绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇纳米科技论文范文,希望它们能为您的写作提供参考和启发。
所谓纳米药物指的是纳米级别的用来防治或者辅助治疗的药物,纳米药物具有轻松通过体内生理屏障的显著优点,纳米级别药物与传统的宏观药物在其分布、吸收以及代谢和排泄等角度与传统的宏观药物截然不同。
1纳米级别的药物能够跨越体内各种屏障
如果我们选择合适的纳米材料来制备纳米药物,可以有效的穿透生物膜的并透过血脑屏障,可以将药物直接输送到大脑内部对疾病进行治疗。采用纳米技术制备的药物载体和抗体能够大幅度提高穿透人造膜和天然膜的能力,并蓄积在小肠,使药物的生物利用率显著改善。
2纳米药物的控释作用
所谓纳米药物的控释作用指的是载有药物的纳米微粒在其控释的过程中能够显现出特有的规律性,囊壁的溶解及酶和微生物的作用,均可使囊心物质向外扩散。鉴于上面所述,我们可以根据控释的目的选择合适的囊材使载药纳米微粒在局部滞留并达到有效浓度,这样做不仅仅大幅度提高了用药的疗效,还不会给全身带来不良毒性。对于需要长期进行治疗和监控的疾病,起作用和功效是十分显著的。因此,纳米控释给兽药系统带来了极大的方便。
3纳米药物的靶向性
目前,抗球虫药物以及抗菌药物在畜牧业的养殖中被普遍使用,泛滥和不合理使用的现象也尤为明显,从而直接导致目前很多禽畜的主流病原体大肠杆菌、金黄色葡萄球菌、沙门氏菌等等早已经对大多数的抗菌药物产生了耐受性,甚至有些病菌已经产生了多重的耐受性,这些问题都是可以通过纳米载药技术来进行有效解决的。一方面,我们可以先将兽药进行纳米处理,可以显著提高其溶解率、靶向作用同时得到控制其释放的效果。这样可以大幅度提高药物的治疗效果,减少对药物的使用剂量,能够在不换药的前提下就解决了药物残留问题;另一方面,采用纳米技术,可以研制出具有广谱、高效、无毒、无副作用的新型兽药,从根本上解决目前因大量使用兽药而带来的种种不良后果。
纳米技术在家畜遗传育种中的应用
人们对于健康家畜的定义,无外乎生长快、瘦肉率、耗料低、胴体品质好等要求,但是传统的育种方法需要少则几年,多则几十年的育种时间。如果我们在分子水平上进行相关的改变,即对DNA链上的碱基序列做相应改变,就可以大大缩短育种时间,而且可以获得我们需要新品种。DNA上的核苷酸序列是纳米级的,所以要用到纳米技术。例如我国科学家已经用STM以及AFM等纳米技术,对DNA分子进行分离,并写出了“DNA”三个字母,标志着人类在纳米技术对生物分子操作方面取得了巨大成就。通过这一事实我们可以发现,人类可以通过纳米技术,对分子级别的事物进行操作,以探寻生命的奥秘,定向地对遗传物质进行改造,以获得所需性状的生物体。这在生物育种上是有极大的作用的,可以很好的对动物的品种进行改良,同时,通过分子探针,还可以在遗传物质上对生物的病情进行探测,以从根本上解决问题。所以,在遗传育种上,纳米技术的应用是至关重要的。
纳米技术与畜禽产品质量
对于新装修的房间,一些装修材料、家具等物品会散发出有害气体,导致室内空气中的甲醛、甲苯等有机物质的浓度高于室外,有的甚至会高于工业区,不利于人们的健康,因此需要对其室内的空气进行净化。而相关的研究表明,光催化剂———纳米TiO2可以有效降解室内甲醛、甲苯等有机有害物质,并且其所达到的效果是最好的。另外,由于应用纳米TiO2的光催化功能在杀死室内环境中的细菌的同时,还可以降解由细菌释放出来的有毒复合物质,因此,纳米TiO2光催化剂也被安放于医院的病房、手术室等区域以实现杀菌、除臭的作用。
脱硫催化剂的应用
NanoscienceandNanotechnology–theSecondRevolution
Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.
Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor
I.引言
纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。
II.纳米结构的制备———首次浪潮
有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。
“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。
很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。
在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。
III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮
为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。
—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。
—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。
—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。
—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。
—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。
—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。
—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:
1)大的戳子尺寸
2)高图形密度戳子
3)低穿刺(lowsticking)
4)压印温度和压力的优化
5)长戳子寿命。
具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。
IV.纳米制造所面对的困难和挑战
上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:
1.在一块模版上刻写图形
2.在过渡性或者功能性材料上复制模版上的图形
3.转移在过渡性或者功能性材料上复制的图形。
很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。
随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。
另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以发表和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技发表协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行发表与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
研究论文
(1)多壁纳米碳管对磷酸铁锂正极材料热稳定性及表面形貌的影响 mária filkusová andrea fedorková renáta
oriňáková andrej oriňák2 zuzana nováková lenka kantárová
动态
(7)第十一届全国新型炭材料学术研讨会征文通知 无
研究论文
(8)氧化硅包覆单壁碳纳米管纳米电缆的制备 张艳丽 侯鹏翔 刘畅
动态
(13)thc系列耐高温阻燃热固性酚醛树脂 无
研究论文
(14)多壁碳纳米管的对氨基苯磺酸钠修饰及对cu^2+的吸附性能 郑净植 胡建 杜飞鹏
动态
(19)《新型炭材料》2011年sci影响因子0.914 无
研究论文
(20)磁场处理对ldpe及其碳纳米管复合材料电导特性的影响 韩宝忠 马凤莲 郭文敏 王艳洁 蒋慧
动态
(25)西安诚瑞科技发展有限公司 高低温炭化炉、液相(气相)沉积炉、石墨化炉 无
研究论文
(26)碳纳米管/铁氰化镍/聚苯胺杂化膜对抗坏血酸的电催化氧化 马旭莉 孙守斌 王忠德 杨宇娇 郝晓刚 臧杨 张忠林 刘世斌
(33)水辅助化学气相沉积制备定向碳纳米管 刘庭芝 刘勇 多树旺 孙晓刚 黎静
(39)通过高温裂解酚醛树脂制备气体分离用炭膜——裂解温度及臭氧后处理的作用分析 mohammad mahdyarfar toraj
mohammadi ali mohajeri
动态
(46)纳米植物炭黑 无
研究论文
(47)中孔炭负载二氧化钛光催化剂的制备及降解甲基橙 因博 王际童 徐伟 龙东辉 乔文明 凌立成
(55)co2捕集用具有多级孔结构纳米孔炭的制备 唐志红 韩卓 杨光智 赵斌 沈淑玲 杨俊和
研究简报
(61)高分散性氧化石墨烯基杂化体的制备及其热稳定性增强 张树鹏 宋海欧
(66)相互连接的碳微米球的制备与磁性 文剑锋 庄叶 汤怒江 吕丽娅 钟伟 都有为
(71)碳化物衍生碳涂层的表面划痕织构能降低摩擦 眭剑 吕晋军
动态
研究论文
(1)多壁纳米碳管对磷酸铁锂正极材料热稳定性及表面形貌的影响 mária filkusová andrea fedorková renáta
oriňáková andrej oriňák2 zuzana nováková lenka ?kantárová
动态
(7)第十一届全国新型炭材料学术研讨会征文通知 无
研究论文
(8)氧化硅包覆单壁碳纳米管纳米电缆的制备 张艳丽 侯鹏翔 刘畅
动态
(13)thc系列耐高温阻燃热固性酚醛树脂 无
研究论文
(14)多壁碳纳米管的对氨基苯磺酸钠修饰及对cu^2+的吸附性能 郑净植 胡建 杜飞鹏
动态
(19)《新型炭材料》2011年sci影响因子0.914 无
研究论文
(20)磁场处理对ldpe及其碳纳米管复合材料电导特性的影响 韩宝忠 马凤莲 郭文敏 王艳洁 蒋慧
动态
(25)西安诚瑞科技发展有限公司 高低温炭化炉、液相(气相)沉积炉、石墨化炉 无
研究论文
(26)碳纳米管/铁氰化镍/聚苯胺杂化膜对抗坏血酸的电催化氧化 马旭莉 孙守斌 王忠德 杨宇娇 郝晓刚 臧杨 张忠林 刘世斌
(33)水辅助化学气相沉积制备定向碳纳米管 刘庭芝 刘勇 多树旺 孙晓刚 黎静
(39)通过高温裂解酚醛树脂制备气体分离用炭膜——裂解温度及臭氧后处理的作用分析 mohammad mahdyarfar toraj
mohammadi ali mohajeri
动态
(46)纳米植物炭黑 无
研究论文
(47)中孔炭负载二氧化钛光催化剂的制备及降解甲基橙 因博 王际童 徐伟 龙东辉 乔文明 凌立成
(55)co2捕集用具有多级孔结构纳米孔炭的制备 唐志红 韩卓 杨光智 赵斌 沈淑玲 杨俊和
研究简报
(61)高分散性氧化石墨烯基杂化体的制备及其热稳定性增强 张树鹏 宋海欧
(66)相互连接的碳微米球的制备与磁性 文剑锋 庄叶 汤怒江 吕丽娅 钟伟 都有为
(71)碳化物衍生碳涂层的表面划痕织构能降低摩擦 眭剑 吕晋军
动态
李国红与生物物理所研究员朱平经过四五年的密切合作与不懈努力,成功建立了一套染色质体外重建和结构分析平台,利用一种冷冻电镜单颗粒三维重构技术,在国际上率先解析了30纳米染色质的高清晰三维结构,在破解“生命信息”的载体――30纳米染色质的高级结构研究中取得了重大突破。朱平说,这一结构提示了30纳米染色质纤维以4个核小体为结构单元,各单元之间通过相互扭曲折叠形成了一个左手方向的双螺旋高级结构,它还明确了组蛋白H1在30纳米染色质纤维形成过程中的重要作用。
纳米贵不贵?好不好吃?
1983年,刘忠范大学本科毕业后便赴日留学。他先后在日本横滨国立大学、东京大学取得了硕士和博士学位,并在东京大学和分子科学研究所做博士后。
攻读博士期间,刘忠范师从国际著名光电化学家藤岛昭先生做研究,他很为老师的工作精神所感动,年过半百仍扑在事业上。
自幼养成的勤奋习惯和藤岛昭先生的表率,使刘忠范在日学习期间取得很大成功,获得了日本政府奖学金并在《Nature》杂志上发表了学术论文。与中国不同的社会环境,也让埋头读书不问世事的刘忠范更加开朗起来。这时,北京大学化学系的教授蔡生民找到了他,不止一次地邀请刘忠范回国,并且用真诚的话语
打动了他。
他选择了北大。十几年后回忆起来,刘忠范仍觉得,“北大是最适合我的”。
在研究领域,刘忠范选择了纳米。
人们接受纳米有一个过程。1997年9月27日,北京大学成立了纳米科技中心,这是中国高校的第一个跨院系、跨学科从事纳米交叉学科研究的综合性研究中心。刘忠范接到很多电话,有人问:“听说你们搞出一种纳米,贵不贵?好不好吃?”刘忠范只好幽默地回答他,“纳米太小了,既不好吃,恐怕也吃不饱。”
近年来,纳米技术掀起了阵阵热潮,也渐渐出现在人们生活中。纳米技术将为目前许多技术难题提供新的解决方案和思路,也会进一步提高人们的生活水平并有可能在很大程度上改变人们的生活方式。1986年诺贝尔物理奖得主罗雷尔说,曾重视微米科技的国家,今天都已成为发达国家,而纳米科技则为人们提供了新的发展机遇,今天重视纳米科技的国家必将在未来的高科技竞争中独领。
科技部最年轻首席科学家
1994年,刘忠范申请了科技部攀登计划项目,经费500万元。刘忠范成为这个项目的首席科学家,也是当时科技部最年轻的首席科学家。他从此开始了纳米攀登之旅。
“当时,我们是做纳米级的信息存储技术,相当于超级光盘。”刘忠范说,这个项目共有三个承担单位,还包括当时的北大电子学系——现在的信息科学技术学院的吴全德院士、薛增泉教授以及吉林大学化学系的李铁津教授。吴先生尽管年事已高,但对‘纳米’非常敏感。吴老先生和薛教授都是做信息技术的,尤其有感于我国微电子技术发展的曲折和落后现状,而纳米技术应该是一个难得的机会。因此,“我们之间产生了强烈共鸣,觉得应该酝酿一个计划,大张旗鼓地在纳米领域开拓——这就是北京大学纳米科技中心成立的初衷”。
1993年,刘忠范回国后,他亲手建立起光电智能材料研究室。起初什么都没有,完全从零开始做。有几间空房子,每一个插头在什么地方,都要刘忠范自己设计后找人安装,桌椅板凳都是他自己一件件买来的。搞前沿研究需要先进设备,为了购买这些设备,他省吃俭用,甚至到了抠门的程度。刘忠范花50多万元买了一台用于看原子和分子的STM仪器,这差不多是国内最早进口的洋玩意。仪器需要配置防震台,由于资金紧张,刘忠范只能带着学生亲自动手。
创业是艰辛的。当年的刘忠范人称“拼命三郎”,每天最早进楼的是他,最晚一个走出实验室的还是他。由于总是工作到深夜,楼门早已关闭,因此他经常翻越化学楼的铁门,“因此练就了一副好身手”,他自嘲道。
科研工作很辛苦,但也充满了快乐。在刘忠范眼里,研究的一大乐趣就是和学生一道创造故事。学生一个错误的实验设计带来了热化学烧孔存储技术;一位女同学的顽固不化和他的坚持加包容收获了石墨烯的偏析生长方法,进而开启了石墨烯生长过程工程学研究之门。回忆起这些往事,刘忠范的脸上洋溢着成就感。
“要向两头进军”
十几年来,中国纳米科技发展得飞快。从数量上看,已经与美国并驾齐驱,论文的档次也越来越高,尽管原创性和影响力尚有待提高。刘忠范为中国纳米的发展简单勾勒了三部曲:科学、技术和工程。
谈起与自己一同成长的北大纳米科技中心,刘忠范说,北大的纳米研究,总体上还处于纳米科学的层面。经过十几年的努力,已经取得了长足进步,在国内外拥有了一定的学术影响和地位,化学学院、信息学院和物理学院的纳米团队功不可没。当然,我们还缺少重大突破,需要从高原到高峰的飞跃。
刘忠范特别推崇团队精神和团队文化建设。说起他的研究团队,他总是强调,他所取得的些许成绩,都是团队成员共同拼搏、共同奋斗的结果。他的研究团队,从最初的几个人、十几个人,发展到今天的几十个人,不断地壮大着,也形成了独具一格的团队文化。正是这样的团队文化,带来了一个又一个的学术研究成果,也使北大成为国际知名的低维碳材料研究基地。他的信条是:人才决定潜力,机制决定效率,文化决定高度。
刘忠范最自豪的不是他发表的300多篇学术论文,而是培养了一批热爱科学、热爱纳米的弟子。他的弟子绝大多数都在国内外知名学术机构从事科研工作。他更希望将来有一天他被称为教育家,而不仅仅是一名科学家。
“ 责任是通向伟大的代价”,这是丘吉尔的一句名言。刘忠范深深地感受到越来越多的社会责任。儿时刻骨铭心的贫穷经历使他对农村教育和失学儿童问题极为关注,并力所能及地为此做些事情。他设立的奖学金拯救了不少濒临失学的儿童。人生是永不停息的马拉松。前人在指引着我们,后人在追赶着我们,我们始终处在激烈的竞争中。刘忠范正不断翻山越岭,向科学高峰攀登。(来源:科技日报,本刊有删节)
IUTAM 大会委员会是一个常设委员会,负责每4 年1 次的世界力学家大会(ICTAM) 的组织工作。此前,我国学者周培源、林同骥、钱令希、郑哲敏、王仁、庄逢甘、程耿东、白以龙分别担任过大会委员会委员。
以基础、应用基础为先导 构建知识、技术创新的平台
近年来,插入化学这一概念已逐渐被国际学术界认可并成为研究热点,十年间发表的SCI论文数目几乎增加了一倍,2004年达到2029篇。以长江学者段雪教授领衔的科研团队通过这一前沿领域的研究,在国内外著名学术刊物上发表被SCI收录研究论文100余篇,为完善和丰富超分子插层组装理论做出了贡献,奠定了在国际、国内相关研究领域的学术地位;近5年以来,共申报国际发明专利17项(已公开5项,并有2项进入国家阶段),申报国家发明专利99项,授权国家发明专利32项、公开国家发明专利29项,针对结构与技术创新构筑了较为完整的自主知识产权体系。基于应用基础研究和工程化及产业化的科技成果,2004年获国家技术发明二等奖1项,2001年获国家科技进步二等奖1项,还先后获得省部级成果奖励5项,形成了稳定的、有特色的、具有国际影响力的优势研究方向。
开发共性、关键技术 为行业科技进步服务
作为一家具有行业特色的高校,学校针对行业中一些关键、共性技术,组织研究、攻关,并将成果及时在企业中推广应用,这些成果在解决经济建设、社会发展和国防建设中的重大问题方面做出了突出贡献,产生了显著的经济效益和社会效益。
如,“丁基橡胶生产技术“于2002年8月用于工业生产中,生产结果表明,该技术已处于国际先进水平。这一关键技术的攻克为企业创造了5亿多元的经济效益。“大型高效搅拌槽/反应器的成套技术及装置”这一共性技术的开发,结束了我国关键的大型搅拌槽/反应器设备长期依赖进口的历史,与国内外技术相比,具有适应性强、单台设备生产能力高、操作弹性大、性能价格比高等特点,有明显的竞争优势。“特殊物料分离技术”已应用在高粘度、易自聚、含固体颗粒物料等270多套装置中。2003年对应用该技术的10家企业近三年的情况作了调查,他们开具的证明表明,三年内取得经济效益13亿元,节省蒸汽一百多万吨,减少化学污染物料排放约4万多吨。这一共性技术的开发应用,对推动行业的科技进步,大幅度提高生产能力、产品质量和经济效益,减少能耗物耗和污染物排放等方面做出了重要贡献。
上述案例说明,关键技术、共性技术对推动行业的科技进步,提高行业的国际竞争力有着十分重要的作用。与企业不同,学校开发的这类技术不求自身独占,而总是力求让更多企业使用,以充分发挥它在推动经济和社会发展中的作用。
扶植、培育新的生长点 加强对高新技术的研究开发
近几年,学校生物化工技术的研究开发得到了长足的发展,环境领域项目明显增加,计算机应用技术研究持续发展,农业工程有关的研究工作开始显现成效。在生物技术加工过程,特别是微生物发酵平台技术和脂肪酶催化,在国内有一定的优势。在生物资源和生物能源领域,开发了从青霉素菌丝体中提取麦角固醇、壳聚糖和氨基葡萄糖的新工艺,先后获得2001年中国石油化工科技进步二等奖,2002年国家发明二等奖。酶法合成生物柴油的小试已于2004年1月通过了技术鉴定。在分离工程和中药现代化方面,开发了中药连续多级逆流多级萃取设备及工艺,获中国商业联合会科学技术进步一等奖、2005年国家科技进步二等奖。
依靠现代化工技术 改造和建立新型化工产业
现代化工技术主要特点是“绿色化,资源高效、集约化,进而改善产品结构,降低资源消耗并从根本上减少环境污染。”利用现代化工技术改造传统化工基地,建立新型化工产业,提高其竞争力具有举足轻重的作用。如:具有国际领先或先进水平的研究成果超重力技术,在长江学者陈建峰教授的带领下,在较宽领域中进行了大量有关超重力高新技术的研究。学校首创超重力法制备纳米材料技术,成功合成出纳米碳酸钙、纳米阻燃剂、纳米电子化学品、纳米白碳黑、复合纳米材料等产品,并成功实现纳米碳酸钙的大规模工业化生产;在世界上首先实现了超重力法油田注水脱氧的商业运行;协助美国Dow Chemical公司建成了世界上最大的超重力反应分离装置,取得了巨大的经济效益;多项超重力反应与分离示范技术已出口美国、新加坡和台湾地区。中心在超重力反应与分离、制备纳米材料技术以及高技术产业化方面走在世界的前列,取得了一批具有国际影响的成果:2001年获北京市科技进步一等奖、2002年获中国高校科学技术(发明)二等奖、2003年获国家技术发明二等奖,近200篇,申请国际发明专利9项(已授权2项),申请国家发明专利35项(已授权10项)。
积极开展科研组织的创新
结合当前国家经济社会发展的重大需求,在基地、团队建设基础上,学校组建安全科学与监控工程中心、国防新材料研究中心、资源与环境研究中心、能源工程研究中心。在这四个中心建设的指导思想中,首先改变了学科建设以学科点申报为导向和目标的习惯做法,其所涉及研究领域大多数尚未完整体现于现有学科专业分类体系中,而是紧密结合了经济社会发展面临的重大问题。学科专业是知识划分和知识生产制度化的产物,学科制度通过规范有效地推动了学科新知识的增长,但同时形成了学科之间相对封闭甚至冲突,不利于学科之间的交流,从而在一定程度上抑制了学科内部的知识创新活力。其次,打破现行人员行政隶属关系的壁垒,包括绩效考核体系、利益分配管理办法等方面对学科交叉与融合形成的人为阻滞因素。第三,通过人事聘任制度的深化改革,加强学科建设中个体责任意识,大力扶植各层次科技创新团队。
加强统筹、协调 实现集成科学和技术、工程的重点突破
由于历史原因,学校在科研基地建设方面相对薄弱。通过努力,学校近年新增2个北京市重点实验室、2个教育部重点实验室和1个教育部工程中心。
1研究形状和趋势
纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。
纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物 FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。 加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。
2国际动态和发展战略 斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。
最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。 3国内研究进展
我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。