欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

激光通信技术论文大全11篇

时间:2023-03-27 16:40:56

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇激光通信技术论文范文,希望它们能为您的写作提供参考和启发。

激光通信技术论文

篇(1)

2高速光纤通信系统面临的挑战

高速光纤通信系统快速发展,并得到广泛应用的同时,也存在着一些问题。比如光信噪比(OSNR),OSNR是光纤信号与噪声的比值,OSNR的大小直接影响传输信号质量的优劣,OSNR过大,传输距离会相应减小。另外,色散、非线性效应等问题也是影响高速光纤通信传输的主要因素。色散会使脉冲展宽、强度降低,增大误码率,信号畸变失真,直接降低通信质量。色散一般分为两类:群速度色散和偏振模色散(PMD)。群速度色散和偏振模色散效应对系统的传输性能、传输速率和传输距离都会有明显的损害。PMD的问题在以往的光纤传输中就存在,传输速率越高,PMD的影响也越加明显。光纤传输的衰减、消耗和色散与光纤长度为线性关系,光纤的带宽与光纤长度为非线性关系,这一非线性关系即为非线性效应。非线性效应分为散射效应、与折射密切相关的自相位调制SPM、交叉相位调制XPM和四波混频效应FWM,其中XPM和FWM对系统影响较为严重。因此,研究OSNR、色散和非线性效应问题是解决高速光纤通信系统高质量传输的关键技术。

篇(2)

光纤通信的发展趋势

1、光纤到家庭(FTTH)的发展

FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2~3倍。过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。

发达国家对FTTH的看法不完全相同:美国AT&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。日本NTT发展FTTH最早,现在已经有近200万用户。目前中国FTTH处于试点阶段。

FTTH[遇到的挑战:现在广泛采用的ADSL技术提供宽带业务尚有一定优势。与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前1Mbps—500kbps影视节目的传输可满足需求。FTTH目前大量推广受制约。

对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,AD8L就难以满足。尤其是HDTV,经过压缩,目前其传输速率尚需19.2Mbps。正在用H.264技术开发,可压缩到5~6Mbps。通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。可以认为HDTV是FTTH的主要推动力。即HDTV业务到来时,非FTTH不可。

FTTH的解决方案:通常有P2P点对点和PON无源光网络两大类。

F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。

PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。(按照目前市场价格,PEP比PON经济)。

PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。(2)BPON:即宽带的PON。(3)OPON:采用通用帧处理的OFP-PON。(4)EPON:采用以太网技术的PON,0EPON是千兆毕以太网的PON。(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。

发达国家发展FTTH的计划和技术方案,根据各国具体情况有所不同。美国主要采用A-PON,因为ATM交换在美国应用广泛。日本NTT有一个B-FLETts计划,采用P2P-MC、B-PON、G-EPON、SCM-PON等多种技术。SCM-PON:是采用副载波调制作为多信道复用的PON。

中国ATM使用远比STM的SDH少,一般不考虑APON。我们可以考虑的是P2P、GPON和EPON。P2P方案的优缺点前面已经说过,目前比较经济,使用灵活,传输距离远等;宜采用。而比较GPON和EPON,各有利弊。GPON:采用GFP技术网络效率高;可以有电话,适合SDH网络,与IP结合没有EPON好,但目前GPON技术不很成熟。EPON:与IP结合好,可用户电话,如用电话需要借助lAD技术。目前,中国的FTTH试点采用EPON比较多。FTTH技术方案的采用,还需要根据用户的具体情况不同而不同。

近来,无线接入技术发展迅速。可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,目前已可商用。如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEES02.11g是可以满足的。而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。如果,所属PON的用户群体,被无线城域网WiMAX(1EEE802.16)覆盖而可利用,那么可不必建设专用的WLAN。接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。FTTH+无线接入是未来的发展趋势。

2、光交换的发展什么是通信?

实际上可表示为:通信输+交换。

光纤只是解决传输问题,还需要解决光的交换问题。过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。合理的方法应该采用光交换。但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。显然是不合理的办法,是效串不高和不经济的。正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。

通常在光网里传输的信息,一般速度都是xGbps的,电子开关不能胜任。一般要在低次群中实现电子交换。而光交换可实现高速XGbDs的交换。当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换,没有必要采用不成熟的

大容量的光交换。当前,在数据网中,信号以“包”的形式出现,采用所谓“包交换”。包的颗粒比较小,可采用电子交换。然而,在大量同方向的包汇总后,数量很大时,就应该采用容量大的光交换。目前,少通道大容量的光交换已有实用。如用于保护、下路和小量通路调度等。一般采用机械光开关、热光开关来实现。目前,由于这些光开关的体积、功耗和集成度的限制,通路数一般在8—16个。

电子交换一般有“空分”和“时分”方式。在光交换中有“空分”、“时分”和“波长交换”。光纤通信很少采用光时分交换。

光空分交换:一般采用光开关可以把光信号从某一光纤转到另一光纤。空分的光开关有机械的、半导体的和热光开关等。近来,采用集成技术,开发出MEM微电机光开关,其体积小到mm。已开发出1296x1296MEM光交换机(Lucent),属于试验性质的。

光波长交换:是对各交换对象赋于1个特定的波长。于是,发送某1特定波长就可对某特定对象通信。实现光波长交换的关键是需要开发实用化的可变波长的光源,光滤波器和集成的低功耗的可靠的光开关阵列等。已开发出640x640半导体光开关+AWG的空分与波长的相结合的交叉连接试验系统(corning)。采用光空分和光波分可构成非常灵活的光交换网。日本NTT在Chitose市进行了采用波长路由交换的现场试验,半径5公里,共有43个终端节,(试用5个节点),速率为2.5Gbps。

自动交换的光网,称为ASON,是进一步发展的方向。

3、集成光电子器件的发展

如同电子器件那样,光电子器件也要走向集成化。虽然不是所有的光电子器件都要集成,但会有相当的一部分是需要而且是可以集成的。目前正在发展的PLC-平面光波导线路,如同一块印刷电路板,可以把光电子器件组装于其上,也可以直接集成为一个光电子器件。要实现FTTH也好,ASON也好,都需要有新的、体积小的和廉价的和集成的光电子器件。

日本NTT采用PLO技术研制出16x16热光开关;1x128热光开关阵列;用集成和混合集成工艺把32通路的AWG+可变光衰减器+光功率监测集成在一起;8波长每波速串为80Gbps的WDM的复用和去复用分别集成在1块芯片上,尺寸仅15x7mm,如图1。NTT采用以上集成器件构成32通路的OADM。其中有些已经商用。近几年,集成光电子器件有比较大的改进。

中国的集成光电子器件也有一定进展。集成的小通道光开关和属于PLO技术的AWG有所突破。但与发达国家尚有较大差距。如果我们不迎头赶上,就会重复如同微电子落后的被动局面。

光纤通信的市场

众所周知,2000年IT行业泡沫,使光纤通信产业生产规模爆炸性地发展,产品生产过剩。无论是光传输设备,光电子器件和光纤的价格都狂跌。特别是光纤,每公里泡沫时期价格为羊1200,现在价格Y100左右1公里,比铜线还便宜。光纤通信的市场何时能恢复?

篇(3)

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网[2]。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.2DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

篇(4)

2、电力通信网的构成及特点

微波、光纤以及卫星电路是当前电力通信技术中的主要干线,电力系统特有的光缆和电力线载波等方式是不同支路完成通信的主要载体,并采用明线、电缆、无线等多种通信手段及程控交换机、调度总机等设备组成的多用户、多功能的综合通信网。电力通信的主要包括以下几种方式。

2.1电力线载波通信

对工频电流的传输是电力线路的工作重点。电力线载波完成通信的工作原理是:利用载波机将需要传输的信息转换为高频的弱电流,然后通过电力线路完成传输,其特点是:投资少、可靠性强、收效快,并且可以与电网同步发展建设。另外,此类通信方法还可以通过电力线将底线架空的方式来实现载波信号的传送,这叫绝缘地线载波法,这种载波方法与传统方法相比,具有脱离线路故障以及线路停电等因素的制约的优势,同时,这种绝缘地线还可以在很大程度上起到省电的作用。

2.2光纤通信

由于光纤通信具有抗电磁干扰能力强、传输容量大、频带宽、传输衰耗小等诸多优点,它一问世便首先在电力部门得到应用并迅速发展。除普通光纤外,一些专用特种光纤也在电力通信中大量使用。电力通信不仅包括上面两种,还包括音频电缆、曾经的明线电话和当前流行的扩频通信等。与专供通信的专门网络不通,电力通信的主要特点是:对灵活性与可靠性提出了更高的要求;种类繁多、信息传输量少、强大的实时性;抗冲击性强;具有更复杂的网络构造;机房多为无人看守、通信的范围广大。

3、光纤通信技术在电力通信中的应用

(1)光纤具有比电缆以及铜线更宽的频带面,传输的宽带较大,这对传输的信息量和传输速度都十分有利。人类的需求在信息技术的推动下日益增加,这也对电力通信的网络提出了更高的要求,使其面临的任务更加艰巨。当前电力系统飞速发展、电网实现数字化、信息化建设日趋完善,这对电力系统的信息量传输提出了更高的要求。因此,在整个电力通信中,具有较大传输量优势的光纤通信技术起到了关键性的作用。

(2)光纤通信技术在信息的传输过程中损耗远远低于其他材质的传输材料,还有光纤可以长距离传输,也就是说光纤通信技术可以在脱离中继站的情况下实现信息的远距离传输,大大的减少了中继站的建设费用。在国家经济的推动下,电力通信设计的范围也越来越广,常见的事例有:偏远乡村日益发展的有线电视,不断更新的数字电视等,当前中国,电信干线传输、电力通信和广播电视等网络的覆盖面积越来越广,规模越来越大,工程体系越来越繁杂。大规模的使用光纤通信技术,可以降低传输损耗、降低中继站数量,节省建站资金等。

(3)光纤具有抗腐蚀和绝缘的特性,并且在传输信号的过程中具有抗干扰、防窃听、防泄漏信息的优势,这在很大程度上对电力系统的稳定安全起了保护作用,这对社会运行的正常与否也有决定性的作用。

(4)相对于其他公用网公司,电力系统在通信技术方面有着自己的要求,所以通常电力通信在建设过程中,会根据其特有的要求采用不同类型的光纤进行通信建设。ADSS与OPGW是当前中国特种光缆的类型,这种特种通信光缆主要服务于电力通信。其与众不同的结构与安装情况决定了其与其他光缆的不同,这种材料的价格成本比较昂贵,但它具有低损耗、长寿命、较强安全性和与地线复合等优势,这在很大程度上节省了建设系统网络的成本,并且使电力通信的质量得到了质的飞越。

篇(5)

(2)跨段监测和跨段故障扫描。通过对无源光器件或在光缆跨接处跳纤,就能够实现监测多段连续的光纤线路的远距离在线或者空闲纤芯的工作,针对不同的监测方式,则必须要根据实际的情况对检测的方法进行重新的设计,以实现跨段监测,在线监测只能测试一段业务信号,不能实现跨段监测,只能实现跨段故障扫描,当使用在线检测模式的时候,由于OTDR故障检测信号和业务信号共用纤芯,跨段设计需要在跨段点上增加两套无源的波分复用设备(FCM),使测试信号可以旁路。上面介绍的所有的测试方法,空闲芯检测方法不影响相关光纤的正常工作,也不会对相关的传输信号造成干扰,系统的稳定性高,且构造比较简单,性价比高,且空闲芯检测支持跨段监测和跨段故障扫描,能够扩大监测的范围,因此,当前这种方法应用得最多。

2光缆通信监测系统的硬件平台

光缆通信检测系统式整个电力通信网络中一个非常重要的子系统,为了确保电力通信系统的正常运行,因此应该有一个个系统能够对大规模的光纤网络资源进行管理和维护,且应该支持多级管理和维护,以保证系统运行的稳定性。

(1)一级监控中心。一级监控中心主要负责大区域的监测,去监测多级多层的光缆网络,并且要有一个与检测规模相对应的监测中心,数据通信网可以将各级的监控中心有效的连接起来,并且将他们各自监测到数据传送到总的监测中心,然后对故障进行分析判断,并生成统计报表。

(2)二级监控中心是一级监控中心下面的一个子系统,它主要负责一定区域内的光纤通信监测系统,对这个区域之内的光缆网络进行自动的监测、进行故障定位、数据管理等,并且接收来自相关监测站点的告警信号和相关的数据,对发生的故障进行有效的统计和处理,并且生成报表。

(3)远方监测单元。远方监测单元主要是实现对相关纤芯的监测,并对监测的数据进行采集,然后根据采集的数据绘制出数据曲线,然后进行初级的分析,根据分析的结果对光缆线路进行远程的控制等工作,通过DCN与上一级别的监控中心数据服务器的通信,支持上级监测中心对本监测站的光缆和RTU设备实施监测和管理功能。主控单元:主控制单元主要指的是远方监测单元的主控制板,或者是负责远方监测单元监测控制和数据通信的一个服务中心,它具有网络接口,以便于更好的进行数据的交换,进行远程测试等工作;光切换单元:主要有两种,分别是机械式光路切管开关和电磁式光路切管开关,机械式光路切管开关稳定性好,且抗干扰,但是它的精度比较低,电磁式光路切管开关精度高、体积小、抗震性好,且不耗电不发热,对于降低整个远方监测单元的发热有帮助。

(4)光缆自动监测系统的最大监测距离计算。实际上,光缆自动检测系统的最大监测距离就是OTRD的极限有效检测距离,因为在传输的过程中可能会有光缆熔接头损耗、传输衰耗等因素,所以它的最大有效传输距离应该考虑这些因素。

(5)波分复用模块。波分复用模块主要是由光合波器和光滤波器等这些光纤被动元件组成的,针对和纤在线测试方式,FCM可以将OTDR故障扫描信号波与业务信号波耦合在一起注入到受测光纤中。通过在远端光缆交叉点上设置FCM,可以实现跨段在线故障扫描。

篇(6)

1.2在光纤通信系统中的应用第一,在接入网中的应用。光纤接入网的接入方式可分为无源接入和有源接入两种,其中,无源光网络是一种非常优质的接入方式,具有低成本、光纤少、中心局终端少、雷电影响小、电磁干扰少等优点,后期的运营维护成本也较少,其扩展性强,能随着技术的发展而升级改造。带宽大、传输距离可达20km。正是由于诸多的优点无源光网络接入方式成为光纤接入网的首选接入方式,其中,上行接入技术乃技术关键点和难点,不能采用以往的以太网CSMA/CD媒体接入控制方式进行上行接入,可以将光波分复用技术应用到其中,进行上行接入。基于光波分复用技术的波分多址上行接入方式以波长为用户端ONU的标识,实现上行接入,具有较大的带宽,能充分利用光纤的大带宽,实现对称宽带接入。同时,该种接入方式还能有效解决ONU测距、快速比特同步等困难,在网络管理和系统升级方面具有显著优势。随着光波分复用技术的发展,光波分复用器材价格越来越低,性能越来越优,这有效推动了无源光网络的发展。第二,在城域网建设中的应用。传统电信城域网无法适应数据业务突变性特点,承载多业务的带宽效率低。因此,当前城域网发展的目标为面向数据和多媒体业务应用的IP优化网络。基于IP和光波分复用技术建设的城域网成为新型城域网的主要方案,其采用IPoverWDM传输技术,就是使IP数据包直接在光路上跑,减少网络层之间的冗余部分,该方法省去了中间的ATM层和SDH层,传输效率高、运行成本低,用户网络费用少,非常适合于城域网建设。从通信协议角度来讲,该方案的网络结构层次为IP业务层和光网络层,光网络层又可以分成光网络适配子层、光复用子层、光传输子层,其中,光复用子层为核心,它完成光复用协议的相关内容,复用带宽、保护线路、定位故障点。该方案有效应用了光纤的巨大带宽资源,提高带宽和传输速率,实现数据格式、调制方式的透明化,实现与现有通信网的兼容,支持网络升级,具有极高的推广性和生存性。同时,该方案也有一定缺点,网络管理与其传输的信号和网管分离开来,只是点对点的拓扑结构方式,没有实现真正意义上的光网络。在光纤通信系统中,若没有应用光波分复用技术,则需要多投入n-1根光纤,若光纤通信方式为多个用户协同工作,则适用光波分复用技术能更好突出光波分复用技术的优势,实现单根光纤传输容量成几倍乃至几十倍的增长,更好利用现有的光纤带宽资源。在远距离运输中,适用WDM技术有助于节省大量光纤,降低光纤通信系统的开发建设成本。WDM以波长路由代替传统电子信号路由,以解复用器代替光电转换交换器,消除延迟转发等瓶颈问题,保证传输的透明性。总而言之,光波分复用技术在光纤通信系统中有广阔的应用空间,能带来良好的应用效果,值得大力推广。

1.3光波分复用技术的发展趋势随着光波分复用技术的发展和应用,光纤通信朝着高速率、大传输容量方向发展,光纤通信对光波分复用技术提出更高要求,进一步推动光波分复用技术的发展。作为一种对米元件依赖性强的技术,未来的WDM技术发展方向是研发出更多新的、性能更好的米元件,开发低价的小型集成光元件,如:放大器、光交叉连接器、光分插复用器、滤波器、信号调节器、光存储器等。其实现互通性和标准化服务,还必须实现传输协议和网关标准的规范化。伴随着光纤通信系统的发展,以WDM为基础的光网络层将逐步实现全光网络连接,实现用户与光纤通信网络的亲密接触,到时候,人们可以利用WDM技术实现可视电视、可视会议、远程技术等支援,进行语音、数据、图像等多媒体信息的传输、处理和交换。简单来说,WDM技术的完善将推动广电数字网络的发展,用户对广电数字网络的需求又成为WDM发展的巨大推动力。WDM技术第一次实现了电信号到光信号的转换,它标志着光通信时代的到来。当前的研究重点是密集波分复用技术,其商用水平为320Gbit/s,也就是说,一对光纤可传送400万话路,商用系统的传输能力仅是单根光纤传输容量的百分之一。在光纤网络中,FTTH解决的是光纤通信“最后一公里”的问题,日本、美国、韩国紧锣密鼓的建设FTTH网络,进行大规模建设,将光波分复用就似乎应用其中,发展成为今天的WDM-PON。在我国,FTTH网络的技术越来越多,且理论也较为完善,但却还媒体一项技术被认为是完善的技术,这个时候充分利用无源光网络技术则是可行的一种选择,推动光波分复用技术的发展,逐渐根据社会需求,采用WDM-PON方式建设FTTH网络。

篇(7)

1.2NRZ码与RZ码光信号的码型分为非归零码和归零码2种。NRZ是占空比为100%的码型,通过对半导体激光器的外调制或直接调制即可产生NRZ码,实现简单。但NRZ码受光纤非线性效应的影响较大,带宽受器件特性的限制,在接收端容易出现误码,仅适于在低速率、短距离的系统中使用。目前,NRZ在光接入网和城域网中应用较为广泛。NRZ码的产生过程如图2所示。RZ码是指占空比小于100%的码型,与NRZ码相比,具有更大的非线性容忍度。根据占空比的不同,RZ码型又可以分为占空比为33%的RZ33、占空比为50%的RZ50及占空比为67%的RZ67。RZ67信号由于抑制了载波,又称载波抑制的归零码(CSRZ:carrier-suppressedreturn-to-zero)。目前,有两种方法产生RZ信号:一种是通过对归零脉冲源与信号的同步来产生RZ信号;另一种是产生NRZ信号后对其进行切割。第二种方法成本较低,且能够产生各种占空比的归零信号,因而应用较为广泛。RZ码由于信号占空比小,脉宽窄,在高速时分复用系统中有很大的优势。图3是RZ码的产生过程。NRZ码频谱宽度较窄,适用于WDM系统。RZ码在一个比特周期内的脉冲宽度较窄,平均光功率低,因而受非线性效应的影响较小,另外对偏振模色散(PMD:polarizationmodedispersion)的容忍度较好,适用于长距离传输系统。

2强度调制技术

强度调制技术采用光信号的振幅作为调制对象,即用有光信号通过代表二进制码元‘1’,无光信号通过代表二进制码元‘0’,因此又称为开关键控(OOK:on-offkeying)调制格式。在发射端,通过强度调制器将电数据信号加载到光载波上,形成强度调制信号。OOK信号有2种生方案:1)采用内调制技术,利用电信号改变激光二极管的注入电流来实现有无光信号的输出,生成‘0’码和‘1’码。2)采用外调制技术,利用电吸收调制器或Mach-Zehnder调制器产生强度调制信号。在接收端,采用直接检测的方案,利用光电探测器将光信号转变成电信号进行抽样判决。设定判决阈值为‘1’码光信号强度的一半,抽样时刻电信号强度大于阈值则判为‘1’码,否则判为‘0’码,从而还原出数据信号。

3相位调制技术

相位调制技术通过调制器将所需要传输的电数据信号调制到光载波的相位上,即用0相位代表二进制码元‘0’,用π相位代表二进制码元‘1’,‘0’码和‘1’码信号的强度相同。在接收端,通过Mach-Zehnder延迟干涉仪将相位信号转变为强度信号进行解调。相位调制技术在接收端普遍采用平衡检测的方式,接收机灵敏度相比强度调制信号提高了一倍,因此相位调制信号可以传输更远的距离。同时,由于接收机判决的阈值电平为零,与接收机输入的光功率无关,因而相位调制信号相比强度调制信号而言,对光功率的变化具有更高的容忍度。此外,由于光功率均匀分布在相位调制信号的每个比特中,因而使得码间串扰所导致的信号失真大大降低。这些优点,使得它在抗噪声方面优于强度调制信号,已逐步取代强度调制信号成为光纤通信系统的主要调制格式。在相位调制格式中,目前应用较广泛的是DPSK和DQPSK,实验室中已经产生了D8PSK信号。

3.1DPSK调制格式DPSK是差分编码的相位调制格式,它利用相邻码元之间的相位变化{0,π}来对载波信号进行调制。若数字信息为“0”,则前后码元的相位保持不变,;若为“1”则前后码元之间的相位差为π。电数据信号首先经过差分预编码再进行相位调制。DPSK信号的发射机和接收机结构如图4所示。在发射端,电数据信号首先经过差分预编码后加载到调制器,将激光器射出的光信号调制成具有0、π相位的信号,式①是调制后的DPSK信号表达式,其中,是预编码后的电信号:①在接收端,采用Mach-Zehnder延迟干涉仪将相位信号变成强度信号解调,延迟干涉仪的延迟时间设为一个比特周期。干涉相加和干涉相减的两路光信号,在平衡探测器中转变成电信号并相减,消去一部分噪声。最后经抽样判决,恢复出输入的数据信号。与强度调制信号不同的是,相位调制信号的判决阈值为0,即无论进入判决器的电信号强度是多少,阈值始终不变,降低了光信号强度扰动对接收机的影响。与OOK信号相比,DPSK具有相同的比特率,但接收端却提高了3dB的灵敏度,在相同的输入功率下可以传输更远的距离。

3.2DQPSK调制格式DPSK调制格式中每个符号仅能携带一个比特,近年来,DQPSK调制格式由于有2bit的容量而逐渐成为研究的热点,并开始被商用。DQPSK又称为差分正交相位调制。与DPSK一样,DQPSK也是差分编码的相位调制格式,它用相邻码元之间的相位差承载信息,每一种相位代表2bit的信息。DQPSK系统如图5所示。输入的电数据信号首先经过串并变换,变成两路电信号,这两路电信号经过差分预编码,加载到DQPSK调制器的两臂,将光信号调制成具有上述4种相位的信号。在接收端,采用两个Mach-Zehnder延迟干涉仪将相位信号变成强度信号,再由两个平衡探测器得到两路电信号进行抽样判决。判决后的两路信号经并串变换后恢复出输入数据。与OOK、DPSK等调制格式相比,DQPSK调制格式具有较窄的频谱宽度和较高的频谱利用率。研究表明,DQPSK信号对光纤的色度色散、非线性及偏振模色散等具有较大的容忍度。

3.3D8PSK调制格式D8PSK也是差分编码的相位调制格式,它利用相邻符号间的相位差。D8PSK信号的发射机和接收机结构如图6所示。D8PSK信号可以通过在DQPSK调制器后再级联一个制深度为π/4的相位调制器产生。将预编码后的两路信号分别加载到并联的两个Mach-Zehnder调制器上,另一路信号延迟1bit后加载到π/4的相位调制器上。在接收端,需要4个Mach-Zehnder延迟干涉仪和4个平衡探测器。将延迟干涉仪的相位延迟分别设定为,前两个延迟干涉仪输出的信号经判决后得到两路信号,后两个延迟干涉仪输出的信号经判决后进行异或得到第三路信号。D8PSK调制格式与DPSK、DQPSK相比,具有更高的比特/符号率,同时非线性效应和PMD的容忍度更高。但由于预编码及调制解调方案相对复杂,目前还处于实验阶段。

篇(8)

Abstract: Due to the optical fiber communication with low loss, wide bandwidth, large capacity, small volume, light weight, resistance to electromagnetic interference, is not easy to crosstalk and other advantages, has been the industry favor, very rapid development. This paper describes the characteristics, optical fiber communication technology, and analyzes its advantages, and puts forward some corresponding countermeasures for the development of optical fiber communication in our country, to promote its development trend.

Key words: optical fiber communication technology; trend; FTTH; all-optical network

中图分类号:TN91文献标识码:A文章编号:

1 光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大; (4)信号的分离;(5)信号的接收。

2 光纤通信技术的特点

频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

损耗低 ,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

3 光纤通信技术应用的主要对策

波长就是一个信号系统,把从前的电路交换,换成当前的光路交换。这种交换系统就是把光的传输和交换融为一体,把交换给取消了。希望今年能作出一个演示系统。这个问题是最简单最有效的解决如此困惑传输高速路的问题,宽带推广应用就有很好的基础。

第一个是可变波长激光器、高频调制器;第二是波分复用/解复用器/滤波器;第三是增益平坦和锁定的SCL 波段放大器;第四是RAMAN 放大器;第五是高频光探测器、MEMS光开关。我国建立环保型的微电子和光电子的生产基地,我国的硅石材料是非常丰富的。多晶硅是未来最清洁的能源。

21 世纪,要发展光网络与移动通信式的结合,这是一个很大的商机。光网络与毫米波的结合,如果成功的话,也是很大的具有革命性的进步。再一个是制造高精度的光纤陀螺。这不仅仅是未来航空系统,导弹系统要用它,国外的汽车里面也有陀螺。此外,新型实用化电流传感器、电压传感器,光纤光栅应力传感器,光纤光栅温度传感器。

虽然这几年来,我国光缆电缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国内有近200 家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。

西部大开发是国家的重大策略,国家制定了有利的政策,政府对发展通信等行业也给予了大力的支持。西部是一个地域复杂、分布较宽、通信相对落后的地区。经济大发展中,通信要先行,需要一些与之相适应的光纤光缆及通信电缆的先进产品来配合发展的需求。因此,符合条件的产品将会在这里找到很好的市场,光纤光缆和通信电缆的各种技术、产品及成果都会在西部开发中得到发挥。

4 光纤通信技术的发展趋势

对光纤通信而言, 超高速度、超大容量、超长距离一直都是人们追求的目标, 光纤到户和全光网络也是人们追求的梦想。

(1) 光纤到户

现在移动通信发展速度惊人, 因其带宽有限,终端体积不可能太大, 显示屏幕受限等因素, 人们依然追求性能相对占优的固定终端, 希望实现光纤到户。光纤到户的魅力在于它有极大的带宽, 它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低, 不久可降到与DSL 和HFC 网相当, 这使FTTH 的实用化成为可能。据报道, 1997 年日本NTT 公司就开始发展FTTH, 2000年后由于成本降低而使用户数量大增。美国在2002 年前后的12 个月中, FTTH 的安装数量增加了200%以上。在我国, 光纤到户也是势在必行, 光纤到户的实验网已在武汉、成都等市开展, 预计2012 年前后, 我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点, 伴随着相应技术的成熟与实用化, 成本降低到能承受的水平时, FTTH 的大趋势是不可阻挡的。

(2) 全光网络

传统的光网络实现了节点间的全光化, 但在网络结点处仍用电器件, 限制了目前通信网干线总容量的提高, 因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点, 节点之间也是全光化, 信息始终以光的形式进行传输与交换, 交换机对用户信息的处理不再按比特进行, 而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性, 并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率, 网络结构简单, 组网非常灵活, 可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术, 它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看, 形成一个真正的、以WDM技术与光交换技术为主的光网络层, 建立纯粹的全光网络, 消除电光瓶颈已成未来光通信发展的必然趋势, 更是未来信息网络的核心, 也是通信技术发展的最高级别, 更是理想级别。

5 结束语

现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

篇(9)

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的趋势及展望

目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展

目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

(三)实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical

以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

(六)解决全网瓶颈的手段一光接入网

近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。

参考文献:

[1]赵兴富,现代光纤通信技术的发展与趋势.电力系统通信[J].2005(11):27-28.

篇(10)

二、当前光纤通信技术的优势

1.通信容量大、频带非常宽

在光纤的通信系统中,光纤的传输带宽比电缆或铜线大很多,单模光纤的宽带具有几十GHz•km。对于单波长光纤通信系统来说,因终端设备出现电子瓶颈反应,而使光纤带宽的优势难以发挥出来,一般选取各种不同技术进行传输容量的增加,尤其在当前密集波分复用技术的应用中,极大地使光纤的传输容量得到了增加,能够让光纤的传输容量扩大几倍甚至可达到几十倍之多。从现在来看,单波长光纤通信的传输速率通常在2.5Gbps至10Gbps之间,在采用该技术可以实现的是多波长传输系统的传输速率比单波长传输系统高出数百倍之多,其巨大的带宽优势使得单模光纤成为当前电信宽带综合业务网的首推介质。

2.光纤芯径超细、重量非常轻、柔软无比、铺设简易

光纤的芯径非常细,其直径大约是0.1毫米,采用多芯光纤构成光缆的直径也相当的小,八芯光缆的直径大约为10毫米之小,而标准的同轴电缆却达到47毫米之大。如若选取光缆作为信道传输,可使减少传输系统占用大的空间,让空间得到有效的释放,使地下管道拥挤的难题得到解决,同时极大地节省了地下管道的投资成本;另外,光纤的重量非常轻,柔软性十足,其重量与电缆比较起来轻很多,光纤通信可以应用在人造卫星、宇宙飞船与飞机上面,能够有效减轻卫星、飞船与飞机等的重量,其发展意义不言而喻。

3.电磁抗干扰性能相当强

大家都通晓光纤主要是以石英制作而成的绝缘性材料,绝缘性非常好,且不易于被腐蚀。同其有关的还有一个优势是光波导对电磁干扰的免疫力,自然界中的太阳黑子活动、雷电与电离层的变化都难以对它进行干扰,甚至人为释放的电磁也不会受到其中的干扰与影响,并且还能应用在同电力导体密切组合构成一种复合光缆或者与平行铺设到高压电线。其作为非导电介质的一种,交变电磁波在其中不会产生同信号毫无相关的噪声。如此说来若将它平行铺设到高压电线与电气铁路旁,也难以受到电磁干扰的影响。

4.中继距离长、损耗相当低

石英光纤是当前光纤通信系统中使用最多的一种,该种光纤的传输损耗与任何一种传输介质的损耗相比较都显得低,所以由其构成光纤通信系统的中继距离比起其他的系统要长很多。若将来选取非石英极低损耗的光纤,从理论而言其损耗可以下降得更加低。这说明经由光纤通信系统能跨越更加大的无中继距离;而对于长途传输线路而言,因减少了中继站的数目,所以大大降低了系统成本与复杂性。在当前由石英光纤构成的光纤通信系统中,其最大中继距离有200多公里,而由极低损耗非石英光纤组成的通信系至数公里之长,这样有利于提高通信系统的可靠性与稳定性,更可降低其运作成本。

5.保密性能非常好

随着不断发展的科学技术,电通信方式的保密性存在着一定的缺陷,易于被人偷窃监听,只需在电缆或明线周边布设一个接收器,就能够获得传送的信息,而光纤通信系统却可解决反窃听这一难题,其保密性非常好。光纤通信同电通信有所不同,光纤的设计独特无比,在光纤中传输的光波基本没有跑到光纤的外面,已被局限于光纤的纤芯与包层邻近进行传输。尽管在弯曲半径十分小的地方,泄漏的可能性也非常微弱。所以泄漏到光缆之外的光基本上没有,更况且中继光缆与长途光缆通常均埋在地下,由此可知其保密性能相当不错。

三、电信光纤通信技术的发展与实际应用

光纤技术的发展有赖于通信技术的不断发展,在全新时代的背景下,人们对光纤通信需求将与日俱增中,下面简要介绍四种光纤通信技术的应用情况。

1.电信光纤到户接入技术

随着社会经济的迅速发展,人们的物质生活水准得到了大大的提高,网络信息传递的高速化已成为每个人心目中所要追求的目标,光纤到户接入技术却能使人们的这一种需求得到满足,该技术能够实现宽带波长的不断变化,也能允可同时使用多个用户,使信息传输的高速化得到了实现,让多媒体技术与高速信息传输真正走进人类社会的实际应用当中去。

2.波分复用技术

波分复用技术能够按信道光波的频率或不同波长,以光纤的广播当作信号载波,经合波器进行有效合并,通过一根光纤传输,采用分波器于接收端处把不同的光波加以分开,这样可实现复用传输。在波分复用技术应用的过程中,使光纤通信的大容量传输得到了实现,同时极大地节省了通信运作成本,使通信技术获得了一个新的制高点,并且为运营商们提供了非常大的便利。

3.光联网的实现

波分复用技术主要是以点至点为基础的通信,若在光路上也能让交叉连接得到实现的话,就能够产生光联网。光联网的发展潜力可谓前途一片光明,不但让网络得到了扩展,而且使网络透明性增加了不少,其必然将会成为全球电信网络建设的核心项目。

4.全新一代光纤

随着不断增加的IP业务量,电信网络架构传输容量大的光纤就成了全新一代网络应用的根本。传统旧有的一模光纤在进行超高速长距离传输时,已显得有点乏力,全波光纤作为全新一代的研发已经拉开序幕,同时也是电信通信业作为开发的核心目标。

篇(11)

1.光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2.光纤通信技术的特点

(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3.光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)