绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇高电压技术论文范文,希望它们能为您的写作提供参考和启发。
中图分类号: TM726 文献标识码: A 文章编号:
随着改革开放的大趋势,中国的经济始终呈现迅猛的发展趋势,国民经济快速增长,为了更快的进行国家经济建设,对电力的需求不断增加,保障电力的及时供应是重中之重,各地也加快对电网的建设,建设的速度也是飞快,使得电力的电力的输送能力得到质的提高。但是我们仍会在建设过程中不断遇到各种新的问题,比如我们在的开发线路的路径选择上比较困难,总会从地势比较恶劣的地方通过等。如何顺应当今的形式,最大程度的满足如今的电力需要已成为所有电力工作者所关注的。在本文中,笔者将就其中的关键问题进行探讨。
1输电线路的勘测
建设电网,首先要对整个输电线路的设计进行整体的规划,而输电线路设计的首要的关键点在于对输电线路的勘测,必须要选择合适的合理的输电线路,因为这将涉及到整个工程的未来发展,从经济,运作条件与将来维护等方面都有长远的影响,在整个工程中起主要作用。所以为了制定最合理的输电线路,线路勘测人员必须认真对待其中的每一个环节,保证选择的线路路径长度合理,既可以降低投资,又能保证线路的整体安全,运行方便。线路测量的原理虽然很简单,但我们仍需要主要其中的一些问题:①线路测距不要求像测量公路等那样的工程的高精度,只要将角度和各个塔架之间距离、高度差等进行测量即可。所以,平距高差和转角这些关键的数据测绘时一定要注意,不能测错或记错,测绘时需要严格按照测绘的操作程序和记录程序,要有检核条件。在对线路勘测过程中,勘测和设计人员要对线路沿线地上、地下、在建、拟建的工程设施进行充分搜资和调研,进行多路径方案比选,尽可能选择长度短、转角少、交叉跨越少,地形条件较好的方案。②要做到兼顾杆位的经济合理性和关键杆位设立的可能性(如转角点、交跨点和必须设立杆塔的特殊地点等),个别特殊地段更要反复测量比较,使杆塔位置尽量避开困难地区,为组立杆塔和紧线创造较好的施工条件。
2杆塔选型
不同的杆塔型式在造价、占地、施工、运输和运行安全等方面均不相同,杆塔工程的费用约占整个工程的30~40%,合理选择杆塔型式是关键。高压架空导线对地面(或水面)、对跨越物必须保证有足够的安全距离,为此,要求线路的杆塔具有必要的高度。同时还要求线路有与杆高相配合的适当的档距。虽然设计中杆塔选型很麻烦,一根根去选不大现实,在尽可能大的范围内统一设计选型是正确的设计方向,但是一些专用线路应进行专门设计,以方便施工运输并降低工程造价。但是,从目前建设经验来看,高压线路设计过程中杆塔选型,一般是从技术、施工及运输、运营和投资等方面考虑,应该遵循以下几方面的要求:
(1)杆塔的型式直接影响到线路的施工运行、维护和经济等各个方面,所以在选型时应综合考虑运行安全、维护方便和节约投资,同时注意当地施工、运输和制造条件。在平地、丘陵及便于施工的地区,应首先采用预应力混凝土电杆。在运输和施工困难的地区,宜采用拉线铁塔;不适于打拉线处,可采用铁塔。目前,钢筋混凝土电杆在 35~220kV 线路上得到了广泛运用,在220kV线路上使用的也不少。220kV 及以上线路使用铁塔较多。110kV 及以上线路双回线路也多采用铁塔。
(2)设计冰厚15mm及以上地区,不宜采用导线非对称排列的单柱拉线杆塔或无拉线单杆。
(3)转动横担和变形横担不应用在检修困难的山区,重冰区以及两侧档距或标高相差过大易发生误动作的地方。
(4)为了减少对农业耕作的影响、少占农田110kV 及以上的送电线路应尽量少用带拉线的直线型杆塔;60kV及以下的送电线路宜采用无拉线的直线杆塔。
(5)在一条线路中,应尽量减少杆塔的种类和规格型号。
3杆塔基础设计
杆塔基础作为输电线路结构的重要组成部分,它的造价、工期和劳动消耗量在整个线路工程中占很大比重。其施工工期约占整个工期一半时间,运输量约占整个工程的60%,费用约占整个工程的20~35%,基础选型、设计及施工的优劣直接着线路工程的建设。杆塔基础设计应该注意如下三方面的问题:杆塔基础的坑深就以设计的施工基面为基准。拉线基础的坑深,在设计未提出施工基面时,应以拉线基础中心的地面标高为基准;杆塔基础坑深的允许偏差为+100mm,-50mm,坑底应平整,同其基础坑在允许偏差范围内按最深一坑操平,岩石基础坑深不少于设计值;杆塔基础坑深与设计坑深偏差+100mm以上,应按以下规定处理:①铁塔现浇基础坑其超深部分应采用铺石灌浆处理;②混凝土电杆基础,铁塔预制基础,铁塔金属基础等,其坑深与设计坑深偏差值在+100~+300mm时,其超深部分应采用填土或砂、石夯实处理。当不能以填土或砂、石夯实处理时,其超深部分按设计要求处理。设计无具体要求,按铺石灌浆处理。当坑深超过规定值在+300mm 以上时,其超深部分应采用铺石灌浆处理。
此外,根据输电线路通过的实际地质情况每基塔的受力情况逐地段逐基进行优化设计比较重要,特别对于影响造价较大的承力塔,由四腿等大细化为两拉两压或三拉一压才是经济合理的。
4防雷击
因雷击事件造成的电力系统故障 ,不仅影响电力线路的正常运行 ,而且还会对正常的用电产生重大的影响 ,可能导致财产受到重大的损失 ,严重的情况下甚至会危害生命安全 ,对经济和社会产生重大影响。从 10kV 配电线路雷击过电压产生商看 ,一般有两种雷击感应过电压 ,直击雷电过电压是由于直接命中配电线所导致的 ,感应雷电过电压是雷电击中配电线附近的地面所引起的电磁感应造成的。
我国的主要配电线路的防雷技术和措施由于 10kV 配电线的绝缘水平低 ,当线路由于雷电活动和雷电过电压线路绝缘子闪络时产生的 ,可以很容易地导致此类事故 ,在配电线路的设计上,以节省线路走廊和使用塔多回路技术为主,这四个塔竖立建立了循环备份,虽然在这种情况下,节约线路走廊,减少了线的投资 ,但由于塔多回路和行与行之间的电气距离远远不够的 ,因此 ,一回线遭受雷击后线路绝缘子地面损坏故障 ,如果流量后继续发生故障的次数也比较大 ,连续陆空电弧会出现与免费的热和光自由的两极 ,小环之间的距离 ,然后自由弧将蔓延到其他线路 ,造成接地故障的发生相同的极点 ,将导致更严重的回线故障的同时 ,极大地影响了可靠性可用于电源配电线路 ,在上述线路中 ,加强绝缘的方法 ,可采取更换绝缘电线裸电线 ,绝缘膜,增加绝缘导体和绝缘体之间的间隙,更换绝缘子模型等方法,以提高线路绝缘水平。
5结束语
总之,高压输电线路线路设计是一项技术含量较高,劳动强度较大,时效性要求很高的野外工作,而且受天气、环境、地理状况等的影响较大,因此,在设计过程中要做好线路勘测,杆塔型选择等,避免在线路设计中脱离工程实际,一味生搬硬套是无法保证设计质量与满足电网需要的。只有结合实际,因地制宜,通过优化方案,攻关,不断探索与创新,才能满足建设坚强电网的要求。
2高压变频技术在火力发电厂中应用的重要作用
2.1有利于节能减排工作的开展
在传统的火力发电厂中需要使用挡板和阀门来调节发电设备的风量和水量,挡板和阀门对能量的需求较高,在火力发电厂中使用了高压变频技术之后,通过驱动水泵和风机来代替挡板和阀门,不但能够解决掉使用阀门和挡板调节方法给设备运行带来的不足,还能实现节能减排,降低企业对发电厂的成本投入,有利于企业经济效益的提高。
2.2使用方便快捷,减少设备故障出现的频率
高压变频技术在应用的过程中往往同电子信息技术相结合,电子信息技术的使用不断的提高了企业的经营管理水平,还有效的减少了企业在人力物力方面的投资。火电厂设备的正常运行需要发电机的协调合作,火电发电厂中有两种型号的发电机,同步发电机和异步发电机,同步发电机使用直接启动的方式,异步发电机使用间接启动的方式,在发电机启动的过程中会造成大量的电量消耗,在启动过程中会产生较大的振动对设备产生冲击,在很大程度上影响设备的使用寿命。通过使用高压变频技术能够缓解启动过程中产生的机械振动,提高了设备的运行效率,在保证设备正常运行的同时,提高了设备的使用寿命,在一定程度上减少了发电厂在设备上的成本投入,有利于企业经济效益的提高。
3高压变频技术的分析研究
3.1高压变频器的DCS控制方式分析
分散型的控制系统也就是DCS在火电发电厂中的主要控制系统,手动控制DCS控制是高压变频技术中的主要控制,在高压变频技术中的控制方式有很多种,主要总结如下:采用闭环控制方式对设备的压力和流量进行控制;采用开环控制方式对设备的转速进行控制;使用开环控制方式对设备的频率进行控制,通过在设备的屏幕上直接输出数值,然后边频率器的边频率的控制得出数值。
3.2高压变频器工作旁路的切换方式分析
在火电发电厂中,风机和水泵设备属于持续运作的负载,为了减少设备使用过程中故障出现的频率,较少设备检修的次数,在应用高压变频技术时同时使用工频旁路,工频旁路的设置方式主要有手动和自动两种形式,一旦高压变频出现故障,就要及时的采用采用手动或者是自动的方式对贡品旁路进行切换,手动旁路是一种可以通过手动控制进行高压隔离的开关,手动控制在高压旁路中的应用较为广泛,因为本身结构较为简单,操作简单,成本较低,开关设置明显,应用在高压变频中之后,有利于高压变频器的检修。
4高压变频技术应用的具体措施
随着其他能源方式不断创新和发展,传统的火力发电将面临着越来越大的压力,火力发电厂要想在激烈的市场竞争中站住脚,就必须提高火力发电的使用率,在符合国家节能减排的规范要求的同时,减少火力发电的成本投入,采用高压变频技术就能够很好的解决以上的问题。
4.1安装和调试变频设备的具体措施
传统的设备运行方式是采用了一拖二二拖三的方法,这样的方法在很大程度上增加了设备的回路难度,为了减少设备运行回路变频和工频之间故障出现的频率,在对设备进行安装的过程中要主义防范措施。
4.2合理设置变频器和上级开关保护功能
变频器在运行的过程中经常会出现跳闸的现象,为了防止这种现象的发生,一般的在事故按钮上采用一拖二的方法,在事故按钮上安装两个电源断路器,一般的选取两个节点,在一个节点上使用工频跳闸回路,在一个节点上使用变频跳闸回路。这样不论出现何种情况,都能很好的预防跳闸现象的发生。
4.3设计可靠的风机和控制电源
为了保障设备的正常运行,就要保证变频器电流输入值趋于正常,如果输入电流变化较大,就容易出现跳闸的事故,所以为了防止这种现象的发生,要对设备进行不间断的检测和维修,为设备提供充足的电能。
前言
高压电气试验是考核电气设备主绝缘或电气参数是否满足安全运行的一个重要手段。然而,高压电气试验的结果往往会受到一些不为人们所注意的因素所干扰,造成试验结果与实际情况不符合,甚至得出错误的结论。比如,被试设备的缺陷没有被反映出来,造成设备带病运行;也可能把合格的设备判断为不合格,从而造成不必要的损失。笔者对多年来在高压试验中所碰到的一些问题,进行归纳、分类和分析,并对如何避免和解决这些问题,提出了相应的措施。
1、试验设备和被试设备的接地问题
1.1高压TV及TA二次回路不接地造成测量数据错误
在测量高电压和大电流时,必须使用TV和TA进行变换。理论上,TV或TA的变比应遵循电磁感应定律,即它们是变比决定于一次绕组的匝数和二次绕组的匝数。然而,在实际应用中,如果高电压下的TV或TA的二次绕组没有将一端接地时,实际上反映出来的变比就会偏离铭牌值,所测量出的数据也是错误的。例如,对1台30mW水轮发电机进行交流耐压试验时,采用1台35KV/100V的TV和1块150V的交流电压表测量电压,在第1次试验时发现电容电流比往年小得多,显然是试验电压没有达到预定值,所测量的电压是一个虚假的数据。经检查发现TV二次没有接地。将TV二次绕组一端接地后,数据恢复正常。试验数据见表1。
表1TV二次绕组不接地和接地的数据比较
如果按照电流与电压成正比的关系反过来计算第1次试验电压,应为:(21/38)×23.8=13.15(kV),这一电压与预定试验电压相差甚远。对于高压TA,我们在实验室也做过同样的试验,当高压TA二次绕组不接地时,电流的变比同样会产生严重的偏差。
无独有偶,在做1台电力变压器的空载试验时(试验电压10kV),第1次试验所测量的空载电流和空载损耗与出厂试验数据不吻合,经检查也是TV和TA二次绕组没有接地所造成。
由于高压TV,TA的一次绕组和二次绕组与大地之间存在着分布电容,如果二次绕组不接地,二次绕组上的感应电压就会通过表计与大地之间产生杂散电流,从而产生错误的指示值。
通过对这一问题的分析,笔者认为以下两件事情在高压试验中必须重视:
1)高压TV和TA的二次绕组,不论是从安全的角度还是从测量的准确度来考虑,都必须将其中的一个端子可靠接地;
2)在进行交流耐压试验时,应同时测量试品的电容电流,因为可以从电流的大小来判断试验电压是否正常。
1.2被试设备接地不良造成介质损耗增加
这种问题主要发生在电容量较大的设备上,比如耦合电容器或CVT(电容式电压互感器)。在变电站里,线路CVT或耦合电容器通常都与线路直接连接,在检修时为了保证线路检修人员的安全必须将CVT或耦合电容器的顶端接地,通常是将线路的接地开关合上或挂上临时接地线。如果接地开关或临时挂接的地线接触不良,相当于在电容器上串联了一个附加的电阻。如果电容量为c,电容器的介质损耗因tgδ与等值串联电阻R有如下关系:
tgδ=Ωcr
从上式可知,当电容器串联的电阻一定时,电容器的电容量越大所产生的损耗越大。在实际试验中,已经多次发生因接地开关或接地线接触不良而造成被试品介质损耗超标的问题。表2是一个500KV直流中继站耦合电容器的测量实例。
表2 耦合电容器介质损耗测量数据比较
当怀疑接地开关或接地线接触不良时,可以在被试品上直接挂上另外的接地线,保证接触良好。
1.3滤波器接地开关没合上造成测量数据异常
这种情况发生在测量耦合电容器(或带通信端子的CVT)上,如图1所示。由于耦合电容器顶部接地,所以在测量C1的介质损耗时通常采用反接屏蔽法,也就是将测量装置的屏蔽端子接于C2的下端,这种接法似乎是把C2以下的元件全部屏蔽掉了,而事实上并非如此。表3是一个测量实例,从表3数据来看,当接地开关打开时,不同的测量仪器所呈现的异常情况不尽相同,只有当接地开关合上后,才能测出正确的数据。这种情况说明异常现象还与仪器的测量原理有密切的关系。
因此,在测量耦合电容器的介质损耗时,应首先将结合滤波器的接地开关合上。
图1反接屏蔽法测量C1
表3滤波器接地开关的分合状态对测量结果的影响比较
2、试验电压不同所引起的问题
2.1对介质损耗因数测量的影响
在一次500KV直流中继站的耦合电容器预防性试验中,由于耦合电容器电容量较大,为了避免仪器过载,采取降低试验电压的方法进行测量。在36台耦合电容器中其中有1台测量结果不合格,见表4序号1。为了查找试验不合格的原因,试验人员采取了各种各样的方法,如改变试验接线、擦拭外套等等,但测量结果仍不合格。第二天用另一型号的测量仪进行测量时,发现在0.5KV的电压下测量结果仍然不合格,但随着试验电压的提高,介质损耗却越来越小。然后再用回原来的仪器复测,在同样的试验电压下测量结果也已经正常,测量结果见表4中序号2-7。这种现象显然与绝缘材料中存在杂质有关。之所以出现这种现象,我们分析原因可能是:多元件串联的耦合电容器中存在连接线氧化接触不良的问题,在低电压下氧化层未击穿,呈现较大的接触电阻,所以介损变大;当试验电压提高后,氧化膜击穿,接触电阻下降,介损变小,这时即使降低试验电压,氧化膜仍保持导通状态,介质损耗不再增大。
2.2对测量直流电阻的影响
某厂1台发电机在进行预防性试验时,用双臂电桥测量转子绕组的直流电阻,测量结果与历年数据相比显著增加。为了慎重起见改用外加直流电压电流法,测量结果却与历年试验数据接近,然后改用不同的仪器测量,数据变化很大。根据对测量方法和结果的分析,我们判定转子绕组已经存在导线断裂的问题。导体断裂后,在断裂面形成一层导电性较差的氧化膜,当用双臂电桥测量时,由于电桥输出电压较低,氧化膜不击穿,所以呈现较大的电阻;而采用外加电压电流法时,由于输出电压较高,所以氧化膜击穿导电,测量的直流电阻就变小。经拔护环检查,该转子绕组端部存在5处断裂的缺陷。
表4不同电压下耦合电容器测量结果比较
以上例子说明,对于与直流电阻有关的试验,采用输出电压低的仪器更容易暴露设备存在的缺陷。
2.3对测量直流泄漏电流的影响
导体表面所产生的电晕电流在导体的形状、电压极性、导体间的距离确定以后,就与电场强度的大小有关。当外施电压小于一定的数值时,电晕电流很小,对泄漏电流的测量影响可以忽略,而当试验电压超过一定的数值后,电晕电流要比绝缘的电导电流大得多,这时就要采取措施减小电晕电流的影响。
3、环境温度所引起的问题
在某厂1台发电机转子的预防性试验中测得转子绕组的直流电阻不合格,正准备进行处理,为慎重起见,先用原仪器进行复测,却发现数据是合格的。在后来的几天里,这种情况总是反复出现,所测得的数据有时合格,有时又不合格,令人费解。后来经详细分析,发现凡是白天测量的数据都是合格的,而晚上测量的数据都是不合格的。进一步分析发现,该电厂所处的地区白天和晚上的温差较大,极有可能是转子绕组导体存在裂纹,白天温度高时,由于导体膨胀,裂纹被顶紧而完全导通,所以直流电阻合格;而到了晚上,由于温度降低,导线收缩,裂缝被扯开,所以直流电阻增大而不合格。经拔护环检查,证明这一分析是正确的。
4、引线所引起的问题
4.1绝缘带的问题
在一次测量500kV断路器断口电容器的介质损耗因数时,所测得的数据总是不合格,为了找出原因,试验人员尝试了各种各样的方法,最后发现只有当取消固定试验引线的塑料带后,所测得的数据才是合格的。经用兆欧表测量,所用的塑料带绝缘电阻竟然只有几百兆欧,而被试设备的绝缘电阻均大于10000MΩ,用这样的塑料带固定试验引线,无疑是在试品上并联了一个电阻,增加了试品的介质损耗。这种现象确实非常罕见,为了保证试验结果的准确性,检查所使用的绝缘塑料带的绝缘电阻还是很有必要的。
4.2避雷器的引线问题
某厂1台500kV主变中性点避雷器在预防性试验中,检修人员仅将引线的主变侧断开,引线保留在避雷器上,用塑料绝缘带固定并与周围设备保持足够的距离。然而,在试验中75%直流参考电压下的泄漏电流总是在70μA~80μA之间,大于50μA,按规程规定属于不合格。厂里只好打算更换。为了慎重起见,在拆下避雷器的引线后进行复测,泄漏电流已小于20μA。由此可见,在进行避雷器试验时,高压部位的引线必须全部拆除,而且高压直流发生器的屏蔽线必须直接接到避雷器的高压端,以防止引线所产生的电晕电流流入微安表造成测量偏差。
一、引言
随着煤矿工业采煤机械化不断提高,矿井生产能力越来越大,与之配套的地面生产能力的规模也越来越大,造成单台电动机的容量相应增大,用电负荷随之增大,从而出现电压降增大、电能损耗增加、电缆截面不足等问题,故在煤矿地面生产系统设计中,传统的380V供电已不能满足配电的要求,需提高配电电压,如低压供电系统采用660V及更高电压。本文就地面生产系统供电电压由380V提高到660V电压技术问题进行探讨。
二、660V供电的国际国内发展概况
早在上世纪60年代,660V电压就被作为一种标准电压列入国际电压标准中。1967年国际电工标准IEC38/67推荐的额定电压中就有660V。在以后IEC38中均有660V电压作为额定电压。我国1959年的国标GB156/59中,只规定了220V、380V两种电压为额定电压。而在1980年的GB156/80中已把660V列入国家标准额定电压。我国现行国家额定电压标准中,660V电压仍为国家标准额定电压。
我国煤矿企业井下于70年代初基本实现全行业660V升压改造。1981年,我国开始对煤矿矿井地面生产系统和选煤厂进行了660V升压供电的试验和研究工作,经过长时间对各种系列电气元件等电气设备在660V条件下的试验和验证工作,于1986年11月建成我国第一座由660V配电电压供电的阳泉四矿选煤厂,并顺利投入运行,1988年6月通过了由能源、机电两部主持的技术鉴定。1990年原能源部发出在煤炭工业中新建地面生产系统及选煤厂应采用660V供电的通知,进一步推动了660V供电在煤矿生产中的发展。随后,九龙口矿、淮南南潘集三矿、大同晋华宫矿等多座大型选煤厂都采用了660V供电并投入运行。
三、660V供电系统的可行性技术分析
1、供电输送能力提高
电网的输电能力与其供电电压的平方成正比,即:
式中:P——通过线路的输送功率,kW;
Z——线路阻抗,Ω;
Un——额定电压,V;
cosφ——线路功率因数;
ΔU%——电流通过线路的电压降百分数。
为便于分析比较,可认为输电质量ΔU%和功率因数cosφ不变,则线路中输电能力P·Z与电压Un平方成正比,即:
电网供电电压为380V时,电网输电能力为:
电网供电电压为660V时,电网输电能力为:
两种电压的输电能力比较:
可见,电压由380V升高到660V后,电压提高倍,线路输电能力为380V电压时的3倍,也就是说,如输电功率P不变,导线截面不变,则660V电压供电的输送距离为380V电压的3倍。同样,如输电线路阻抗Z不变,即电缆长度和截面不变,其输送功率也为380V电压的3倍。
2、电能损耗降低
电网供电电压从380V升高到660V后,电流将降至原来的1/,电能损耗与负载电流的平方成正比,因此用电设备均能降低电能损耗。用电设备的功率越大,使用660V供电的经济效果越好。
三相输电线路上有功功率损耗:
式中:ΔPL——有功功率损耗;
In——线路额定电流,A;
R——线路每相的电阻,Ω。科技论文。
现设定输送功率不变,线路长度不变,则380V、660V时输送线路上的功率损耗分别为:
两种供电电压输送线路上的功率损耗相比:
可见,在输送功率和线路不变的情况下,660V供电电压线路上的功率损耗是380V时的1/3,即可减少输电线路上功率损耗的2/3。
3、节约金属、减少投资
一般0.4kV低压配电系统中配电电缆采用0.6/1kV耐压等级,在用于0.66kV低压配电系统时,无需增加电缆耐压等级。另一方面,由于采用0.66kV配电电压,提高了电压等级,对为相同容量的电动机配电,则可以减少配电电缆截面或增大输送距离。
660V供电时的导线截面积约为380V时的57.7%,而导线、电缆截面由标准分级所决定,故通常至少可降一级标准截面来选取导线、电缆。通过技术分析,升压改造后电缆、配电开关等方面节约的材料达40%~55%。同时补偿功率因数用的电容器,相同容量情况下,在660V电压下使用时要比380V输出无功功率提高2倍(Qc=U2ωc),而价格只差50%,故可降低电容器投资约一半。
4、供电安全可靠
380V供电系统为中性点直接接地的三相四线制系统,一般为动力照明混和供电。660V供电系统为提高运行安全,采用中性点经电阻接地系统。
变压器接地方式一般分为四种:即不接地方式(中性点绝缘)、直接接地方式;电阻接地方式(数十Ω为低电阻接地,数百Ω为高电阻接地)、消弧线圈接地方式。中性点接地与否,对供电系统设计、维护运转及安全都有重大关系。当发生一相接地时,随着接地方式不同,电压差别很大。科技论文。对于直接接地和低电阻接地的电网,一相接地时,接地短路电流较大,除能使继电保护迅速动作外,还有降低内部过电压的优点。对不接地、高电阻接地和消弧线圈接地方式的电网,单相接地电流很小,对提高系统的稳定性和供电可靠性有利。对地面660V配电系统,其中性点接地方式目前没有明确的规定,《煤矿安全规程》规定,煤矿井下采用中性点不接地系统。中性点不接地系统的优点是单相接地电流小,从而避免了人触电时大接地电流对生命造成的危害。但缺点是由于网络电容电流和系统漏电电流很小,不便于实现保护的选择性。科技论文。为避开这一缺点,又能提高供电系统的稳定性和可靠性,因此地面660V供电系统一般采用中性点经高阻接地方式,通过适当调整接地电阻值,从而实现既能保证保护装置的选择性又可抑制单相电弧接地时的过电压。
660V供电系统必须装设选择性漏电保护装置,否则不能投入运行,而380V供电系统一般不装设这种保护,适当选择中性点接地电阻,可以增加故障点的零序电流,提高选择性漏电保护的灵敏性,实现有选择性的切除故障回路。660V供电系统采用上述保护措施后,人身触电后得到了有选择性的保护,比现在广泛使用的无漏电保护的380V系统具有更高的安全可靠性。
四、结语
通过对660V供电技术探讨,若矿井地面生产系统用电负荷较大,则采用660V电压供电为最佳方案。
参考文献:
一般说来,超级电容电池具备很多优点:容量大、充电快、比功率大、重复深度放电次数可超50万次、低温lunwen. 1KEJI AN. COMlunwen. 1KEJI AN. COM提供写作论文和发表服务,欢迎您的光临性能良好、安全系数高、免维护时间长等。
LTC6803-4的应用是比较便捷、灵活的,同时又具备高测量精度和高稳定性的芯片,特别适合在超级电容电池组管理上的应用。
2 LTC6803-4并联级联独立寻址技术的应用
2.1 LTC6803-4的特性及工作原理
LTC6803-4主要包括参考电压、12位ADC、串行SPI接口的电池监测专用芯片、还有高电压输入的多路复用器。每一个LTC6803-4都能够监测电池,最多12串。如果是一个具有多片的LTC6803-4,是能够通过利用并联级联的测量方式及方法来测量超过12串的串联电池组的。还有,每一个LTC6803-4,都具备一个串行接口,能够独立寻址,这样的方式能够方便主控器、LTC6803-4进行同步的通信、操作环节,LTC6803-4最多是16片。LTC6803-4的全局测量精度比0.25%小的时候,一般都能达到大多数工程项目对电池电压测量精度的标准。
2.2 LTC6803-4主要引脚功能
LTC6803-4主要有44个引脚,比如有C0~C12:电池电压输入引脚。VREG:线性电压整流输出。V-:LTC6803-4最低电势端。A0~A3:地址输入。SCKI,SDI,SDO,CSBI:SPI数据通信接口。
3 系统设计
3.1 采集系统结构
测量方法是用2片LTC6803-4并联级联实现24节超级电容电池的单体测量级管理。
3.2 LTClunwen. 1KEJI AN. COMlunwen. 1KEJI AN. COM提供写作论文和发表服务,欢迎您的光临6803-4并联式级联的工作方式
LTC6803-4在SPI上的地址用户是能够自行配置的。本文中只有2片,LTC6803-4是在同一SPI总线与主控器进行通信,所以只要独立地址数比2大或是同2等同,那么便能利用地址将不同的LTC6803-4划分。
3.3 SAF-XC886C-8FF5V芯片
3.3.1 MCU的选择
MCU作为超级电容管理器的主要部件,是通过XC886C汽车级芯片来完成的。
SAF-XC886C工作频率为24 MHz,以八位的市场价格,提供16位产品的性能。拥有8通道10位的精度,三个独立定时器,4个PWM通道,以及后台E2PROM模拟。
3.3.2 单体电容电压检测芯片的挑选
每个LTC6803可以同时测量十二个超级电容器或串接电池的电压,并且拥有单独寻址的串行接口,能够把16个LTC6803-4元件接入同一个控制处理器中运行。LTC6803-4把电池组的底端与V分开,因此,可以改变第一节电池的测量精准度。
3.3.3 信号隔离器的选择
通过分析信号的可靠性,以及电气的安全性。挑选出满足需要的ADUM1411及ADUM1201这两种芯片。传输速率为10Mbps,隔离电压为2500 V。
3.3.4 隔离电源的选择
为了保证安全,选用多规格的双列直插的隔离电源模块。
3.4 系统软件配置
本文所概述的2个芯片通过0Ω电阻将地址主要是分别配置为80和81,所以1#LTC6803-4芯片地址为0B10000000,2#LTC6803-4芯片地址为0B10000001。
4 实验结果与误差
根据实验验证的结果,来验证电池单体电压能不能达到电池管理系统对单体电池电压监测的实际测量目标的。实验的目标用超级电容电池电压为1.60 V,容量为20 Ah、24只,为了验证该系统电压测量的精度是lunwen. 1KEJI AN. COMlunwen. 1KEJI AN. COM提供写作论文和发表服务,欢迎您的光临多少,使用万用表测量得到电池电压的真实数值。在实验还没有开始的时候,通常主要是通过放电的方法,将电池的电压改为不均衡的状况,通过这样的方法,能够检验系统电压检测精度是否正确。实验的结果证明,所有电池单体电压测量误差都在0.19%内,能够达到对单体电池电压监测的实际测量目标。
5 结语
综上所述,超级电容电池具有很多的优点,LTC6803具一个精准参考电压、一个高电压输入的多路复用器以及一个串行SPI接口的超级电容监测专用芯片同时,可以允许主控器与至多16片同时进行通信和操作。为了能够保护好超级电容动力电池,并逐渐的延长电池的使用时间,同时又能增加行驶的距离,那么便要求建立一个有效的电池管理系统,所以说电动汽车产业的发展及推广是一项非常关重要的系统工程。
参考文献
随着电子通讯行业的迅猛发展,我国已成为名副其实的PCB生产大国,PCB产量多年居世界第一位。PCB生产废水中污染物主要是COD与重金属铜[1]。产生铜废水的工序主要有:沉铜、全板电镀铜、图形电镀铜、蚀刻以及各种印制板前处理工序。其中含铜非络合物废水主要来源为磨板、全板电镀、图形电镀、酸性蚀刻以及其他一些漂洗工序[2]。本试验主要采用阴极填充粒子的三维电极电解法处理各环节排放的非络合综合含铜废水,并进行电费成本的估算。
1 试验
1.1 试验装置
三维电极中试设备如图1所示,采用PVC塑料制作(70cm50cm60cm),处理水量140L,阳极为两块35 cm 45 cm的涂钛极板,阴极为2块20cm 53 cm的铜板环境保护论文,放置在宽6cm的玻璃槽中,槽中填充废铁屑或活性炭粒子。
图1 三维电极电解中试装置图
Fig.1 Schematic diagram of three-dimensional electrode pilot reactor
1.2 试验方法
试验设备为HY1711-5S双路可跟踪直流稳压电源、721可见分光光度计。铜离子检测采用2,9-二甲基-1,10-菲啰啉分光光度法中国期刊全文数据库。
铜离子流经粒子颗粒阴极,并在其表面还原吸附析出。试验用水取自线路板生产企业实际含非络合铜废水。粒子电极中的活性炭是不饱和的,故在试验前先用试验原水对其浸泡,并多次换水,测定浸泡前、后水中的铜离子,直至两者相同。试验考查极间距、电解电压、电解时间和不同填充粒子对铜去除率的影响,得出最佳运行参数,估算电费成本。
2 试验结果
2.1 极间距对铜离子去除的影响
为能更好的溶出废水中的铜,调节废水的pH值为3-4,试验中阴极添加了铁屑,考查当电解电压为13V和16V时,极间距分别为4cm和6cm条件下的铜去除,结果如图2。
Fig2.Effect of electrode distance on Cu removal
由图2可知,不同电压下铜去除率都随极间距的减小而增加,这是因为极间距影响着溶液的传质距离和电极电势[3]。极间距小相应的可减小对流、扩散传质的传质距离,增大传质的浓度梯度环境保护论文,强化传质效果,降低电解电压,提高电解速率和效率。但间距过小会影响操作的稳定性,因此试验中采用极间距4cm。当电压为16v时,电解215min铜去除率为49.6%,此时电流为5.80A,以河北省工业用电0.71元/度计,电费成本为1.68元。
2.2 电解电压、填充颗粒和电解时间对铜离子去除的影响
为使填充颗粒呈现复极化,电解电压必须足够高。当施加在粒子电极上的电压低于反应电压时,只有短路电流或旁路电流存在。大于反应电压时,则有反应电流出现。电压越高,复极化程度越大,处理效果越好,但耗电量越大,并且填充颗粒上副反应加剧,产生大量气泡环境保护论文,使得污染物在粒子上不能很好地吸附。试验考查了极间距4cm,阴极槽填充铁屑和活性碳两种粒子电极形式下的铜去除率,结果见图3和图4。
Fig3.Cu removal efficiency of three-dimensional electrode at4cm electrode distance andfilling scrap iron
Fig4.Cu removal efficiency of three-dimensional electrode at4cm electrode distance andfilling activated carbon
试验表明阴极槽填充铁屑,当电压大于16v,电解220min以上时,铜去除率可达到50%,电压22v时电解135min,铜去除率为56.4%。而阴极槽填充活性炭时,电压在20v以下,铜去除率仍然极低,当大于22v后铜离子可去除50%以上中国期刊全文数据库。
图中还可看出阴极填充铁屑对铜的去除要好于填充活性炭颗粒,所需电压小,电解时间短,但通过电费估算可知阴极填充铁屑时电解电费成本较高。电压为22V,电解135分钟,铜去除率达到56.4%环境保护论文,进水铜浓度为58.0mg/L时,出水铜为25.3mg/L,电费成本1.72元/吨。阴极槽填充活性炭颗粒时,电压为22v,电解90min,铜去除率为52.1%,进水铜浓度为171.3mg/L时,出水铜为82.0mg/L,电费成本1.12元/吨。
由图4还可知,,随着电解时间的延长,对铜离子的去除率逐渐增大,在前135 min内铜去除率随时间的延长而迅速增大,之后增速逐渐减慢并趋于稳定。其原因是电解初期,装置内铜离子浓度高,能快速扩散到电极表面。之后装置铜浓度下降,浓度梯度对去除效果的影响变得显著,所以降解曲线变得越平缓。考虑到运行费用环境保护论文,电压为22v,电解时间宜取90 min。
3 结论
中试试验表明三维电极电解处理PCB非络合铜废水最佳处理条件时阴极槽添加活性炭粒子,极间距4cm,电压22V,电解90分钟,在此条件下铜去除率为52.1%,进水铜浓度为171.3mg/L时,出水铜为82.0mg/L,电费成本约为1.12元/吨。三维电极电解处理此种废水虽能回收铜,但出水达不到排放标准,需采用其他方法继续处理。
参考文献:
[1]谢东方.印制电路板废水处理技术应用实践[J].安全与环境工程,2005,12(1):42-45
[2]刘晖.印制电路板废水处理设计[J].科技资讯,2007,9:198-199
中图分类号:TM63 文献标识码:A
1 引言
通过智能化的调试发现,存在很多无法满足现场运行要求的问题,面对智能化站刚刚起步,这些问题需要现场解决从而满足目前的运行要求还是说总结出新的运行规定,如果只是为了满足现场的要求,将会形成各个智能站配置均不统一的情况,这样,对智能站今后的维护相当不利,如果在原理上实现配置的一致性,将会为以后的运行维护带来很大的方便,所以本论文以各种智能设备的原理为基础,实现配置的一致性,让配置的原理与传统的原理一致,下面主要针对几个常见的问题进行分析。
2 电压并列回路的配置
目前常见的配置为双套合并单元,实现了设备的双重化配置,但是对于这种配置的电压并列回路特别复杂,需要将两套合并单元都做相应的处理才能实现电压的并列,这无疑增加了回路的复杂性,在实际接线中,每套母线合并单元都接入了两条母线的电压,并且电压的接入回路都是通过常规回路来实现的(有些厂家母线合并单元的刀闸位置、断路器位置等也可用通过外部电缆回路来实现,对于智能站来说,采用这种方式将会大大增加回路的复杂性),在这种配置下相当于两套完全独立的母线合并单元,在运行维护时需要采取不同的措施,如当II母母线检修退出电压互感器时,应将II母智能终端的并列把手由自动切换到II母强制I母上,同时也应将I母智能终端的并列把手也切换到II母强制I母上,这是为了防止备自投装置的两条母线电压均取自I母合并单元时II母电压失压导致备自投放电。
3 备用电源自动投入装置的配置
备自投相关的智能设备有进线智能终端、分段智能终端、进线合并单元、分段合并单元、母线合并单元、主变保护、主变本体智能终端。进线和分段智能终端主要向备自投装置发送进线断路器的位置以及手跳闭锁备自投信号(对于不启动KKJ的断路器操作把手)和遥控跳闸闭锁备自投信号、进线合并单元主要向备自投装置发送线路电压以及线路电流,分段合并单元发送电流,对于进线备投的备自投装置不需要分段电流,母线合并单元主要两条母线的电压,两条母线电压可取自一套合并单元也可以取自两套合并单元,主变保护的内容是后备保护动作闭锁备自投装置,主变本体智能终端非电量动作闭锁备自投,对于另一端母线没有电源点的进线可以不设置非电量跳闸闭锁备自投的逻辑。
3.1 直跳、直采点对点配置
点对点方式是指线路间隔的电压电流、母线设备的电压电流、备自投保护动作跳、合断路器均是通过点对点的方式来实现的。线路和分段的断路器位置和手跳信号既可以采用点对点方式也可以采用GOOSE组网形式,通常选用组网形式,主变保护动作和非电量动作闭锁备自投信号则是通过GOOSE组网形式来实现。
3.2 直跳、直采GOOSE组网配置
GOOSE组网方式是指所有智能设备的信号均通过GOOSE组网来实现,保护电压电流也通过GOOSE交换机向备自投,实现的数据信息的高度共享。各过程层智能设备首先将自己的断路器位置、手跳信号、线路电压电流、到GOOSE交换机,同样间隔层智能设备将闭锁备自投信号也发送到GOOSE交换机然后实现数据的共享。
备自投所需电压电流,跳闸方式目前没有明确要求,目前我们常用的配置方式有两种,点对点方式或者GOOSE组网方式,两种方式均不影响备自投正常运行,各有自己的特点,直跳、直采点对点方式虽然提高了运行的可靠性,但是让网络更加复杂化,并且没有实现网络的共享。而GOOSE组网配置的特点是牺牲安全性和可靠性,从而达到简化网络(组网需要一组光纤即可实现,而点对点方式至少需要六组光纤)的目的。
3.3 母线电压配置
备自投装置需要的两条母线电压宜取自一套合并单元,通常情况下,每一套合并单元均接入两条母线的电压,在分裂运行时,两天母线的电压互感器均在运行,此时两个互感器独立运行,在每一套合并单元都能正确采集到两条母线的电压,这种情况不能影响备自投的保护功能。当一个电压互感器退出检修时,母线合并单元可以通过并列把手来实现备自投装置的两条母线电压均有压。另外,取自同一个合并单元的好处是减少备自投装置的光口,减轻CPU的工作量,可以增加备自投保护装置的工作寿命。
4 控制回路断线的配置
4.1 智能终端控制回路断线
智能终端控制回路断线对于提供TWJ(跳闸位置继电器)和HWJ(合闸位置继电器)接点的智能终端,通常由TWJ和HWJ常闭接点串联形成,然后通过硬接点信号接到智能终端的开入上,对于没有提供TWJ 、HWJ接点的应该通过软件自动生成一个控制回路断线的信号,然后将此信号通过GOOSE网发到对应的测控装置,再通过测控装置发送到后台,应在后台注明是智能终端控制回路断线。
4.2 保护装置控制回路断线
线路保护、分段保护等保护装置一般可以通过控制字来选择是否判断控制回路断线,当该控制字投入使用相应保护可以通过断路器的位置来判断是否控制回路断线,所以在保护装置的断路器位置开入中必须要配置智能终端操作箱的TWJ和HWJ,而不直接配置为断路器的位置硬接点遥信。如果配置断路器的位置硬接点遥信,在平时运行时,断路器只有两种状态,不是分位便是合位,即便控制电源消失时,这种状态也不会改变,此时,保护装置依然能接收到断路器的位置因而保护装置无法判断别出控制回路断线,如果逻辑配置中的位置接点取自TWJ和HWJ,当控制电源消失时保护保护接受不到断路器的位置,从而判别出控制回路断线信号,导致断路器发生故障时拒动的可能性
5 总结
面临着数字化技术的在智能化变电站中的不断应用,对智能化设备的稳定性,高速化网络、信息共享、系统配置的可靠性提出了新的要求,针对以上特点,本论文提出的这些解决方案具有以下的几个特点:
(1)较高的可靠性。在现场处理,实施验证之后,通过实际运行观察发现,本论文提供的解决方案运行稳定,有效的解决了发生的问题。
(2)充分的理论依据。本论文所涉及的几个问题都是在调试过程中发现的,处理方案也是通过设计人员、研发人员、继电保护人员、运行人员根据实际运行要求提出的解决方案,因此考虑的情况比较全面,理论依据比较充分。
(3)丰富的现场经验。提出解决方案后,在实施验证过程中也投入了大量的工作,从而为该论文提供了丰富的现场经验。
参考文献:
[1]刘振亚.智能电网技术[M].中国电力出版社,2010
[2]高翔,张沛超.数字化变电站系统结构[M]. 华北电力出版社,2006年12月.
[3]王义梅.电网继电保护应用[M].电网技术出版社,2000年6月.
[4]赵丽君,席向东.数字化变电站应用技术.电力自动化设备,2008,24(5):118-121
作者简介:
1954年,世界第一条高压直流输电联络线被运用到了商业之中,随着它日益成熟的技术为海底电缆、远距离大功率以及两个交流系统间的非同步联络等各方面提供了十分广泛的电力效益。但是,由于在经济和技术方面存在着一定的局限性,因此导致近距离小容量输电场合和的高压直流输电未能得到充分利用。然而,在电力半导体特别是绝缘栅双极晶体管(LGBT)的大力促进下,使得高压直流电更加轻型化。目前,以电压源换流器(VSC)与绝缘栅双极晶体管为基础,使高压直流输电的容量几MW扩大到了几十MW。这类小功率的轻型高压直流电以其各种优势充分展现了它的发展前景。
1、轻型高压直流输电的技术特点
(1)电压源换流器的电流可以自动断开并工作在无源逆变方式,因此它无需另外的换相电压。与传统高压直流输电的有源网络不同的是,轻型高压直流输电的受端系统是无源网络的,因此克服了受端系统必须是有源网络的根本缺陷,继而促进了高压直流输电对远距离孤立负荷进行送电的实施。
(2)同传统的高压直流输电正好相反,在潮流进行反转的时候,直流电流方向能在直流电压极性不变的情况下进行反转。HVDC的这个特点能够促进不仅为潮流控制提供便利且提供较为可靠的并联多段直流系统的构成,继而使传统多端的高压直流输电系统在并联连接时不方便进行潮流控制以及串联连接时影响可靠性的问题得到有效解决。
(3)对轻型电压直流输电进行模块设计能够极大的缩短其设计、安装、生产以及调试周期。与此同时,电压源换流器所采用的脉冲宽度调制(PWM)技术,其有着相对较高的开关频率,在高通的滤波后便能够产生所需的交流电压,省略了变压器不仅简化了换流站的结构,同时还大大减少了所需滤波装置的容量。
(4)传统的高压直流输电因为其控制量只有触发角,所以传统HVDC是无法对无功功率和有功功率进行单独控制的。而轻型高压直流输电在正常运行的时候,其电压源换流器能够对有功功率以及无功功率同时进行独立控制,甚至可以使功率因数为1。此种调节不仅能够提高完成效率,还能对之加以灵活的控制。另外,电压源换流器不但无需交流侧提供无功功率并且还起着静止同步补偿器的作用,使无功功率的交流母线得到动态补偿继而促进交流母线电压的稳定性。换而言之,即使是在故障的情况下,只要电压源换流器的容量足够就可以使轻型高压直流输电系统对故障系统进行无功功率紧急支援或有功功率紧急支援,从而促使系统的电压稳定性以及功角稳定性的提高。
2、轻型高压直流输电的发展及前景
在我国,轻型高压直流输电技术的发展一直以来都受到电力工作者的重视,并且对之展开了一系列的初步的研究。另外,一些应用单位逐渐认清了轻型高压直流输电的具体优势,因此也开始考虑采用HVDC于实际输配电工程之中。然而从整体上来讲,轻型高压直流输电的研究在我国依旧是匮乏的且基本处于空白期。因此我们要尽可能快的促进研究水平的提供以将之能够迅速的有效利用起来,此项研究不仅十分迫切且具有相当重要的现实意义。所以,笔者就研究工作的展开提出以下几点建议。
(1)在轻型高压直流输电中建立数字仿真研究手段,因此电力工作者要在研究过程中制定出轻型电压直流系统全部一、二次设备的数字仿真新方法与新兴数学模型;(2)经过对电压源换流器的故障以及运行特性的分析,电力工作者要在研究过程中具有针对性的提出适合VSC运用的PWM技术和相关的保护措施;(3)构建一个轻型高压直流输电的物理模型,然后通过高速数学新高处理芯片对轻型高压直流输电的控制器进行研制;(4)对于电压源换流器连接构成的控制方式(电压控制、无功潮流控制、有功潮流控制)、多端直流系统的运行特性,还有轻型高压直流系统的保护措施进行一系列研究与制定;(5)对于整个电网电能质量,轻型高压直流输电有着怎样的影响且如何对之加以控制都需要电力工作者进行更深一步的研究;(6)对技术经济进行论证,从而确定轻型高压直流输电技术对于我国电力技术发展的可行性与必要性。
随着电力半导体以及其控制技术的不断发展,尤其是IG-BT的日益进步从而衍生了轻型高压直流输电技术。即将投运以及已经投运的各项轻型高压直流输电技术工程的成功建设已经充分表明了HVDC技术正在日渐地成熟与发展着。可再生能源的全面开发、高新技术的飞速发展,还有电力技术的不断进步与完善,都对电网灵活且可靠的运行以及高品质电能质量提出了进一步的要求,从这一系列情况的显示来看,轻型高压直流输电的使用范围正在不断扩大,这势必会使HVDC light在我国得到进一步的研究与重视。
3、结语
综上所述,轻型高压直流输电作为一项新型的输电技术正通过其自身特点在各方面的应用中充分展示了其独特的优势,主要有对电压以及潮流的有效控制、对环境的影响不大、设计表转化、建设效率化、结构模块化且紧凑等各种优越性。综合这一系列优点,轻型高压直流输电不仅仅是引起国家以及各应用单位的重视,并且在未来将会渐渐地运用到建设当中去,最终会有利于促进我国科技以及经济的发展。
参考文献
中图分类号:TM44;TN722;TP393 文献标识码:A 文章编号:2095-1302(2016)12-00-04
0 引 言
近几年,受益于集成电路工艺技术与片上系统(System on Chip,SOC)的不断发展,射频识别、微传感网络以及环境感知等智能技术得到了飞速发展。其中,对于无线供能植入式芯片的能量管理、功耗等问题受到了持续关注与研究。当能量采集完成后,如何管理该能量是下一代被动与半被动植入式医疗设备的要点之一。
在低功耗植入式芯片中,如低噪声放大器、模数转换器等对工作电压及其纹波都有一定的要求,因此须通过无线能量管理单元(Wireless Power Management Unit,WPMU)将其电源性能优化。在被动式芯片中,电荷泵整流器(Charge Pump Rectifier,CPR)、带隙基准源(Bandgap Reference,BGR)、低压差线性稳压器(Low Dropout Regulator,LDO)是WPMU的重要组成单元[1]。芯片工作时,人体各种低频信号(EEG、ECG)会通过相应的耦合方式传输到电源通路上,从而产生低频噪声,因此必须采用相关技术获得高电源抑制比电源。论文首先通过电荷守恒定理对传统Dickson电路进行动态分析及能量转换效率的改进;然后采用电源抑制增强(Power Supply Rejection Boosting,PSRB)与前馈消除(Feed-forword Cancellation,FWC)等技术分别提高BGR、LDO在运放工作带宽内的电源抑制力(Power Supply Rejection,PSR),并在输出节点并联电容以滤除超高频纹波;最后为保证LDO在负载变化时的稳定性,利用零极点追踪补偿来满足相位裕度的要求。
论文对高性能无线能量管理单元预设指标为:
(1)CPR在输入500 mV交流小信号时能输出2 V电压并驱动200 A的电流。
(2)BGR输出电源抑制比在LDO的工作范围内尽可能大于60 dB,以减小对LDO的影响。
(3)LDO输出电源抑制比在生物信号频率处(01 kHz)及CPR输入信号处大于60 dB,从而提供负载电路高性能的工作电压。
(4)在满足以上性能的情况下,尽可能减小电路工作时的静态电流。
1 无线能量管理单元的基本原理
图1所示为论文采用的无线供能能量管理单元拓扑结构。由图1可知,WPMU主要包含CPR、BGR、LDO及保护电路(PRO)等模块。芯片通过片外天线采集到由基站发射的高频无线能量信号,CPR将信号整流后进行升压,产生纹波较大的电压,并将该能量储存到Cs中。由BGR与LDO所组成的环路通过负反馈输出纹波较小的VDD来驱动负载电路。其中BGR为LDO提供一个精准稳定的参考电压,因此BGR的性能影响着LDO输出电压的性能。芯片中的保护电路包括过温保护电路、过压保护电路、限流电路,其主要目的在于意外情况下对电路关断,实现对电路的保护。
设计能量管理单元时,在无线供能的环境下要注意相关性能的优化,而这又伴随着其它性能的牺牲,下面将详细分析论文采用的CPR、BGR、LDO设计原理及电路结构。
3 版图及后仿真结果
采用SMIC 0.18 m CMOS工艺,在Cadence下对电路进行仿真验证,无线能量管理单元的版图如图7所示,其中包含了CPR、BGR、LDO及PRO等模块,芯片的尺寸大小为277 m×656 m。
电路在工作时要避免反馈环路发生震荡,必须保证LDO环路的相位裕度,论文在tt、ff、ss三个工艺角下对其进行不同负载电流(0200 A)的仿真,仿真结果如表1所列。该结果表明在负载电流0200 A内,由于零极点追踪补偿的作用,相位裕度均大于60度,根据奈奎斯特稳定判据,LDO环路能在负载变化的范围内稳定工作。
图8所示为BGR、LDO的PSR仿真波形,从图中可以看出,BGR采用PSRB技术后,PSR在低频降低了近25 dB。当LDO采用FWC技术时,电源抑制在低频段得到了显著提升,电路空载时,在100 Hz内提升了近20 dB,满载时提升了近40 dB。
图912给出了WPMU中CPR与LDO的相关瞬态仿真结果,当输入频率为500 MHz、幅度为0.5 V的正弦波时,电路建立时间约为13 s,CPR的纹波约为5 mV,而LDO的输出电压纹波减小至2.3 V,即高频处PSR约为-66 dB。因此论文采用的LDO在生物信号频率处(DC-10 kHz)与输入信号频率处(100 MHz以上)具有较好的PSR。表2对相关文献与本文设计进行性能比较,可以看出,该电源管理单元能输出性能更好的工作电压。
4 结 语
论文针对CPR、LDO、BGR进行研究,设计了一种应用于低功耗无线供能植入式医疗芯片的能量管理单元。采用SMIC 0.18 m CMOS工艺提供的本征MOS管使CPR的效率得到提升。利用PSRB将BGR的PSR在低频处从-75 dB降低到-95 dB,这是优化LDO电源抑制能力的基本前提。通过FWC、零极点追踪补偿改善LDO的PSR与稳定度,在驱动0.2 mA的负载电流时,PSR为-85 dB@DC,而相位裕度在负载范围内均大于60度,该性能可适用于对电源性能要求较高的模块。
参考文献
[1]郭文雄.应用于植入式经皮能量传输的集成电路研究与设计[D].广州:华南理工大学,2013.
[2]Pierre Favrat, Philippe Deval, Michel J.Declercq. A High-Efficiency CMOS Voltage Doubler[J]. IEEE Journal of Solid-State Circuits, 1998, 33(3) : 410-416.
[3]To shiyuki Umeda, Hiroshi Yoshida, Shuichi Sekine, et al. A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-m Distance[J]. IEEE Journal of Solid-State Circuits, 2006, 41(1): 35-41.
[4]Keith Sanborn, Dongsheng Ma, Vadim Ivanor. A Sub-1-V Low-Noise Bandgap Voltage Referen-ce[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11) : 2466-2481.
[5]Mohamed El-Nozahi, Ahmed Amer, Joselyn Torres, et al. High PSR LOW Drop-Out Regulator With Feed-Forward Ripple Cancellation Techniq-ue[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3) : 565-577.
中图分类号:U284 文献标识码:A 文章编号:1674-3520(2015)-10-00-01
一、ZPW-2000A 型无绝缘轨道电路系统
(一)技术特点
ZPW-2000A 型无绝缘轨道电路系统,其设计理念符合机车信号为主体信号的自动闭塞及列车超速防护系统的设计要求。它采用 1700Hz-2600Hz 载频段、FSK 制式轨道电路传输特性、主要参数及计算机技术,主要涵盖了以下几点技术特性:实现轨道电路全程电气折断检查,解决了调谐区断轨检查;充分肯定、保持UM71 无绝缘轨道电路的技术特点和优势;防护拍频干扰;检查调谐单元断线故障;优化系统参数,提高轨道电路传输长度;减少了调谐区分路死区;根据固定轨道电路长度,通过允许最小道碴电阻方式对轨道电路进行调整,一方面提高了轨道电路系统工作的稳定性;另一方面满足了1Ω/km 标准道碴电阻和低道碴电阻传输长度要求;通过采用提高机械绝缘节轨道电路传输长度的方式,与电气绝缘节轨道电路实现等长传输;减小铜芯线径,采用国产信号数字电缆代替法国 ZC03 电缆,加大传输距离,减少备用芯组,提高轨道电路系统技术性能价格比;为了便于维护,降低工程造价,发送、接收设备通用四种载频频率,电码化器材种类减少,从而降低运转备用数量;为了便于防护和维修,采用长钢包铜引接线代替 70mm2 铜引接线;信号收发设备具有完美的检测功能,发送器同时能实现“N+1”冗余,接收器可以实现双机互为冗余;在传输长度、安全性、可靠性、抗干扰性方面 ZPW-2000A 与 UM71 对比。
(二)主要技术条件
1、环境要求。ZPW-2000A 无绝缘轨道电路系统安全运行时的环境特点如下:相对湿度不大于 95%(温度30℃时)。大气压力为 74.8kPa-106kPa(相对海拔高度2500m 以下)。室外温度为 -30℃-+70℃,室内温度为-5℃-+40℃。周围没有易腐或易爆的气体。
2、直流电源电压。电能消耗: 设备稳定运行过程中发送器负载为 400Ω、功出为 1 电平时,电流耗电为5.55A,接收器正常工作时耗电电流小于 500mA;在功出短路时发送器耗电电流小于 10.5A。直流电源电压范围:23.5V-24.5V。
3、轨道电路。分路残压小于 140mA(带内),分路灵敏度为0.15Ω。具备分离式断轨检查功能,有关轨道继电器可靠失磁、检测轨道电路全程(含主轨与小轨)断轨。传输长度符合相关规定。主轨道无分区死路;调谐区分路死区不大于 5m。
4、系统冗余方式。接收器采用成对双机并联运用,发送器采用“N+1”冗余,实行故障检测转换。
二、ZPW-200OA轨道电路维修
区间轨道电路发生红光带时,首先要分清是主轨道部分还是小轨道部分故障,是室内故障还是室外故障。
用CD96系列移频表测试衰耗器“轨出1”测试塞孔,电压不低于240mV时,说明主轨道正常,属小轨道故障;若测得电压低于240mV时,说明主轨道有问题。进一步测试衰耗器“XGJ”测试孔电压,当测得直流电压正常(不低于23V)时,为主轨道故障,不正常为小轨道故障。
主轨道信号可在区间综合柜发送端电缆模拟网格盘上“电缆侧”测试孔测试,测得电压低或者无电压,则是室内发送设备故障。当测得发送电压正常时,测试接收端“电缆侧”测试孔电压,如果电压正常,则是室内接收部分故障;电压不正常。则是室外设备故障。
室内设备不良以电缆模拟网络防雷元件劣化产生短路居多,室外设备故障一般以补偿电容性能下降、钢包铜等阻引接线接触电阻大等较为常见。
(一)发送设备故障时,检查发送器工作的五个必备条件是否满足:
1、发送电源电压为24V,且极性正确。电压低于23V时查找原因;
2、有且只有一路低频编码条件;
3、有且只有一路载频条件;
4、有且只有一个“-1”或“-2”选择;
5、功出负载不能短路。
检查发送器工作正常时,测试发送功出电压,若电压不正常为发送器故障;正常时,再测试发送端电缆模拟网络盘空载电压,电压正常为模拟网络盘故障,不正常是发送器至模拟网络间连线故障。
(二)接收设备故障。
因为接收器是双机并用工作,主机故障时,改为并机接收。所以接收器故障导致的设备故障的可能性很小。当接收发备故障时,测试模拟网络盘空载电压,不正常为模拟网络盘故障;正常时,在衰耗器背面端子(Cl、C2)上测试输入电压,正常为衰耗器故障,不正常为衰耗器至模拟网络间连线不良。
(三)小轨道故障时,首先测试运行方向下一区段衰耗器上“轨出2”测试塞孔电压,若电压正常,再测试“XG”测试塞孔直流24V电压是否正常,若正常为本区段“XGJ”至下一区段“XG”间连线断线,若测得下区段“XG”电压无输出,则是下一区段衰耗器故障。如果测得“轨出2”电压较低时,且在“轨入”塞孔测试小轨道移频电压低于42mV,可能是室外补偿电容不良;若“轨入”塞孔测试小轨道移频电压大于42mv,则断定为下一区段衰耗器故障(小轨道调整不当)。
(四)列车运行正方向时3JG、反方向运行时lLQG没有下一区段,它们的XGJ检查条件是,直接向相应接收器供+24V电源。出现3JG轨道电路故障时,只检查主轨信号和24V电源是否正常。
(五)主发送器故障时,不能倒向N+l发送导致轨道电路故障。可能原因是主发送的报警继电器落下条件接入N+1发送的选择条件故障。逐一检查发送功出选择、载频选择、低频选择是否正确。
参考文献:
DOI:10.16640/ki.37-1222/t.2016.13.265
0 引言
动车组变流器一旦发生断路故障,变流器一些参量(电压、电流等)的波形必然出现变化。一般来讲,不同的断路故障会导致参量波形发生不同的形变。因此,根据所选参量波形变化特征可以逆向确定变流器的断路部件。所以,及时准确地获取故障信号,然后挖掘故障信号的特征,是故障诊断工作的第一步。
2 CRH2动车组变流器故障特征提取
2.1 合理选取故障信号
根据基本电路知识可知,动车组牵引变流器的输出电流以及交流侧输入电流会受电机等负载的影响,负载不同会导致这两个电流随之而不同。进一步深入分析可知,变流器的输出电压以及交流侧输入电压分别取决于变流器的逆变器和脉冲整流器的电路结构。在变流器正常工作的情况下,脉冲整流器和逆变器电路结构固定,上述两种电压不会出现波形变化。然而,如果功率器件发生故障,变流器的电路结构必然发生变化,从而引发输出电压以及交流侧输入电压波形的畸变。另一方面,不同的功率器件断路对应不同的电路结构,这两个电压波形也不同。因此,电压波形蕴含了丰富的故障信息,反映电路的不同故障。所以可以通过分析输出电压波形的特征逆向推断发生故障的功率器件。综合上述两方面考虑,选择输出电压以及交流侧输入电压作为故障信号。
2.2 选择小波分析处理故障信号
故障特征是故障诊断的重要决策依据。选择合理信号处理手段充分挖掘故障特征对提高故障诊断率具有重要意义。从故障信号角度来看,由于动车组变流器结构复杂而精细,发生故障时,电压波形有时不一定有显著形变,各种故障所对应的电压波形之间的区别也可能较为细微。其次,动车组工作环境复杂,变流器的故障电压难免混入干扰信号,故障因素和干扰因素耦合在一起,电压波形中既含有因故障而引入的畸变信号又含有各种干扰信号。因此,动车组变流器的故障信号应当选用一种具有一定抗干扰性、局部细节分析能力强的信号处理方法。综合考虑小波分析方法特长和变流器的故障信号特点,决定选择小波分析对故障信号进行处理。
2.3 选择小波
Daubechies小波的紧支集长度与滤波器长度为2N左右,消失矩为N,具有正交性、扩展性好、不对称、N增加光滑度随之也上升等优点。根据变流器的故障信号特点,本文选择db3小波以满足各方面指标的要求。
2.4 多层分解故障信号
预处理原始故障信号后,选用合适小波N层分解故障信号。分解之后,提取最后一层的低频系数和所有层的高频系数,共得到N+1个参量。一般而言,故障不同,电压畸变波形不同,所得到的N+1个参量也将有所不同,且故障类型、电压畸变波形和这些参量之间存在某种一一对应关系。因此,能够通过分析N+1个参量的变化判别变流器的功率器件发生断路故障的情况。
2.5 重构各频段信号
重构各小波频段信号,计算各频段信号的能量大小。由于在第4步中,得到的N+1个能反映故障情况的参量是属于图形参量,因此不便于故障诊断系统的利用。为方便故障诊断,我们需要将这些图形参量数值化。为此,计算各频段信号蕴含的能量值,以实现上述N+1个图形参量的数值化。计算方法如下:设代表第i层第j个重构信号的能量值,则: 其中,n为离散信号
的长度, 表示重构信号在离散点的幅值,K=0,代表计算低频段能量,K=1表示计算高频段信号能量。
2.6 构造故障特征向量
按照第5步提供的各频段能量计算方法,一一计算前述N+1个频段的能量值,然后设定一个固定次序进行排列,即可构造得到一个向量:,该向量既是能够反映故障情况的故障特征向量。
3 结束语
本文主要研究了CRH2动车组变流器故障信号的特征提取办法,主要内容包括故障信号的合理选取、故障信号处理手段的选择以及故障特征向量的构造。为整个故障诊断系统解决了一个关键问题。
参考文献:
[1]张学甲.CRH2牵引变流器故障分析及其诊断方法研究[D].长沙,中南大学硕士论文,2014.