欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

电能计量论文大全11篇

时间:2023-03-29 09:21:28

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇电能计量论文范文,希望它们能为您的写作提供参考和启发。

电能计量论文

篇(1)

2改进思路

对于电能计量设备管理工作中存在的问题,经过分析,确定通过重新梳理工作流程、规范管理制度的方式保障电能计量设备管理工作有序开展,避免工作交叉;通过以“大仓库、大配送”总体部署,围绕“标准设计、定额存储、动态补仓”供应策略为依据,建立电能计量设备储备定额管理机制,实现动态补仓机制,解决以项目申购采购供货周期长、项目物资无法共用,造成资源浪费的问题;通过建立电能计量仓储管理机制及物资属性库区,电能计量设备的出、入库有据可循,解决无供应商送货计划、无各生产部门及区局配送计划、仓库积压但无可用(检定合格)设备的问题;通过对信息系统的功能优化,实现业务系统之间的数据共享和业务贯通,提升信息系统对于电能计量设备管理工作的有效支持。

3改进措施

3.1优化管理流程为了避免业务工作的交叉,保障电能计量设备管理工作的顺利开展,以信息系统为基础,管理部门对电能计量设备管理流程进行了优化。新工作流程主要将电能计量设备管理工作和信息系统结合开展工作,通过计量检定系统、物资系统、营销系统、项目管理系统的信息共享,各业务系统间协同开展工作,实现一站式作业,提升电能计量设备管理工作效率,保障电能计量设备供货的及时性和规范性。新电能计量设备管理工作流程如图2所示。新流程改变了当前电能计量设备管理过程中需求申报、采购、检测(质检、检定)、配送、领用、安装的顺序管理,实现定额管理、采购和发码单据同步开展;改变多个部门需要反复沟通的问题,市场营销部上报年度电能计量设备储备定额后,直接以储备定额为依据进行补仓采购并授予条形码。

3.2规范管理制度管理部门同时明确了电能计量设备的管理要求,规定了各流程环节的工作时限及各岗位管理职责,改进了电能计量设备管理业务规则,明确了各管理节点岗位职责,具体如下:(1)优化品类,动态补仓。为缩短电能计量设备采购周期、解决项目物资无法共用,电能计量设备采购储备定额管理方式,由市场营销部上报年度电能计量设备储备定额量,物资部门以储备定额为依据实现动态补仓配送及动态补仓采购。(2)到货档案。采购设备到货仓库后,由该仓库仓管员2天内办理到货档案批次,并抽样送检。(3)检测(抽检、检定)。物资部门办理到货批次并送检后,由检测单位制定检测计划并安排检测工作,检测完成后通知仓管员回库。(4)配送至各生产部门及区局。各生产部门及区局发起补货需求后由仓管员2天内完成物资的配送工作。(5)补货规则,按电能计量设备采购四级补仓机制。各使用单位提出补货需求时,仓管员检查成品仓物资是否满足,满足则直接从成品仓进行补货配送;如成品仓不能满足则检查待检定仓物品量及检定计划;待检定仓物品无法满足则从待检仓进行补仓进行检定;当待检仓无法满足时检查同合供货情况,通知供应商送货或提交待检仓补仓采购需求。

3.3规范仓库管理规范物资仓库物资存储区域,划为仓库为待检区、检测区、换货区、成品区,电能计量设备存放仓库规范:电能计量设备到货后由仓管员存放至待检仓;由检测单位检测中的设备存放至检测区,检测不合格的物品存放至换货区,检测合格的物品存放至成品区,成品区的物品方可配送至各生产部门及区局安装使用。各生产部门及区局发生领用需求时,首先开具移库、配送各部门急救包的“营销计量仓”仓。这样既保证了仓库管理员账实一致,清晰掌控仓库各状态物资库存情况,保证物资供应及补货,又同时提升了工作人员的沟通效率。

3.4明确工作界面,优化信息系统功能明确工作界面,市场营销部负责营销项目下达及年度储备定额修编、物资部门负责物资供应、计量中心负责设备检测;各专业管理系统(物资系统、计量检定、营销系统、项目管理系统)根据新电能计量设备业务管理流程需求进行系统功能的优化,实现几个系统之间的信息共享及业务贯通。物资系统中可以自动依据一级仓、急救包的库存及年底电能计量设备定额自动提醒补货,物资部管理员实时根据系统的补货提醒进行补仓配送或补仓采购;到货后由仓管员收货、建立到货档案批次并抽样、送检;系统自动将抽取的样品及到货物品信息同步至计量检定系统,由检测部门检测负责人安排检测工作;检测完成后检测结果同步至物资系统;由仓管员将检测合格物品移库至成品区,成品区物品按需移库、配送至各生产部门及区局营销计量仓;各生产部门及区局根据营销系统供电服务订单情况维护工单,工单信息包含需求物资信息;工单建立完毕后自动同步至物资系统的营销计量仓管理员的领料待办提醒;营销计量仓管理员根据工单物资需求发送实物并办理领用手续;已领用电能计量设备同步至营销系统进行安装运行。

3.5建立电能计量设备生命周期档案库物资状态贯穿电能计量设备管理全过程,已签合同未到货、已到货未抽检、抽检中、抽检不合格、整批换货中、抽检合格、强检中、强检不合格、零散换货中、强检合格、已配送、已领用,运行中、已拆卸、已报废各状态物资一目了然。

4取得成效

通过对电能计量设备管理模式的优化,解决了历史上信息不能共享、项目物资不能共用导致库存积压但无项目需求可用设备、工作人员沟通繁琐、无检定计划、无补货计划、无配送计划,无库存跟踪等问题,重新规范了电能计量设备管理过程,优化了管理流程、提升了管理效率。(1)集中的储备管理策略,有效保障物资供应及时性。电能计量设备通过储备方式进行管理,围绕“标准选型、定额存储、动态补仓”供应策略,根据全局的实际需求制定科学的储备方案,并按照储备方案和实际用料需求进行实物采购和储备。改变以往按实际领料项目申购的分散管理的混乱现象,实现集中式的管理;同时,在储备方式的基础之上,制定完善的领用管理规范,破除以往领用项目难以互通的壁垒现象,形成补仓采购运作机制(资金预算、采购支付、核算机制),有效保障物资供应及时性,提升库存物资周转率,减少工程余料(定额物资)产生,提高资金使用率。从而有效提高管理的效率、降低成本,提高设备质量。(2)优化物资品类,降低采购成本。补仓采购机制的关键任务包括:标准选型及品类优化;颁布定额储备方案;落实财务预算;动态补仓机制;建立领用机制;JIT项目里程碑节点衔接;仓库分级管理;业务流程梳理及信息系统支撑。其中标准选型及品类优化是开展补仓采购工作的坚实基础,电能计量设备从以往的130多种品类优化至80种,极大程度上减少了仓储物资种类和补仓采购成本,充分发挥补仓采购管理模式的优势,提升资金的集成效益和物资服务水平。(3)规范“先抽检、后入库”运作模式,归避财务风险,保障在库设备质量。将以往“先入库、后抽检”调整为“先抽检、后入库”模式,解决以往供应商货到仓库后,由仓管员直接办理入库单,待入实物账、财务账后再进行抽检,存在的在库物资未抽检付款供应商存在一定的财务风险问题、检测不合格换货难的问题,从而归避财务风险、保障在库设备质量,缩短设备供货周期,减少在库设备量,提高仓库周转率,降低仓库管理成本。(4)补仓采购机制,缩短供货周期,减少需求误差,降低采购风险,物资供货及时率达100%。仓库结构优化为一级中心仓加急救包,根据各品类物资储备定额量,实时监控各使用单位急救包在库物资情况,自动发起补货需求,仓管员检查成品仓物资是否满足,满足则直接从成品仓进行补货配送;如成品仓不能满足则检查待检定仓物品量及检定计划;待检定仓物品无法满足则从待检仓进行补仓进行检定;当待检仓无法满足时检查合同供货情况,通知供应商送货或提交待检仓补仓采购需求。实现物资需求直接从急救包领用。提升了物资供货的时效性,减小需求误差,降低采购风险,有利于提升物资需求准确性以及计量设备管理水平。(5)己构建流畅的管理流程,提高管理规范性。制定了电能计量设备管理管理要求,明确各个部门的职责和工作界面,梳理清晰的电能计量设备管理流程并进行优化提升,使得电能量计量设备的管理能够畅通、高效。(6)全生命监控计量设备管理过程信息。通过梳理和规范电能计量设备的管理,对电能计量设备全生命管理过程的各个业务环节进行业务梳理,明确时效性要求的管理指标,保障电能计量设备的采购、检测、配送等工作有序、顺利开展;通过信息系统进行全生命周期过程进行监控,实现各信息系统之间的数据联动与共享,保证了数据的一致性及减少数据的重复录入,大大提高管理的效率和质量。(7)条形码规范化管理,单个设备管理过程清晰了然。梳理规范各类电能计量设备条码规则,合同签订环节生成条码,供应商按码生成并贴码,单个设备系统档案及实物唯对应,解决以往无法掌控到单个设备的全生命周期情况,通过实物标识实现。图3为计量物资全生命周期信息展示平台示意图。(8)建立档案批次管理机制,保障在运行设备的精确可靠、稳定性。同批到货设备建立档案批次,在运行设备抽检根据单个设备的运行稳定性跟踪该批次设备的运行情况,大大保障在运行设备的精确可靠,解决以往运行抽检只能针对单个设备进行检测、更换,无法针对整批同属性设备的质量跟踪。(9)实现电能计量设备管理的效率、成本、服务的最优化。通过以上从管理制度、管理规范、部门职责、信息化实现等多个方面进行梳理和优化,已基本实现电能计量设备管理的效率、成本、服务的最优化。

篇(2)

电能计量是现代电力营销系统中的一个重要环节,传统的电能量结算是依靠人工定期到现场抄读数据,在实时性、准确性和应用性等方面都存在不足。而用电客户不仅要求有电用,而且要求用高质量的电,享受到更好的服务。因此提高电力部门电费实时性结算水平,建立一种新型的抄表方式已成为所有电力部门的共识。再加上供电部门对防窃电技术也提出了更高的要求。

电能计量自动抄表系统是将电能计量数据自动采集、传输和处理的系统。它克服了传统人工抄表模式的低效率和不确定性,推进了电能管理现代化的发展进程。

1电能计量自动抄表系统的构成和特点

典型的电能计量自动抄表系统主要由前端采集子系统、通信子系统和中心处理子系统等三部分组成,如图1所示。

1.1前端采集子系统

按照采集数据的方式不同,电能计量自动抄表系统可分为本地自动抄表系统和远程自动抄表系统两种。

本地自动抄表系统的电能表一般加装红外转换装置,把电量转换为红外信号,抄表时操作人员到现场使用便携式抄表微型计算机,非接触性地读取数据。

远程自动抄表系统由电子式电能表或加装了光电转换器的机电脉冲式电能表构成系统的最前端,它们把用户的用电量以电脉冲的形式传递给上一级数据采集装置。目前实际应用的远程自动抄表系统大多采用两级式数据汇集结构,即由安装于用户生活小区单元的采集器收集十几到几十个电能表的读数,而安装在配电变压器下的集中器则负责定期从采集器读取数据。

1.2通信子系统

通信子系统是把数据传送到控制中心的信道。为了适应不同的环境条件以及成本要求,通信子系统的构成有多种方案。按照通信介质的不同,通信子系统主要有光纤传输、无线传输、电话线传输和低压电力线载波传输等四种。

光纤通信具有频带宽、传输速率高、传输距离远以及抗干扰性强等特点,适合上层通信网的要求。但因其安装结构受限制且成本高,故很少在自动抄表系统中使用。

无线通信适用于用户分散且范围广的场合,在某个频点上以散射通信方式进行无线通信。其优点是传输频带较宽,通信容量较大(可与几千个电能表通信),通信距离远(几十千米,也可通过中继站延伸)。目前,GPRS无线通信网络为无线抄表系统的实施提供了高效、便捷、可靠的数据通道。主要缺点是需申请频点使用权,且如果频点选择不合理,相邻信道会相互干扰。

租用电话线通信是利用电话网络,在数据的发出和接收端分别加装调制解调器。该方法的数据传输率较高且可靠性好,投资少;不足之处是线路通信时间较长(通常需几秒甚至几十秒)。

低压电力线载波通信利用低压电力线作为系统前端的数据传输信道。其基本原理是:在发送数据时,先将数据调制到高频载波上,经功率放大后耦合到电力线上。此高频信号经电力线路传输到接收方,接收机通过耦合电路将高频信号分离,滤去干扰信号后放大,再经解调电路还原成二进制数字信号。电力线载波直接利用配电网络,免去了租用线路或占用频段等问题,降低了抄表成本,有利于运营管理,发展前景十分广阔。但是,如何抑制电力线上的干扰,提高通信可靠性仍是亟待解决的问题。

1.3中心处理子系统

中心处理子系统主要由中心处理工作站以及相应的软件构成,是整个电能计量自动抄表系统的最上层,所有用户的用电信息通过信道汇集到这里,管理人员利用软件对数据进行汇总和分析,作出相应的决策。如果硬件允许,还可直接向下级集中器或电能表发出指令,从而对用户的用电行为实施控制,如停、送电远程操作。

2电能计量自动抄表技术的现状

2.1电能表

传感器、自动化仪表以及集成电路技术的发展,使得无论是机电脉冲式还是电子式电能表已能够较好地满足当今电能计量自动抄表技术的需要。预计今后相当一段时间内,电能计量自动抄表系统的终端采集装置将以机电脉冲式电能表和电子式电能表两种仪表为主。

2.2采集器和集中器

采集器和集中器是汇聚电能表电量数据的装置,由单片机、存储器和接口电路等构成,现在已经出现了较成熟的产品。

2.3通信信道

通信子系统是电能计量自动抄表技术中的关键。数据通信方式的选取要综合考虑地理环境特点、用户用电行为、技术水平、管理体制和投资成本等因素。国内外对于不同通信方式各有侧重,在西方发达国家,对于电能计量自动抄表技术的研究起步较早,电力系统包括配电网络较规范、完备,所以低压电力线载波技术被广泛应用;在我国,受条件所限,较多使用电话线通信。近来,随着对扩频技术研究的深入,低压电力线载波中干扰大的问题逐步得到解决,因此,低压电力线载波通信方式在电能计量自动抄表技术中的应用有逐步推广的趋势。

3电能计量自动抄表技术的热点和发展趋势

3.1电力线载波通信

电力线载波通信,是将信息调制为高频信号(一般为50~500kHz)并叠加在电力线路上进行通信的技术。其优势是利用电力线作为通信信道,不必另外铺设通信信道,大大节省投资,维护工作量少,可灵活实现“即插即用”。目前,国内10kV以上电压等级的高压电力线载波技术已经较成熟,但低压电力网络上的载波通信还未能达到令人满意的水平,这在一定程度上制约了电能计量自动抄表技术在我国的实际应用。

3.2无线扩频通信

扩频技术是一种无线通信方式,把发送的信息转换为数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号,以扩展信号的频谱,通过相关接收,用相同的频码序列解扩,最后经信息解调,恢复出原始信息。扩频通信距离一般可达几十千米,其最大的优点在于抗干扰能力较强,因此具有较强的安全保密性。扩频技术在电能计量自动抄表系统的典型应用方式是:采集器通过电力线载波把数据传至集中器,再由设置在集中器附近的扩频电台把数据发送给中央处理站的接收电台。

3.3复合通信

在应用于电能计量自动抄表系统中的所有通信模式中,各种通信模式都有优缺点,任何一种采用单一通信技术的方案均很难完全满足需要。为解决这类矛盾,提出了复合通信方案。

复合通信方案是在自动抄表的不同通信阶段采用不同的通信方式,组成实现电能自动抄表的复合通信网络。在数据传输量不太大、传输距离较近的底层数据采集阶段(电能表到采集器,采集器到集中器),可以采用如红外、低压电力线载波甚至点对点的通信方式;而在集中器到中央处理站段,则可采用电缆、电话线或无线通信等。选择什么样的复合方式,需根据实际情况统筹考虑。混合使用的各种通信方式之间要有很好的相容性,不能相互干扰,这其中涉及到运筹学、最优规划等方面的研究与设计。

3.4自动抄表的安全性

自动抄表的安全性主要包括自动抄表过程的安全性和中心处理子系统的计算机网络安全性。电能计量自动抄表系统的抄表过程是分散的采集器、集中器与中心处理站间交换数据的过程。通信中既要保证所抄数据的安全、可靠传输,又必须确保中心处理子系统不会受到来自传输网络的意外攻击。

篇(3)

电能计量管理部门应建设电能计量管理高效的信息系统,并与用电营业等相关部门实现工作联网,电力部门才能实现电能计量信息化管理。其中,电能计量信息化管理系统的设计原则要满足如下四个方面:第一,电能计量信息系统在功能设计上,应保证各功能模块形成一个有机统一的整体,同时保证各功能模块的独立性,电力部门电能计量满足各业务功能的需要,各项业务处理有效实现独立性,实现连贯和统一的业务流程;第二,用电管理中,电能计量信息化管理系统是基础组成部分,还要预留数据接口为系统功能的扩展;第三,电能计量信息化管理系统的设计应以计量器具资产为辅线,以电能计量装置为主线,保证系统可以全程监控和管理整个电能计量装置的运行状况;第四,保证系统设计中各功能模块之间数据一致性好、共享性高,便于用户查询,保证系统维护简单。

1.2电能计量信息化管理的设计模式

电能计量信息化管理模式如图1所示,具体的工作原理为:整个电能计量信息化管理系统是以数据管理器的采用作为中心的,数据管理器负责管理整个系统的运行。用户通过售电系统,可以在售电系统上购电,电力公司通过互联网数据交换,通过管理系统命令将电量输入到数据管理器,然后数据管理器再将电量通过控电机柜传输到用户区,实行李振中国网湖北省电力公司孝感供电公司湖北孝感432000电能用电的自动管理。同时,电能计量信息化管理系统通过互联网,将用电信息在售电系统、管理系统和监控系统之间相互传输,最后端口为电力管理部门中相关用电管理中心,监控系统由各用电管理区放置在相应位置,电能计量进行逐层管理,便于电力管理部门信息化管理。

1.3电能计量信息化管理的功能设计

正常情况下,电力部门要实现电能计量信息化管理,电能计量信息化管理系统功能需求应满足如下四个方面:第一,使用电能计量信息化管理系统可以实现有效管理整个电能计量工作,凭借信息处理技术达到计量系统信息共享;第二,利用电能计量信息化管理系统能实现全程跟踪电能计量资产的状态,通过建设电能计量资产的各种台账,并实现电能计量信息化管理系统对计量资产流转过程的跟踪管理。另外,电能计量信息系统为了对人为因素的影响进行有效控制,需要信息系统利用口令以及权限管理等手段有效管理工作人员处理业务的权限;第三,用电业务管理的自动化操作可以利用电能计量信息化管理系统来实现,逐步取代用电业务的传统手工管理方式;第四,要求电能计量系统能方便查询计量业务进展、各种统计数据、用户的相关信息资料、计量器具的信息资料等。

2.电能计量信息化管理的主要措施

2.1建设计量信息管理系统

电量计量信息管理系统包括资产档案、运行计量装置档案、标准设备、检测数据档案等许多方面的内容。计量信息管理系统不仅具有实时抄录分析各种电量表、自动检测各种计量器等特征,还可以对系统中存在分散、混乱的抄表系统测量信息和静态测量进行技术计算,将分类为营销、管理等功能模块,将原来计量和抄表系统内的计量信息转换为动态、综合、有序的信息,实现现代化的计量管理。要充分利用计量和抄表系统功能,适应电网商业化运行的需要,核准电能计量的准确性,实时提供各类电量信息,实时查出有疑点的计量装置,对不合理用电情况进行严格查处,对在线计量装置引起的误差电量进行计算分析,能够改进计量管理,为电力营销决策提供有力依据。

2.2做好计量装置的维护

电压互感器二次电压降补偿器可以“补偿”计量TV二次回路的电压降,并且可以减少电能计量误差。同时,采用加大导线截面、电能表采用低功耗、缩短电压互感器和电能表之间的连线的有效解决方法,解决计量二次回路电压降过大的问题。在电能计量中采用电压互感器二次电压降补偿器,不但增加了计量装置的故障率,而且还影响了设备的稳定性和可靠性,甚至引起用户异议,造成不必要的争端,所以建议取消这种补偿方式。近年来,电量变送器代替电能表的现象逐渐出现,但是电量变送器因其用途、误差计算方式等方面的不同并不符合特殊的计量要求。所以,电量变送器不能代替电能表使用。

篇(4)

中图分类号:F407文献标识码: A

引言

随着用电规模的增大与用电量的增加,电能计量表在电力工作中所起到的作用越来越关键,这是关系到群众与企业共同利益的重要环节。但是在利用电能表进行电能统计时,由于各方面的因素,总是会存在一定的计算误差,这些误差有可能影响到供电企业与用电用户的合作关系,所以电力工作者应该重视误差存在的问题。

一、电能计量现状分析

计量设备的准确性、抄表的科学性、反窃电技术等都会对电能计量的准确性造成影响,当前,我国电能计量中主要存在的问题有:首先,在高压出线侧,电能计量无法实现。过去,发电厂供电量的计算方式是发电机的出口电量减去厂用电量;当前,还有一些发电厂将电能计量点设置在发电机的出口处,在高压出线侧则没有设置相应的计量装置,无法准确计量关口电量。其次,当前采用的关口电能表通常是感应式电能表,属三相两元件,其结构和功能上有缺陷。再次,电压互感器的二次导线上存在压降,会引起计量误差。最后,互感器的准确度有待提高,它不符合规程要求。

二、电力系统中有功电能的计算与误差

(一)电力系统中有功电能的计算

在整个电力系统中,计算电能资源中的有功电能,主要根据一定时间内的电能资源的平均功率加上计量时间这两个因素。计算公式为:W=T×P,在这个公式中,T表示在进行有功电能计算的实践,P是相应的有功功率的功率值。在整个电力系统中,只要计算出在一个时间范围内的有功功率就能计算出这个范围内的有功电能的状况。比如,在一个三相四线制的系统运行的时候,根据这个电力系统运行的状况来计算有功电能。在三相四线制的电力系统中,其瞬时的功率加在一起等于这个电路中的平均有功功率的任何一个时刻。但也有例外,就是在三相四线制电力系统中出现谐波分量的状况的时候,要计算相关的有功电能,就要计算系统的瞬时功率,通过计算这个功率来计算出有功电能的状况。

(二)电力系统中的有功电能误差分析

电力系统运行中,一般通过利用电能表来统计电能的消耗与使用情况。随着科技的发展,一般都是采用全数字电能表。供电企业重视电能表的计量,且定期检查。全数字式电能表字在电力系统中有功电能的计量过程如下图:

在使用全数字化的电能表计量与监测电力系统有功电能的时候,为达到实时监测有功电能的目的,要通过电能表的前置低通滤波器进行监测。但在利用数字化电能表进行电力系统有功电能的监测中,会产生有功电能监测的误差。首先,在电力系统运行时,利用全数字化的电能表的前置低通滤波器监测有功电能。但不能全部监测电力系统中的相同频率电流或电压中有功电能,这样会造成高频率有功电能的损失,那么利用数字化电能表对有功电能监测会产生误差;其次,利用全数字化电能表监测有功电能过程中,全数字化电能表的前置低通滤波器在应用过程中产生的信号分量相互移动,这样也会造成丢电力系统有功电能检测的误差。

三、电能表计量误差存在的原因

1、电能表同一线路中电压不对等。电能表内部同一线路中电压的不对等是影响电能表计量精确度的次要原因。这里导致误差的情况有两种:第一种是当电能表内的附件很多存在差异时,由于附件在同一线路上,同一个电压与电流在通过时会使不一样的附件产生不均衡的影响,使转动滑轮改变而导致误差;第二种是当电能表中的附件一样时,同一个电压与电流在通过时不会对一样的附件产生不同影响,但在电压不对等时,转动滑轮还是会发生改变,依旧影响计量精度。

2、电流、电压、温度的变化。造成电能计量表在数据计量时产生误差的首要原因是电能表中电流、电压及温度的变化。电能表中的电流与外界线路上的电流量有差异,这使电能表所显示的用电度数与用户自身所消耗的用电度数不一样,造成电能表计量存在误差。同理,由于电能表中的所加载电压与外界线路上产生的电压不同,造成电压表中转动滑轮比例改变,导致电能表计量上出现偏差,最终造成电能表计量上的误差产生。此外,电能表内温度的变化也是主要影响因素,因为电能表内部是用一定温度的,但同时电能表内部又有电流通过,这样会使电能表内部温度改变,随着温度改变又会反作用于电能表中的电流与电压,最后产生计量误差。

四、电能计量与计费问题分析

在电能计量中,总有功功率包括基波有功功率及谐波有功功率,当前,对于谐波有功功率的计费,还没有统一的标准,因此,不同的电表厂家在有功电能计量上各有不同。当前,感应式电能表及电子式电能表是最常用的计量装置,其中,前者只有在电压和电流处于理想状态时才有较好的工作性能,这是由其工作原理和构造决定的。这种电能表的电气性能是非线性的,当电网中存在谐波时,其计量的电能量不是基波有功,同时也不是基波和谐波单独作用时的功率和。电子式电能表在计算电能时有很多种方法,因此市面上也存在各种类型的电子式电能表,但没有一种类型的电能表能准确反映出用户实际使用的电能情况。

电力系统本身在正常运转期间,其中的电能计量主要是针对电网输电期间利用有功功率的方式来对于谐波有功、基波有功等方面的具体情况进行统计,但以往在进行计量的过程中,有功功率无法对谐波进行精确计量,如此以来,也就无法真正精确的对于不同波段之下所存在的电能用电加以精确计量。就目前来说,相当一部分供电企业对于电网输电过程中所呈现出的谐波损耗现象并没有一个较为统一的标准,通常情况下都是直接利用电子式、感应式的电能计量表来达到计量的目的。感应式计量表本身在运行期间,只有较为理想的环境之下,才能够较为良好的发挥出工作性能;电子式计量表仅仅只能够对电力使用做一个粗略统计,再加上电能本身的计量标准没有完全统一,各个不同的标准较多,并且都无法完全客观的反映出用户的实际用电,因此以往的电能计量方式都无法充分的反映出用电量。而要真正切实有效的解决这方面问题,就需要不同情况下的用电用户用电,来采取不同的计量方式达到精确计量的目的,在这一过程中,务必要将计费、计量这两个方面进行区分,最终达到计量的目的,实现不同用电用户电能计量工作统一的唯一方式,就是要将现代化高精度的谐波探测技术在计量工作中进行应用。

利用研发电能计量信息采集自动系统,能够更加高智能的对计量工作进行控制,利用现代化的自动化系统能够是以往电量信息采集过程中所遭遇到的各方面问题得到良好的解决,此外,由于计量信息的自动化采集,使得人工劳动力强度大幅度降低,这也达到了降低供电企业运行成本的目的,务必要将电能计量信息的相应采集工作持续不断的向着自动化、高速化、轻量化的方向不断发展,只有通过高效率的自动化运行模式才能使电量系统本身的工作效率能够大幅度的提升。

结语

电能计量的误差和计费问题不仅对电力系统的正常运行有着严重的影响,还给人们的日常生活和生产带来了极大的不便,因此,要在全社会形成安全、科学、合理用电的共识,努力开发与应用新技术,真正实现公平公正的电能收费政策。

篇(5)

1、人工抄表技术。人工抄表技术是一项传统技术,指在每个区域固定一个抄表员进行每家每户的抄表并用此进行电费使用量的核算的行为,仅适用于个体管理;

2、远程抄表技术。远程抄表技术是以远程通讯技术及计算机网络技术发展为基础,是一种便捷的现代化电力计量技术,可靠性高并得到广泛应用;

3、智能抄表技术。智能抄表技术并不是新技术,但它与传统电表收集的数据相比具有更高的完善性及多样性,且控制耗电量效果相对明显。现阶段,我国大部分地区电力资源不足成为了制约我国经济发展的主要因素,因此电力计量技术的发展成为了我国发展中较为重要的一项任务。当今,我国经济发展与人口剧增都导致了资源的使用量增加以及能源大量消耗。电力计量技术存在的诸多问题也导致不能有效节约资源,做到节能环保,低耗安全。电力资源利用与生产已经不再仅仅是技术问题,它已经逐渐成为了我国发展经济指标中的重要项目。经研究表明,近年来我国电力事业的发展不尽人意,城市人均耗电量及单位建筑面积耗电量是发达国家的两倍左右,严重超出了资源能够承受的范围,尤其是电力超额,导致社会供求不平衡,影响社会发展。若想有效控制超额用电,就要完善电力计量技术应用,广泛推广智能电能表对社会向前发展有重要现实意义。

二、电力计量技术实现节能降耗的前提

电力计量技术实现节能降耗需要以下两个条件,即先进的电力计量设备和规范化程序化的考核制度。先进的设备与技术能够进一步提高监测结果的准确性,但在我国的电子计量技术设备的发展中,处于相对优势地位的只有智能表,但它仍然需要不断完善与改进。在发展技术的同时,我们也要使电力考核程序化,不断健全完善考核方式,加大考核力度。例如对一些采用大型机电设备的用电单位,实施系统测量并定期对电力进行平衡检测,对电量使用进行限额且采用避峰就谷的方法来控制用电,保证科学合理用电,减少资源浪费,避免资源紧缺。对用电量大的单位要不定期检测一次,进行定期考核,保证电量合理使用。除此之外,还可以制定限电考核,采取超量收费的办法控制用电。在考核制度不断完善下,采用远程电力计量系统,既能够有效准确的收集电量使用信息数据,又能够实现节约环保,低耗安全,对社会发展起到了促进作用。

三、智能表在电力计量技术中发挥节能降耗作用

智能表作为我国当前较为科学合理的一种计量手法,被广泛接受。下面我们分析智能表的主要功能及优势,了解智能表在电力计量技术中应用的意义。

(一)智能表电力计量技术主要功能简述

智能表电力计量技术主要功能有如下几点:

1、多时间段与多费率可供选择。智能表可以根据设定的费率及时间段自主进行更换,节省能源同时也能够使用电费用更加精准,优越性与便捷性显而易见;

2、功能更加丰富。智能表比传统电能表多了有功组合电量的功能,能够进行自定义组合,从而达到节能降耗目的;

3、实时监测。智能表在电力计量中能够对各项功能进行监测且精确度非常高,还能够对异常情况进行记录与反馈,为供电单位提供准确数据;

4、端口输出功能得到强化。端口功能强化能够使日常用电更加安全与便捷,避免不必要的浪费。

(二)智能表电力计量优势

智能表在电量计量中拥有明显优势,其优势共有如下四点:

1、节能高效。智能表可以对电器用电量自行分配并能够有效控制用电时间,还能够建立安全防御系统,它可以在用电过程中出现漏电等情况时进行报警。除此之外,智能表除了反馈供电信息还能够对线路中损耗问题及时反应,方便人们及时处理。智能表能够分辨出损耗大的设备提醒人们及时更换或维修,从而达到节能降耗的效果;

2、防窃电。众所周知,窃电现象一直受到人们广泛关注,尽管在过去采取很多措施,但仍然避免不了窃电现象的发生。智能表能够有效分析电路异常用电并找出窃电根源,防止电能肆意挥霍从而避免造成巨大浪费;

3、缩短停电时间。传统电力系统无法自动反馈信息,智能表在第一时间将断电事故反馈给供电部门从而能够在最短的时间内将故障维修好,使人们生活质量得到保障;

4、及时检测供电动态性。智能表能够实时监测用电情况,能够保证供电系统安全可靠,及时反馈信息的同时,对人们购电时的决定也起着关键性作用。

(三)智能表使用在电力计量中的意义

智能表作为具有较高完善性与多样性的一种电力计量方法,在日常生活中的应用可谓是必不可少。相比于传统电力计量技术,智能表拥有先进的技术且能够很好的控制耗电量,并能够通过纷繁复杂的设计用以提高所收集的数据的可靠性与准确性,对其进行备份处理以备不时之需。智能表与计算机智能信息化采集完美结合,促进电力能源的节约,且智能表能够采用阶梯式电价,有效控制了整体用电量,避免出现用电高峰期,从一定程度上来说控制了用电节奏,降低消耗。智能表明显提高了电力计量技术的管理与智能水平,从根本上实现了节能低耗,真正做到了“低投入高收获”,节约了资源,保护了环境,并且完善了人们日常生活中的用电质量,提高人们生活水平。总而言之,智能表在电力计量技术及电力系统中的应用,对节能降耗起到了非常重要的作用。

篇(6)

中图分类号:[TV734.1]文献标识码: A 文章编号:

正文:

本文结合笔者多年实践工作经验,通过实例说明水轮机能量特性是衡量水电机组检修质量的重要指标之一,各个水电厂应根据各自的实际情况尽快出台和制定能量指标下降及恢复程度的检修标准,并将此工作纳入规范化管理。

一、现行检修体制下的机组能量状况

当今社会不断的高速发展,机组状态检测技术也随之日益完善,在设备检修方面由过去传统的利用时间为基础的定期预防性检修,逐渐的转变成为以状态检测为基础的预知性检修。所谓状态检修,就是一种先进的检修管理方式,在实践运用当中它能够有效的避免检修当中体现出来的盲目性,而且还能够有效的减少人力以及物力等资源的铺张浪费,对于设备的可靠性以及可用性能够有针对性的进行有效的提升和全面加强,所以其在当今社会中作为检修方式是一种相对而言较为理想的方式。但是,在社会当中具体运用过程中,状态检修本身就是一项非常复杂的系统工程,所以其还是存在一些负面的问题有待解决,例如检测系统在实践中还显得不够完善以及故障诊断机理还显得不够成熟等,由此便在一定程度上限制了状态检修在社会进行全面推广以及具体应用。

对于1 台水力发电机组,水轮机的能量指标、稳定性指标和空蚀特性是决定水轮机性能优劣的3 大指标,然而水轮机的综合性能反映是水轮机的能量指标,其主要是取决于水轮机过流通道的完善,而且还取决于水轮机在结构以及工艺方案的水平和具体的制造。安装、检修、运行的质量,在实践当中运用所得到的效率越高则体现出其发电成本就越低,这样就能够使得水电厂更加的经济和有效。水轮机其主要由于工况复杂以及零部件较多等问题,在实践运用当中没有得到进一步更好的处理,作为决定检修工作的水轮机空化性能指标和泥沙磨损程度的监测工作仍然处于停滞状态。说以,水轮机进行有效的定期检修以及检修完成之后质量的好与坏,对于机组安全稳定性的运行以及经济效益的全面有力的发挥,都有着直接的影响。

水电厂机组检修的时机、检修工期的安排主要取决于水轮机的运行状态,除一些设备更新改造外,每次检修的主要任务是对水轮机及其过流通道被空化、泥沙磨蚀严重的部位进行补焊、打磨处理。当空蚀磨损部位修补结束,机组其它部件检修安装完成,参数调整合格后,经过机组检修水轮机能量指标能否“ 恢复”,机组的能量指标客观地反映了设备的健康状况、机组的检修质量、机组当前的运行状况以及运行人员的操作水平等综合信息,对指导机组安全经济运行具有现实意义。

二、水轮机能量指标现场实测

某电网的主力电厂,原设计装机容量1225MW(实际核定容量为1160MW),机组改造后,电厂领导非常重视发电设备的健康状况,大修前后开展机组性能指标的检测工作已成惯例,以此作为检验大修质量的重要数据之一,并为机组以及全厂开展优化运行提供宝贵的第一手资料。水轮机的能量指标并不是突然下降的,而是设备受到损坏后,使水轮机效率逐渐降低。通过比较,也可以判断检修前水轮机经过一个大修周期运行后能量指标的下降程度,以及检修后的机组是否恢复到了初始状态及恢复程度,并成为检验检修质量的标准之一。水轮机效率的一般函数形式为: ηt=f(Pt,Q,H) ( 1)

式中ηt———水轮机效率,%;

Pt———水轮机出力,MW;

Q———机组流量,m3/s ;

H———水轮机工作水头,m。

从水轮机效率的现场实测提供的工况数据基本信息中可以看出,在各种水头下,机组的工作特性曲线有一定的规律,如水轮机效率ηt=f(Pt,H)是水轮机出力Pt 与工作水头H 的函数,只与机组的运行工况有关。

设机组完好无损时的效率为:

ηt0=f0(Pt,H) ( 2)

机组经过一段时间的运行后,由于转轮受到空蚀和泥沙磨损等的作用后,在同一水头下,其效率变为:

ηti=fi(Pt,H) (3)

式中i———测量次数,与时间有关。

水轮机磨蚀越严重,则ηti 就越低,式(2)与式(3)的差值Δηti:

Δηti=ηt0- ηti=f0(Pt,H)- fi(Pt,H) ( 4)

在相同工况下,Δηti 表示与机组无损状态时的效率相比的差值。Δηti 越大,则说明水轮机过流部件被空蚀、磨损破坏得越严重。

反之,也可通过机组能量监测装置来比较和判断水轮机磨蚀破坏的严重程度以及由于效率的降低所带来的能量损失。同理,水轮机出力Pt=f(S,H)的变化为:

ΔPt=Pt0- Pti=f0(S,H)- fi(S,H) ( 5)

式中S———接力器行程,mm。

当然,也可以在机组运行的任一时段(t1- t2)内,通过2 次测试来判断机组经过这一时段的运行后,水轮机能量指标的变化程度,其表达式如下:

水轮机出力:

ΔPt=Pt2- Pt1=f2(S,H)- f1(S,H) ( 6)

水轮机效率:

Δηt=ηt2- ηt1=f2(Pt,H)- f1(Pt,H) ( 7)

采用检修前后能量特性测试数据完全可以鉴别水轮机的检修质量,其变化值是判断机组检修质量优劣的一个重要的指标。

三、加强检修管理,提高检修质量

随着状态检修逐渐提到议事日程,检修中要全面了解并掌握机组的设计参数、静态和动态品质运行状态等等,才能制定相应的检修标准规范,要紧紧围绕影响机组性能的重要指标来合理安排检修计划,做到目的明确,有针对性。所以,从能量指标角度出发,检修中应重点考虑这几方面的检修质量,尽可能恢复到原来的设计标准。另外,检修过程不仅仅是修修补补,要带着问题去检修,要从深层次查找产生问题的根本原因并尽可能地加以消除,以进一步提高机组的可用率,延长机组的检修周期,使发电厂获得更大的经济效益。

【总结】:综上所述,在现代社会新时期全面有力的加强水轮机设备检修管理、提高检修质量,充分发挥水力发电机组能量效益的基础,那么在今后的发展过程当中势必有着更为广阔的发展空间,为水电厂取得最大化的经济利益。

【参考文献】:

[1] 刘秀良. 水电机组状态检修中能量指标的监测与评估研究[D]. 华中科技大学 2004

[2] 赵耀,李臻,董开松. 碧口水电厂3号机组水轮机增容改造后能量特性验收试验及结果对比[J]. 甘肃水利水电技术. 2012(01)

[3] 赵耀,董开松,李臻. 基于多线程和虚拟仪器界面的水轮机噪声测试与分析系统[J]. 水电站机电技术. 2006(04)

[4] 高聘,闫军伟. 创建学习型班组打造高技能队伍——农一师电力公司水电厂检修车间创建“学习型班组”先进事迹[J]. 兵团工运. 2012(04)

篇(7)

移动电源结构一般由电压转换电路、可充电电芯或电芯组、外壳组成。其中电压转换电路分为充电电路、升压电路、管理控制IC以及保护电路。充电电路用以保证输入端能以恒流和恒压的方式为电芯充电。升压电路的作用是将电芯电压提升到输出端额定电压。管理控制IC起到电量监控和开关控制的作用。保护电路用以提供过充电、过放电等保护作用。电芯根据电解质材料不同大致分为液态锂离子电池和聚合物锂离子电池两大类。外壳的主要作用包括机械防护、散热和阻燃等。各组件应当以适当的方式连线、支撑并固定。使用人员可接触区应当有适当保护,以保证不会产生机械危险。

1.2电性能输出

电压为移动电源最基本的参数,电压过高、过低都会对被充电设备造成一定程度上的损害。测量时移动电源应在达到充电饱和状态30min后,空载情况下使用功率计测量其输出电压。测量的输出电压值与额定电压容差为±5%[2]。常温放电性能是移动电源最为重要的参数,此参数标志着移动电源的实际输出容量。移动电源应在23±2℃环境温度下,以额定输入电压和电流进行充电,直至饱和状态。静置30min后,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间[3]。输出容量等于放电电流乘以放电时间。测量的移动电源输出容量应不低于其额定容量。转换效率测量时使用直流电源模拟电芯接入电路板输入端,直流电源输出电压调至电芯组标称电压。电路板输出端连接电子负载,调节电子负载使得电路板输出为额定输出。仪表连接示意图见下图1。电流表和电压表测量得到输出端Iout和Uout、输63入端Iin和Uin可以通过公式η=Uout·IoutUin·Iin(1)计算得到转换效率,转换效率应不小于85%。

1.3安全性

移动电源的安全性包括:过充电保护、过放电保护、短路保护、发热和防火等[4]。1)过充电保护。测量移动电源过充电保护时,移动电源在充电饱和状态下,使用直流源输入,持续加载充电12h,设置直流源输出电压为移动电源额定输入电压的1.2倍,输出电流为移动电源额定输入电流。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。2)过放电保护。移动电源放电至输出终止状态下,测量其过放电保护性能。在输出端接30Ω负载,持续加载放电24h。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。3)短路保护。短路保护为防止使用中正负极短路时提供的保护。测量时使移动电源在充电饱和状态下,将输出端正负两极,使用0.1Ω电阻短路24h。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。4)发热。移动电源在工作状态时,不应对使用人员造成热危险。测量其发热温度应在正常负载条件下工作直至温度稳定,使用数据采集器和热电偶测量移动电源外壳温度值。接触温度限值是塑料外壳为95℃,金属外壳为70℃,玻璃、瓷料和釉料为80℃。测量温度应低于各使用材料的发热限值[5]。5)防火。移动电源外壳应当使用V-1级材料进行阻燃防火保护。试验样品选用移动电源外壳,试验火焰顶端与样品相接触,施加燃烧30s,然后移开火焰停烧60s,然后不管样品是否还在燃烧,再在同一部位重复烧30s。合格判据为在试验期间,当试验火焰第二次施加后,样品延续燃烧不得超过1min,而且样品不得完全烧尽。

1.4环境适应性

移动电源环境适应性包括:高温放电、低温放电、温度循环、恒定湿热、振动、自由跌落、重物冲击和机械冲击[6]。高温放电测量中,移动电源在充电饱和后,放入55±2℃的温度试验箱中恒温放置2h,最后以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。低温放电测量中,移动电源在充电饱和后,放入-10±2℃的温度试验箱中恒温放置2h,最后以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。温度循环测量中,移动电源在充电饱和后,放入温度为75±2℃的温度试验箱中,保持6h后,将温度试验箱温度设置为-40±2℃,并保持6h,温度转换时间不大于30min,上述过程循环10次,如图2所示。温度循环试验结束后,取出在环境温度23±2℃的条件下搁置2h,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。图2温度循环示意图恒定湿热测量中,移动电源在充电饱和后,放入温度为40±2℃,相对湿度为90%—95%的温度试验箱中搁置48h后,再取出在环境温度23±2℃的条件下搁置2h,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。振动测量中,移动电源在充电饱和后,将其安装在振动台台面上,按以下所述振动频率和振幅对振动台进行设置,X,Y,Z3个方向每个方向从10—55Hz循环扫频,持续时间为3h,扫频速率为1oct/min。频率在10—30Hz范围内时,位移幅值为0.38mm,频率在30—55Hz范围内时,位移幅值为0.19mm。振动结束后,移动电源应不泄露,不破裂,不起火,不爆炸。结果位置跌落到水平表面试验台上,跌落高度为1000±10mm,试验次数为3次。水平表面试验台应当是由至少13mm厚的硬木安装在两层胶合板上组成,每一层胶合板的厚度为19—20mm,然后放在一水泥基座上或等效的无弹性的地面上。跌落试验结束后,移动电源应不泄露,不破裂,不起火,不爆炸。重物冲击测量中,移动电源放置于平面,并将一个Φ15.8±0.2mm的钢柱置于电池中心,钢柱的纵轴平行于平面,让质量9.1±0.1kg的重物从610±25mm高度自由落到中心上方的钢柱上,样品纵轴要平行于平面,垂直于钢柱纵轴,试验次数为1次。重物冲击试验全过程中,移动电源应不泄露,不破裂,不起火,不爆炸。机械冲击测量技术中,移动电源在充电饱和后,采用钢性固定的方法固定在冲击试验台上。在3个相互垂直的方向上各承受一次冲击。冲击在最初的3ms内,最小平均加速度为735m/s2,峰值加速度应在1225m/s2和1715m/s2之间,脉冲持续时间为6±1ms。机械冲击试验结束后,移动电源应不泄露,不破裂,不起火,不爆炸。

1.5电磁兼容性

移动电源应满足静电放电抗扰度[2]要求。使用静电放电模拟器施加干扰信号,严酷等级为接触放电±4kV,空气放电±8kV。静电放电抗扰度试验全过程,移动电源应不泄露,不破裂,不起火,不爆炸。

篇(8)

中图分类号: TM933.4 文献标识码: A 文章编号:

1 电能计量管理的意义

电能是电力市场营销的主要对象,也是供电企业生产和经营管理过程之中最为重要的环节之一,其计量的准确与否不仅直接影响着电力企业的发展和电力企业的形象,也影响着整个贸易结算的公正性和准确性,更与用电客户的利益息息相关,从这一方面而言,电能计量管理工程是一项涉及国民经济发展的计量活动。电能计量工作与其他的计量工作有着一些不同,它既是一种基础的计量工作,更是关乎电力企业生产和经营的组成部分,关于电能计量的工作,应该涵盖在整个计量装置的投运前、运行过程以及运行档案的管理过程,做好电能计量工作可以促进供电企业改善经营和管理,提高经营过程中的经济效益。

2 电能计量装置的分类

电能计量管理的对象包括计量点的管理、在线计量装置的管理、计量标准的管理、计量法制的管理以及计量信息的管理六个方面,其中,在线计量装置的管理是为重要的部分。常用的电能计量装置包括各种类型的电能表、计量用电压、电流互感器、电流互感器的二次回路以及用电电能计量柜等等。根据运行过程中电能消耗量以及计量对象的重要程度,电能计量装置包括以下几种:

2.1 I类电能计量装置

I类电能计量装置即变压器容量大于10MVA及以上或者月平均用电量5GWh以上的计费客户,200MW及以上发电机、电网经营企业、发电企业上网电量的省级电网经营企业及其供电关口计量的电能计量装置。

2.2 II类电能计量装置

II类电能计量装置就是变压器容量是2000kVA以上或者月平均用电量为1GWh以上的高压计费客户,以及100MW以上供电企业、发电机之间电量交换点电能计量装置。

2.3 III类电能计量装置

III类电能计量装置就是变压器容量是315VA以上或者月平均用电量为100MWh以上的高压计费客户、100MW以上发电企业厂用电量、发电机、供电企业内部用在承包考核工作中的计量点。

2.4 IV类电能计量装置

III类电能计量装置就是变压器容量小于315kVA以下的计费客户,供、发电企业内考核使用的电能计量装置。

2.5 V类电能计量装置

V类电能计量装置就是未单相供电电力客户提供计费功能的电能计量装置。

对于不同类型的电能计量装置,其具体的考核标准液不同,准确度的等级也会有所不同,专用电压、电压互感器二次电压降、电流互感器、周期检定、订货验收的要求、现场检验的要求也会有所不同。总之,电能计量管理是一种符合现代化企业管理需求的计费系统,其使用的目的是保证电量计算的安全性和可靠性,为电网经济技术提供相关的保证。

3 加强电能计量管理的措施

3.1 加大互感器和电能表的到期轮换力度

在电能计量系统之中,互感器和电能表都有其使用的寿命和运行周期,如果互感器和电能表处于超周期的运行过程中,那么两者就会出现误差,随着时间的推移,互感器和电能表之间的误差也会越来越大,根据调查研究表明,在超周期的运行下,大多数互感器与电能表之间会呈现出负误差的状态,这就在很大程度上影响着电能计量的准确性以及供电企业的利益。

3.2 加强电能表现的检验工作

对于电能表现的检验可以在现场负荷下测试电能变中存在的误差,可以真实有效的反映出电能表的性能,此外,还可以通过对计量接线的反映,及时的发展计量过程中存在的故障。由于大用户每个月的用电量较大,负荷也比较大,一旦计量出现损失,那么就会给供电企业带来较大的经济损失,因此,必须加强对用户由于是对大用户的电能表现的检验工作,及时发现计量过程中的故障,避免不必要损失的出现。

3.3 推广智能电表的使用

智能电表是由测量单元、通信单元、数据处理单元组成,是即数据处理、电能计量、自动控制、实施监测、信息处理等功能的自动计量系统,智能电表是电力企业未来的应用趋势,就现阶段而言,智能电表已经在我国的大中城市中得到了普遍的应用,将智能电表应用在电能计量管理装置之中,可以对用户的实时电压进行检测,了解电力和负荷情况的变化,如果发现存在异常检查人员可以在第一时间发现,这就可以避免偷电、窃电情况的发生,避免电力企业出现不必要的损失。

3.4 推广用电管理终端的使用

将用电管理终端系统与电力负荷的主站与电能表进行系统的配合和使用,可以实现自动化抄表,也可以对用户的负荷进行及时的监测和控制,遇到异常情况可以及时报警,这就在很大程度上加强了对电能变化的在线监控,对于电力企业计量工作的管理有着十分重要的意义。

3.5 计量管理信息系统的应用

计量管理信息系统即计量管理与计算机系统的结合和应用,计量管理信息系统的应用可以将电能的计量管理工作全面的带入了信息化的阶段,电能计量信息管理包括标准设备、档案资产、设备数据档案、技术资料以及运行电能计量装置档案等内容,计量管理系统可以将现有电能计量和抄表系统中分散、静态、无序的计量信息转化为综合、动态、有序的数据信息,从而实现电能计量管理的现代化。这可以有效的避免传统人工管理中的不足之处,减少管理的漏洞,提高用户的满意度,保证尖峰电价制度的顺利实施,保证电网可以安全有效的运行,减少从用户包装到投入运行过程中花费的时间,这样,就可以将电能表质量评价从传统的定性分析转化为现阶段下的定量分析,对于提高电力企业的管理水平有着十分重要的意义。此外,计量管理信息系统的应用也可以提高电力企业计量管理的实时性和准确性,对电能表现场校验的周期、轮换周期以及型号数据等进行实时动态的管理,也全面的实现了对电能表的实时监控,全面提高电能计量管理的质量和效率。

3.6 健全管理制度

要确保计量装置可以安全合理的运行,必须要建立一套完善的管理制度,管理制度的制定要有针对性,针对一般照明和普通的小动力客户与重要和大负荷客户的管理制度要存在差异性,此外,要实行责任到人的管理制度,每个片区负责人要对区域内的电量计量效果进行检查,及时的掌握电能的使用情况,保证电量计量系统的适应效果。

4 结语

随着电力企业体制以及经营制度的改革,电力企业的市场营销工作也逐渐的受到了社会的关注,为了应对新的挑战,进行全面的电能计量管理成为现阶段下发展的必然趋势,在电能计量管理工作中,要重视计量信息交换以及相关技术的发展,对工作进行规划,加强技术的监督,从新的视角来探索电能计量管理工作的问题,从整体上提高电力企业电能计量管理的水平。

参考文献:

【1】吴健生:关于加强电能计量管理的思考[期刊论文],中国电力教育,2010,12(20)

篇(9)

中图分类号: U223.6 文献标识码: A 文章编号:

近年来,随着经济和社会的发展,电力企业也得到了迅速的发展,供电系统除了要满足电力供应以外,还要加强电能的计量管理工作,以便适应电力企业的发展效率,保证电力企业的经济效益,满足电气企业精细化的要求,以适应现代化买方市场的转变。电力计量设备可以满足实时监控、电量分析预测、远方抄表、防窃电报警等工作,可以为电费和电价的智能管理提供技术保障,协调电气企业与用户之间的关系。对于电力企业而言,电能计量管理工作是电力企业管理的主要分支工作之一,可以保证电量计量的准确和统一,指导电力企业进行准确的生产。

1 电能计量工作的发展

在信息化发展的现代社会,人们的生活与信息有着密切的关系,电能计量系统也逐渐的呈现出信息化的发展模式,为了指导整个社会合理科学的用电,电能计量系统也逐渐根据用户的需求变化对用户的用电进行分时段的计价,保证用户可以避开用电的高峰,实现用电费用的节约目的。根据电能计量系统的特点来看,整个系统中主要包含三个方面的内容,一是电能采集与计算机系统的整合;而是使用什么样的方式来实现对电能的数据传输;三是如何对电能表进行全面集中的控制和管理。随着科技水平的进步,国内外电能计量系统逐渐朝着信息化、智能化和网络化的方向发展。

电能计量管理在国外的发展较早,英国早在1992年就已经建立了集开发、供售、数据的采集、计算、账单的计算于一体的数据采集系统,法国和北欧四国在1995年,西班牙、德国、比利时在1997年,意大利在1999年已经全部完成了用户电能表的电子化。我国的电能计量管理系统与2002年开始发展,当时,随着省以及跨省电网市场的发展,我国各省以及跨省电网关口表已经逐渐更新为电子式的多功能电能表,华东和沿海等经济发达的地区配合分时电价的实施,开始将大、中容量住户的电能表更换为电子式的多功能电能表,截止到2002年底,用于居民住宅安装的单相电子式电能表已经超过了31%,达到国际水平的要求,近些年来,随着社会的发展,电能计量管理工作也得到了迅速的发展,在我国大中城市已基本实现普及。加强电能计量管理是节约能源的重要体现。近年来,水资源和能源呈现出全球化的匮乏趋势,整个社会对于节能减排的要求也越来越高,作为电力供应单位,电力企业应该积极的相应国家号召,做好节能减排工作,加快计量设备的更新速度,加大对计量工作人员的技术和素质培训,加深对电力系统计量技术的改革,节约电力企业的成本,提高经营管理带来的经济效益,减少不必要的资源浪费,节约不必要的资源输出,为节能减排做出应有的贡献。

2 供电系统做好电能计量管理工作的要点

2.1 消除电能计量管理工作中的盲点

由于我国经济发展的不平衡,各个地区电力企业的发展水平和有所不同,经济发达的地区早已实现了电能智能管理,但是一些经济落后的地区,由于资金因素的限制,尚未将电能计量管理系统应用到工作中来,电能的消耗也无法实现精确的计算。此外,一些变电所使用的电容器有功电量,一般不纳入计量中,这便是计量工作中的盲点;同时,对于一些低压计量的铜铁损,电力部门往往是按照当月用户用电量的比饲以及变压器的型号来增收,实际上,这种计算方法并不科学,也缺乏公平性。因此,在未来阶段下,一方面国家要加大经济欠发达地区电力企业的资金投入,另一方面电力企业要加强电能计量系统的建设,全面消除电能计量管理工作中的盲点。

2.2 推广高可靠性、高精度的电能计量设备

作为电力供应的单位,供电企业应该积极的使用高可靠性、高精度的电能计量设备,实现对电能的精确计量,减少以及消除供电企业在用电量计算方面存在的误差,保证计量工作可以顺利的进行,为此,可以推广电子式多功能的电能表,目前,电子式多功能电能表在世界各个国家均已经得到了全面的推广,电网关口一般使用0.5或者0.2级表,工商用户则使用0.5、0.2或者1级表,这类电表的功能比较全面,可以实现无功和有功的功能,还可以提现出负荷曲线的变化以及需求量的变化,此外,电子式多功能电能表还具有通信接口和分时计量接口,计量方式安全、可靠,可以为供电系统的精确计算提供有效的保障。

2.3 引入自动抄表系统,解决抄表问题

近年来,随着阶梯式电价收费制度的实施,抄表的工作量也逐渐增加,这就给电费的结算以及抄表工作带来了一定的难度,为了解决这一问题,必须要推广和使用质量可靠的自动化抄表系统,自动化抄表系统的应用不仅可以解决抄表难的问题,也可以提高抄表的准确性。自动化抄表系统的功能十分强大,不仅可以实现自动化抄表,也具有可靠性高的特点,同时还兼具通信同能,在温差较大的环境下也可以克服传统感应系统超差以及精度变化大的缺点,此外,自动抄表系统中还带有保护和遥控功能,彻底解决了抄表难的问题。

2.4 开展反窃电技术的应用,完善用电管理

除了上述的工作以外,电力企业还要加强对电能量的实时监控和采集系统的建设,逐渐实现对大中用户的远方抄表、实时监控、电量分析预测等目标,同时,要积极的开展防窃电监控工作,为阶梯化电价制度的实施提供完善的技术保障。此外,要注意到,随着近年来农网改造的完成,用电市场得到进一步的扩展,窃电现象也不仅仅存在于农村中,也蔓延到城市之中,猖獗的窃电行为严重的影响着供电企业的经济利益。因此,应该对供电系统进行合理的改造,全面的推行反窃电技术,加强对计量装置的管理工作,建立好完善的电能计量稽查制度,推广使用带有反窃电功能的互感器、电能仪器设备,并做好相关的防护措施,使反窃电工作由传统的被动地位转化为主动地位。

3 结语

电能计量是电力企业基础性的生产工作,涉及着各个方面的社会效益和经济效益,随着科技水平的发展,电能计量管理系统也在不断的完善,同时,供电系统的电能计量工作是一项综合性很强的工作,供电企业必须认真的对待,电力企业的计量人员也要正确的对待电能计量工作,积极的学习新技术,了解电能计量工作的进行,保障供电安全,在保证电能计量准确性的同时为国家的节能减排工作作出应有的贡献。

参考文献:

【1】康念标:供电系统电能计量方法及对节能降耗的作用[期刊论文],中国城市经济,2011,09(15)

【2】周尚礼,伍少成,陈蔚文,叶瑞贞:能计量管理系统开发与应用[期刊论文],电测与仪表,2009,01(25)

篇(10)

 

1.二分之三断路器接线

1.1.主接线方式

二分之三断路器接线方式中两条母线之间有3个开关串联,形成一串,从相邻的2个开关之间引出回路,即3个开关供两个回路,每个回路用1.5个开关,因此称二分之三接线(如图一)。

1.2.和差电流计量方式

二分之三断路器接线和差电流计量方式,是指两组电流互感器(以下简称CT)二次侧按照同名端方式接入电能表,流入电能表的电流可能为单组CT二次电流,也可能为两组CT和电流或差电流,其接线见图一。

1.3.不同运行状态下的电流关系

以线路Ⅰ为例分析,设流入线路Ⅰ电能表电流为,CT1一次电流为,二次电流为,CT2一次电流为,二次电流为,和差电流计量方式在不同运行状态下有如下电流关系。

1.3.1.线路Ⅰ向1DL、2DL供电或1DL、2DL向线路Ⅰ供电,此时电流关系。

1.3.2.线路Ⅰ、2DL向1DL供电或1DL向线路Ⅰ、2DL供电附加误差,此时电流关系。

1.3.3.线路Ⅰ、1DL向2DL供电或2DL向线路Ⅰ、1DL供电,此时电流关系。

1.3.4.1DL、2DL互相供电(线路Ⅰ停电),此时电流关系为或。

1.3.5.线路Ⅰ和500kVⅠ母互相供电,此时电流关系。线路Ⅰ和线路Ⅱ互相供电,此时电流关系。

从以上分析可知,不同运行状态下流入电能表电流不同,可能为两组CT二次电流之和或二次电流之差,也有可能为单组CT1的二次电流或单组CT2的二次电流。

2.和差电流计量方式附加误差分析

2.1.两组CT电流

此时流入线路Ⅰ电能表的电流为CT1和CT2二次电流之和或二次电流之差核心期刊。

2.1.1误差一致的误差分析

设CT1和CT2的变比为,误差为,根据误差定义(1),由此得出:(2),(3)。

2.1.1.1和电流误差分析

(4)

2.1.1.2差电流误差分析

(5),(6)

从以上分析可知,无论是和电流还是差电流,如果两组CT误差一致,则两组CT合成后的误差依然是,采用和差电流计量方式不会产生附加计量误差。

2.1.2.两组CT误差不一致的误差分析

实际运用中,两组CT误差不可能一致,为便于分析设CT2误差为,则有(7)。

2.1.2.1.和电流计量方式附加误差分析

对于和电流,电流关系如下:

(8)

比较(8)式和(4)式可以发现,(8)式比(4)式多了一项,这就是两组CT误差不一致时的附加计量误差来源,该误差对电能计量装置的影响与运行方式有关,取决于CT2一次电流的大小,即与穿越于2DL的功率大小有关。

2.1.2.2.差电流计量方式附加误差分析

对于差电流,有差电流关系1:

(9)

比较(9)式和(5)式可以发现,(9)式比(5)式多了一项,同理,附加误差的大小取决于CT2一次电流的大小,即与穿越于2DL的功率大小有关。

差电流关系2:

(10)

比较(10)式和(6)式可以发现,(10)式比(6)式多了一项,同理,附加误差的大小取决于CT2一次电流的大小附加误差,即与穿越于2DL的功率大小有关。

2.2.单组CT电流

如果流入电能表电流为单组CT1或单组CT2的二次电流,此时无和电流或差电流关系存在,因此无任何附加计量误差。

3.线路侧单独安装电流互感器计量方式

此种计量方式是在线路侧单独安装计量用CT,不采用完整串中两台开关CT组合计量,此时无论任何运行方式,线路侧一次电流和计量用CT一次电流保持一致,流入电能表的电流始终为一组CT的二次电流,和线路侧计量CT的二次电流保持一致,无和电流或差电流关系存在,因此无附加计量误差。

4.结论

4.1二分之三断路器接线采用“和差电流”计量方式,某些运行状态下流入电能表的电流为两组CT二次电流之和或两组CT二次电流之差,如果CT误差不一致将产生非常大的附加计量误差,误差的大小取决于CT2一次电流的大小,即与穿越于2DL的功率大小有关,大大影响计量准确性。为减少此种计量方式的附加误差,应尽量选用误差大小相等、方向相同的高准确度等级电流互感器组合进行计量。

4.2二分之三断路器接线采用线路侧单独安装电流互感器计量方式,在任何运行状态下无和电流或差电流关系存在,均无附加计量误差。

4.3为减少和差电流计量方式附加误差带来的影响,建议二分之三断路器接线贸易结算电能计量装置宜采用线路侧电流互感器计量方式。

篇(11)

(一)短接计量装置的电流线圈。通常是在电能表内部或外部用导线将电流线圈短接,较常见 的做法是导线或并接电阻插入电能表的相线输入端和输出端,起到分流作用。用导线短接,而导线电阻几乎等于零,绝大部分电流将从短接导线通过,电能表的电流线圈几乎没有电流,致使电能表停转;若并接小于电流线圈电阻值的电阻时,电流线圈跟并接电阻形成并联电路,根据并联电路的分流原理,大部分电流将从并接电阻通过,电流线圈只有小电流通过,致使电能表按一定比例慢转,从而达到窃电目的,此种窃电方式称为欠流法窃电。

(二)断开电压联片或在电压线圈上串联分压电阻。断开电压线圈就是使电压线圈失压致使电表不转。常见方法是把电能表的电压联片松开,这种方法不必开表封,属较低级的窃电方法,新型普通电表已在电表内部短接联片。其二,开启电表外盖用一电阻串接在电压线圈上,所串接电阻用绝缘胶布或绝缘套管套住(具有隐蔽性),其原理是起到分压作用,把一部分电压分担到电阻两端,使电压线圈两端电压减小,达到少计电量的目的。此类方法亦称之为欠压法窃电。

(三)调节零火线窃电。这种窃电方法是事先将电能表进线端的火、零线调接,根据电能表的内部电路结构,接零线端的输入跟输出是用联片短接的,因此,窃电户可利用自设(或另接)的零线用电,导致电能表停转。这种窃电方法必须在室内装设倒闸控制开关,使经过电能表的零线和自设地线能自由控制。

(四)断零窃电。这种窃电方法事先必须将电能表进线端的零线断开并将其隐蔽。跟调节法窃电相似,都需要另接或自接地线,并在室内安装倒闸开关。在断开电表输入零线后,电流线圈仍可通过电流,而电压线圈会失去电压,这时,窃电户用电,电表是不会计量的。当窃电户想电表转动计量时,可从电表零线输出端反接零电位(即另接零线或自设地线),电压线圈获得电压,电表转动。其二,在反接零电位的导线上串接电阻,跟欠压法相似,起到少计电量作用,此类方法亦称之为断零法。

(五)移相窃电。窃电者根据电能表的计量原理。采用不正常接线,接入与电能表线圈不对应的电压、电流,或在线路中接入电感或电容,改变电能表线圈中电流电压间的正常相位关系,致使电能表转速变慢甚至反转。

(1)在三相二元件电能表中,A相元件的测量功率为:Pa=UabIacos(30+Φ)。若在A相与地之间接入电感性(空载电焊机之类)负载,此时,电能表将出现:①当三相负载电流较小时,负载电流Ifa与电感电流IL叠加后使总电流Ia与Uab的相角差大于90度,电能表反转;②当三相负载电流较大时,负载电流Ifa与电感电流IL叠加后使总电流Ia与Uab的相角差小于90度,电表转速变慢;③而当三相负载电流为零时,Ia与Uab的相角差等于120度电能表反转。(2)在三相二元件电能表中,C相元件的测量功率为Pc=UcbIccos(30-Φ)。如果在C相与地之间接入电容,则电流Ic超前电压Ucb。与A相接入电感负载的原理类似,电能表有可能出现转速变慢、停转、甚至反转。(3)因三相二元件电能表只有A相元件和C相元件,B相负载电流没有经过电能表的测量元件,若在B相与地之间接入单相负载,此时电能表对单相负载就完全失去了计量。

(六)利用电能表编程器窃电。其窃电特点为:既不改变电能表的时间,也不调整电能表的时段,更无须开启电能计量装置,而只是利用电能表编程器更改峰、平、谷用电量的占比,且保持总电量不变的方法吃电价差,从而达到少交电费的目的。

二、通过其他方式窃电及分析

(一)绕过计量装置窃电。绕过计量装置窃电主要体现在私接公线,这种窃电方法最大的特点是容易操作且较易破坏窃电现场,当窃电户得知有查电时,就及时将窃电电线用力扯开,让查电人员无从取证。

(二)改变电流的窃电。①把TA的P1端与P2端短接,使大部分电流不经过TA的一次绕组,从而绕过电能计量装置窃电;②断开TA二次侧、短接TA二次侧或使TA分流,使电流幅值从大变小或为零;③改变TA变比,将大电流比的TA铭牌换成小电流比的TA铭牌;④TA变比过大,利用TA的误差特性窃电;⑤将TA二次极性接反,使电能表反转窃电,或在电能表电流线圈中通入反向电流窃电。

(三)改变电压的窃电。①失压窃电,将TV的保险断开或在TV二次回路装一个开关,随时断开电压进行窃电;②欠压窃电,虚接电压线。③将TV二次相序接反,使电能表反转。

推荐精选