绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇继电保护论文范文,希望它们能为您的写作提供参考和启发。
高频保护是以输电线载波通道作为通信通道的线路纵联保护。当前随着电网容量的增大、电压的升高,各类电磁干扰现象比较严重。由于输电线路是高频通道的一部分,所以高压的断路器操作、短路故障和遭受雷击等引起的电压,就可能对高频收发讯机产生干扰,导致高频保护误动作。所以,了解各类干扰源,采取相应的抗干扰措施至关重要。
一、干扰源
1、高压隔离开关和断路器的操作。这些操作可能在母线或线路上引起含有多种频率分量的衰减震荡波,母线(或电气设备间的连线)相当于天线,将暂态电磁场的能量向周围空间辐射,同时通过连接在母线或线路上的测量设备直接耦合至二次回路。断路器操作产生的电磁干扰频率一般为0.1~80mhz,每串电磁干扰波的持续时间为10μs~10ms。
由理论分析和实测数据可得出如下规律:①暂态电磁场的幅值随电压等级的增高而增高,主导频率随电压等级增高而降低。②与隔离开关操作相比,断路器操作所引起暂态电磁场的幅值小,主导频率高、脉冲总数少。③快速隔离开关比慢速隔离开关产生的暂态重复频率低、持续时间短。慢速隔离开关一次操作中可能产生上万个脉冲,而快速隔离开关只产生几十个脉冲。
2、雷击线路、构架和控制楼。直接雷击到户外线路或构架,会有大电流流入接地网,二次电缆的屏蔽层在不同的接地点接地时,就会因地网电阻的存在而产生流过屏蔽层的暂态电流,从而在二次电缆的心线中感应出干扰电压,线路感应的过电压也会通过测量设备引入二次回路。由雷击变电所在二次回路中产生的干扰电压可高达30kv,其频率可达几兆赫。
3、短路故障。短路故障与雷击构架一样会引起地网电位的升高,从而在二次电缆中引起干扰电压。变电所内高压母线单相接地时,在二次电缆心线上产生的干扰电压可以从几十伏到近万伏,暂态干扰电压的频率约千赫到几百千赫。
4、靠近高压线路受其工频电磁场作用。这对于电子束类的显示设备产生电磁干扰是十分明显的。在户外变电所中,高压线路或汇流排会产生工频电磁场。一般而言,电压等级越高,产生的电场也越大,但磁场相反减小。
5、局部放电产生频率较高的电磁辐射,可能在电子设备的线路中引起电磁干扰。
6、二次回路中的开关操作。由于感性负载的存在,在二次回路的信号电源端口以及控制端口产生快速瞬变的脉冲干扰。由于电磁电器的大量使用,在二次回路自身工作时会产生中等频率的振荡暂态电压。
二、抗干扰措施
1、通道入口处加装串联电容。高频闭锁式保护的原理是线路本侧收到对侧信号且对侧停信时,由“收讯输出”给出保护动作的一对接点信号,该过程中高频信号存在大约5ms的间断,此间断将作为出口动作的判据。在广州白云供电局所属的某220kv线路曾发生过区外故障时,由于干扰产生间断导致保护误动作的事故,为防止类似情况的发生,应在通道入口处电缆心线内串接0.1μf电容,可有效地起到抗间断作用,取消ybx系列收发讯机线路滤波器输出中的放电管。
2、装置可靠接地。由于变电所的接地网并非实际的等电位面,因而在不同点之间会出现电位差,当较大的接地电流注入接地网时,各点之间可能有较大的电位差,如果同一个连接的回路在变电所的不同点同时接地,地网地电位差将窜入该连通地回路,造成不应有的分流。在有些情况下,还可能将其在一次系统并不存在的地电压引入继电保护装置的检测回路中,或者因分流引起保护装置在故障过程中拒动或者误动,所以对于微机保护装置来说,保护屏必须要求可靠接地,而高频保护也应按部颁要求加装接地铜排或铜绞线(线径不小于100mm2),以保证装置在故障情况下的可靠判断。
3、限制过电压对装置的影响。为防止雷击时产生过电压,可在通道入口处并联适当的电容,由于电容具有两端电压不能突变的性质,当静电感应产生的过电压出现时,首先要向并联电容充电。随着充电过程的进行,副边电压才会慢慢升起来,由于静电感应过电压一般出现的时间都很短,并联电容两端电压(即副边电压)还没有升到足够高时,过电压已消失,这样就能大大限制地电压对高频收发讯机的侵害。
①继电保护自动化技术在母线保护中的应用。母线继电保护主要包括两种,即相位对比保护以及差动保护。相位对比保护指的是通过相位的对比方式,提高系统保护母线的可靠性和有效性;差动保护是将特点以及变化都一致的电流互感器设置在母线元件上,当系统母线侧边端子和二次绕组进行连接之后,再将继电保护装置安装在系统母线差动位置。在大电流接地过程中,通过三相连接的方式实现;小电流接地过程中,在相间短路中设置系统母线保护,然后通过两相连接的方式实现。②继电保护自动化技术在发动机保护中的应用。发电机是电力系统的重要组成部分,保证发动机的安全、稳定运行至关重要。继电保护自动化技术在发电机保护中应用主要包括两个方面:一方面,重点保护,如果发电机定子绕组匝间发生短路故障,将会导致发电机的故障部位温度上升,破坏绝缘层,威胁发电机的安全运行,通过在定子绕组内安装匝间保护装置,能够有效的防止定子匝间短路故障的发生;如果发电机的单相接地产生的电流超过规定值,通过安装接地保护装置能够对发电机进行继电保护;通过将发电机中性点、电流、相位进行相互结合,能够形成纵联差动保护,实现对发电机的保护;另一方面,备用保护,过电压保护能够有效的防止发电机自负荷较低的状况下发生绝缘被击穿的现象;过电保护能够有效的实现对外部短路故障的保护,防止发生短路破坏发电机;当发电机定子绕组发生低负荷问题时,继电保护装置能够自动切断电源,并发出相应的报警信号,实现对发电机的保护。③继电保护自动化技术在变压器保护中的应用。变压器是电力系统的重要组成部分之一,对电力系统的运行安全性和稳定性具有非常重要的作用。继电保护自动化技术在变压器保护中的应用主要包括以下几个方面:其一,短路保护,变压器短路保护包括阻抗继电保护和过电流继电保护,阻抗继电保护主要是通过利用变压器阻抗元件产生的保护作用,阻抗元件运行一段时间之后,会自动切断电源,以此实现对变压器的保护;过电流继电保护主要是在变压器电源两边电源和时间元件中安装过电流继电保护装置,电流元件运行一段时间之后,会自动切断电源,进而实现对变压器的保护。其二,瓦斯保护,当变压器的油箱出现问题时,在故障电弧的作用下绝缘材料和油都会发生分解,产生有害气体,通过采用瓦斯保护,当油箱出现上述故障时,能够自动的启动保护动作,将变压器电源切断,同时发出警报信号通知维护人员赶到故障地点进行处理。其三,接地保护,对于不接地变压器保护,应该采取零序电压保护措施;对于直接接地变压器保护,应该采取零序电流保护。④继电保护自动化技术在线路接地保护中的应用。电力系统的线路错综复杂,接地方式也相对较多,因此电力系统的接地方式包括大电流型接地与小电流型接地,当出现大电流接地时,应该立刻切断电源,防止接地故障对电力系统造成的破坏;当发生小电流型接地时,继电保护装置会发出报警信号,电力系统在一定时间内依然可以运行。针对不同的接地故障,应该根据故障状况采取相应的保护措施,具体状况如下所示:其一,零序功率,当电力系统发生接地故障时,零序功率的方向发生变化,零序电流波动相对较小,以此实现对电力接地故障的预测以及保护;其二,零序电流,当电力系统线路发生接地故障时,零序电流会迅速上升,继电保护动作非常敏感,能够及时的采取切断电源的保护措施,对电力系统进行保护;其三,零序电压,电力系统在正常运行时,并不会产生零序电压,如果电力系统发生接地故障,会导致零序电压的产生,继电保护装置能够及时的发出相应的报警信号,同时电网维护人员通过观察电压表数值能够判断系统是否发生接地故障,主要是因为当电力系统发生接地故障时,电压数值会降低。
1.2实例分析
文章以某电网为例,该电网于2010年应用了继电保护自动化技术,2011年4月23日,110kV变压器主变低压侧继电保护动作,1号主变101开关跳闸,2号主变119、131开关过流保护动作跳闸,重合闸动作,合成功,电网维护人员赶到事故现场,设备并无异常,维护人员通过查看跳闸过的线路,两条线路故障都能够合闸成功,但是却导致越级跳闸。通过对故障进行分析,发现为线路故障,开关拒动,处理方法表现为:把故障开关隔离,恢复供电,然后通知检修人员认真检查,查实状况后采取措施进行检修。
2继电保护自动化技术的未来发展趋势
继电保护自动化技术的未来发展趋势主要包括以下几个方面:其一,智能化,近年来,人工智能技术在电力系统继电保护自动化中得到非常广泛的应用,例如模糊逻辑算法、遗传算法、神经网络等,通过将这些人工智能技术应用在继电保护自动化系统中,能够保证继电保护自动化系统正确判别故障,并具有智能化解决复杂问题的能力,进而实现继电保护的智能化;其二,网络化,计算机网络技术在国家经济建设以及能源发展中发挥了至关重要的作用,通过将网络化技术应用在电力继电保护系统中,利用计算机网络能够将主要设备的继电保护装置连接在一起,创建继电保护装置网络,能够显著的提高继电保护的可靠性,因此电力系统继电保护技术的网络化是未来发展的一种必然趋势;其三,计算机化,随着计算机技术的快速发展,自动化芯片控制的电路保护硬件已经从16位单CPU结构发展为32位CPU微机保护结构,显著的提高了继电保护的性能以及响应速度,继电保护自动化系统的计算机化已经成为不可逆转的发展趋势。
2应急处理和缺陷处理原则
应急处理和缺陷处理是继电保护异常应急管理的核心,因而制定应急处理和缺陷处理原则是本次研究的关键。应急处理原则主要依据网省及地区运行规程和整定方案、相关应急管理规定,以及各生产厂家软硬件设计原理制定。缺陷处理原则主要依据《继电保护及电网安全自动装置检验规程》等管理规定和专业管理规范制定。以下详细论述各类型异常应急处理和缺陷处理原则。
2.1涉及装置本体且与外电路无关的异常
此类异常信息出现后,装置程序处理原则是闭锁保护,可能为装置程序运行出错或装置硬件故障导致,因而优先采取重启装置的办法进行处理。因设备处于异常状态,为防止异常状态下重启造成继电保护装置程序运行出错或无法有效闭锁误动作,故重启前采取短时退出保护出口压板的措施。若重启装置后仍然无效,则退出整套保护装置,等待检修人员处理。对于仅配置单套保护装置的设备,如线路、电容器、接地变等,考虑到此时设备运行可能处于无保护状态,为防止设备或线路故障扩大,应考虑采取旁代间隔或停役间隔的处理办法。对于安全自动装置和母差保护,则采取退出整套保护的措施。对于110kV及以下主变,保护采用主后分箱式配置,某一套保护异常闭锁后,在条件允许的情况下,应转移负荷后停役主变,进行保护异常处理。若因重载等原因一次设备无法停役时,应退出单套保护并进行带电处理。此时,电网保护整定配合可能存在失配,需要调度部门做好相关应急处理预案。涉及装置本体且与外电路无关的异常主要有:运行中,装置DSP模块出现软硬件故障,如“DSP出错”“DSP采样异常”“装置内部通信出错”等;数据存储器、程序及定值等芯片出错;定值及软压板出错;装置自检出口异常;双CPU采样的开关量信息不对应;看门狗出错导致CPU复位,如“保护初始化”“装置通电”等[1]。对于本体插件故障,在更换相应插件后应做相关检测。若对带电设备进行通流、加压检测,则必须严格执行二次作业安全措施票。下文介绍内容涉及带电试验检测的,要求相同。
2.2涉及装置本体且与外电路有关的异常
此类异常信息出现后,装置程序处理原则是不闭锁整套保护,仅闭锁保护装置部分相关逻辑功能,或仅发出报警。因此,在这种异常情况下,应优先检查外电路是否异常。为防止异常扩大造成保护误动或拒动,一般采取以下处理方法。2.2.1电流互感器TA断线或异常当运行中出现多套保护或测控装置发出“TA断线、异常及差电流异常、TA不平衡”报警或采样信号异常时,一般怀疑是TA本体故障、一次系统出现断线或TA接线盒至端子箱、汇控箱的二次电缆故障。若现场确认多套设备均采样异常,则应采取停役一次设备进行检查处理的措施。当运行中出现单套保护设备采样信号异常时,故障点大多在二次回路、TA本体二次绕组或装置本体上。对于双重化配置的设备,应退出采样信号异常的整套保护。对于单套配置的设备,除安全自动装置和母差保护整套退出处理外,线路应考虑旁代或转电停役处理,电容器、接地变停役处理。110kV及以下主变保护采用主后分箱式配置,无法转电停役处理,则应退出采样信号异常的整套保护进行处理。在运行中出现TA异常等信号,不论信号是否自动复归,均应安排人员到现场检查、确认。运行人员在获得TA异常信息后,在检修人员未到达之前,应先携带测温仪进站检查确认。检查内容包括:TA一次设备是否断芯,是否有异常响声;端子箱或汇控箱、保护屏内电流接线是否有明显放电、烧灼现象。若无上述异常,则借助测温仪对端子箱或汇控箱、保护屏内端子排(包括装置背板)所有电流端子进行红外成像检测,检查是否有异常发热点。现场带电检查处理时,必须保证人身安全,如带绝缘手套或站在绝缘垫上,使用的工器具必须经绝缘处理等。2.2.2电压互感器TV断线或异常当多个间隔出现TV断线信号时,一般怀疑是TV本体故障、一次系统故障或公用切换并列装置及其相关二次回路故障(包括屏顶小母线绝缘下降、TV二次保护测量电压总空气断路器损坏等)。此时,不退保护相应功能压板,现场检查确认后再采取进一步措施,如倒母线或二次并列等。若为空气断路器脱扣跳闸,在确认现场设备无烧焦异味后,可先试送一次空气断路器。当某一间隔出现多套保护或测控TV异常时,一般怀疑为该间隔切换装置或二次回路发生故障,可不退出相关保护,但如果220kV线路两套主保护均受TV断线影响而被闭锁,就应考虑将该线路停电处理,防止整定恶化造成失配。若仅单套保护异常,对双重化配置的保护采取退出异常保护的处理措施;对单套配置的保护则不退相关保护,保留运行,但如果是220kV旁路线路保护异常,可能会令线路失去主保护,此时应考虑停役;另外,若是备投装置异常,可能会引起误动作,应退出处理。对于TV回路异常的保护装置处理方法如下:①在测得进保护装置电压正常的情况下,应怀疑装置本体发生故障,单套保护的设备采取整套退出、旁代或转电停役间隔的措施进行检查处理,防止故障扩大,进而引起保护误动作;②出现TV断线信号后,在断开保护装置电源前,应退出所有保护出口压板,防止断电重启过程中造成带偏移特性阻抗继电器误动作;③一般采取分段检查的方法来确定故障点。2.2.3开入异常当出现开入异常(包括光耦失电、位置报警、开入电源异常等)信号时,对双重化配置的保护采取退单套保护的处理措施;对单套配置的保护,由于开入功能无效,可能造成无保护运行或外部闭锁开入失效,所以建议采取旁代或转电停役间隔的处理措施,备投等安全自动装置则采取退出整套保护的处理措施。母差保护发出“开入异常”或其他如“刀闸切换电源异常”“TWJ(跳闸位置继电器)异常”“刀闸位置报警”等信号时,采取不退保护的处理措施,待现场检修人员做进一步检查。若判断为装置本体故障,停役间隔进行处理。若状态检修巡检或监盘过程中发现母线保护测量三相电压偏移或中性点直接接地系统零序电压3U0分量大于1V,应通知检修人员到现场检查处理,防止TV二次回路两点接地造成纵联方向保护拒(误)动。2.2.4通道异常出现该异常信号后,应立即退出两侧主保护或差动压板。若涉及保护装置插件更换或更改定值,则需要退出整套保护装置;涉及接口装置、收发信机或光电转换装置插件更换,则需退主保护。缺陷检查时,采取分段测量收、发功率,并用逐段自环的方法确认故障位置。2.2.5装置直流电源消失装置直流电源消失主要表现为液晶显示屏黑屏,运行灯或电源指示灯熄灭等。对于双重化配置的保护,采取退单套保护的处理措施。对于单套配置的保护,可安排运行人员现场检查保护设备是否有烧焦等异常情况。若只是保护屏直流空气断路器脱扣跳闸,而装置无异常,可先试送一次。试送不成功或有其他异常情况,应对母差保护和备投等安全自动装置采取退出整套保护的处理措施,对分箱式配置的主变保护建议短时退出整套故障保护,调度部门应做好相应事故预案。2.2.6控制电路断线对于双组跳闸配置的断路器,当单组出现控制电路断线时,断路器仍可继续运行。若为第一组控制电源断电,则会影响断路器的合闸功能。此时,可投入保护闭锁重合闸压板或将重合闸停用,故障时保护直接跳三相断路器,避免由保护动作跳单相断路器,再由非全相保护动作跳三相断路器。对于单组跳闸配置的断路器,在排除非二次回路松动或电源空气断路器脱扣导致的控制电路断线后,为了避免设备或线路故障造成断路器越级跳闸,应考虑对该设备进行隔离(如断开上一级电源)。更换操作箱插件或更换断路器机构分合闸线圈后,应做相关检测。更换电缆后,应进行分合试验,分相断路器应逐相确认。更换防跳功能的板件或继电器,还应进行参数及功能测试。2.2.7直流电源失地出现直流电源失地时,应立即通知检修人员到现场进行处理。同时,运行人员在现场应结合天气、站内人员操作(检修)等情况,以及绝缘监测装置报警、选线等综合信息进行初步判断,排除装置误报的可能性,并对绝缘监测装置选出的接地支路优先进行试拉。若未报出具体接地支路,则应测量是否为交流窜入直流,并隔离检修设备和试拉部分非重要负荷。在处理过程中,应防止造成另一点接地。若绝缘监测装置无法正确选线,可借助接地查找仪等设备进行查找定位。在无其他有效措施的情况下,可采取分段拉路的方法查找故障点。2.2.8线路保护重合闸无法充电对于双重化配置的保护,若仅一套保护出现该异常,解除该套保护即可,防止单相瞬时性接地故障时异常保护直接跳三相断路器,造成线路非计划停运。单套配置的保护出现该异常,应立即通知检修人员处理。2.2.9备自投无法充电出现该异常时,应立即解除整套装置,并通知检修人员检查处理,重点检查开入位置状态是否与实际相符,是不是有异常外部闭锁备自投开入。2.2.10指示状态与实际不符正常运行时,保护装置面板、操作箱或切换装置指示灯与实际状态不一致,但保护装置液晶面板、监控系统无异常信息。若该状态指示灯与外电路有关,应优先检查相关二次回路或辅助接点;若该状态指示灯与外电路无关,则检查指示灯是否损坏。2.2.11保护“通信中断”保护测控一体化装置出现通信中断信号会影响运行人员对设备的监盘和监测,运行人员必须立即通知检修人员到现场检查处理。当站内多间隔保护都出现通信中断时,运行人员可在检修人员指导下先进行交换机、管理机等设备的重启。现场应重点检查装置通信地址、规约配置是否正确,通信线是否接触良好,管理机是否故障等。
3系统开发及应用
3.1系统框架
应急管理系统软件构架前台采用了Delphi和J2EE多层框架平台,采用Oracle9i数据库,Weblogic8.1作为中间层服务器,采用EJB作为持久层的基础开发框架,UI(用户界面)采用了EXT2为基础框架。应急管理系统软件构架各层关系如图2所示。
3.2系统模块及功能实现
3.2.1应急处理库模块根据保护及二次回路(通用)的监控系统光字牌和报文动作信息、装置液晶面板显示自检信息、装置面板指示灯信息组成的异常信息库,分析故障原因及对保护设备运行的影响,并提出相应的应急处理策略。3.2.2缺陷处理库模块根据异常信息,制定缺陷判别定位流程,分析可能的故障点,并关联到相应故障装置插件;预判查找过程中可能出现的危险点并制定相应的预控措施及合理的现场检查步骤;列出异常消除后需要进行的检测项目及相应试验仪器;关联典型案例供维修人员参考。3.2.3应急处理综合策略模块根据异常信息,检索相应专家诊断简要、应急处理和缺陷处理策略、关联的备品备件信息及综合策略等。3.2.4备品备件管理模块实现备品备件出入库流程化管理、插件通用性管理,以及插件重要等级和数量的预警等。3.2.5缺陷统计分析管理模块自动生成月度、季度及年度统计分析报表,装置同型号、同批次无故障率信息,对疑似家族性缺陷进行统计、分析及跟踪。3.3应用情况应急管理系统投入实际应用后,系统运行稳定,大大加快了运行、检修人员日常缺陷处理速度。根据掌握的现场异常信息直接在系统上检索应急处理综合策略,能够快速掌握应急处理策略,获取可能故障点、备品备件信息,以及专业值班网、制造厂家技术服务相关联系方式等信息。同时,还可借助该系统开展日常检修、运行人员的继电保护技术技能培训,促进人员业务水平的提高。
1继电保护信息管理系统的实现
1.1信息数据源的分布
二次系统所具备的信息来源可大致分为3部分:
a)由变电站微机保护装置经RTU发送至调度端的实时运行数据;
b)继电保护管理端(生技部门和继电保护班组)所存放的设备管理资料、各类试验记录和运行制度等;
c)其他系统中需要了解继电保护数据或可以提供继电保护有关数据和参考资料的数据源接口。
1.2系统结构
怎样有效地将信息数据源联系起来,而对于各级用户都能予以充分利用呢?我们可以考虑以调度监控计算机网络系统的数据源为中心,建立图1系统。
通过数据仓库技术集成各类数据源,使用方法库来支持各个不同等级客户的分别应用,利用网络功能实施数据交换,并且开放MIS的数据接口,基本实现对二次保护数据资源的充分利用。
1.3系统方法与功能
1.3.1数据仓库和方法库
a)数据仓库是比传统的关系数据库更高一级的数据组织形式,它不仅支持海量数据的处理,而且对于动态存储、应用程序接口、非结构化数据等方面都具有更强的性能。
b)方法库是封装了一系列分析处理方法的规则库,也是应用程序软件功能的集中表现,可通过设置各用户权限来限制其对数据仓库的查询和读、写操作,维护数据的完整性,同时也限定了客户的应用范围。
1.3.2软件应用功能
a)“三遥”数据的实时分析处理:各类二次信息的查询,和以前定检、定试记录的比较,动作时间和次数的统计,故障、事故等报警事件的指示和响应等。
b)二次设备试验的记录管理、定试预告、定值单管理、材料管理等。主要由继电保护班组人员填写,其他部门共享查询。
c)二次设备图形管理系统具备GIS功能,支持图形和数据库相连,直接在图形上查询参数。
d)二次设备事故、缺陷记录分析,各保护装置运行状况分析。主要是继电保护技术专责完成,其他部门共享查询。
e)设立一次设备参数接口。如电流、电压、功率因素和高压设备试验记录等,配合一次主接线图查询,可作为二次系统的辅助分析数据来源。
f)可使用电子函件和新闻公告板方便各部门间的信息交流。
1.3.3软件开发工具
一、概述
随着微机继电保护装置的广泛应用和变电站综合自动化水平的不断提高,各种智能设备采集的模拟量、开关量、一次设备状态量大大增加,运行人员可以从中获取更多的一、二次设备的实时信息。但是,由于目前的微机型二次设备考虑较多的是对以往设备功能的替代,导致这些设备基本上是独立运行,致使它们采集的大量信息白白流失,未能得到充分利用。
电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。近几年,计算机和网络技术的飞速发展,使综合利用整个电网的一、二次设备信息成为可能。电网继电保护综合自动化系统就是综合利用整个电网智能设备所采集的信息,自动对信息进行计算分析,并调整继电保护的工作状态,以确保电网运行安全可靠的自动化系统,它可以实现以下主要功能。
1.实现继电保护装置对系统运行状态的自适应。
2.实现对各种复杂故障的准确故障定位。
3.完成事故分析及事故恢复的继电保护辅助决策。
4.实现继电保护装置的状态检修。
5.对线路纵联保护退出引起的系统稳定问题进行分析,并提供解决方案。
6.对系统中运行的继电保护装置进行可靠性分析。
7.自动完成线路参数修正。
二、系统构成
站在电网的角度,我们来分析电网继电保护综合自动化系统获取信息的途径。电网的结构和参数,可以从调度中心获得;一次设备的运行状态及输送潮流,可以通过EMS系统实时获得;保护装置的投退信息,由于必须通过调度下令,由现场执行,因此可以从调度管理系统获得,并从变电站监控系统得到执行情况的验证;保护装置故障及异常,可以从微机保护装置获得;电网故障信息,可以从微机保护及微机故障录波器获得。
通过以上分析,可以看出,实现电网继电保护综合自动化系统的信息资源是充分的。为了更好的利用信息资源,应建立客户/服务器体系的系统结构,按此结构将系统分解成几个部分,由客户机和服务器协作来实现上述七种主要功能。这样就可以实现最佳的资源分配及利用,减少网络的通信负担,提高系统运行的总体性能。
客户机设在变电站,主要实现以下功能:
1.管理与保护及故障录波器的接口,实现对不同厂家的保护及故障录波器的数据采集及转换功能。在正常情况下巡检保护的运行状态,接收保护的异常报告。在电网发生故障后接收保护和故障录波器的事故报告。
2.管理与监控系统主站的接口,查询现场值班人员投退保护的操作。
3.管理与远动主站的接口,将装置异常、保护投退及其它关键信息通过远动主站实时上送调度端。
4.执行数据处理、筛选、分析功能。实现对保护采集数据正确性的初步分析,筛选出关键信息。
5.管理及修改保护定值。
6.向服务器发出应用请求,并接收服务器反馈信息。
7.主动或按服务器要求传送事故报告,执行服务器对指定保护和故障录波器的查询。
服务器设在调度端,可由一台或多台高性能计算机组成,主要实现以下功能:
1.向客户机发送指令,接收并回答客户机的请求。
2.接收客户机传送的事故报告。
3.控制对EMS系统共享数据库的存取。获得一次设备状态、输送潮流及客户机通过远动主站上送调度端的信息。
4.通过调度运行管理信息系统获得调度员对保护的投退命令、设备检修计划等信息。
5.与继电保护管理信息系统交换保护配置、定值、服役时间、各种保护装置的正动率及异常率等信息,实现继电保护装置的可靠性分析。
6.执行故障计算程序、继电保护定值综合分析程序、事故分析程序、保护运行状态监测程序、稳定分析程序等应用软件。
在实现了变电站综合自动化的厂站,客户机可在保护工程师站的基础上进行功能扩充,并成为变电站综合自动化系统的组成部分。在没有保护工程师站的厂站,可通过保护改造工程,建立变电站保护信息处理系统,使之成为客户机。
由以上功能划分可以看出,客户机与服务器之间的数据交换量并不大,仅在电网发生故障后,由于与故障设备有关联的厂站的客户机需要向服务器传送详细的故障报告,才会出现较大的信息量。因此,客户机和服务器之间的联络,在目前条件下,完全可以采用调制解调器进行异步通信。将来如有条件,建议尽量采用广域网交换数据。
三、功能分析
1.实现继电保护装置对系统运行状态的自适应。
电网继电保护的整定计算十分复杂,由于传统的继电保护以预先整定、实时动作为特征,保护定值必须适应所有可能出现的运行方式的变化。假如一个变电站有15个元件,仅考虑本站检修2个元件的组合方式就已经达到100多个,而周围系统机组停运、500KV自耦变的检修及系统开环对短路电流和分支系数的影响甚至可能比本站元件检修还要大,它们均需做为组合方式加以考虑,这就使组合方式之多达到难以想像的数量。
为使预先整定的保护定值适应所有可能出现的运行方式的变化,必然出现以下问题:
A.缩短了保护范围,延长了保护动作延时。
B.被迫退出某些受运行方式变化影响较大的保护。如四段式的零序电流保护仅能无配合的使用其最后两段。
C.可能还存在由于运行方式考虑不周而出现失去配合。
D.被迫限制一次系统运行方式。
电网继电保护综合自动化系统可以彻底改变这种局面。只要在调度端的服务器安装故障计算及继电保护定值综合分析程序,依靠从EMS系统获得的系统一次设备的运行状态,就可以迅速准确的判断出当前继电保护装置整定值的可靠性,如出现部分后备保护定值不配合时,根据从调度管理系统获得的线路纵联保护及母差保护的投入情况,确定是否需要调整定值。如需要调整,可通过调度端服务器向变电站的客户机下达指令,由客户机动态修改保护定值,从而实现继电保护装置对系统运行状态的自适应。以上所有计算分析工作,均依靠调度端服务器实时自动完成,这样,继电保护整定值就无需预先考虑那些出现机率很小的组合方式,从而解决困扰继电保护整定计算工作的不同运行方式下可靠性与选择性存在矛盾的问题。
目前,系统中运行的保护装置可分为三类:第一类为非微机型保护;第二类为具备多个定值区并可切换的微机保护,一般不具备远方改定值的功能;第三类为新型微机保护,具备远方改定值的功能。对非微机型保护,在调度端可以将其设置为不能自动调整定值的保护,依靠周围保护装置的定值调整,实现与此类保护的配合。对第二类保护,可以事先设置多套整定值,调度端只是通过变电站客户机,控制其在当前运行方式下采用那套整定值来实现定值的自适应。
为提高可靠性,保护定值的自适应可与调度系统的检修申请相结合。当电网继电保护综合自动化系统从调度管理系统获得计划检修工作申请后,即通过计算分析,事先安排定值的调整,并做相应的事故预想(如在检修基础上再发生故障时保护的配合关系计算),从而大大提高系统继电保护装置的效能和安全水平。
2.实现对各种复杂故障的准确故障定位。
目前的保护和故障录波器的故障测距算法,一般分为故障分析法和行波法两类。其中行波法由于存在行波信号的提取和故障产生行波的不确定性等问题而难以在电力生产中得到较好的运用。而故障分析法如果想要准确进行故障定位,必须得到故障前线路两端综合阻抗、相邻线运行方式、与相邻线的互感等信息,很显然,仅利用保护或故障录波器自己采集的数据,很难实现准确的故障定位。另外,对于比较复杂的故障,比如跨线异名相故障,单端分析手段已经无法正确判断故障性质和故障距离,因此,往往出现误报。
我们知道,得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确,因此,通过电网继电保护综合自动化系统,可以彻底解决这个问题。调度端数据库中,已经储备了所有一次设备参数、线路平行距离、互感情况等信息,通过共享EMS系统的数据,可以获得故障前系统一次设备的运行状态。故障发生后,线路两端变电站的客户机可以从保护和故障录波器搜集故障报告,上送到服务器。调度端服务器将以上信息综合利用,通过比较简单的故障计算,就可确定故障性质并实现准确的故障定位。
3.完成事故分析及事故恢复的继电保护辅助决策。
系统发生事故后,往往有可能伴随着其它保护的误动作。传统的事故分析由人完成,受经验和水平的影响,易出现偏差。由于电网继电保护综合自动化系统搜集了故障前后系统一次设备的运行状态和变电站保护和故录的故障报告,可以综合线路两端保护动作信息及同一端的其它保护动作信息进行模糊分析,并依靠保护和故录的采样数据精确计算,从而能够迅速准确的做出判断,实现事故恢复的继电保护辅助决策。
当系统发生较大的事故时,由于在较短时间内跳闸线路较多,一般已经超过了继电保护能够适应的运行方式,此时保护可能已经处于无配合的状态。此时进行事故恢复,不仅需要考虑一次运行方式的合理,还需要考虑保护是否能够可靠并有选择的切除故障。借助电网继电保护综合自动化系统,可以分析当前运行方式下保护的灵敏度及配合关系,并通过远程改定值,完成继电保护装置对系统事故运行状态的自适应。
4.实现继电保护装置的状态检修。
根据以往的统计分析数据,设计存在缺陷、二次回路维护不良、厂家制造质量不良往往是继电保护装置误动作的主要原因。由于微机型继电保护装置具有自检及存储故障报告的能力,因此,可以通过电网继电保护综合自动化系统实现继电保护装置的状态检修。具体做法如下:
A.依靠微机保护的自检功能,可以发现保护装置内部的硬件异常。变电站的客户机搜集到保护的异常报告后,立即向相应的调度端发出告警,从而使设备故障能够得到及时处理,缩短保护装置退出时间。
B.保护的开入量一般有开关辅助节点、通讯设备收信、合闸加速、启动重合闸、其他保护动作等几种,这些开入量对保护的可靠运行起关键作用。变电站的客户机可以监视保护装置的开关量变位报告。当发现保护的开入量发生变位时,可以通过查询变电站一次系统状态以及其他保护和录波器的动作信息确定变位的正确性。这样,就可以及早发现问题,预防一部分由设计缺陷或二次回路维护不良引起的误动作。
C.为防止由于PT、CT两点接地、保护装置交流输入回路异常、采样回路异常等引起保护误动作,可以由变电站的客户机将保护启动以后的报告进行分析,首先可以判断取自同一CT的两套保护采样值是否一致,其次,可以判断本站不同PT对同一故障的采样值是否一致。另外,还可以将从保护故障报告中筛选出的故障电流基波稳态值及相位等信息上传到调度端,与线路对侧的数据进行比较,以发现PT两点接地等问题。
通过以上措施,可以加强状态检修,相应延长定期检修周期,使保护装置工作在最佳状态。同时,还可以提高维护管理水平,减轻继电保护工作人员的劳动强度,减少因为人员工作疏漏引起的误动作。
5.对线路纵联保护退出引起的系统稳定问题进行分析,并提供解决方案。
随着电网的发展,系统稳定问题日益突出。故障能否快速切除成为系统保持稳定的首要条件,这就对线路纵联保护的投入提出较高要求。但是,在目前情况下,由于通道或其它因素的影响,导致线路双套纵联保护退出时,只能断开线路以保证系统稳定和后备保护的配合。这种由于二次设备退出而影响一次设备运行的状况是我们所不愿意看到的。
借助电网继电保护综合自动化系统,我们可以完成以下工作。
A.根据系统当前运行状态校验保护的配合关系。
B.根据线路两侧定值确定不同点故障保护的切除时间。
C.根据系统当前的运行方式、输送潮流、系统及机组的参数,结合故障切除时间,判断线路不同点故障时系统能否保持稳定。
D.判断能否通过控制输送潮流保持系统稳定。
E.反推系统保持稳定需要的故障切除时间。
F.通过远程改定值,保证系统稳定及周围系统后备保护的配合。
这样,我们就可以大大减轻纵联保护的退出给系统一次设备的运行带来的影响,并提供纵联保护的退出的整体解决方案。
6.对系统中运行的继电保护装置进行可靠性分析。
通过与继电保护管理信息系统交换保护配置、服役时间、各种保护装置的正动率及异常率等信息,电网继电保护综合自动化系统可以实现对继电保护装置的可靠性分析。特别是当某种保护或保护信号传输装置出现问题,并暂时无法解决时,通过将此类装置的可靠性评价降低,减轻系统对此类保护的依赖,通过远程调整定值等手段,实现周围系统保护的配合,防止因此类保护的拒动而扩大事故。
7.自动完成线路参数修正。
由于征地的限制,新建线路往往与原有线路共用线路走廊,线路之间电磁感应日益增大,造成新线路参数测试的不准确以及原有线路参数的变化。现在,依靠电网继电保护综合自动化系统,可以将每次故障周围系统保护的采样数据进行收集,利用线路两端的故障电流、故障电压,校核并修正线路参数,实现线路参数的自动在线测量,从而提高继电保护基础参数的可靠性,保证系统安全。
四、实现本系统的难点分析
1.管理问题
从技术上说,实现电网继电保护综合自动化系统的条件已经成熟,无论是变电站客户机对保护信息的搜集、信息的网络传输还是调度端服务器对EMS系统共享数据的读取、故障及稳定分析计算,都可以得到解决。主要的实施难度在于此系统需要综合继电保护、调度、方式、远动、通信以及变电站综合自动化等各个专业的技术,并且涉及到控制运行设备,其它专业一般不愿牵扯其中,因此只有解决好管理问题,才可能顺利实施。例如,目前变电站客户机对信息的搜集,完全可以也应该纳入到变电站综合自动化系统,但是,由于管理界面的划分,有些运行单位希望保护专业独立组网搜集信息,这样就造成资源的分割和浪费,不利于今后对系统的扩展。为了保证电力系统的安全运行,希望在将来的保护设计导则中,对此类问题统一予以规范。
2.安全性问题
由于电网继电保护综合自动化系统的功能强大,并且可以控制运行设备,与电网的安全稳定运行息息相关,因此在设计之初,就必须对系统的安全性问题给予足够重视。可以说,安全性解决的好坏,将是本系统能否运用的关键。初步设想,调度端服务器必须采用双机热备用方式保证硬件安全;通过远方修改保护定值时,客户机必须通过加密的数字签名核实调度端传送定值的可信度,并通过校验码及数据回送保证定值的可靠性。并且,当客户机向保护传送定值时,必须不能影响保护的正常性能。在这方面,还需要做大量的工作。
3.规约问题
我们知道,对于电力系统来说,出现故障是时常发生的,这主要取决于外界的因素干扰以及自身的内部因素,无论哪种因素,一旦使电力系统发生故障没有办法正常运行的话,将会给企业、个人带来损失,那么日常生活中我们要想到解决办法的前提是要了解出现的故障原因及没有正常运行的明显状态有哪些,当电力系统出现单相接地、两相接地、三相接地、短路等的话就是很明显的出现了故障。而如果电力系统在运行中出行超负荷、超电压、产生振荡、本身同步运行的发电机却异步运行时等,就是非正常运行状态。综上各种原因,我们就不难看出继电保护的主要作用是什么。那么继电保护的基本工作原理我们归结为,它主要是根据电力系统发生故障前后电气物理量变化的特征为基础构成的,一旦电力系统发生故障之后,工频电气量将会发生很大的变化,这些变化的主要特征是:
(1)电流增大的情况。当设备发生短路时,那么在出现故障的某点和电源与电源相连接的电气设备与输送电能的线路上,所产生的电流将迅速的增大,从负荷电流开始,到最后会比负荷电流大得多;
(2)电压降低的情况。一旦相间短路和接地短路发生故障的时候,将会导致电力系统之中的各个点之间的相间电压或者是相电压值迅速降低,而且距离短路点原来越近的话,其中的电压也会越来越低;
(3)电流与电压之间的相位角会发生变化。当电力系统处于正常的工作运行状态时,那么电流与电压之间的相位角与负荷的功率因数角是相等的,正常应该为20°,而如果出现三相短路时的话,电流与电压之间的相位角的大小将取决于线路的阻抗角,这个时候会为正常运行的3~4倍;
(4)测量点电压与电流之比值会产生变化。一般来说我们将测量点的电压与电流之间的比值称之为测量阻抗。那么如果系统在正常的运行状态时,测量阻抗是负荷阻抗的。如果发生金属性短路的话,线路阻抗将会取代测量阻抗,我们会看出系统故障时测量阻抗的值将会变小,相反的阻抗角将会明显增大。我们利用电路发生故障时电气量的多变性加以利用,便可形成各种原理的继电保护对。
1.2对于继电保护功能的基本要求
之所以会出现继电保护装置,主要是为了电力系统在发生故障时,继电保护装置将会运用自身的工作原理,将损失降低到最小化,使电力系统设备不损坏或者损坏的程度降低。那么我们就要求继电保护装置要具有一定的可靠性、灵敏性、及时性、速度型,还要有选择性。它自身的工作责任及工作方法将决定主要的工作状态。之所以要具有及时性,就是要求继电装置在电力系统运中出现故障时发出的信号进行感知,并及时地调整或者及时地将主要引起事故的设备进行切断。及时地对系统进行提醒、规范、预防,以减少在运行中出现故障的可能性,使电力系统处于正常运行状态。
2电力变压器继电保护实例
2.1电力变压器的主要故障种类及保护方法
2.1.1电力变压器的故障种类
我们一般可以将变压器的内部故障分为两大类:一类是油箱内故障;另一类是油箱外故障。油箱内故障有很多的原因可以导致其发生,其中包括绕组的相间短路、匝间短路、接地短路及经铁芯烧毁等原因。变压器油箱内如果发生故障的话,我们必须要引起高度重视,因为随时会发生危险,主要因为当变压器内充满了变压器油的时候,如果发生故障,那么短路电流将会使变压器油迅速地去分解气化,这个时候大量的可燃性气体(瓦斯)就会产生,那么油箱会爆炸很容易引起油箱爆,导致人员的伤亡。对于油箱外的故障主要划分为套管和引出线上发生的相间短路和接地短路。电力变压器如果发生故障和非正常的运行状态,那么主要是由于外部相间短路、接地短路引起的相间过电流和零序过电流,负荷超过其额定容量引起的过负荷、油箱漏油引起的油面降低,以及过电压、过励磁等原因造成的。
2.1.2电力变压器保护方法:
(1)装设带时限的电流维护装置或者电流速断的维护;
(2)瓦斯的维护;
(3)单相接电维护;
(4)过电流维护;
(5)温度维护;
(6)其他的维护。
2.2电力变压器保护的主要配置
2.2.1电力变压器保护配置的一般要求。根据实际情况,变压器一般应装设以下的保护设备:
(1)瓦斯维护。瓦斯保护能够保护变压器油箱内的各种轻微故障,例如绕组轻微的匝间短路、铁芯烧损等;
(2)装设带时限的电流维护装置或者电流速断的维护。对于容量为6300kVA及以上的变压器、发电厂厂用变压器和并列运行的变压器、10000kVA及以上的发电厂厂用备用变压器和单独运行的变压器,应装设电流维护装置。电流速断保护用于对于容量为10000kVA以下的变压器,当后备保护的动作时限大于0.5s时,应装设电流速断保护;
(3)单相接电维护。变压器的相间短路后备保护通常采用过电流保护、低电压启动的过电流保护、复合电压启动的过电流保护以及负序过电流保护等。发生接地故障时,变压器中性点将出现零序电流,母线将出现零序电压,变压器的接地后备保护通常都是反应这些电气量构成的;
(4)过电流维护。变压器长期过负荷运行时,绕组会因发热而受到损伤。对400kVA以上的变压器,当数台并列运行或单独运行并作为其他负荷的备用电源时,应根据可能过负荷的情况,装设过负荷保护;
(5)温度维护。对变压器温度及油箱内压力升高和冷却系统故障,应按现行有关变压器的标准要求,专设可作用于信号或动作于跳闸的非电量保护;
(6)其他维护。高压侧电压为500kV及以上的变压器,应装设过励磁保护,在变压器允许的过励磁范围内,保护作用于信号,当过励磁超过允许值时,可动作于跳闸。
2.2.2电力变压器保护配置情况:
(1)主保护:瓦斯保护和差动保护;
(2)瓦斯保护:重瓦斯和轻瓦斯保护;
(3)差动保护:差动速断、比率差动保护、分侧差动保护;
(4)比率差动保护:二次谐波闭锁原理和波形判别闭锁原理的差动保护高压侧后备保护:复合电压(方向)过流、零序方向过流、零序过流、零序电流电压保护、非全相、过负荷、TV断线。
第二阶段:到了八十年代,晶体管继电保护得到了快速发展,如由南京自动化设备厂与天津大学合作研发的500kV晶体管方向高频保护,成功运用在葛洲坝500kV线路上,这代表着我国继电保护取得了重大成功。
第三阶段:到了九十年代初期,起主导地位的是集成电路保护的研发、生产及应用。例如:由南京电力自动化研究院所研发的集成电路工频变化量方向高频保护,便起到了巨大作用。
第四阶段:九十年代初期之后,继电保护在我国呈现了高速的发展势态。其中的微机线路保护装置,是在一九九一年通过鉴定的,它是由南京电力自动化研究院研制成功的。微机相电压补偿式方向高频保护则是在1993年通过鉴定的,它是由天津大学和南京电力自动化设备厂合作研发而成的。当然,原理不同与机型不同的微机线路及主设备保护,均有着各自的优势,它们为电力系统提供了性能及质量优化的继电保护装置。在微机保护装置的致力研究背景下,基于微机保护软件及算法等方面均获得了较为显著的理论成果。显然,自九十年代后,我国继电保护技术所呈现的发展趋势是微机保护。
2电气工程智能系统结构分析
在此系统当中,将专家系统引进电气CAD当中,所使用的语言是编译型TurboPROLOG语言,同时还采取了另外两种语言与交互的方式编制引入电气ICAD系统,这两种语言即为:AutoLISP语言和FOR-TRAN77语言。如此一来,便能够使各类语言本身的优势得到充分利用,同时也使程序的编制更加简便。在用户菜单的设计的基础上,进而使系统提供的能力得到了有效补充,并将无功功率补充专家系统,进而以嵌入的方式到达CAD系统当中。通过用户菜单,用户能够非常方便地对自己的工作方式进行选择。该系统具备的显著的特点包括:简洁、直观且容易被用户接受等。还能够让用户在短时间之内对操作方法进行充分掌握,对相应的子模块极为便利地使用。另外,还降低了设计的成本,使设计效率得到有效提高,从而使设计者的负担得到很大程度减轻。
3数据结构的改进探究
专家系统对设计的数据结构及类型知识的描述,表现出了一些明显的缺陷,主要体现为过于简单化,不能使系统的通用性与扩展性得到充分满足。因此,针对这方面的不足,提出通用的知识表示方法便显得极为重要。基于宏观层面分析,电气设计属于一个正向推理的过程,使部分初始数据来驱动推理机,进一步实现规则匹配及冲突的解决,最终得出相应的结论。对于继电保护系统设计,这些初始数据便是一次系统当中的结构及参数对保护系统的设计要求。对于一些主设备的继点保护的初步设计而言,如变压器等,所使用的以此系统初始数据参数种类使用关联组元进行表达。其中,关联组员表达形式为:(对象名:属性名=属性值),它与孤立对象属性概念的描述相适应;关系谓词表示形式为:(主体对象名,客体对象名:谓词属性名=属性值),在对事实等一系列知识进行表示的情况下,不但具备对象实体的属性,而且也具备多个对象间所维系的关系。对于一个变压器保护系统框架的主要构成,主要包括:系统级、保护方式级以及故障类型保护级等。对于每一级的框架,都拥有相似的结构,同时每一个框架都归属于一个更高级的框架。为系统当中一个电流继电器框架的具体描述过程。此框架表示的对象实体是CR继电器,系统编号是56,归属46号低压过流保护方式框架。其中最为简单的属性槽是“相数=1”,它的属性值在设计推理中的赋值是由规则以直接的方式决定的。能在推理过程中以直接的方式赋值的是“Iset=”,或者,在需计算的情况下通过ISETO的调用对赋值进行计算,另外还能够对定值列表Ilist有用户进行调出,然而以自行的方式对赋值进行选择。位于框架槽的是“型号=DL233/6”,它能够对具体继电器DL233/6进行引出。框架所表现出来的嵌套关系能够对整体保护系统的描述发挥重要作用。此框架系统形成了具有复杂特性的语义网络。当中的子框架能够对父框架的槽值约定进行更改或继承。如此一来,不但能够使表示的信息能够节省,从而降低数据冗余;而且还能够非常简单地使信息的一致性得到有效维持。
一、继电保护发展现状
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。
我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。
二、继电保护的未来发展
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。
2网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。
对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。
由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
3保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。
4智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
三、结束语
建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。
参考文献
1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)
4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)
5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988
管理过程要求我们未雨绸缪,第一次就要把事情办好,是非常适合综合自动化改造的管理方法。
2综合自动化改造问题分析
(1)较广的涉及面
电力系统构成复杂,主要包括一次主设备和二次保护、控制、调节、信号等辅助设备组成,综合自动化改造工作涉及到变电所每个间隔的一次设备和相应的二次设备。
(2)较大的工作影响范围
如果综合自动化改造工作稍有差错,就不仅仅对电力系统的运行造成严重的影响,而且国民经济和人民生活带来不可估量的损失。其中,继电保护“三误”(误碰、误接线、误整定)操作呈现出多样、易发生的特点,是保护的头号敌人
(3)改造难度大
综合改造过程中要求停电时间短,技术难度高,复杂性强,细微事情多,稍有想不到的地方都可能对电网安全运行带来威胁。
3综合自动化改造施工中的危险因素
(1)对“三措方案”、作业指导书学习体会不够,造成工作上被动。
(2)未掌握图纸、技术规范、规程制度,未完全了解现场实际情况,对停电设备间隔不知道,造成延误工期甚至出现威胁电网安全事故。
(3)拆除旧电缆时拆错线造成保护误动。
(4)机械伤人、保护误碰等在拆、搬屏柜过程中出现时应该引起注意。
(5)交流短路、直流短路接地等往往在接线过程中误接线引起,这样也应该格外注意。
(6)误投压板、调试不慎引起设备损坏,相关保护误动等需要特别注意。
4综自改造施工中过程管理思考
由于综自改造的特点分析,从整体上考虑应该强化过程管理是非常必要的,否则,轻则延误工期,重则酿成事故。做好图纸资料,材料工器具等的准备工作在改造前就显得尤为必要和关键,另外,符合现场的施工“三措”方案也应该及时制定。而在施工过程中需要注意的工作有,做好每日工作日志,交代清楚工作内容,同时对于危险点及预控措施应该提前准备,确保使用安全措施票。完备的实施细则应该在重点阶段、重点环节体现出来,另外这些措施应该体现出针对性和区别性,使得各个环节相互辅佐,从整体上保证施工安全。
4.1从施工方案反映施工总体情况
综自改造施工方案应包括施工组织措施、安全措施、技术措施,同时还包括施工工程进度安排,改造前、后的屏柜布置,施工作业指导书等内容。施工“三措”方案要尽可能详细,对现场的人员组织、危险点、预控措施、全过程技术把关等内容要全面准确。施工前对每个参加施工人员及现场运行人员进行交底,使每个人都对整个施工过程所有内容能完全掌握。
4.2从施工日志体现全过程
综自改造施工是一项面广点散的工作,如果采取工作负责人全面负责的办法,工作负责人的压力非常大,工作班成员的积极性也低,责任意识也会淡薄,从而影响施工的安全与进度。为此我们在变电站改造施工中,充分利用施工日计划和施工日志的办法解决了这一难题,并大大提高了工作效率。施工日前一天晚上就将次日的施工计划编制好,将各项工作详细分解到人,并且交代了各工作点的危险点及预控措施,做到责任到人,当日工作前逐一交待,使得工作多而不乱;施工日志则记录每日的工作完成情况、工作中存在的问题及解决措施。
4.3继电保护安全措施票-小措施大作用
尽管从某一方面来说作为进入现场工作的一张通行证的工作票具有一定作用,但是在较为复杂情况下,这样做就远远不够了。在复杂的合自动化改造施工和220kV以上保护调试工作中,当进行拆除与运行设备相关的连线过程中,往往需要处理在二次回路中接临时安全措施线,这就意味着大量繁琐而必须的步骤不能缺少。为了更好解决这个问题,同时在保证安全至上的前提下,即对工作负责的同时又对自己安全负责,就提出了继电保护安全措施票措施,具体来说,继电保护安全措施票包括编号、签发人、工作负责人、工作内容、设备状态、安全措施。每一项安全措施都要列出执行时间和恢复时间,不需要恢复的项目要在恢复栏中写明原因。在改造中通过继电保护安全措施票实施从根本上杜绝了“三误”的发生,同时也可以真正做到层层把关,责任到人,并做到有据可查,提高了保护人员工作责任心和工作态度,大大保证了施工的安全。
4.4过程管理细则化-将关键工作精细化
继电保护故障信息管理系统的主站由通信服务器、数据服务器、WEB服务器、全场信息管理系统、全场监控信息系统、工作站、电力系统隔离装置、网络交换机等部分组成。主站负责对子站上传的数据进行存储和分析,它拥有一个庞大的历史信息数据库,根据实际运行功能提供监查、运算分析、调控决策及制定检修计划。这些信息是主站运行的主要数据,为高层管理用户提供丰富的数据信息,并与其他站、系统之间的数据库相连,达成数据共享。火电厂中的web服务器在原管理系统网络上能够浏览、查阅部分数据,并在权限设置下,通过监控系统数据信息。全场由一个主站控制,其包括网络、站点、服务器等均在同一网段内,将火电厂的GPS数据信息与主站中收集到的信息进行校对,数据的可靠性提高。火电厂监控、保护的对象多,继电保护系统中的子站可以通过主站中的网络交换机传输数据,达到共享。机组中继电保护设备的种类也较多,可以通过GPS数据与主站系统中数据设置同步,达成共享。
(2)采集站的作用
采集站是火电厂继电保护故障信息管理系统的终端数据采集单元,采集站分布于各个用电系统的配电室中,对常用负荷保护装置进行监控、检测,所采集的信息均在监控、检测范围内,并通过端口与其他采集站相连,在统一的信息平台中进行数据共享。
(3)分系统子站的作用
分系统子站中的数据来源于采集站,通过计算机管理采集到的测量、保护、控制、故障信息,与主站连接,将整理后的数据传送至主站。采集站中的数据能够满足子站所需,包括保护信息、监控信息、PLC控制器信息、故障录波器信息等。
2继电保护故障信息管理系统应用评价
火电厂继电保护故障信息管理系统是对火电厂用电装置、调度、信息、故障管理、监控等信息的统一管理平台,通过主站收集的采集站、子站的信息,对信息进行储存和分析,达到数据共享并应用。新建设的继电保护故障信息管理系统的主要特点是具有人机界面,能够实现可视化操作,使电厂中一次电气主接线路设备的运行状态直接显示,能对保护故障信息管理系统的功能需求进行设定。该集成化、网络化、智能化、系统化的管理系统,能对采集到的信息精准的计算分析、归纳整理,对有效数据进行存储。此系统的建立很大程度上减轻了继电保护工作人员的实地勘察工作,取代了人力的抄表、运算、分析等工作,采用计算机计算数据,避免了人工计算出现误差,提高工作效率的同时,对故障信息也能实时监控,在管理系统中实现可视化,为继电保护人员的调度策略和检修计划提供准确的参考依据。本文研究的火电厂嵌入式继电保护故障信息管理系统还较为浅显,应该从多方面作深入性研究,例如,本文未涉及到的发电机、变压器等主设备的诊断、监控,在日后的研究中应该结合工作人员的经验建立更为完善的故障信息管理系统,将火电厂与电网继电保护故障信息管理系统相结合,为火电厂的运行实现智能诊断、准确定位、科学分析。
保护信息独立对数据进行采集,不经远动系统进行传输等处理。各个厂商、各种型号的保护装置应遵循相同的通信协议,以保证系统的通用性与可扩充性。为便于查询与修改,系统中所有设备、数据均具有全局唯一的ID。为便于多个调度终端的操作,系统内信息须可以共享。
2.系统组成
地区电网继电保护故障信息管理系统的系统主站网络结构图如图1所示。从图中可以看出,数据由主站的WEB服务器向区调的WEB服务器单向流动,主站不接受区调的数据信息。WEB服务器需加防火墙及物理隔离。通信服务器与数据服务器分离设置。通信服务器按2台互为热备方式设置,即运行的一台故障时,热备的一台能瞬时自动投入运行。数据服务器按2台双备设置,即正常2台同时运行,承担同样的任务。应用工作站按5台设置,即调度员工作站、运行管理工作站、故障分析工作站、整合计算工作站、专业管理工作站各1台。另设数据备份工作站1台。
2.1子站网络结构与功能。各变电所配置一套保护故障信息远传系统(子站),子站经通信通道向区调主站传送保护故障信息和故障录波器的有关信息。保护故障信息远传系统的信息传送采用10BASE-T接口接入通信ATM设备。保护故障信息远传系统组成一个单独的以太网,能提供以太网接口的设备直接接入该网,不具有以太网接口的通过RS485或者经采集柜转换后接入该网。子站管理系统可实现自检和巡检设备、数据查询和检索备份、数据处理、数据上传、远程通信、信息功能。而且不影响不影响原有继电保护和故障录波装置的正常运行。
2.2调度端功能。
2.2.1基本功能:通信管理功能;图形及监控功能;告警管理功能;数据库管理功能;运行管理;网络功能;安全管理。
2.2.2继电保护专业管理:故障分析高级应用;报表管理;设备管理;统计分析;检修管理;定值单管理。在故障发生后,调度端可以实现以下功能:首先故障信息可按事件的时间发生顺序在调度屏幕上显示。其次,可以综合分析保护与录波的数据并判断设备的运行情况。再次系统还应具备可同时接受多个子站信息的功能。调度端主站具备访问各子站的功能,并能通过站端子站进一步访问具备条件的各种装置。
二、经验与认识
1.与远动系统的关系
由于数据采集对象与处理目的的不同,保护信息和远动信息的主要区别如下:
1.1保护信息主要应用于事故的分析处理等,并非用于实时控制,所以对数据的完整性要求比较高,信息量比较庞大。保护信息主要需求部门是运行管理部门,所以系统也应有运行管理部门负责。
1.2远动信息则主要应用于实时调度服务,信息的实时性要求高(信息传输时间一般1-3S内),但信息量要求不大。从以上分析可以看出,两种信息各有其不同的特点,所以传输过程不宜用相同传输通道。
2.与变电站监控系统的关系
变电站的监控系统主要是针对电厂或者变电站正常运行的监视与控制,系统采集的信息很难满足事故分析功能;而且,保护与录波信息具有一定的特殊性,从而导致监控系统不能处理所有的保护与录波数据。所以保护信息系统应该作为一个独立的子系统。然而为避免系统重复投资同时缩减系统维护的工作量应将保护故障信息管理系统与监控系统的软硬件资源进行合理配置,既节省费用又可方便系统扩充与信息共享。
3.通信接口设计
3.1新建综合自动化变电站。新建110kV及以上综合自动化变电站应一律选用新型的继电保护、故障录波器宇安全自动设备,新型装置可提供双RS-485或双以太网接口(IEC870-5-103规约)。满足监控系统及故障信息管理系统单独组网要求。
3.2常规变电站。常规变电站保护设备基本上为老型微机装置(南瑞LFP系列、四方CSL系列等),通信接口与通信协议完全不一样,所以首要是解决通讯问题,包含设备的硬件接口形式与通信协议的转换。将RS—232,RS—485,RS—422通过各厂家保护设备专用保护管理机转换为统一接口,考虑到RS-485在通信速率与通信距离方面的优势,宜将其他接口转换为此种接口。对开关量和信息不上网的装置,由子站管理机集中搜集和处理送调度端。
3.3数据的规范处理。为便于数据的存储、传送与调用,保护与录波装置提供的信息需按信息的属性进行分类,然后形成规范的数据格式。
4.数据共享
同一个网络内数据共享需要根据不同用户的不同要求设置不同的信息服务,同时一定要考虑数据的安全性兼具一定的灵活性。为满足这三点要求可以考虑使用SQL数据库。针对不同网络的数据共享,则需要综合考虑各个部门对站端数据信息的不同需求,在尽量减少投资的情况下提高系统的管理水平。
5.对站端信息的需求分析
站端信息的需求决定了数据采集部分的设计,所以下面先给出站端信息的需求:
5.1信息可用来提高系统的运行管理水平。该系统在对全网保护与录波装置的实时监测下可大大减少保护由于异常导致的停运事件,提高设备的可用率。
5.2信息可以为系统事故分析提供科学依据。为保证运行人员可以及时、准确的掌握电网的故障情况,从而提高事故分析的准确性,完整的保护动作与录波数据信息应可以迅速准确的传送到调度端。
5.3信息可以作为事故处理的重要依据。当前电力系统的故障信息传递多是经由厂站值班人员的观察汇报实现,信息的实时性与精确性均存在一定问题。特别针对复杂重大事故,全面快速的动作保护信息与录波数据对于事故处理具有相当重要的意义。综上所述,完整、精确、实时性高的站端信息是整个系统核心的组成部分,是整个调度与生产水平提高的根基。
6.站端子站与调度主站传输方式
(1)通信机房与保护室在同一楼内,距离不超过100米。
(2)通信机房与保护室不在同一楼内或距离超过100米。