工程经验,使相近的多层砖房采用的砌体强度等级相距甚远。
(5)多层砖房抗震设计中,所采取的抗震措施区别较大。构造柱和圈梁的设置:多数设计富余较大,部分设计设置不足(含大洞口两侧未设构造柱);抗震连接措施:多数设计不完整或未交待清楚,有的设计还采用“一本图集打天下”的作法,不管具体作法和适用与否,全包在“图集”身上。
3多层砖房抗震设计意见
我国建筑抗震设防的目标是三个水准。多层砖房可通过一阶段设计达到下列要求:满足抗震承载力要求,房屋可“小震不裂”;满足结构体系、平立面布置和抗震措施等要求,房屋可符合“中震可修”;满足房屋高度和层数及构造柱和圈梁等要求,房屋可做到“大震不倒”。
确保多层砖房抗震设计质量,主要有以下三个方面的内容。
3.1抗震概念设计
3.1.1房屋的高度和层数
实心粘土砖的多层砖房,墙厚不小于240mm,总层数不应超过文献[1]表5.1.2的规定,总高度不宜超过表5.1.2的规定,高度允许稍有选择的范围应不大于0.5m。需要特别指明的是,表5.1.2是适用于横墙较多的多层砖房。横墙较多是指同一层内开间大于4.2m的房间占该层总面积的1/4以内。对于医院、教学楼等横墙较少的多层砖房总高度,应比表5.1.2的规定降低3m,层数相应减少一层;对横墙很少的多层砖房,应根据具体情况,在横墙较少的基础上,再适当降低总高度和减少层数;对抗震横墙最大间距超过文献[1]表5.1.5要求的多层砖房,已不属于侧力作用下的刚性房屋,不能按多层砖房设计,应按空旷房屋进行抗震设计。多层砖房总高度与总宽度的最大比值,不应超过文献[1]表5.1.3的要求。
房屋的总高度指室外地面到檐口的高度,半地下室可从地下室室内地面算起,全地下室和嵌固条件好的半地下室(符合文献[2]第250页半地下室在地面下嵌固的条件)可从室外地面算起;顶层利用阁楼坡屋面设跃层时应算到山尖墙的半高处。多层砖房的层高不宜超过4m。房屋总宽度的确定,可分下列四种情况:对于规则平面,可按房屋的总体宽度计算,不考虑平面上局部凸出或凹进;对于凸出或凹进的较规则平面,房屋宽度可按加权平均值计算或近似取平面面积除以长度;对悬挑单边走廊或单边由外柱承重的走廊房屋,房屋宽度不包括走廊部分的宽度;对设有外墙的单面走廊房屋,房屋宽度可以包括1/2走廊部分的宽度。
3.1.2结构体系
应优先采用横墙承重或纵横墙共同承重的结构体系。同一结构单元中应采用相同的结构类型,不应采用砖房与底框砖房或内框架砖房或框架结构等“混杂”的结构类型。墙体布置应满足地震作用有合理的传递途径。纵横向应具有合理的刚度和强度分布,应避免因局部削弱或突变造成薄弱部位,产生应力集中或塑性变形集中;对可能出现的薄弱部位,应采取措施提高其抗震能力。
3.1.3平、立面布置
建筑的平面布置和抗侧力结构的平面布置宜规则、对称,平面形状应具有良好的整体作用。纵、横墙沿平面布置不能对齐的墙体较少,楼梯间不宜设在房屋的尽端和转角处;建筑的立面和竖向剖面力求规则,结构的侧向刚度宜均匀变化,墙体沿竖向布置上下应连续,避免刚度突变;竖向抗侧力结构的截面和材料强度等级自下而上宜逐渐减小,避免抗侧力构件的承载力突变。8度和9度时,当房屋的立面高差较大、错层较大和质量及刚度截然不同时,宜采用防震缝将结构分割成平面和体形规则的独立单元。房屋的顶层不宜设置大会议室、舞厅等空旷大房间,房屋的底层不宜设铺面等通敞开大门洞。当确需设置时,应采取弥补薄弱部位的加强型措施或进行专门研究。
多层砖房门窗间墙的局部尺寸宜符合文献[1]表5.1.6的要求。当部分的局部尺寸不满足要求时,如该部位已设构造柱,可对已设构造柱增大截面及配筋;如该部位原未设构造柱,则可用增设构造柱来满足要求。房屋转角处的门窗间墙承受双向侧向应力,其局部尺寸应不小于1m;其余外纵墙的门窗间墙局部尺寸部分不满足1m要求时,其限值可放宽到0.8m;内墙门间墙局部尺寸不满足要求时,可用设构造柱来满足。
值得指出的是,近几年在多层砖房的抗震设计中,较普遍存在为了客厅开大门洞,不惜牺牲门间墙宽度的现象。这是个对局部尺寸认识不足的概念设计问题,一是认为部分不满足局部尺寸要求关系不大;二是认为只要用扩大了的构造柱替代门间墙就没有问题了,在设计中将构造柱当作“灵丹妙药”到处使用。应当明白,砖砌体和砼的变形模量差别很大,虽然砖砌体与构造柱和圈梁可以协同工作,增加房屋的延性,但是它们不能同时段进入工作状态,在“中震”阶段的抗震承载力主要由砖砌体承担。因此,砌体结构中过多配置砼的杆系构件,其作用是有限的。
3.2抗震计算
抗震计算是抗震设计的重要组成部分,是保证满足抗震承载力的基础。多层砖房的抗震计算,可采用底部剪力法。对平面不规则和竖向不规则的多层砖房,宜采用考虑地震扭转影响的分析程序。目前,多层砖房的抗震设计中,不作抗震验算是较普遍的现象,这样就必然存在一是不安全二是浪费的问题。多层砖房的抗震计算比较容易,文献[2]中有较完整的计算实例,可供手算时参考。笔者经对7度区若干幢规则的7层住宅砖房抗震计算分析显示,底层所用混合砂浆的强度等级不能低于M10。
3.3抗震措施
保障多层砖房的抗震措施,是多层砖房“大震不倒”和不作“二阶段设计”的关键。多层砖房的抗震措施内容较多,概括起来,可分为三部分。
3.3.1构造柱和圈梁的设置
对横墙较多的多层砖房,应按文献[1]表5.3.1的要求设置构造柱;对横墙较少或横墙很少的多层砖房,应根据房屋增加一层或二层后的层数,按表5.3.1的要求设置构造柱。表中的“较大洞口”,设计中可界定为:门洞宽不小于2m和窗洞宽不小于2.3m;“大房间”可界定为:层高超过3.6m或长度大于7.2m。
对横墙承重或纵横墙共同承重的装配式钢筋砼楼、屋盖或木楼、屋盖的多层砖房,应按文献[1]表5.3.5的要求设置圈梁;对于隔开间或每开间设置构造柱的多层砖房,应沿设有构造柱的横墙及内、外纵墙在每层楼盖和屋盖处均设置闭合的圈梁。
值得注意的是,圈梁的截面和配筋不宜过大,通常按文献[1]第5.3.6条要求的数值或提高一个等级采用就可以了,不宜无限提高。同理,圈梁的作用也是有限的。
3.3.2构件间的连接措施
多层砖房各构件间的抗震构造连接是多层砖房抗震的关键。抗震构造连接的部位较多,重要部位的连接措施有下列几项。
a)构造柱与楼、屋盖连接
当为装配式楼、屋盖时,构造柱应与每层圈梁连接(多层砖房宜每层设圈梁);当为现浇楼、屋盖时,在楼、屋盖处设240mm×120mm拉梁(配4φ10纵筋)与构造柱连接。
b)构造柱与砖墙连接
构造柱与砖墙连接处应砌成马牙槎,并沿墙高每隔500mm设2φ6拉结钢筋,每边伸入墙内不小于1m。
c)墙与墙的连接
7度时层高超过3.6m或长度大于7.2m的大房间,以及8度和9度时,外墙转角及内外墙交接处,当未设构造柱时,应沿墙高每隔500mm设2φ6拉结钢筋,每边伸入墙内不小于1m。
d)屋顶间的连接
突出屋面的楼梯间等,构造柱应从下一层伸到屋顶间顶部,并与顶部圈梁连接。屋顶间的构造柱与砖墙以及砖墙与砖墙的连接,可按上述抗震措施采取。
(5)后砌体的连接
后砌的非承重砌体隔墙,应沿墙高每隔500mm设2φ6拉结钢筋与承重墙连接,每边伸入墙内不小于0.5m。8度和9度时,长度大于5.1m的后砌墙顶,应与楼、屋面板或梁连接。
(6)栏板的连接
砖砌栏板应配水平钢筋,且压顶卧梁应与砼立柱相连,压顶卧梁宜锚入房屋的主体构造柱。
(7)构造柱底端连接
构造柱可不单独设基础(承重构造柱除外),但应伸入室外地面下500mm,或锚入室外地面下不小于300mm的地圈梁。
3.3.3悬臂构件的连接
(1)女儿墙的稳定措施
6~8度时,240mm厚无锚固女儿墙(非出入口处)的高度不宜超过0.5m,当超过时,女儿墙应按抗震构造图集要求采取稳定措施。女儿墙的计算高度可从屋盖的圈梁顶面算起,当屋面板周边与女儿墙有钢筋拉结时,计算高度可从板面算起。
(2)悬挑构件
悬臂阳台挑梁的最大外挑长度不宜大于1.8m,不应大于2m。
不应采用墙中悬挑式踏步或竖肋插入墙体的楼梯。
4结语
多层砖房在城乡建设中量大面广,又是人类活动和生活的主要场所。因此,加强多层砖房抗震设计,重视多层砖房抗震设计中的三个环节,就能使多层砖房的地震破坏降低到最低限度。
参考文献
1建筑抗震设计规范(GBJ11—89)及1993年局部修订.中国建筑工业出版社,1989辽宁科学技术出版社,1993
2建筑结构设计手册丛书编委会.建筑抗震设计手册.中国建筑工业出版社,1994
2超高层建筑结构抗侧刚度设计与控制
为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。
2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。
2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。
3超高层建筑的性能化抗震设计
超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。
4超高层建筑多道设防抗震设计
除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。
1基本情况
广州琶洲香格里拉酒店项目位于广州市海珠区,广州国际会议展览中心东侧,在建的黄洲大桥西侧,北临珠江,南靠新港东路,长约240米,宽约200米。整个项目包括一座37层的酒店(塔楼高32层,裙楼5层)和宴会大厅,以及2层地下车库。
2抗震设防标准
(1)抗震设防烈度:7度。
(2)本工程属丙类建筑,按本地区设防烈度采取抗震措施。
3基本数据
(1)场地类别:Ⅱ类。
(2)土层等效剪切波速为168.4m/s-173.8m/s,场地覆盖层厚度约13.5m-17.4m,砂土液化等级综合评定为严重,属于抗震不利地段。
(3)持力层名称:微风化岩层,埋深约10.90m-23.70m,地基承载力特征值fak=4500KPa,岩石天然湿度下单轴抗压强度的标准值fr=13.5Mpa。
(4)桩型为冲孔/钻孔灌注桩,桩端埋深约15-20m。
4建筑结构布置和选型
(1)主楼高度(±0.00以上)140.7m,地面以上结构层为38层,其中出屋面一层,高度为4.7m。
(2)裙房高度(±0.00以上)29.0m,地面以上结构层为4层。
(3)塔楼主体部分、裙楼和宴会厅之间设两道110mm宽抗震缝分开。建筑物总高度为136.0m,总平面尺寸为195m×122m。其中塔楼部分(转换层以上)平面尺寸为72米×18米,长宽比L/B=4<[6],高宽比H/B=6.0<[7];裙楼部分平面尺寸110m×45m,长宽比L/B=2.4,高宽比H/B=0.5;宴会大厅平面尺寸65m×53m,长宽比L/B=1.2,高宽比H/B=0.3。
(4)塔楼质心有微小的向上偏心(以底端为原点)。
(5)结构形式简单、平面形状规则、布置均匀;结构层第5层为转换层,竖向构件布置不连续。
(6)本工程为现浇钢筋混凝土结构,楼盖整体性好。
(7)结构类型:框架—剪力墙结构,属于复杂类型。
(8)抗震等级:本工程塔楼的框架和核心筒为一级抗震。由于地下室顶板作为上部结构的嵌固部位,地下一层的抗震等级与上部结构相同。其余部分裙楼及其地下一层与主楼相连,一级抗震。
(9)结构概况:
整个大楼的设计采用框架—剪力墙结构形式,分为两级结构,转换层以下布置了21根巨型框支柱,剪力墙及承重柱均落地直至基础,由剪力墙、的框架柱和框架梁形成第一级结构,承受水平力和竖向荷载,而楼面及次梁作为第二级结构,只承受竖向荷载并传递到第一级结构上。5结构分析主要结果
(1)计算软件:PKPM系列结构分析软件SATWE模块(2002规范版本)中国建筑科学研究院PKPMCAD工程部编制。
(2)楼层自由度为3(刚性楼板)。
(3)周期调整系数:0.8。
(4)主楼结构总重:2291152.81KN(SATWE)。
(5)基底地震总剪力:32581KN(X向)36421KN(Y向)(SATWE)。
(6)扭转位移比:1.3。
(7)转换层的上下刚度比:0.6027。
(8)最大轴压比:n=0.85。
(9)最大层位移角为1/941,在17层(SATWE)。
(10)时程分析采用人工模拟的加速度时程曲线,选用了两组实测波和一组场地人工波进行弹性动力时程分析。弹性阶段的时程分析,构件内力,侧向位移小于采用振型分解反应谱法的构件内力和侧向位移。
6计算结果小结(与规范要求对比):
(1)在风荷载及地震作用下各构件的强度和变形均满足有关规范的要求。
(2)墙、柱的轴压比均符合《建筑抗震设计规范》和《高规》的要求,转换层以上柱子轴压比小于[0.85],框支柱轴压比小于[0.6]。
(3)按弹性方法计算的楼层层间最大位移与层高之比Δμ/h=1/941满足《高层建筑混凝土结构技术规程》(JGJ3-2002)第4.6.3条要求的1/800。
(4)塔楼满足(JGJ3-2002)关于复杂高层建筑结构扭转为主的第一自振周期与平动为主的第一自振周期之比最大值为0.729,不大于0.85的规定。
(5)塔楼满足(GB50011-2001)第3.4.2条关于复杂高层建筑各楼层的最大层间位移不应大于该楼层两端层间位移平均值的1.4倍的规定。
(6)除转换层外,塔楼各层均满足(GB50011-2001)第3.4.2条关于各楼层的侧向刚度不小于相邻上一层的70%,并不小于其上相邻三层侧向刚度平均值的80%的规定。
(7)塔楼满足(JGJ3-2002)第E.0.2条关于转换层上部结构与下部结构的等效侧向刚度不应大于1.3的规定。
(8)除转换层外,塔楼各层均满足(JGJ3-2002)第4.4.3条关于楼层层间受剪承载力不宜小于相邻上一层的80%的规定。
(9)塔楼满足(JGJ3-2002)第5.4.4条关于结构稳定性的规定。
(10)塔楼满足(JGJ3-2002)第3.3.13条关于各楼层对应于地震作用标准值的楼层水平地震剪力系数不小于表3.3.13的规定。
(11)塔楼满足(JGJ3-2002)第3.3.5条关于按时程曲线计算所得的结构底部剪力不宜小于CQC法求得的底部剪力的65%的规定。
(12)结构薄弱层弹塑性层间位移符合《建筑抗震设计规范》(GB50011-2001)第5.5.5条关于弹塑性层间位移角(1/164)小于1/100的规定。
7其它需要说明的问题
本工程在三种超限条件(高度、高宽比、体型规则性)中,高度超限13.3%,高宽比满足规范及规程的有关要求,结构平面形状规则,竖向不规则。
主要超限抗震措施包括:
(1)为避免大楼整体结构之间形状的不规则,引起不利于抗震的情况,在主楼和裙楼之间设置110mm宽抗震缝两道,缝的两侧设置双柱,地下室、基础不用设缝。
(2)转换层位于第5层,框架柱和剪力墙的抗震等级根据《高规》表4.8.2和表4.8.3规定提高一级,为特一级。
(3)首层、设备夹层、避难层、屋面层楼板加强,板厚为180mm,中央核心筒板厚加强为150mm,配筋相应加强,设双向双层钢筋网。
质量是建筑的核心,而建筑的抗震性能是体现建筑质量的主要因素,对建筑质量的影响极大,然而,在当今超限高层建筑抗震设计中,却由于由于多种原因造成抗震设计的质量出现了严重的问题,材料对其造成的影响只是其中一个重点要素。材料的影响主要现在材料的质量、材料的不匹配等问题,在超限高层建筑工程设计中,有很多工作人员为某一己之私而在施工中用一些质量不达标的材料,严重影响的建筑的抗震性能;另外,还有些工作人员在设计中会将一些其他的建筑抗震设计方案引入到该建筑物中,而由于建筑物的高度以及整体结构都有所不同,导致出现“张冠李戴”的现象,与实际的建筑缺乏匹配度,导致超限高层建筑抗震设计受到了一定的影响,使建筑的安全性降低达不到超限高层建筑抗震的标准。
1.2平面结构设计对超限高层建筑物抗震设计的影响
超限高层建筑物的平面结构设计是与建筑物外形有着直接的联系,当然也与建筑物抗震设计有着密切的关系,同时超限高层建筑的平面设计与施工难度有着直接的联系,然而,在当今超限高层建筑平面设计中却存在一定的问题,平面结构设计引起的施工难度过大,而导致的超限高层建筑抗震的施工也受到了一定的阻碍,即使能顺利施工也会因为结构设计的不合理对超限高层建筑抗震性能造成一定的影响,在后期的使用中依旧存在重大的安全隐患[3]。另外,如果平面结构设计的不合理,会造成无法准确的确定超限高层建筑抗震的均衡点的位置,尤其是超限高层建筑设计中需要考虑的因素较多,可能会在平面结构设计中会漏掉某些细节的设计,一些结构细节出现问题也会导致超限高层建筑整体的抗震性安全性受到一定的影响。
1.3受力体系对超限高层建筑抗震设计带来的影响
受力体系是建筑抗震设计中需要考虑的重要因素,而且每个建筑的受力体系也各不相同,这与设计者的经验没有太大的联系,因此,在设计的过程中不能光凭经验来完成设计,而且,确实有这种情况发生,觉得自己有着多年的设计经验,就没有详细的对建筑受力体系进行分析,通过以前的经验直接按部就班的放到设计里,最终导致建筑的受力体系与抗震设计发生了矛盾,造成超限高层建筑抗震的性能降低,使得建筑整体缺乏安全性和稳定性。
2超限高层建筑抗震设计优化
2.1做好超限高层建筑设计的前期工作
由第一部分得知,建筑材料对超限高层建筑设计抗震设计的影响及其的严重,因此在设计前要做好前期的准备工作,主要对设计中涉及到的材料质量、数量、规格等做好相应的规划设计,通过对材料的了解再进行相应的设计,尤其是材料的性能参数一定要做好详细的分析,因为有很多材料类型差不多,但是,还是有着细节上的差别。另外,还应对超限高层建筑地点的地质地貌、周边环境等进行详细的分析,这些因素对超限高层建筑抗震设计也有着一定的影响。因此,要做好前期的材料搜集、整理的工作,要确保相关数据材料收集的全面性和准确性。通过做好前期的准备工作,不管是在超限高层建筑的整体设计还是对建筑的抗震设计需要将这些数据作为设计的基础,进而确保设计过程中避免出现一些误差。
2.2对超限高层建筑物平面结构设计的优化
超限高层建筑的设计要比平常的多层、高层的设计特点复杂的多,而且对超限高层建筑抗震设计的本身要求也特别高,因此,在这种情况下超限高层建筑抗震设计中,应全面的考虑各种因素,将其作为优化方案的因素。另外,在对超限高层建筑抗震设计的过程中,设计者要根据实际情况,再结合多种有关设计因素,如,抗震指数、施工方式等,设计出多种超限高层建筑抗震设计方案,然后再通过多种方案的相互比较,选择出最优化的方案,通过这种优化方式,能更好的做好超限高层建筑的抗震设计,而且,以这种设计优化方式,一旦发现方案中存在设计问题或安全隐患能及时的比较出来,并及时的改正,对建筑抗震性能具有很大的保障。
2.3明确超限高层建筑抗震设计中的受力体系
随着社会不断的发展,人们不仅对建筑的质量要求提高了,同时也对建筑物的外观有着一定的要求,美观、大气、上档次是建筑外观现出来的典型特点,但是有很多建筑物只考虑到外观设计,却忽略了建筑的受力体系,对建筑物的抗震性能带来直接的影响,如果这种现象出现在超限高层建筑的设计中,势必会为建筑物带来更大的安全隐患,因此,在对超限高层建筑物抗震设计中一定要明确建筑物的受力体系。建筑的外观要求是要满足的,而在达到这个要求的同时,还需要设计者充分考虑到超限高层的抗震设计,要尽量以后者为主,毕竟后者是关乎到建筑物使用的安全性。可以通过力学的知识来寻找超限高层建筑抗震设计受力体系中的平衡点,以此来实现超限高层建筑的抗震要求。
建筑的抗震设计以及抗震性能的高低与人民群众的生命财产安全有着直接联系,而建筑抗震设计又是以建筑设计为基础的。这是由于建筑结构是基于建筑设计的,当建筑设计完成后建筑结构就难以改变。因此建筑设计师在建筑设计前期就应该充分考虑到建筑抗震设计的需求。
二、基于建筑抗震设计的建筑设计措施
(一)建筑结构设计的对称原则
我国出台的建筑抗震设计规范中指出,我国建筑抗震的设计目标是小震不坏,中震可修,大震不倒。对于建筑师和结构工程设计师来说,在进行建筑工程设计师应该秉持着简单、规则的建筑结构原则。一般方形、圆形、为主。建筑的竖向形态的变化要规则,一般可以选择矩形、梯形等变化均匀的形状。对称结构建筑在地震地面平动作用下一般只会出现平移震动,建筑内部构件出现测位移量,内部构件受力均衡;而非对称结构的建筑则会由于刚心和质心不重合,在地面平动的过程中也会出现扭转振动。如建筑内部的构建离刚心较远就会由于超出变形极限而出现损坏,进而导致结构一侧失效而倒塌。
(二)注重建筑构件与连接点处质量
在建筑工程设计和施工过程中建筑构件的合理配置以及连接点处的质量与建筑施工安全质量存在直接的联系。并且在新型建筑材料问世的同时建筑物的外部设计大都汇采用新型建筑材料,例如大理石、瓷砖等。而建筑室内装饰也会使用到吊顶等技术。这些室内以及立面装饰本身存在抗震性能的问题,并且其与建筑主体的牢固连接也是抗震设计的关键。近几年有部分国外高层建筑在发生地震时下起了“玻璃雨”,建筑的玻璃幕墙由于地震导致破损。这是由于当前所使用的玻璃幕墙还无法适应地震中产生变形和扭转。因此建筑如要采用玻璃幕墙则必须保证玻璃幕墙的强度与变形能力。在其与建筑主体连接处要设计为能够在水平向实现变位能力的构造,从而在地震时玻璃幕墙能够与建筑物地震变形脱离,减少玻璃幕墙的损坏。另外,在建筑设计中内隔墙、玻璃隔断等结构件的设计中也要充分考虑其与建筑主体连接点的牢固性,保证其抗震性能。
(三)关注建筑顶部抗震
在高层或超高层的建筑设计过程中,建筑的顶部抗震设计是十分关键的。当前高层或超高层建筑的屋顶普遍存在过高和过重的问题。屋顶过高或过重会导致建筑变形加重,进而强化了地震的破坏作用。对于屋顶建筑以及下层建筑物的安全性能有着极大的负面影响。如建筑的屋顶与下层建筑的重心没有位于同一条直线上,那么建筑屋顶的抗侧力墙也会与下层建筑的抗侧力墙出现分离,当地震出现时则会加剧损坏。因此在高层或超高层建筑设计中应该使用新型高强度轻质的建筑材料,尽可能保证屋顶的重心与下层建筑的重心位于通一条直线。当建筑屋顶的较高时要保证其抗震定性,缓解地震带来的变形作用。
(四)建筑竖向布置
建筑竖向布置主要体现在建筑物的高度结构质量以及刚度的设计中,特别是在高层或超高层建筑中建筑的竖向布置对于建筑抗震设计来说更加重要。建筑楼层的使用功能差异导致建筑物楼层分布的质量和刚度均不一致,例如楼层包括游泳池、会议室、健身房等。楼层的功能需求导致楼层上下之间的刚度差异过大。高层建筑中刚度最差的楼层的抗震性能最为薄弱,在出现地震时即为变形严重的薄弱层。在建筑设计中由于楼层功能不同导致的墙体不连续,柱子不对称等极大的限制了抗震性能。因此在建筑抗震设计中应该尽量保证竖向的刚度分布靠近,尤其是在结构上刚度转换层更加要着重注意。