绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇概率统计论文范文,希望它们能为您的写作提供参考和启发。
2软件介绍
在强调学生为主体的实践式教学设计中,教师设计案例的求解一般要选择合适的软件进行辅助,当前数学软件众多、功能强大,如综合性软件Mat-lab,统计专业软件SPSS、SAS等。对于专业数学软件一般要先进行软件的学习才能用来解决实际问题,对于概率论与数理统计这样一门独立的课程,显然不宜专门来进行软件的培训,为了应对实践教学课堂应用,简单易学且容易配置的软件能最大限度实现教学任务。在此以Excel为例介绍案例式教学和利用Excel进行软件试验的一点尝试。Excel使用简便,基本不涉及程序的编制,在图形化界面下进行操作,且具备有强大的图形功能,便于概率结果的呈现和分析。Excel有丰富的概率函数,能帮助用户进行各种类型的概率计算,或进行随机模拟来学习概率论与数理统计。Excel可以计算大部分常用理论分布的概率密度函数PDF、累积分布函数CDF以及模拟产生服从常用概率分布的随机数据。如果能够正确使用,Excel可以成为非常强大的学习工具。选用Excel作为概率论与数理统计教学辅助软件的另一个原因是作为微软Office工具之一,大部分学生均了解Excel的使用,因此不用进行软件的教学即可用来解决实际问题,在学习过程中也能进一步促进学生对软件的使用增强他们解决实际问题的能力。下面介绍一个利用Excel辅助的案例式实验教学设计实例。为了使数学实验背景贴近学生的学习生活,以考试中选择题成绩分析为例。背景分析:考试是每个学生都经历的学习过程,其中选择题是经常遇到的类型,选择题的设计与概率知识之间有密切的关系。通过与学生密切相关的问题引入概率教学,能极大激发学生的学习兴趣。问题设计:选择题在解答时不同于填空题或者解答题,因为在完全不会的情况下仍有可能靠猜测得到正确的答案,那如何来评估选择题在考试中的效度,可以使用什么样的概率论与数理统计的基本知识予以研究?
3实验教学案例设计
首先提出基本假设,考试时一个选择题有4个选项,仅有一个选项是正确的,如果不会做就随机作答,因此在不会做题的情况下随机选择答案有25%的可能性得到正确答案,即从卷面上看该题做对了,对于老师来说,按照成绩评价学生实际知识水平非常重要,因此需要评估在答案正确的前提下求学生实际会做该题的概率。图像显示出选择题答案正确而显示被试者会做该题的概率一直大于被试者实际会做该题的概率,说明选择题容易高估被试者的水平,为了有效区分被试者的不同程度,需要适当调节题目的难度来区分被试者是不是真的会做。作为一个例子,若学生会做与不会做的概率相同,取x=0.5,则容易计算出P(A|B)=0.8,即实际会做概率为0.5时,选择题表现出来的得分可能为0.8分。对于数学实验来说,让学生自己对该案例进一步讨论,亲自实践在软件辅助下的概率解题,对促进学生将理论用于实际非常重要。在课堂讲授的基础上,可以将学生自学内容引申到用随机变量的分布律和分布函数来研究在实际考试中选择题得分情况演示,结合二项分布理论研究选择题对学习评价的情况。评价借助于Excel软件设计如下实验。假设某项考试由100道选择题组成,每道题1分,学生会做该题的概率为x(实际问题中相当于难度系数为1-x),当x=0的时候,被试者对考试内容完全不会,每题都随机选择,可以看成服从参数为(100,0.25)的二项分布,使用Excel中的BINOM-DIST()函数进行二项分布概率密度值和分布函数值的计算来演示考试结果。函数用法为:BINOM-DIST(k,n,p,FALSE/TRUE),其中k表示回答正确的题目数量,可以使用单元格自动生成,n,p为二项分布的参数。n表示总试验次数,p表示每次试验中事件出现的次数即答对题的概率。后面的参数FALSE/TRUE用来说明是计算概率密度函数和是计算分布函数。如BINOMDIST(A2,100,0.25,FALSE)表示对A2单元格中的自变量计算参数为(100,0.25)的二项分布概率密度函数值。使用Ex-cel的自动填充功能,便可方便生成该二项分布的概率密度表。为方便调节二项分布参数,可以将参数(n,p)用单元格的绝对引用代替,改变参数单元格的数值就能得到不同二项分布的概率密度表格。Excel还可以对概率密度表和分布函数表生成条形图和线图,若试题难度系数0.5,学生事实会做的题目应该有50道,因此会做的题目有50道,另外不会做的随机选择,正确率0.25,因此回答正确的题数为12.5,两者相加可知最终得62.5分的概率最大。
二、对课程教学改革中出现的问题的改进
在教学过程中为了更好地解决信息化背景下“概率论与数理统计”课程教学与培养学生创新实践能力和应用能力的关系,实现教学内容与教学模式的改革与学生应用能力培养的统一。下面从三个方面说明进一步的改进措施。
(一)进一步加强“概率论与数理统计”课程的分类
教学与课堂教学改革结合学校学生的实际情况,进一步加强理、工、经管、生命、社会工作等不同专业的分类教学,针对不同专业采取不同学时、内容有所侧重的分类教学模式,加强统计方法的应用教学,对不同专业的分类教学进一步进行探讨。
(二)进一步更新、优化教学内容,完善“概率论与数理统计”
精品课网站的建设定期对全校各专业进行调研,了解各专业对“概率论与数理统计”课程教学的反馈与需求,及时修订、调整和更新课程的教学内容,优化课程体系。目前长春理工大学的“概率论与数理统计”是省级精品课,为了更好地顺应信息化大环境的需求,学校会进一步完善本课程网站的建设,使得学生在自主学习的过程中更加便捷。
(三)增加课程设计、计算机实践环节
鼓励学生申报创新实验计划项目,参加数学建模竞赛在教学过程中增加课程设计、计算机实践环节,结合较多的应用实例,留一些开放性的案例,要求学生做案例研究,写出合格的研究报告,训练学生的实践能力。鼓励学生申报创新实验计划项目,参加数学建模竞赛。通过创新实验计划项目、数学建模竞赛等活动,提供一个学生、教师课后交流的平台,吸纳部分本科生参与到教师的科研活动当中,最大限度的挖掘学生潜在的能力。“概率论与数理统计”教学,不再是单一的数学理论与方法,而是通过教学,在传授相关数学知识和方法的同时,使学生更多地领悟该门课程的精神实质和思想方法,促使学生自觉地接受数学文化的熏陶,从而提高学生的创新思维能力。
2还原知识的历史进程,降低新知识的抽象性
现代数学教材普遍都是按照知识的内在逻辑进行编排,很少按照数学问题的研究进程进行著作.这样的安排在逻辑结构上是科学的、严谨的,但却忽略了数学问题研究的历史痕迹.教师在教学过程中,应尽量地还原知识的历史进程,降低新知识的抽象性.正态分布是概率论中最重要的一种连续型分布,它属于概率论的研究领域,但也是解决统计学问题的基石,它的提出具有深刻的理论背景和极其广泛的应用价值.在教学中对正态分布的学习,通常是直接给出概率密度或分布函数,将其称为正态分布.但这会让学生感觉接受生硬,理解抽象,记忆困难.理论背景上,正态分布产生于棣莫弗的p0.5的二项分布极限研究,后来拉普拉斯对p0.5的情况做了更多的分析,并把二项分布的正态近似推广到了任意p的情况.二项分布的极限分布形式被推导出来,由此产生了正态密度函数,相应的结果称为棣莫弗-拉普拉斯中心极限定理.经拉普拉斯等学者的研究,20世纪30年代独立变量和的中心极限定理的一般形式最终完成.此后研究发现,一系列的重要统计量在样本量n时,其极限分布都具有正态形式.数学家进而合理地解释了为什么实际中遇到的许多随机变量或者统计量都近似服从正态分布,可以说这是概率统计中具有里程碑意义的发现.数理统计教材中一般是先认识正态分布,中心极限定理则在此之后学习.在学习正态分布的定义之前,教师可以设计一些具有明显正态性现象的数据,而后进行描述性统计分析,给出频率直方图,并解释这种具有两头小、中间大的分布现象是普遍的,也是常态的.对概率论中常见分布的知识背景的了解和掌握,有助于教师在课程设计和讲授过程中注意课程内容的衔接和承上启下的相互关系.借助数学家研究数学问题的进程史实,可降低新知识的抽象性,使学生易于接受和掌握,并提高应用的灵活性.
二、设计思路
1.实验内容与专业特点相结合。作为师范类数学,毕业后主要从事教育教学工作。在教育教学工作中,免不了要对教学质量、教学效果等进行分析,需要用到统计知识。因而在设计实践教学内容时,应根据学生就业后的需求情况,结合教育统计与教学测评等内容,设计专业特点较强的实验题目(内容),如调查当地学生数学能力状况、调查某一教学内容教学效果情况等。通过实际操作,使学生掌握教育统计研究的方法,不仅提高学生的能力,也为今后在教育教学工作中开展科学研究打下基础。2.软件的选用。目前,专业的统计软件有SAS、SPSS、Eviews、R等,这些软件的专业性很强,功能也非常强大。但本人认为作为非专业的一般使用者,选用Excel就可以了,其原因主要有以下几个方面:第一,专业软件对于非专业人员要运用自如有一定难度;第二,专业软件不少需要购买,且价格昂贵,一般人难以承受;第三,Excel软件是一款使用广泛的办公软件,且较易学;最后,Excel软件提供了丰富的函数,可以进行数据处理、统计分析和决策辅助以及制图等功能,完全能够满足基础的统计分析工作。因此,在实践教学中建议选用Excel软件。3.突出实用性,增加综合运用。《概率论与数理统计》课程的实验主要以模拟和实证分析为主,缺乏结合实际、应用性强的实验。在设计实验内容时,应结合实际的应用,设计综合性、操作性较强的实验题目,以项目的形式组织学生分组开展实验实训活动。例如设计题目《中学生数学能力的调查研究》,在此题之下可以分多个小题,如《中学生空间想象能力的调研》、《中学生性别差异对空间想象能力的影响研究》等等,让学生6~8人一组,每组选择一题开展研究。
三、实践实例
在完成理论学习的基础上,利用实践教学环节,结合教育工作的需要,设计综合性的实践教学内容,并通过组织学生分组开展实验,从而加深学生对理论知识的理解,同时提高学生的实际应用能力。下面通过三个案例说明实践教学的设计和开展。实例1:2011年全国五个自治区教育经费投入情况对比分析。实验目的:(1)使学生学会利用相关资源收集、整理数据;(2)利用Excel软件描绘柱形图。实验过程设计:1.数据的收集。根据收集方式的不同,统计数据可分为间接数据和直接数据。实例1中的数据为间接数据,其收集的主要方法有:(1)通过《中国统计年鉴》、《中国统计摘要》及各省、市、地区的统计年鉴等公开出版物收集数据;(2)利用中华人民共和国国家统计局、中国经济信息网等网站查询数据;(3)到各地方统计局查询统计数据。在此实验中要求学生按5人一组,通过中华人民共和国国家统计局网站,查询相关数据(如图1所示),并对数据进行筛选、整理,得到2011年全国五个自治区教育经费投入情况数据。最后利用Excle软件绘制数据表,并录入所需数据,得到2011年全国五个自治区教育经费投入情况数据表(见表1)。由图2可知,2011年全国五个自治区中,广西的教育经费投入最多,投入最少;另外内蒙古、广西、新疆的教育经费相差不大,、宁夏相对较少。实验小结:该实验是统计分析中的一个基础性实验,主要教会学生利用网络、图书、杂志等途径收集数据,并利用Excle软件对数据进行预处理,最后根据绘制统计分析图,得出分析结论。类似的还可练习绘制饼状图、折线图、直方图等图形。另外,根据学生情况还可以适当深入(如三维数据图,多变量数据分析图等),但应保持与专业特点相结合。实例2:对学生考试成绩进行统计分析。实验目的:(1)学会制作统计表格;(2)学会利用Excel软件进行描述性统计;(3)学会使用Excel软件中的相关函数进行统计汇总。实验过程设计:1.制作统计表并录入本班学生某次考试成绩(表格前6行如图3所示)。2.在“工具”菜单中选择“数据分析”子菜单,并在弹出的窗口中选择“描述统计”,点击“确定”后将需要进行描述统计的数据选入“输入区域”,依次选定输出区域以及需要输出的统计值(如汇总统计、平均置信度等),确定之后可生成描述统计表(如表2)。3.利用COUNTIF等函数求出学生各分数段人数、优秀率、及格率等数据(如表3)。实验小结:该实验通过对学生成绩的统计分析,教会学生利用Excel软件中的相关函数和数据分析工具进行统计,对学生今后在事教育工作中进行教学质量分析有一定帮助。在此基础上,还可以进行拓展,如分析多门课程成绩情况;分析各班级间成绩是否存在显著性差异;男、女生学习成绩是否存在显著性差异等问题。实例3:中学生数学能力调查分析。实验目的:(1)使学生学会调查问卷的设计,并了解开展问卷调查的流程;(2)利用Excel软件对问卷数据进行方差分析。实验过程设计:1.设计问卷。中学生数学能力主要包括:数学的运算能力、空间想象能力、逻辑思维能力、实际应用能力等,在设计问卷时,让学生分成4组,每组设计一类能力测试题。学生人数较多时,可分成8组,每两组负责一类试题,各组分别完成设计。各组设计好的试题,由大家讨论,挑选出部分题目,综合成为中学生数学能力测试卷。2.分组调查。学生分组到各中学进行问卷调查。在实施调查前,先根据该校学生名录,采用随机数表法抽取被调查学生名单,然后根据抽样名单完成问卷调查,以保证数据的有效性。最后,根据收回的有效问卷整理出相关数据。3.方差分析。利用Excel软件数据分析中的方差分析模块,对整理好的数据进行方差分析。分析内容可设置为性别对学生各种能力是否存在显著性影响;年龄对学生各种能力是否存在显著性影响;民族对学生各种能力是否存在显著性影响;等等。学生分组选择一个内容进行分析,并完成分析报告。在之后的小组交流中,每组派一名代表阐述本组的分析过程和分析结果,大家再讨论分析是否正确、结果是否合理等。实验小结:该实验综合性加强,在实验过程中涉及到抽样调查、数据预处理、统计分析等内容。该内容以项目进行,大项目中分子项目,由学生分组合作完成,在这样的实验活动中,学生既学到了专业知识,锻炼了专业技能,又培养了团结协作、互相交流的品质。
在高校概率统计教材中,从数学文化的角度对概率统计教学进行诠释已经得到数学教育界的普遍重视,教材在数学文化价值教育方面起到至关重要的作用。高校概率统计教材在数学文化教育方面也做了大量的工作,我们以盛骤等人主编的《概率论与数理统计》(第四版)、缪全生主编的《概率与统计》(第三版)和同济大学应用数学系主编的《工程数学—概率统计简明教程》三本教材(后文中分别以教材一、教材二、教材三称之)作为例子,它们在数学文化渗透方面的特点体现在:
(1)教材设计更注重生活和技术应用领域背景的渗透
在内容编排方面,每个知识点都能注意以生活实际或当前的技术应用问题作为背景予以介绍,强调知识的直观性和应用背景,强调实际问题的解决,使得学生有比较直观的认识,能提高学生的学习兴趣和学习热情。如在介绍条件概率的定义时,教材几乎都能从掷硬币、掷骰子等简单的生活实际出发,从特殊到普遍地引出条件概率的定义。内容背景涉及较多的是产品质量分析模型(如质量、寿命、含量、误差等方面),教材一和教材三比教材二涉及应用背景的面更加广泛、量更大。在例题和习题设计方面,教材注重以解决有经济、社会、工程技术等方面实际背景的问题为主,旨在提高学生的实际应用能力。在所统计的三本教材中,具有应用背景的例题占总的例题数超过了50%,习题中有应用背景的题目在50%左右,特别是以自然科学为应用背景的题目占了绝大多数
(2)紧密结合信息技术的发展,提高统计计算能力的培养
加强数理统计的内容,注重统计方法在实际工作中的应用。如增加了假设检验问题中的P值检验法和一些统计图的应用,还介绍了bootstrap方法在数据处理方面的应用。增加Excel软件和“宏”数据分析工具的使用。信息技术的发展给概率统计的研究赋予更强大的工具,没有现代的专业统计分析软件作为研究工具,概率统计问题的研究是不可想像的,在概率统计教材中适当引入统计软件的运用是必要的。虽然现在统计分析软件的功能很强大,但需要经过专业的学习才能掌握,为适应概率统计的入门使用,盛骤等人主编的《概率论与数理统计》(第四版)中就增加了Ex-cel软件和“宏”数据分析工具在概率统计中的应用,特别是在数理统计方面的运用,这对没有经过专业统计软件学习的学生和使用者有很大的帮助。
2.高校概率统计教材数学文化元素渗透中存在的问题
(1)教材中数学史的呈现太少
呈现方式不明朗数学史的学习,能使学生了解数学在推动社会发展方面和社会发展之间的相互作用,能使学生了解数学科学的思想体系、数学的美学价值和数学家的创新精神等因素。教材中的定义、定理、法则和公式都是数学家们经过上百年甚至上千年的历史锤炼后的完美逻辑体系,这种完美的形式忽略了曲折复杂的数学发现过程,但正是这种过程隐含着丰富的数学文化元素。如对概率定义的引入,三本概率统计教材几乎都是这样表达“历史上有人做过……其结果如表……”,然后在表格中列出历史上的几个有关频率的试验,甚至有些教材只是用简短的语言一带而过,然后给出概率的统计定义,紧接着就给出概率的其他定义。这样的表达,学生缺乏对概率定义公理化过程的认识,也失去了一次培养学生提高学习概率统计兴趣与热情的机会。更重要的是,概率定义的形成本身就是数学抽象化过程的典型例子,在这个过程中,学生可以体会到数学的抽象特性和方法。遗憾的是,目前高校概率统计教材中出现数学史的地方实在太少了。据统计,教材一、教材二和教材三中出现数学史的地方仅有频率的定义中提到的德摩根、蒲丰和皮尔逊等人抛硬币试验的介绍或一些试验数据;教材二在引言中则对概率论的发展历史作了一个简介。三本教材中对数理统计的历史介绍等于0,其实概率统计教材中能出现数学史的地方比比皆是,教材可以充分利用这些素材进行呈现。
(2)应用背景相对薄弱
概率统计是一门实践性强、应用性广的学科,当前高校教材都注重生活和技术应用领域背景的渗透,社会科学的应用背景相对薄弱。这样的知识呈现方式,对提高学生的学习兴趣和应用意识都有很大的帮助。但数学文化背景的方式是多样,如重要数学名人物传、数学发展事件记、重要数学成果和概率统计在社会科学方面的应用等内容,这是体现数学文化价值的一种有效方式,也是学生从中获取数学思想方法、体会数学精神和体验数学美的重要途径,遗憾的是当前高校概率统计教材在这方面还比较缺乏。
(3)多元文化缺失
概率统计已经成为现代社会、经济、管理等学科的重要工具,高校概率统计教材在体现这些领域的应用方面有较大的篇幅,但与学生相关生活文化背景的联接方面显得不够,这容易导致学生认为很多概率统计的知识与他们生活或工作相隔遥远甚至没有关联,严重影响了学生学习概率统计的兴趣和态度。
二、概率统计教材设计
中凸显数学文化的思考现行的概率统计教材的知识系统逻辑体系已经经过多年的验证,证明是可行的。数学文化视野下的教材设计目的是,如何在现行教材的知识体系中体现数学文化的元素,数学文化很大一部分是内隐的,这就要求我们不能单纯把数学文化内隐的知识部分相关内容简单地累加到教材里面去,而应该有机地结合在概率统计外显的知识内容中去。下面谈几点构想。
1.关注数学史在教材中的作用
概率统计教材的内容安排要适当兼顾知识发现的历史,使学生能够领略到数学内容发现的过程,体会到数学知识发现过程所蕴含的数学思想、数学方法和数学精神,有利于学生数学知识体系的建构和优秀品质的形成。如在介绍“概率”的定义时,教材的编排最好能介绍概率定义形成的三个历史阶段:概率的统计定义、古典定义和公理化定义。使学生在学习概率的定义时能了解概率定义形成的历史,了解贝朗特悖论的意义,得到数学螺旋上升抽象过程的感悟,掌握数学思维的方法,从而学会批判、质疑、独立和严谨的思维品质。在学习DeMoivre-Laplace定理时可以介绍DeMoivre等人在二项分布正态逼近的研究工作,这项研究是数理统计学的基础,也是概率统计思想的重要体现,重温这段历史可以启迪学生的思维、激发学生的兴趣。回归与相关分析的发现对数理统计学发展的影响是极其重大的,这个统计模型的应用,使统计学由统计描述时期进入了统计推断的时期,它促使一个严谨的统计学框架的形成,学习该知识点内容时,很有必要向学生介绍回归与相关分析的产生历程。其实,概率统计中还有很多地方可以进行数学史介绍的,学生在了解这些知识产生的过程中将会得到浓厚的数学思维熏陶。
2.强调知识与文化的有机融合
概率统计的数学文化部分呈现要以导引的形式出现,而不能把相关内容简单地累加到教材中去,从而保护学生自我探索热情,使数学文化真正植根于学生的知识建构中去。如在“概率的基本概念”部分,有必要介绍概率定义形成的三个历史阶段,但在具体的教材呈现中,没有必要把这些历史材料详细地罗列到教材中去,如果只是简单地把数学史料添加到教材里面去,只能增加教材的容量,导致教材臃肿,变成数学史的堆积而已。而应该是在循序渐进介绍概率定义的同时,适当采用简洁和引导性的语言,营造一种宽松的数学学习环境,引导学生学会自己查找相关学习资源,让学生既能感受到概率定义的发展历史,也能掌握如何通过查找资料来进一步验证和了解这种发展的详细情况的能力。又如,在“假设检验”这一章,可以介绍历史上威尔登检验骰子是否均匀的试验,但没必要陈述这个试验的详细过程,可以以问题的形式把威尔登与皮尔逊对试验结果的争论呈现出来,使学生既能了解假设检验产生的这段历史,也可以重温探索科学的过程。
二、教学方法得以改进,促进开放式学习方式的形成
(一)改变传统教学模式,探索新型教育方式通过实践证明,传统的教学模式与方式无法适应社会的需要,不能满足现代化的教学要求,因此无法在传统教育模式中取得满意的教学效果。通过将数学建模融入到数学概率统计之中,可以在传统的教学模式中融入新鲜元素,并且结合相关案例,采用启发式教学模式进行教学,实现由浅入深、由难到易,使学生掌握数学概率统计的基本概念以及相关方法,从而对数学学习产生兴趣,变被动学习为主动学习,从根本上加深学生对数学概率统计知识与建模思想的认识与理解。
(二)改变传统学习方式,建立开放型学习形式在数学概率统计的教学内容上,认可教师不可以按照传统的教学模式作为基本模式,不能按照教科书进行照本宣科。众所周知,数学建模是没有固定模式的,在进行数学建模时,要积极利用各种方式、各种技巧,因此,教师在对学生传授相关知识的同时,要积极引导学生如何学习,如何正确的使用建模技巧,并且要让学生对问题发生的背景以及过程进行探索,从根本上提高学生的自主创新能力。除此之外,在对习题进行处理时,学生也不能局限于比较充分的问题上,要不断引用条件不充分的问题进行研究,并且要自己动手对材料、信息,对数据进行分析,建模,并且还要对较为抽象的问题进行具体化,从而增强自身对学习的兴趣与能力。此外,教师要不断开展讨论课,让学生积极发表自己的建议,对问题的见解进行回答,加强与同学之间的交流与学习,从而使学生在开放型学习环境中不断成长。
三、改善教材中的理论学习,加强实践学习
在学生的实践活动之中,为了能够使学生对知识有所了解,那么教材僬侥设计有关学生训练的习题。一般而言,数学概率统计中的教材在教学内容的处理上过于理论化,对习题的次序与搭配却不符合学生的基本特点,甚至有部分教材在设计的习题中难度过高,从而导致学生在学习中遇到困难,对数学概率统计与数学建模失去兴趣。从实际角度而言,数学概率统计作为数学教材,习题是非常重要的,大量的习题可以锻炼学习的逻辑性与思维型,因此,在对数学教材进行编写时要按照由浅入深的基本原则,对练习题进行分门别类的编写,从而满足不同层次与不同对象的基本需求。在现有的数学概率统计习题之中,还需增加比较有趣、与生活有关的系统,并且该类习题要对数学建模的思想进行体现。与此同时,在教材中还应该添加应用性强的概率案件与统计案件,比如像数据的统计、数据的拟合等,让学生能够学会数学建模,在丰富学生课余知识的同时,也在一定程度上提高了学生的应用能力。
二、结合专业,注重案例教学
在地质类专业中,很多实际问题都直接用到了《概率论与数理统计》中的内容,比如:区间估计、假设检验、参数估计等,都是在地质类专业教学中常用的数理统计方法。那么,我们在《概率论与数理统计》的课堂教学中就可以有的放矢地将地质类学科中的案例与数理统计中的这些方法相结合,把地质学中的实际问题当作例子在《概率论与数理统计》课堂中进行讲解,地质类专业的案例在很多时候就是在具备专业背景下的统计学的应用,用这类问题来替换课本上枯燥的数学例子,一方面可以增强课堂的趣味性,提高学生的学习兴趣和积极性,另一方面也为将来学生在专业课中使用概率论与数理统计知识打下基础,帮助学生顺利地完成从基础课到专业课的自然过渡。
1.2离散型随机变量与连续型随机变量的类比对于离散型随机变量,学生感觉较容易,但对于连续型随机变量,往往学生感觉抽象难理解。由于分布列在离散型随机变量中的地位与密度函数在连续型随机变量中的地位等同,因此对于离散型随机变量中的边缘分布列与联合分布列的关系可以过渡到连续型随机变量中边缘密度函数与联合密度函数的关系中去,此外诸如随机变量的独立性的充要条件以及期望与方差的计算均可轻松过渡。具体我们可通过“把连续的问题离散化”这种方法,实际是将对离散型随机变量中对分布列的求和变成对连续型随机变量中的密度函数求积分即可。表1我们将对其中的部分性质及计算作一个简要的类比。
1.3一维随机变量与二维随机变量的降维类比任何学习都是循序渐进的,一般来说低维空间的知识相对简单,容易被学生接受,所以最好的方法是从低维空间向高维空间过渡学习。降维类比法是将高维空间中的数学对象降低到低维空间中去观察,利用低维空间中数学对象的性质类比归纳出高维数学对象的性质。通过上面的类比得知抽象的二维随机变量的分布函数与一维随机变量有着一致的表达式,从而大大降低了学习的难度。此外,二维离散型随机变量的联合分布列与连续型随机变量的密度函数的性质与计算均可借助一维随机变量的相关知识引入。
数学建模主要是借助调查、数据收集、假设提出,简化抽象等一系列流程构建的反映实际问题数量关系的学科,将数学建模思想融入到概率统计教学中,不仅能够帮助学生更好地理解与掌握理论知识,同时对于提高学生运用数学思想解决实际问题的能力大有裨益。可以说,概率统计教学与数学建模思想的融入具有重要的理论以及现实意义。
1.教学内容实例的侧重
在大学数学教育体系中最为重要的一个目标就是培养学生建模、解模的能力,但是在传统概率统计教学中,教师大多注重学生的计算能力训练以及数学公式推导,而常常忽视利用已学知识进行实际问题的解决,使得大多数学生的应用能力无法得到提高。所以,为了能够在教学中提高学生应用概率与统计的实际能力,教师应在教学内容设计中吸收与融入与实际问题息息相关的题目,使学生在课堂中不仅能够轻松学习概率知识,增加学习主动性,同时能够尝试到数学建模的乐趣,提高自身数学素养。例如,在古典型概率问题的教学中,为了加深学生对于该部分知识的理解,教师可以引入彩票概率的实际问题,通过引导学生分析各等奖的中奖概率,使学生获得极高的建模、解模能力。
2.在教学方法中融入数学建模思想
在概率统计教学中,教师还需要在教学方法中融入数学建模思想。首先,采取启发式教学方法。在课堂教学中,教师应引导学生利用已学知识开展认识活动,在问题发现、分析、解决的一系列锻炼中获得概率统计知识的自觉领悟。其次,采取讲授与讨论相结合的教学方法。在课堂中,讲授是最为基本的教学方式,不过单一的讲授很可能导致课堂的枯燥,所以课堂中还需要适当穿插一些讨论,使学生在活跃的氛围中激活思维,延伸知识面。再次,采取案例分析的教学方法。案例分析是在概率统计教学中融入数学建模思想的一种有效方法。在教学中应用的案例应进行精选,其不仅需要具有典型性,同时还需要具备一定的新颖性以及针对性,通过缩短实际应用与数学方法间的距离,使学生学习数学的兴趣被大大激发。最后,采取现代教育技术的教学方法。在概率统计的问题中常常需要较大的数据处理运算量,所以为了简化问题,使学生掌握一定的统计软件具有重要意义。通过结合具体的概率统计案例,在学生面前演示统计软件中的基本功能,为提高学生掌握统计方法以及实际操作能力奠定坚实基础。知识的获取并不是单纯的认识过程,其更应偏向于创造,在不断强调知识发现的过程中帮助学生认识科学本质、掌握学习方法。
3.在概率统计教学中融入数学建模思想的案例分析
0.引言
在统计学领域,有关讨论和争议时间最长同时也是范围最广的问题就是统计学科问题。统计与数学社会经济统计现状纠纷愈演愈烈,消除门户之见,越来越多的人们趋向于建立大统计学科的;现阶段,有人提出将数理统计的数据取向作为唯一取向。
1.两门统计学的对比分析
1.1内容与特点对比
就科学内容而言,社会经济统计主要涵盖以下两个部分:社会经济体量的核算工作和社会经济的定量工作。社会经济体量的核算工作的主要核心内容是宏观经济核算表,设计到统计雪中的分类理论、数据收集和整理、会计理论和统计理论等,同时还涉及到已经开发或者准备开发的科学、环境等相关的社会统计数据的会计核算。社会经济的定量工作则更多的涉及到有关社会经济数据的总量、社会结构、经济效益及其动态趋势发展等。
概率论从整体上来研究,主要是围绕统计学的目标进行的,在经济管理中起着直接的作用,研究的内容是有关数据计量、指标分析以及数据索引等内容。数理统计主要涉及两方面:描述统计和推论统计,在内容上,这两门统计学科相互关联,但是两者依然存在差异性。数理统计的基本上是围绕模型假设、研究和论证。在概率论分析所用方法群中,数理统计方法是一门最基本同时也是最重要的研究方法,同时,数理统计学也是其中应用的一个范围较广的领域。可以这样说,社会经济统计和数理统计之间的差异大于相似,社会经济统计数据具有独特的服务对象,它与实际工作之间有着密切的关系。数理统计一般认为是自然科学的一个科学的方法,所采用的理论基础是概率论,主要源自于生物学研究和农业试验等方面。
1.2发展与创新机理对比
社会经济统计和数理统计在统计领域影响不同,都受到各自的内容限制,导致这两门学科研究的驱动力也具有差异性。社会经济统计的经济核算主要研究力量来自一些政府机构和高等院校,主要服务于官方统计机构等一些宏观管理部门;数理统计理论的主要理论源于实践,通过数学推导,由分析研究人员经过一系列的推算和理论得出分析结果。科学实验在早期的研究方法中具有重要的影响。、是比较大的。在不久的将来,数学推导、社会实践的影响及其作用将进一步扩大。
1.3地位与影响对比
在国际统计学界中,数理统计学占据着重要的地位,世界上最有影响力的数学统计学会是一个国际统计学会,这个学会所采用的统计学术基本上是以数理统计为主。然而,概率论的发展是逐步进行的,其采用的统计方法也越来越多,同时概率论在很多研究应用领域的重要性越来越突出,包括社会生活、国家和地区经济的宏观调控和企业管理。
2.大统计学现状与发展趋势
2.1统计学观点的价值判断
近几年,有关概率论和梳理统计学的研究和讨论越来越多,态势也越来越激烈,许多人从学科发展角度,以视觉的辩论的广度观察,提出了将概率论和梳理统计学作为一个整体的“大统计”学科的理论。从观念上看,由于概率论和梳理统计学的统计口径不同,即使可以形成一个大的统计体系,但就大统计学科的内部关系而言,这一门新兴的学科更像是一个松散的学科群。此外,通过对包括概率论和梳理统计学在内的多门学科统一性的强调,并不足以否定在更多方面多分支学科的差异性。
数理统计学是从统计学科中纵向转变而得,例如生物统计数据、气象数据经以及济统计数据等是从中分离出来的,这有利于提取方法本身的改进,同时也是学科发展的必然,更加有利于方法的应用推广。事实上,隐藏在这学科分化的表面真实的理论基础,正是在更多的水平和综合领域中使用不同的统计方法的融汇与综合。到目前为止没有很好的理由认为:数理统计和社会经济统计数据(或其他的纵向统计)将来会重新在一起。
2.2核算统计理论大有学问
大家都知道,随着我国改革开放,原先长期沉闷学术气氛被打破,过去在统计学界一直相信的理论也在一步步的研究中开始反思和讨论。由于长期以来,我国在社会经济统计数据方面,包括概率论和数理统计学等在理论、时间等方面存在许多问题,有些学者虽然有关社会经济统计数据持有怀疑的态度,但考虑到社会经济统计学仅仅只是一个政府工作中的一个统计数据而已,缺乏必要的历史、辩证的使用态度,导致负面的社会经济统计数据链反应。
通过对指标和指标体系在统计理论的经济统计数据的研究,以及在社会经济现象的数量之间关系的研究,现阶段概率论和数理统计学科依然具有活力,也就是核算统计理论不会消失,在现阶段,导致核算统计理论大有学问主要是由于:一方面,是一种特殊的社会现象及其复杂性的数量变化边界的决定统计理论的价值。另一方面,价格因素决定着会计理论的价值,包括广泛性和综合性统计调查的内容。
2.3统计理论研究极端化现象的根源
随着我国改革开放,原先长期沉闷学术气氛被打破,国内统计行业兴起对统计学科的改革性思考。现阶段在统计学领域,国内统计学科研究者一方面要面对着国内外有关统计双向的问题的研究,另一方面,由于我国统计学科基本单薄,国内一些学者运用传统的统计理论的彻底批判国内理论,固执地独自理解西方寻求理论并寻求经验支持,逐步走向极端化,试图通过国外,尤其是西方有关“大统计”学的定义和理论对我国的统计理论设计和规划的发展目标“指手画脚”。
在极端的趋势下,是对西方通用的统计理论和应用的假设的有效性的“肯定”,思维模型的研究,这个假设是简单的二分法处理。当谈到过去和现在的中国统计理论,就“以一概全”的、自觉或不自觉地、统一文字修改,这给我国传统统计理论造成负面影响,所谓的现代统计理论往往根据西方社会因素发展的经验和成果的统计理论抽象,或是任意类型的处理来界定,传统与现代的相互渗透性从根本上被否定了。这种观点认为,传统的就是落后的,落后的阻碍现论的进一步发展;这种“错误”的观念的研究,忽略传统统计中所隐含的向现代统计转型的深厚的正确性资源。割断历史,闭塞本国经济统计学科的理论和实践发展,或者一味的坚持传统理论,另起炉灶,抵御国外整体统计学发展理论结果。而应该站在在国家统计科学有效的、合理的基础上,积极与国际合作,因为任何一个单纯地模仿他国的理论成果都没有成功的先例。
3.结束语
统计学产生于应用,在应用过程中发展壮大。随着经济社会的发展、各学科相互融合趋势的发展和计算机技术的迅速发展,统计学的应用领域也将不断发展,、统计学的应用展现它的生命力和重要作用。
在应用统计这门学科中,概率论与数理统计的应用过程将会更加的发展壮大。随着经济和社会的发展以及计算机技术的飞速发展,统计理论与分析方法在更多领域应用广泛,统计学的应用将会展现它的生命力和重要作用。(作者单位:福建师范大学)
参考文献
纵观新课标人教版初中数学统计与概率章节,笔者始终感觉用键盘问题做数学模拟实验的教学载体,学生探究热情低调,究其原因主要是缺乏农村学生数学生活化的体验。通过几年尝试教学与改进,我们发现初中数学模拟实验求概率的设计与应用可从以下角度思考和探索。
一、初中数学模拟实验设计原则。
1、生活性。试验内容要贴近学生生活,有利于学生经验思考与探索,内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情景化与知识化的关系.课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需要.[1]
2、广泛性。避免以点代面,全盘考虑初中数学论文初中数学论文,分点试验。让抽样结果尽可能反映是按研究对象的共性特征。
3、随意性。每次实验方案的实施不提前预设,围绕方案任意活动,并直接获得需要的数据。
4、活动性。有效的数学教学活动是教师教与学生学的统一,学生是数学活动的主体,教师是数学活动的组织者与引导者,通过活动“致力于改变学生学习方式,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去”,才能还学习真正动机――因活动而快乐,因快乐而学习.[2]
二、初中数学模拟实验的适用条件。
由于随机事件的结果具有不可预测性,往往解决相关实际问题难以从根本上把握。分清初中数学模拟实验的适用条件,是进行有效设计和准确应用的关键毕业论文格式范文期刊网。
通过对模拟实验相关事件的综合分析,以及与列举法求概率相关事件的对比,我们不难发现模拟实验求事件的概率适用条件包括每次实验的所有可能结果不是有限个或每次实验的各种结果发生的可能性不相等。[3]
三、初中数学模拟实验的设计程序[4]与过程
1、确定设计方案(如投飞镖、做记号、数数量、抛硬币、掷骰子、转转盘、等)。
2、拟定统计栏目(总数、频数、频率)。
3、统计相关数据, 计算频率与数据规律分析。
在做大量重复试验时,可事先根据概率要达到的精确度确定数据表中频率保留的数位。计算频率一般保留两位或三位小数。
4、估计事件概率,获得最有价值的数据(用频率估计概率)。
通常用频率估计出来的概率要比数据表中的频率保留的数位要少,一般要求的概率精度达到一位小数就可以了。
四、初中数学模拟实验的应用拓展(举例)
例1求不规则物体的面积。(投飞镖)
设计方案:小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC,为了知道它的面积,小明在封闭图形内画出了一个半径为1米的圆,在不远处向圈内掷飞标初中数学论文初中数学论文,[5]且记录如下:
统计图表:
投飞镖总次数
50
100
150
200
300
投中物体次数
投中物体频率