系统设计论文大全11篇

时间:2023-03-23 15:11:31

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇系统设计论文范文,希望它们能为您的写作提供参考和启发。

系统设计论文

篇(1)

根据某省电力公司的具体情况,本文所设计的电力行业统计分析系统的总体架构分为数据源、数据仓库架构、数据访问架构以及元数据管理等。

1.2ETL设计

用OWB(OracleWarehouseBuilder)工具对ETL进行实现,其任务为侦测ETL事件,以便启动处理过程,同时跟踪ETL处理日志。ETL的处理过程如下:通过Excel导入管理工具或者OWB将数据源的数据抽取、转换、加载到ODS层的数据缓冲区的增量数据库中;将ODS层的数据缓冲区的增量库的数据抽取、转换、加载到ODS层的数据缓冲区的历史库;将ODS层的数据缓冲区的历史库的数据抽取、转换、加载到ODS层的统一视图信息区的增量库;将ODS层的统一视图信息区的增量库的数据抽取、转换、加载到ODS层的统一视图信息区的全量库;将ODS层的统一视图信息区的全量库的数据抽取、转换、加载到ODS层的对外数据服务接口区;将ODS层的统一视图信息区的全量库的数据抽取、转换、加载到DW(数据仓库)层。

1.3系统数据结构设计

1.3.1ODS设计

存放经过清洗、转换、标准化以后的数据,并对外提供数据服务。为企业提供统一的数据视图,满足业务部门实时获取数据和业务部门间对企业级的数据共享的需求。因此将ODS设计划分为两大部分:数据区、服务区。并按主题进行组织、近实时的集成数据存储,以便最终用户能够快速查询近期细节生产数据。

1.3.2DW(数据仓库)设计

数据仓库模型分为两个区域:核心数据区(企业核心数据历史细节区域)和轻度汇总数据区。核心数据区的数据模型设计依据企业数据模型进行设计,但是每个实体都要加上相应的时间戳。核心数据区的模型相对稳定。轻度汇总数据区的模型设计依赖于分析需求。数据仓库模型是符合3NF的带有时间戳的关系模型。具体操作时应对数据仓库需求进行分解,按业务主题进行组织,将业务主题相关的数据组织成主题域,并对各指标进行分析。

1.3.3DM(数据集市)设计

数据集市的数据分为两类:一类是基于数据仓库的细节数据或轻度汇总数据进行的统计分析,另外一类数据是基于统计分析进一步分析挖掘的数据。数据集市的建模方法是通过调研企业经营的战略目标、综合查询分析系统、同业对标系统、业务管理目标、业务报表等,对这些资料进行分析。根据一体化平台关于分析主题进行细化,构建统一的核心数据集市模型。数据集市模型采用星形模型建模。

1.4元数据管理设计

元数据存储在专用的数据库中。有一类独立于其它工具,被称为元数据知识库(MetadataRepository)的工具,它们为元数据提供一个集中的存储空间。本设计中采用基于OracleOWB(OracleWarehouseBuilder)的元数据管理方案,各个工具集中通过OWB进行管理其中,元数据管理流程主要包括:元数据获取流程(手动和自动)、元数据访问权限管理流程以及元数据流程。元数据知识库通过元数据获取流程,来整合多个源(工具、数据库和流程)中的不同元数据。通过元数据获取流程,将元数据存入知识库中后,为了有效的维护和管理元数据,保持其对于整个数据仓库系统的有效性、准确性和及时性,还需要完成许多管控工作。元数据的方式有很多种:包括从属关系图(dependencydiagrams),数据沿袭表(datalineage),影响分析(impactanalysis),高级搜索,柔性报表,元数据术语表等。在实际工作中,应该有一套具体的流程来使用这些元数据方式,使得用户的查询请求能得到及时有效的反馈。

篇(2)

2人员闯入室内检测模块设计

为了能准确的检测到人体入侵,本设计采用了主动式红外检测方式,主动式红外需要一个红外发射管以及一个红外接受管,正常情况下,两个管子之间由红外线连通,但是当有人入侵时,红外线被阻隔。红外对管跟单片机相连的电路图如图2所示图中红外接受管串联了一个1K的电阻,而红外发射管串联了一个500R的电阻。同时在红外接收管的正极端接到了单片机P32口,当接受管能正常接收到红外光时,P32为低电平,相反,当接收不到红外光时,P32为高电平。

3人员闯入报警设计

当有人入侵的时候,除了做到远程短信报警,也需要有本地报警,起到震慑罪犯的作用,本设计中本地报警就采用了蜂鸣器。蜂鸣器的驱动采用单片机的P2.4口,由于蜂鸣器需要较大的电流来工作,单片机纯IO口无法达到那么大的电流,因此需要外接三极管来放大电流。三极管采用的是PNP型三极管,当P2.4为低电平时,三极管导通,蜂鸣器的正极为高电平,就会响起来。图3是其连线图。

4按键电路

本设计除了主动检测人体入侵和自动报警外,还需要对各种参数进行设置,比如要设置主人电话号码,设置当前时间,查询报警记录等等,这就需要用到人机交互功能,这里采用了四个按键作为人机交互设备,此按键属于微动开关,每个按键上都用了10K的上拉电阻,当按键没有被按下时,按键所对应的IO口固定为高电平,当按键被按下时,IO口直接跟地短路了,所以IO口为低电平,单片机就是读取IO口的高低电平来判断是否有按键被按下。

篇(3)

2机械臂控制系统硬件实现

采摘机械臂要实现其特定的动作离不开控制系统的支持,其控制系统主要由AVR主控板和舵机控制扩展板组成,此外还有一些辅助的硬件模块。例如,使其系统稳定工作的开关电源模块、调整工作姿态的键盘模块、实现人机对话的显示模块和语音播报模块。同时,为了实现在上位机上的监控,设计了基于MAX232的串行通信接口。

3机械臂控制系统软件实现

机械臂控制系统软件主要由主控板控制程序和上位机监控程序两部分组成。采摘机械臂主程序流程如图8所示。整个程序主要是通过键盘模块上按键的控制来切换操作模式,也可以在上位机设计的监控软件中来进行模式的选择判断。主程序主要由单自由度功能模式、多自由度功能模式、轨迹规划功能模式这3种工作模式组成,通过这3种工作模式,可以完整的展示采摘机械臂的整体自由度配合情况。为了在上位机上实现对机械臂的监控,借助于Labview软件设计了机械臂上位机控制系统。Labview使用的是图形化编辑语言G编写程序,产生的程序是框图的形式[6]。根据需求选择合适的控件并进行合理的布局,就可以构建一个美观的仪器仪表界面。设计的控制界面如图9所示,该界面包含有六个舵机的数据监控转盘、串口通讯设置、速度调节滑块、按键模块。通过RS232通信协议该监控软件可以实时的实现对六个自由度转角和方向的控制,其中舵机转盘上的数值代表脉宽值,其可调整的范围为500~2500μs,代表舵机相应的角度为0°~180°。在上位机上的控制信号发送给AVR主控制板,主控制板对接收到的上位机数据进行分析处理,将需要的运动形式及参数发送给舵机控制板,各个舵机根据接收到的控制数据进行相应的动作响应。

篇(4)

从目前涠洲岛的旅游资源特点大概可以分为如下几大类别:一是自然景观,如火山岩自然风景(最为特色)、滴水丹屏、五彩滩等亚热带海滩风光;二是历史人文景观,如哥特式天主教堂、妈祖庙等宗教文化;三是客家生活体验,如农家乐、渔家乐等民风民俗;四是海洋旅游度假体验,如潜水看珊瑚、沙滩游乐、海鲜餐饮、海洋观光等。从涠洲岛现有的资源入手进行整合与分类,根据景点资源的特色来进行针对性的设计。

(二)突出地域文化的基因

涠洲岛独特的地域文化,便是本岛的客家文化与外来西方宗教文化的融和,传统渔猎文明与现代海洋旅游结合,传统与现代,东方与西方文化在这不足25平方公里的小岛上和谐共存。设计师们在设计具有涠洲岛文化气质的导视系统时,就必须融入涠洲岛独特的地域文化,塑造出个性化名片。这是让人能够用来区分不是在韩国济州岛、美国夏威夷,或是塞班岛的一个重要举措。综合涠洲岛的地域文化特征,在进行旅游景点导视系统设计时要突出三大文化基因,即客家文化基因、宗教文化基因、海洋文化基因,其中客家文化是主导,宗教文化是补充,海洋文化是基础。因此,在进一步认清涠洲岛旅游发展所拥有的独特文化优势、区位优势、气候优势、资源优势的前提下,方能形成不可替代、不可复制的产品优势,这种发掘与整合使得使涠洲岛更具独特魅力。

(三)视觉元素的国际化特色

随着全球经济一体化进程的深化,涠洲岛作为国际旅游岛的发展定位已逐步清晰,而作为视觉符号呈现出来的景点导视系统设计,更是成为外国游客了解涠洲岛最为直观、便捷的方式。视觉导视的国际化定位设计,即在图形符号、语言文字、色彩设计、构成方式等视觉要素的设计时要考虑国际化趋势。在突出涠洲岛独特的地域文化优势的基础上,还能结合当下时尚要素和国际化潮流,能将设计的感觉和理性结合起来,能将中国东方古老文明用时尚化视觉元素表现出来。

篇(5)

电传飞机控制系统的核心应用技术是飞控计算机,通过飞控计算机的数据分析和程序预设,最终实现飞机的自动化控制盒管理。结合本型号飞机的实际情况,工作人员在进行系统设计时进行了多种方案的甄选,最终确定将飞控计算机与伺服控制回路综合在一起,采用3×2余度配置,本系统需要三台计算机进行系统的连接,因为进行了大胆的技术尝试,同时又结合了国内外最先进的飞机控制技术,所以这套设计方案是比较科学相对合理的,具有可操作性。每台计算机有两个通道:工作通道:根据输入信号计算机控制面偏转指令,并且驱动相应的控制面;包括CPU模块、输入输出控制模块、总线模块、伺服回路模块与电源模块等。监控通道:用于检测计算机指令的正确性;包括CPU模块、输入输出控制模块、总线模块与电源模块等。

1.2作动器

升降舵、副翼和方向舵均采用电液伺服作动器,电液伺服作动器具有故障监控功能和旁通功能,在故障失效后自动转入旁通功能,不影响其它作动器工作。单个舵面所有电液伺服作动器均失效后,转入旁通功能,保持一定的阻尼,该舵面处于阻尼浮动状态。2.2.1升降舵作动器每个升降舵面采用2台台电液伺服作动器并联安装,同步工作,具有力均衡功能。每台电液伺服作动器具有单独控制单个升降舵面的能力,左右两个升降舵面共采用4个电液伺服作动器,需3套液压系统提供动力,升降舵作动器接受飞控计算机指令,控制升降舵偏转。2.2.2副翼作动器每个副翼采用2台电液伺服作动器并联安装,同步工作,具有力均衡功能。每台电液伺服作动器具有单独控制单个副翼的能力,左右两个副翼共采用4个电液伺服作动器,需3套液压系统提供动力,副翼作动器接受飞控计算机指令,控制副翼偏转。2.2.3方向舵作动器在方向舵上并联安装3台电传控制的电液伺服作动器,同步工作,具有力均衡功能。方向舵作动器接受飞控计算机指令,控制方向舵偏转,实现对飞机航向控制,需3套液压系统提供动力。

1.3传感分系统

传感器分系统负责所有的数据传输和接收,是整个系统的关键组成部分。一方面需要及时接收信息,另一方面还要对接收到的信息进行筛选和分类,最终利用具有关联性的安全信息,具体包括驾驶员指令传感器、飞行运动传感器和大气数据传感器三个部分。驾驶员指令传感器顾名思义,就是将操作人员的操作数据和操作动作,以数据的形式传输给计算机装置;飞机运动传感器将飞机在运动过程中的所有动态数据进行敏感处理和数据传送;所有的数据最终通过大气数据传感器统一进行汇总和分析。需要进行强调的是,为了保证飞机运行的安全和信号的稳定,以上三种数据传输工作不能应用飞机上的航电总线,需要安装独立的信号传输线。确保所有数据的可靠性。

1.4控制显示分系统

控制显示系统是操作人员进行飞机控制的主要参考数据来源,操作人员需要根据显示的数据采用相应的操作程序。显示的信息量大,信息复杂,主要包括几下几种重要的数据:(1)人工进行系统控制的程序指示数据,主要包括提醒操作人员进行系统切换的信息和操作人员进行不同模式转换的信息等;(2)系统运行的安全性显示。包括系统常规运行下的各项数据,以及系统运行出现故障时发出的警示信息以及相应应急自动处理信息;(3)系统定期检测和维护的信息。电传控制系统需要定期进行维护和保养,显示系统会根据设定好的程序提醒操作人员进行相应的操作和管理。

2控制律设计概略

电传飞行控制系统实现了驾驶员操纵指令(杆位移或杆力)与飞机运动参量响应相对应的控制,从而使飞行控制“目标”由原机械操纵系统的舵面偏角操纵,变成了对飞机响应的控制。作为某型飞机电传飞行系统控制模态包括基本模态和自动飞行控制模态。基本模态包括主控制模态、独立备份模态及主动控制功能;其中主控制模态与独立备份模态是系统必须具备的两个基本控制模态。主控制模态包括控制增稳、中性速度稳定性、飞行参数(法向过载,迎角限制和滚转速率等)边界限制与惯性耦合抑制等功能;其中控制增稳功能是电传飞行控制系统最基本的工作模态,在整个飞行包括内全时、全权应用。独立备份模态是电传飞行控制系统的备份模态,是独立于所有的其他控制律模态的应急工作模态。

篇(6)

2融合算法与控制算法

2.1基于卡尔曼滤波的姿态解算算法利用加速度计对重力矢量进行观测,以观测值同重力常量的误差值修正陀螺对姿态角的测量值,设计卡尔曼滤波器对状态进行融合估计[10]。根据该方案,传感器信息融合处理过程如下:1)利用式(6)计算更新四元数,并转换为姿态角。2)观测矩阵

2.2控制系统数学模型根据平地铲运动特征,建立平地铲的抽象物理模型,如图3所示。按以下方法建立平地铲运动的载体坐标系xoy:以平地铲质心o为零点,系统输入量x为液压系统阀芯位移,输出量y为油缸位移,平地铲转动倾角为θ,建立传递函数模型。

2.3控制器的算法设计

2.3.1适用于平地铲运动的控制算法考虑水田激光平地机的作业特点,控制系统在设计上必须保证平地铲在倾角角度情况下能够迅速回位到水平位置,并且尽量减少超调和避免振荡。传统PID控制有较好的适应性,但是还不能提供最优控制,其结果是导致超调失效而影响控制效果。目前,基于动态补偿的最优控制在工业中得到应用,其特点是能够准确反映信号的变化趋势,产生有效的早期修正信号,以增加系统的阻尼程度,从而改善系统的稳定度[12]。本文鉴于非线性系统近似最优PD控制的特性,引入其算法,针对平地机做出相应修改,进行相应尝试。控制器框图如图4所示,姿态测量单元提供位置反馈θ。积分控制、比例控制以及微分控制的作用如下:①积分控制放在前馈通道,其作用是抑制平地铲在受到外界恒定负载情况下产生的输出误差,增益输出为y0=K1θ。②比例控制作用输出为y3,等于两次连续位置反馈值的差值,增量y1等于信号y0减去y3,通过数字积分器累加。③微分反馈信号y2提供参考速度,其大小正比于平地铲输出转速,与参考信号y1组成一个局部的速度内环。微分控制器设计目的是适合平地铲在大干扰情况下的操作。④系统输出转矩的参考值为Trf,送入零阶保持器,输出力矩实际值为Tcm。Tcm正比于零阶保持器的输出。

2.3.2控制器参数的确定平地铲运动机构近似于二阶系统,有以下方程成立。

2.3.3辅助补偿器的设计采用Lyapunov再设计方法设计辅助补偿器以补偿非线性部分和外界扰动对PID控制器的影响。对于渐进稳定的线性系统,必存在实对称正定矩阵P,满足以下关系。

3试验与分析

为了验证本文提出的平地铲水平控制系统,本文进行融合算法的验证试验以及平地机田间试验。

3.1传感器融合算法验证试验

3.1.1试验方法通过AHRS500GA同步测量平地铲姿态信息并作为准确数据,验证基于ADIS16355的姿态测量单元有效性。美国Crossbow公司生产的AHRS500GA是高精度惯性姿态测量器件,其采样频率为100Hz,测量精度为:航向角0.2°RMS、俯仰角0.03°RMS、横滚0.03°RMS[15]。融合算法的验证实验步骤如下:①在平地机上安装水平控制系统,保证系统坐标系与载体坐标系一致;②启动系统,人为摇动平地铲,同步记录ADIS16355与AHRS500GA数据;③PC平台上运行MatLab融合程序对采样的数据进行处理。

3.1.2试验结果分析图5为一次典型的试验结果,图5(a)为平地铲倾角测量值对比,图5(b)为局部放大结果。1)从图5(a)、6(b)中可见,0~400s区间平地铲振动较小时,利用加速度计计算倾角值较准确;当外界扰动导致振动加剧时,误差可达±5°以上,无法单纯用加速度计解算姿态角。2)本设计姿态测量单元能准确测量平地铲动态倾角。由图5(b)可见,在动态环境下融合结果能与AHRS500GA提供的参考倾角结果呈现良好的一致性,其误差绝对值不超过±1°。3)通过传感器实时判断平地铲运动状态,利用加速度计对重力矢量观测值来修正陀螺漂移,可以有效降低姿态角计算误差。

3.2平地机田间试验

3.2.1试验方法组装好平地机的高程和水平控制系统,在水田进行平地试验,开启以上系统并保证正常工作,记录相关数据。图6所示为水田激光平地机田间作业后的场景,可以看出平地效果良好。

3.2.2试验结果分析图7所示曲线为平地机平地过程中控制系统所测量的平地铲水平倾角。田间试验结果分析如下:1)从图7(a)可知,平地铲倾角变动基本控制在±1.5°以内且渐进稳定,满足平地机作业要求。2)从图7(b)和7(c)可知,在外界干扰较大导致平地铲晃动严重时,水平控制系统起作用,通过PWM输出反向力矩,使平地铲恢复到水平位置,其过程是渐进稳定的。3)由于在控制算法推导过程中,平地铲的传递函数是简化和抽象的,如忽略机械连接部分的间隙、挠度,液压油缸对于控制系统的响应有延迟现象等,最终导致了控制系统的效果受到影响。

篇(7)

首先是一次水的相关注意事项。从锅炉房中流出的水称之为一次水。当一次水从锅炉房中流出的时候,水温要保证达到115℃,同时保证回水温度要达到80℃。一次水的管网选择有两种形式,第一种是树状形式,第二种是环状形式。为了最大限度地节约能耗,一次水的管网最好选用环状形式。其次是二次水的相关注意事项[2]。从换热区域中流出来的水称之为二次水。二次水要保证回水温度达到95℃。换热设备实际的供热面积要控制在100000㎡以下,否则输送到用户手中的水温便无法保持均匀。二次水的管网跟一次水的管网一样,也最好选用环状形式。再次是一次水、二次水管网敷设时的注意事项。二次水的管网最好选用直埋敷设方式。而一次水的管网与二次水的管网不同,它的管径不仅更大并且面临的地下水位也往往偏低,所以一次水的管网最好选用地沟敷设这种方式。另外,管网管道所具备的保温性能与其保温材料密切相关。所以,管道外部往往需要添加一层保温壳来实现保温的功能。保温管壳的材料一般有以下几种:一是矿棉岩棉;二是玻璃棉;三是聚氨酯。最后是供暖效果的注意事项。事实证明:居民在运用供暖系统的时候最不满意的就是水温不均匀情况的发生。所以为了保障供暖效果处于最佳状态,如何改善水温不均的情况就成了重要的注意事项。设计中通常需要在散热器的支管、干管处分别设置恒温阀。为了避免个别用户肆意调节恒温阀的温度,小区最好选用无法调整温度的恒温阀。当前,市面上的恒温阀有进口与国产两种,进口恒温阀的性能更好但价格更贵,国产恒温阀的效果不如进口恒温阀但价格实惠,所以小区可根据自身经济情况来选择。杨硕北京博大开拓热力有限公司北京100176

1.2智能供暖设计的注意事项

智能化供暖是在计算机迅猛发展的背景下诞生的,这种系统的先进与稳定使之成为了当今供暖系统的主流趋势。在实际设计智能供暖设备系统的时候,一定要保障这套系统有三种基本的功能设备,这三种功能设备具体如下:一是上位机监控设备系统;二是下位机监控设备系统;三是系统。上位机监控设备系统的现实作用是:把每个监控点所具备的热量需求、流量及温度信息迅速而准确地收集起来,并及时而准确地处理这些信息,从而形成准确的指令。下位机监控设备系统直接受到上位机监控设备系统的控制,它根据上位机监控设备系统发出来的指令命令,对锅炉流量及锅炉温度加以控制,让其充分满足小区每位居民的现实需求。系统由以下几部分共同组成:一是燃烧器;二是锅炉本体;三是泵;四是各种阀门。

1.3水平双管设计中的注意事项

现实中,供暖系统通常会选用双立管并联的形式,这种形式特别容易引发垂直失调的相关问题。所以,为了真正解决这个问题,很多小区选用了水平双管这种设计方式。这种设计方式的本质是:让小区每家每户都拥有一个单独的系统,这种设计不仅让热量表安装变得更加方便,还让散热器能实现个体化的调节。这样,每家每户的居民都可根据自身需求来调节散热器,既能节省一定的能耗,又不至于影响到其它居民用户的供暖情况。但需要特别注意的是:系统必须配备一定数量的三通调节阀,同时三通调节阀的数量要跟散热器组数配对。

1.4热负荷计算、散热器布置及变流问题的注意事项

根据以往的经验,热负荷计算也是供暖设计中应当特别注意的一个问题。以往,小区通常会尽量提高热负荷值,为的是避免供暖不热情况的发生。但是,热负荷值的大力提升使得散热器的实际安装面积太大,小区内经常会出现水温不均的情况。所以,热负荷值应当根据现实情况来合理取值。小区在布置散热器的时候,一定要注意为散热器选择合适的位置。否则,一旦散热器的位置安装得不够合理,那么水平管线毫无疑问会增加,管线明装便会占用一定的空间。这样,室内装修将受到一些影响,家具布置将受到一定的影响,同时阳台设置也会受到一定的影响。小区内供暖通常都是采用分户计量的方式,所以小区热负荷会频繁变化,这就是变流量所产生的问题。为了克服变流量问题,供热系统必须具备跟踪热负荷不停变化并自动调整实际供热量的作用。为了让供热系统具备这样的功能,小区需要在换热站中设置一套装置,这套装置的根本目的是控制压差的大小,让供热系统实现跟踪和调整的功能。

篇(8)

1.1加速度采集接口设计

加速度传感器选用具有坚固耐用、受外界干扰小等特点的压电式加速度传感器,压电式加速度传感器采集对击锤的加速度,将加速度信号转换成相应的电荷信号,电荷信号经过电荷放大器的处理,最终输出与之相对应电压信号;最后,通过高速串行ADS8325实时高速采集电荷放大器输出的电压信号,获得打击过程中加速度变化的时域曲线,从而计算出最大打击力和打击能量,通过无线方式将数据传输给主机。STM32有两个标准SPI,该接口被配置成主模式时可以为外部的其他从设备提供通信时钟。STM32与ADS8325之间通过标准SPI接口连接,STM32使用SPI的单主模式,采集加速度信号只需要ADS8325到STM32串行数据传输,SCK为ADS8325提供通信时钟,将ADS8325片选管脚CS拉低则为从模式。

1.2位移采集接口设计

选用欧姆龙编码器进行位移数据的采集,将E6B2-CWZ6C编码器与机械滑轮相连形成一个位移传感器,机械滑轮的半径为17.49mm,锤头将移动2×3.14R的距离,即109.9mm,即锤头移动109.9mm时编码器刚好转一圈,脉冲计数为2000个。为了增加安全性,减小电压的干扰,减少电路设计,增量式编码器和STM32接口采用光耦器件TPL521—4进行隔离。

1.3无线通信模块接口设计

STM32与SI4432通过SPI接口相接,实现SI4432的基本工作状态。SI4432通过nIRQ向STM32发送中断。串行数据通过MOSI从STM32传输到SI4432;MISO正好相反;通过SCK向SI4432提供时钟,同步两者的串行数据传输。nSEL引脚电平为低时,SI4432片选为从模式,STM32才能有效操作SI4432。SI4432的工作模式位SDN为高时,SI4432处于关闭模式,为低时,则处于工作模式,因此,在芯片工作期间,工作模式位必须为低。

2系统软件实现

系统软件在KeiluVision4平台上采用模块化思想设计开发,将所需模块的主要功能全部编译成相对独立的函数以供主程序需要时调用。模块需要完成的功能是首先对STM32,SI4432及SPI进行初始化配置,其次,从机模块采集加速度数据并传输,最后,主机模块接收数据并处理。软件采用同步传输的模式,同步字传输完之后才会开始传输数据。

2.1从机模块软件实现

从机模块主要实现加速度数据的采集与发送。数据采集与发送过程如下:首先,完成初始化后开始采集数据,数据采集未完成,则等待至数据采集完成,然后清空SI4432的发送FIFO,写入将要发送的加速度数据;其次,打开发送完成中断并关闭其他中断,该中断使能正常后开始发送数据;再次,数据发送完成后nIRQ引脚转为低电平状态,读取中断引脚状态后并将nIRQ引脚转为高电平状态,准备下次检测。如果数据发送成功,则主机模块上绿色指示灯会变亮;最后,关闭发送功能,准备下一次数据发送。

2.2主机模块软件实现

主机模块软件实现加速度数据接收与处理。首先,完成初始化并清空SI4432的接收FIFO;其次,打开接收完成中断并关闭其他中断,该中断使能正常后开始接收数据;再次,数据接收完成后nIRQ引脚转为低电平状态,读取中断引脚状态后并将nIRQ引脚转为高电平状态,准备下次检测,然后,关闭接收功能,准备下次数据接收;最后,对接收到的数据进行相应的处理得到打击能量和打击力,并将数据通过RS485通信传输给工控机和LED大屏。

篇(9)

2系统设计

2.1DSP模块

采用DSP(TMS320F2812)作为自动调焦系统核心。TMS320F2812是TI公司针对数字控制领域而推出的,具有控制精度高、速度快、使用灵活以及集成度高等优点,已广泛应用于工业自动化、光学网络以及自动化控制等领域。TMS320F2812的CPU运行速率可以达到150MIPS,数据总线为32位,内部集成乘法累加器,指令采用流水线处理,使得数据处理的能力大大增强;同时在片内还集成了128KB×16位的Flash存储器和18KB×16位的SARAM存储器。针对数字控制领域,还集成了两个事件管理器(可以发送12路PWM信号),为电机及功率变换控制提供了良好的控制功能,还兼有死区控制功能。本系统并没有使用TMS320F2812全部外设接口,而只是使用其中的一小部分,如GPIO接口和EVA/EVB接口。由于采用可编程逻辑器件(FPGA),使得DSP的硬件电路设计非常简单。将DSP的数据总线、地址总线、读写控制线以及中断信号线都引入到FP-GA中,根据特定的要求,在FPGA内完成时序和逻辑设计,如为TL16C654、AD7864提供地址选通信号等。由于电机的信号线、限位开关线数量很多,需要本系统的I/O口的数量较多,还需要在FPGA内完成扩展I/O口的功能。

2.2FPGA模块

选用Cyclone系列FPGA中的EP1C12Q240C8作为整个系统的时序和逻辑控制核心,EP1C12Q240C8提供12060个逻辑单元(LE)和173个I/O口,可以内嵌4K的RAM。采用模块化的设计思想,对FPGA设计进行模块分解,FPGA需要扩展I/O口的功能,产生PWM调宽波信号,还需要为TL16C654和AD7864提供片选和读写信号等。TL16C654地址译码模块:在FPGA内部,针对DSP的读写以及地址信号进行译码,为TL16C654提供读写信号以及片选等信号。AD7864地址译码模块:对DSP的地址信号进行译码,为AD7864提供读写、片选以及通道选择等信号。在设计FPGA时,采用VHDL开发语言,在Quar-tusII环境下开发程序。根据FPGA的设计框图,在设计程序时采用模块化的设计思想。每个模块都独立设计(即每个模块都是一个文件),最后建立一个顶层文件,将各个模块有机地联结起来。

2.3串行收发模块

自动调焦系统与主控计算机通信时,必须要提供串行通信接口,这里采用TL16C654完成并行数据和串行数据之间的转换。控制器在与其他分系统进行串行通信时,由TMS320F2812作为控制核心,间接控制TL16C654串行发送或接收。FPGA是DSP和TL16C654之间通信的桥梁,为TL16C654提供片选和读写信号。当TL16C654的接收FIFO满等情况发生时,会产生中断信号,FPGA对TL16C654的中断信号组进行处理,然后向DSP发送中断信号,并协助DSP得到TL16C654发出中断的通道号。TL16C654在发送或接收数据时,可以采用中断或查询的工作方式。在控制器与外部进行串行通信时,TL16C654在接收时采用中断方式,发送时采用查询方式。

2.4模拟量采集模块及数字温度传感器

模拟量采集选用美国模拟器件公司生产的AD7864模数转换芯片,分辨率为12位,可实现4通道同时采样。数字温度传感器采用型号DS18B20,DS18B20与微处理器连接时仅需要一条口线即可实现双向通信,测量范围:-55℃~+125℃,分辨率0.5℃。

2.5电机驱动器及执行电机

步进电机驱动采用UP-4HB01B步进驱动芯片。它把FPGA发出的脉冲信号转化为步进电机的角位移,FPGA每发一个脉冲信号,驱动器就使步进电机旋转一步距角,步进电机转速与脉冲信号频率成正比。该驱动芯片适用于四相六出头混合式步进电机,单极恒压驱动,四相八拍励磁方式。执行电机选用常州微特电机厂生产的混合式步进机,型号为42BYG015,电机为混合式四相步进电机,按四相八拍方式工作,步距角为0.9°。

篇(10)

光伏供电系统的工作受限于天气和日照时间。为保证对滴灌系统的供电,需要对太阳能进行转换并存储在蓄电池中,以保证滴灌系统在阴天或光照不足的情况下正常工作。

1.2控制系统

控制系统采用带有8路A/D转换的单片机STC12C5A60S2,应用C51编程,将土壤湿度传感器采集到的微弱电压信号,经过调理电路提供给单片机,实现土壤湿度的显示,并为执行机构提供动作信息,实现自动滴灌。

2系统硬件构成

系统硬件由太阳能存储模块、数据采集处理模块、串口通信模块、执行模块和太阳能追光模块5部分构成。其中,STC12C5A60S2单片机、土壤湿度检测电路、复位电路、继电器控制电路是整个测控系统的核心。整个系统为太阳能薄膜电池进行光伏转换及蓄电池存储供电。根据不同农作物的蓄水规律,预先在数据采集系统中设定土壤湿度的上下限值,与实时采集到的土壤湿度信号进行比较,然后输出信号使继电器控制电路控制电磁阀门的开关决定是否对作物灌溉。整个系统又为太阳能电池薄膜和蓄电池供电。

2.1太阳能追光模块

该模块主要利用单片机驱动控制直流电机和机械机构,调整电池板与太阳的角度,使太阳能电池薄膜最大限度地吸收太阳能转换电能。本系统以光电隔离和继电器作直流电机的驱动电路,通过软件控制电机的启停动作及间隔时间,利用此追光控制模块,可比普通固定的太阳能发电效率更高。太阳能追光模块和太阳能追踪光电转化分析图分别如图3、图4所示。

2.2太阳能供电模块

整个系统的供电均来自光伏转换,采用转换效率较高的柔性太阳能电池薄膜。该电池采用了UV固化聚合物,质量小、柔韧性好,保证了很高的耐用性。单片薄膜可输出2V电压,370~400MA,通过串并联组合可输出20V,400MA左右的电流。执行机构不工作时,经过充电控制器将太阳能转化后存储在蓄电池中;执行机构工作时,蓄电池为相关机构提供电能。同时,太阳能追光系统通过控制电路适时调整电池板的角度,以最大限度地接受和利用太阳能。

2.3数据采集处理模块

数据采集处理模块是整个控制系统的核心,采用性价比高、耗能低的STC12C5A60S2单片机。该处理器内部集成有8路10位A/D转换单元(250K/s,即25万次/s)。土壤电阻的大小随土壤含水量的不同而不同,根据这一原理,自制阻抗式土壤湿度传感器。其通过探针检测土壤电阻,将土壤电阻的大小转变为电压信号输出,此信号是模拟信号,先由单片机内的A/D转换器变成数字信号后再进行处理,包括主控模块、显示模块及执行模块。2.3.1主控模块单片机有32个I/O口,P0口是单片机和1602的数据接口,P1.0~P1.3口是湿度传感器与单片机内部A/D的接口,P2口部分引脚作继电器及液位检测接口,P3口作液晶显示的控制及按键接口。2.3.2显示模块显示模块采用1602液晶显示片。单片机的P0口和P3口的部分引脚构成了1602的数据和控制引脚,显示模块电路如图8所示。

2.4水位控制和电磁阀驱动电路

储水装置的水位需要控制,具体控制电路如图9(a)所示。电磁阀实现灌溉控制,需要把单片机输出的5V电压转换为驱动电磁阀闭合的12V电压,电磁阀控制驱动电路如图9(b)所示。

2.5串口通信模块

该系统的上位机通过485口实现远程监控。本系统由于上位机距离控制系统较近,采用RS232通信方式。单片机与PC机通过串口通信模块,将采集的数据上传,同时PC机的控制指令通过串口送到单片机。串行接口电路如图10所示。

3系统软件

系统实施灌溉的指令决定于土壤湿度,根据不同作物的需水规律,设定滴灌系统工作的上下限指标。结合考虑土壤水分下渗,一般田间持水率80%的土壤湿度作为上限。本系统用于一个小的种植区,设定土壤湿度85%和10%为上下限值。当前系统状态可由显示器显示出来,设定灌溉时间和时长来驱动电磁阀根据上下限值进行自动灌溉。此外,利用软件设计控制太阳能追光的时间、角度及自动检测高位水箱里水位。

篇(11)

一旦粘度变差,就会使得设备面对如下三个方面的问题。零件和系统中的油液出现大量的渗漏,泵的容积率受到影响。油液流经节流小孔或隙缝式阀口的流量增大,此时之前的工作速率就会发生改变,干扰到稳定性,而且会导致精度明显的变低。除此之外,一旦粘度变差还会导致零件表层的膜变得非常薄,此时机械就会更容易受到磨损。

1.2导致氧化速率变快。

如果温度大于55℃时,每当温度增加10℃,其使用年限将降低一半。而且,氧化还会生成很多的胶装物体,使得零件的小孔拥堵,干扰系统的活动。

1.3零件因为受热而发生形变。

一旦温度变高,就会使得零件因为受热而发生变形现象,此时之前零件之间的缝隙就会改变,导致阻力变大,有时候还会导致阀门卡死。另外,这种热变形还会使得零件接触区域的油膜发生变化,致使磨损变严重,进而导致液压系统的泵、阀、马达等的精密配合面因过度磨损而失效或报废。

1.4一些零件的老化速率加快。

绝大部分的零件都是橡胶材料的,如果液压油温度太高的话,就会使得这些零件的使用时间大大的缩减。所以,要认真的分析系统高温问题产生的原因,并且采取正确的方法应对。

2液压系统设计缺陷对液压油高温故障的影响分析

通过分析发现,高温问题一般可以分为两个类型。第一是因为系统的设计不当导致温度变高,第二是因为系统的使用或是维护工作开展的不到位导致温度变高。由于设计不合理导致的温度变高,一般是因为设计不当或是没有正确的安装,此时就使得热量大量的产生,或是因为系统生成的热无法尽快的排放,最终导致温度过高。设计不当导致的问题一般涵盖如下的几类。

2.1没有正确的设计油箱。

通过分析发现很多时候的温度升高都是因为没有设计好油箱而导致的。对于该系统来说,油箱存在的意义是存储液压油,而且还有散热以及隔离水的功效。而设计不到位主要体现在油箱太小或是结构方面的问题。如果油箱太小,就会导致储液量非常少,进而使得系统不具备较高的流量,无法把产生的热带走,此时就使得温度变高。而结构方面的问题主要指的是因为吸油管和回油管的间隔太近,中间没有做好隔离工作,此时就会使得绝大多数的油没有合理的冷却就进到吸油管中,将使温度升高。所以,为了避免问题产生,必须要将油箱的体积适当的调整,而且开工至好两个油管间的距离,在两者间做好隔离工作。

2.2没有正确的设计散热体系。

散热系统的设计不合理,主要体现在冷却回路流量过小,空冷器散热能力与系统产热不相匹配两个方面。冷却回路的循环流量必须与液压系统所要求的散热量相匹配。流量过小,则冷却系统的换热能力降低,必将导致液压系统油温的不断升高。冷却同路的循环流量是由冷却回路的阻力特性和液压泵的动力特性共同确定的(冷却回路的流量一阻力特陛曲线与液压泵的流量一扬程特陛曲线的交点对应的流量,即为冷却回路的循环流量),对于冷却回路流量过小的散热系统,可以通过调整冷却回路的阻力特性(管径大小、阀门开度等)或更换输送能力较大的液压泵等措施,提高冷却回路的循环流量。空冷器散热能力与系统产热不相匹配,主要表现在空冷器散热面积过小及空冷器空气侧的对流换热能力不足两个方面。空冷器散热面积过小,主要是由于空冷器热工设计参数选用不合理或设计计算存在错误造成的。对于这个问题,可以在重新进行准确的热T计算的基础上,更换散热面积满足要求的空冷器,以增强空冷器的散热能力;空冷器空气侧的对流换热能力不足,则主要是由于空冷器空气侧的空气流量不足造成的。可以通过采用更换大风量风扇等措施,强化空冷器空气侧的对流换热效果,保证空冷器的冷却散热能力。

2.3没有选择合适的液压零件。

液压系统中的液压元件,主要包括换向阀、溢流阀和顺序阀等。这些元件的选型设计,必须满足液压元件工作压力、所通过流量及所要求的压力和流量的调节范围等方面的要求。其中流量指标是选择液压元件的重要依据。根据流量选择液压元件,其实只是保证所选择的液压元件的局部阻力系数具有合适的取值,以保证液压元件在正常工作状态下的阻力损失不致过大。因此,液压元件选型不合理,主要表现为所选液压元件局部阻力系数过大,从而导致液压系统在正常的工作流量下产生较大的阻力损失。这部分阻力损失最终转化为摩擦热被液压油吸收,从而导致液压油的较大温升。所以,一旦选择的零件型号不当,也会使得设备发生高温问题。

2.4管线设计以及安装工作开展的不到位。

系统管路的阻力有两种,一种是沿程阻力,另一种是局部的阻力。不论是哪种阻力,只要其变大就会导致热量变多,最终使得油温变高。因此,要积极的做好管线系统设计工作,将阻力损失掌控在一定的范围之内。站在控制阻力损失的层面上来看的话,在设计的时候要注意如下几个方面。(1)管径选择。在选择管径的时候要结合回路流量以及设计规定的比摩阻来综合分析,这样就能够防止发生管径太大或是太小的现象了。(2)管路长度。在确保功效合理,运行稳定的前提之下,在设计管路的时候一定要秉承着精简的理念,最好是短一些,这样就能够避免过多的弯折以及转弯等。(3)管路附件。在满足使用要求的前提下,液压油管路尽量减少弯头、变径及不必要的阀门等附件,以减少管路系统的局部阻力损失。

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

公文、讲稿、总结怎么写?

专家解答,全程指导

免费咨询
发表咨询 投稿咨询 范文咨询 杂志订阅 返回首页