绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇模型设计论文范文,希望它们能为您的写作提供参考和启发。
2关键技术
笔者通过刮板输送机的优化实例用以说明在系统建立过程中的几个关键技术。优化数学模型的M文件编写针对刮板输送机设计参数的不确定性,以达到其电机功率最小和运输性能最佳为目标,取输送机刮板链运行速度v、槽深H及宽度B作为优化设计变量。具体优化数学模型的建立过程请见文献[6]。根据以上的数学模型,编写M文件,由于在具体工程实例中设计值的不同,笔者将文献[6]中的某些具体的设计值作为可变的参数传递值。这里取链条最小张力、链条单位长度质量、输送机的铺设长度和物料堆积角作为可变的传递参数,令其分别为x(4)、x(5)、x(6)、x(7),以方便MATLAB与之间传递参数,代码如下:编译生成.net组件生成.net组件的步骤如下。(1)在CommandWindow里面直接输入deploytool,在弹出的DeploymentProject窗口里,输入相应的保存位置和名称,Type类型选择:.NETAssembly。如图3所示。(2)添加已经编写好的M文件guabanji.m,如图4所示。(3)创建工程,选择Build编译成.net组件。文件保存后打开刚才保存工程的文件夹可以看到有两个新建的文件夹distrib和src。这里包含了在调用中需要用到的文件、库、资源和接口等,如图5所示。调用.net组件与网页设计打开vs2010,新建一个C#项目,添加引用,在弹出的菜单中找到已经生成的.net组件文件夹src,选择添加其中的guabanji.dll文件,另在.net中添加MWArray组件,这样引用添加成功,如此便可以调用.net组件进行优化[7-8]。
3运行实例
用户通过浏览器进入基于Web煤机装备优化设计系统,该系统包括采煤机、刮板输送机、提升机及掘进机优化设计系统。笔者以刮板输送机的优化设计系统为例,介绍了整个系统需要优化的机型,选择所需优化的零件进入优化设计页面,并根据提示输入合理参数,然后点击“开始优化”按钮,系统就会根据用户输入的参数,调用.net组件实现优化分析设计,并将优化的结果显示在浏览器上[9-10]。以刮板输送机为例进行说明,首先打开网站首页,选择刮板输送机优化;进入刮板输送机零部件优化列表页面,选择所需零件进入其优化设计页面,在文本框中输入具体问题的设计参数,然后点击页面中的“开始优化”按钮进行优化,如图6所示。得到优化结果后,将常规的设计方案与优化设计方案的结果对比,如表1所列。
2UG三维模型在教学应用中的优势
传统的机械设计基础教学过程,通常采用二维工程图表达物体的结构形态,或通过实物模型来增强学生感性认识。但这种教学模式存在着一定的弊端,二维图形缺乏立体感,实物模型由于体积和重量原因会造成携带、拆卸和剖切不便,且操作较为费时。采用UG三维造型功能,对课本上的二维图形所对应的实体模型进行制作,可以很容易实现三视图和实体之间的转换,通过实体模型和动态仿真使学生能够更直观地进入真实的三维空间,从感性上理解三维实体的结构与相对位置,引导学生思考,增强学生感性认识,从而提高学生空间想象能力。另外,利用UG的局部放大、平移和翻转等工具,还能够让学生在屏幕上全方位观察零件复杂形体的外形与内腔的变化等各个侧面和局部细节特征;可以直观地显现整个零件的结构,装配体中零件之间的连接关系,使教学中的知识难点更加清晰、生动、形象;也可以根据不断变化的教学内容和不同的教学对象的需求,利用UG软件方便地进行教学模型的修改与新建,满足教学中对模型种类及数量的需要,并有效降低教学成本。
3UG三维建模在教学中的运用
3.1模型和教材相适应
《机械设计基础》课程很多内容都涉及三维零件,根据需要确定具体的零部件,如:带轮、齿轮、凸轮、轴、轴承、箱体等等。在建模的形式上要注重提高三维模型的视觉效果,根据教学内容的需要制作、补充或减少模型,使模型与教学内容紧密结合,贴近实际。
3.2模型与课件相结合
优秀的课件有助于提高教学效果,用UG软件制作的素材,合理运用在课程多媒体教学中,可充分发挥教师与现代教学手段的双重作用。例如,在讲解轴承的结构和各零件的位置关系时,使用UG建好的模型,一边讲解各零件的结构,一边进行现场虚拟装配,这样能够方便地为学生提供正确的示范,培养学生的几何构思能力,同时帮助学生理解结构工艺知识,有利于学生理解轴承的工作原理、装配关系、各零件的相对位置关系以及各零件的结构特点。在这种视觉效果的刺激下,学生的分析、认识和记忆能力增强,这既活跃了课堂气氛,又提高了学生的学习兴趣。在制作课件时,要注意收集和整理,注重课件在课堂教学中的实用性和使用方便性,有利于学生循序渐进地掌握教学内容。在教学过程中充分发挥教师的主导作用和学生的主体作用,在师生的交流学习中寻找最适合学生的方式,更好地发掘学生潜力。
3.3充分利用学生资源
学生在学习UG软件时,可以将教学模型作为练习让学生参与制作,参与式的体验教学不仅激发了学生学习UG软件的热情,而且巩固了《机械设计基础》课程所学的知识,同时,将优秀作品作为今后教学的资料。
3.4多样化制作模式
一种是将虚拟三维模型调整到最佳位置,保存为图片格式,直接插入到课件适当位置;另外在条件允许的情况下,可直接用UG软件打开已建造好的虚拟模型进行教学,在课堂的动态教学中可以达到随机应变、按需编辑、修改模型。当今社会迫切需要大力加强对人才创新意识与能力的培养,培养符合时展需求的应用型人才迫在眉睫。而人才的创新始终离不开实践环节的培养和锻炼,即“创新来源于实践”。随着3D可视化软件的“大众化”及虚拟仪器的广泛使用,使得原有以实物为主的机械设计基础课程实践教学模式面临新的挑战和机遇。尤其是有些设备或装置需要进行剖切或外壳透明化处理才能充分清楚地了解其内部结构,仅仅在实践教学中运用实物模型,较难形成模型的衍生、变型、扩展设计。这些客观现实的存在,成为机械设计基础课程实践教学在运作过程中的瓶颈。因此,实践教学过程中需要模型的多元化,即将3D数字化模型与实物两种教学模式嵌套使用,才能优势互补。3D数字化模型具有以下特点:其一,三维数字化模型具有丰富多样性的表达形式,数字化模型的表达,拆装非常便捷,且完全可逆,通过剖切、爆炸图、视频生成等功能,可以生动直观地表达实际零部件内部的结构和工作原理,全方位地展示精密部件和不可逆拆装部件的内部结构、装配和拆解过程。其二,利用数字化模型能够强化学生的工程意识,目前UG软件具有标准件库,诸如轴承、螺栓、螺母、销、键等标准零件库,这些库的使用可强化学生的标准意识、工程常识,对避免课堂教学与实际工程环境的脱节效果很好。在实践教学中我们要充分发挥实物模型和数字模型的长处,取长补短,充分协调好两者在教学过程中的关系,提高实践教学的质量。
产品模型是设计构思的立体呈现,是设计者表达设计构思的方法之一,设计者根据设计构思利用不同的材料、工具和加工方法可以将其表现为实体模型。产品模型制作是对产品设计方案的深入和细化过程,能够对设计思路进行更直观的审核和推敲,并能清楚全面地展示产品设计方案,是设计方案评价的有力依据。
2.材料与模型在产品设计中的意义
对于产品设计来说,材料工艺和模型制作是至关重要的步骤。在产品设计过程中有了设计构思,就需要进一步确定形体,并选择适宜的材料进行加工,制成模型,检测和审核产品的造型、色彩、材质、表面处理、功能、结构、成本及可行性等。材料工艺与模型制作在产品设计的每个阶段有不同的呈现形式:设计前期尝试多种可能性材料并制作研讨性模型,中期将材料进行筛选并制作表现性模型,后期确定材料工艺并制作样机模型。产品通过不同阶段的材料与模型分析,最终才能进入量产阶段成为商品。
二、材料工艺与模型制作课程教学研究
1.教学目的
材料工艺与模型制作课程目的是通过理论教学及实践训练,让学生了解各种材料特性、加工工艺、模型制作加工过程,并掌握产品材料选择与模型制作的基本方法。教师通过本课程的教学,使学生了解生活中产品的生产制作过程和表面处理工艺,学会通过观察、分析、搜集进一步了解和熟悉材料,并能够对材料进行加工,制作出实体模型以进一步推敲设计,培养学生的动手能力和解决问题的能力。
2.课程教学研究
(1)教学研究与侧重材料特性涵盖物理特性、化学特性、工艺特性和感觉特性,教师侧重讲解材料工艺特性和感觉特性,使学生更加清晰地感知材料的不同效果,便于学生在认识、学习材料的过程中结合自身对材料的感受和对实际工艺的观察积累选择合适的材料完成设计任务。模型分为研讨模型、功能模型、表现模型和样机模型,教师侧重讲解研讨性和表现性的模型表达。因为授课对象为低年级学生,所以重点是挖掘学生的动手、动脑能力,以及对产品的形态、尺度、体面关系、色彩、材质、质感等外观效果的观察和把控能力,进一步培养学生分析结构的能力。(2)教学与实践研究教学内容分为材料工艺和模型制作两部分。内容涵盖材料工艺概论、金属材料、塑胶材料、木材、陶瓷、玻璃、制模概念、制模意义与功能、模型制作与表现。教师针对教学内容进行讲练结合的教学。
第一,讲解材料概论。
教师选择有代表性的图片向学生提问,引出材料定义和基本属性,并介绍材料的发展过程和分类,提出材料特性并图文并茂地展开,讲解材料的物理特性、化学特性、工艺特性及感觉特性,最后引出材料选择原则。
第二,设计材料讲解与互动。
教师对五种常用材料金属、塑胶、木材、陶瓷、玻璃进行详细介绍,针对每种材料挑选大量清晰的产品图片,以看图分析工艺的形式与学生互动,使学生更能结合实际深入认识材料,讲解内容涵盖材料概述及分类、材料特性、加工成型工艺、表面处理等。
第三,模型制作案例讲解与作业。
针对本课程前、中、后三个阶段,讲解三个模型制作实例并布置课程作业。实例1及作业:多种材料热弯模型案例讲解,ABS塑胶热弯模型制作;实例2及作业:塑胶热压成型模型案例讲解,ABS塑胶热压鼠标模型制作;实例3及作业:木材榫卯结构设计案例讲解,榫卯结构产品设计制作。三个案例的讲解让学生对材料与模型的认识由易到难,由外形推敲到结构研究逐渐深入,也让学生形成制模概念,了解模型制作与设计的关系,并掌握模型制作方法、技巧及表现形式。
第四,课程作业要求与制作。
作业一:ABS塑胶热弯模型制作。要求:使用50×50cm、2mm的ABS板材进行3个家居产品的热弯模型制作。学生先绘制设计草图,制作纸模型,推敲产品的形体构造。确定产品外形和比例尺寸后,在ABS板上绘制产品外形展开图并切割下来,使用木棒或有一定硬度的单曲面形体作为辅助模具,将2mm的ABS板用热风枪局部加热后用辅助模具定型,达到热弯成型的目的。此部分的重点是让学生感知材料特性,并了解热弯成型方法,同时锻炼学生对产品形态的观察、比例把控及细节处理能力。作业二:ABS塑胶热压鼠标模型制作(参考鲁迅美术学院教学练习)。要求:学生每人选定一款鼠标,进行尺寸测量,绘制1∶1六视图。根据实物与六视图做成木制模具,通过塑胶热压工艺制作ABS模型,要求分模线清楚,表面平整光滑,形态准确,细节完整。此部分是对作业一的强化,学生通过作业一的制作,对ABS塑胶材质有了一定的认识,在第二部分中需要更大程度地发挥ABS塑胶的材料特性。先制作出比实物外形小2mm的木模鼠标模具,然后将2mm的ABS板在电烤箱中加热软化后取出,用木制鼠标模具压制各部分壳体,将各壳体匹配裁切,表面和边缘打磨成亮面或哑面效果,然后制作零件,最后装配粘接。这项作业的重点是让学生形成模具概念,了解模具拔模与产品分件,同时锻炼学生对产品外观的整体观察和表达能力。作业三:榫卯结构木模型设计制作。要求:学生每人选择或设计一款榫卯结构产品,并绘制1∶1的三视图和结构关系图,依据视图制作木制模型。要求运用榫卯结构,结构稳固,制作完整有细节,并具有一定功能性。制作前,学生需要大量查看榫卯结构图以及各种榫卯结构的产品,然后结合生活实际,设计一款具有一定功能的榫卯结构产品。学生根据设计需要自主选择合适的木材,进行锯割、刨削、凿削、打孔、打磨等加工,使榫卯结构相互匹配,最后装配起来。这项作业主要锻炼学生对模型外观的把控能力,同时考虑结构的合理性和稳固性。
2基于DSM的建筑工程协同设计
2.1传统建筑工程设计的过程及其局限性
传统的建筑设计一般采用串行设计,即“抛过墙”式建筑产品设计模式,图3(a)为传统建筑设计过程,3(b)为传统建筑设计组织结构图。由图可以看出,传统的设计模式从时间上和功能上把各学科的专职人员彼此孤立开来,存在一系列问题:信息流动是单向的,下游的设计结果不能及时反馈给上游进行设计评价和修改,项目集成性差;设计信息交流不畅、沟通困难而出现的潜在危险,往往在施工过程中才能发现;设计修改频繁,设计质量难以得到保证:建筑工程设计周期长,项目开发成本高,建筑质量受到影响等问题。设计过程中信息的管理是目前建筑设计企业必须面对的一个难题,在当今知识经济社会,沟通和协调比命令和控制更为重要,据权威机构研究表明,良好的信息沟通和协调可以减少工程建设费用的20%左右[6]。因此引入新方法、新工具对建筑设计过程进行管理是非常必要的。
2.2建筑工程设计初始
DSM模型的建立本文采用图1表示的普通楼宇设计工程中常见的12项设计任务为例,把各设计活动间的信息流关系用DSM矩阵表示出来,如图4,然后采用DSM聚类规则进行聚类分析。
2.3DSM聚类基本原则
DSM聚类原则以下列步骤展开[7]:(1)设计优化的目的是使DSM尽量成为下三角矩阵。(2)根据DSM,若矩阵中某一行全为零,则说明对应该行的设计行为不需要其他设计行为提供信息,因此应尽可能早地执行,将这些设计移到DSM的顶端。每次移动一个学科,且需将其行列及相关标记一起移动。移动结束,再对矩阵其他设计重复进行步骤(1),直到再无这样的设计。(3)根据DSM,若矩阵中某一列全为零,则说明对应该列的设计行为没有对其他设计行为提供信息,因此应尽可能晚地执行,将这些专业设计移到DSM的底端。每次移动一项专业设计,且需将其行列及相关标记一起移动。移动结束,再对矩阵其他专业设计重复进行步骤(2),直到再无这样的专业设计活动。(4)如果经过步骤(1)、(2)DSM中再无未调整的专业设计,则矩阵已经达到最优化;否则,剩余的专业设计必定包含信息循环(至少一个)。(5)找出信息循环,使用所谓的“路径搜索”方法。在该方法中,从某一专业设计开始,向前或向后跟踪信息流,直到第二次追溯到同一个专业设计,这之间的所有专业设计构成一个信息流循环。(6)将简单循环中的专业设计合并起来,并用另一代表专业设计代替,并重新开始步骤(1)的操作。对于小型矩阵,只要通过一系列的行列变换就可以获得新的DSM优化矩阵,对于大型的矩阵则可以通过相关智能算法如遗传算法等获得新的优化结果矩阵。由于建筑工程设计各活动间的耦合性较强,所以本案例中没有空行空列,可以直接从步骤(3)开始,根据图4初始信息流,利用以上规则进行优化,得到新的DSM矩阵,如图5所示。不难看出,通过DSM聚类优化,使得原来隶属于不同专业领域的设计活动之间复杂的设计迭代关系转化为4个工作团队之间的关系,其中总体规划设计和结构选型设计组成一协同设计团队,在设计的初期就考虑到了建筑设计与结构设计间的关系,避免了传统设计过程中结构设计发现建筑设计不合理而引起的设计大返工。同样,功能要求和局部细化设计人员组成协同设计团队;局部细化、空调系统设计、管道通风设计、楼板梁柱墙体设计组成一协同设计团队;梁柱墙体设计和电气装配设计组成以协同设计团队。其中局部细化、梁柱设计、墙体设计同时属于两个协同设计团队,说明需要加强这些活动和两个团队间的协调沟通。通过DSM聚类,可以首先在团队内部进行信息交互,并行协同地进行设计;然后再以团队为单位进行更高层面的信息交互,可以减少由于不同专业领域间耦合带来频繁更改,返工等影响,既缩短了设计周期,减少了返工成本,又保证了建筑工程设计质量。因此,笔者认为,在建筑工程设计企业,有必要建立协同设计团队,专门负责跨专业、跨部门、耦合关系强的设计活动间的协调与沟通,并以正式的组织形式确定下来,避免设计人员只为参会而来的临时心理,直到建筑工程项目设计工程结束。
二、生活中的盒子要和网页中的盒子结合起来
CSS+DIV网页设计中,页面中的所有元素都看成一个个盒子,例如,网页中显示的一幅图片,其背后实际对应着一个盒子模型结构,它包括如下属性:内容大小:内容区域的宽度和高度。填充:是内容与边框的距离,对应包装盒的填充部分。边框:对应包装盒的纸壳,一般具有一定的厚度。边界:位于边框外部,是边框外面周围的间隙。
三、盒子模型和具体的案例相结合
网页中的一幅图片可以看成一个盒子模型,那么使用这个盒子模型处理图片能达到怎样的效果呢?演示主题相册的案例,引导学生观察案例中图片的处理方式,图片外面有1px的边框,图片和边框之间有2px的间隙,图和图之间有10px的间距。引导学生将案例和盒子模型的属性结合起来,案例中的图片就盒子模型中的内容属性,图片和边框之间的间隙就是盒子模型中填充属性,案例中的边框就是盒子模型中的边框属性,案例中的图和图之间的间距就是盒子模型中的边界属性。
四、盒子模型的属性代码给学生详细介绍盒子模型的属性代码
一个盒子模型是由内容、边框(border)、填充(padding)和边界(margin)四个部分组成的。填充、边框和边界都分为“上右下左”4个方向、既可以分别定义,也可以统一定义,如:div{margin-top:1px;margin-right:2px;margin-bottom:3px;margin-left:4px;padding-top:1px;padding-right:2px;padding-bottom:3px;padding-left:4px;border-top:1pxsolid#000;border-right:1pxsolid#000;border-bottom:1pxsolid#000;border-left:1pxsolid#000;}也可以写成:div{margin:1px2px3px4px;按照顺时针方向缩写padding:1px2px3px4px;按照顺时针方向缩写border:1pxsolid#000;}
五、使用盒子模型属性实现具体案例——主题相册
1.所有的内容都在一个大盒子里,这个大盒子可由div实现#content{width:750px;padding:5px;}宽度为750px,填充为5px。
2.主题相册标题部分。用h1实现,h1同样也可以看作是一个盒子,设置h1的CSS属性h1{font-size:20px;color:#c03;font-weight:normal;字体大小为20px,颜色为#c03,粗细为正常。border-bottom:2pxsolid#c03;padding-bottom:4px;}下边框为2px实线,颜色为#c03,下填充为4px。
3.婚纱系部分。婚纱系和写真系、童真系结构相似,可以使用div层,应用类样式来实现。Div层同样可看作是一个盒子,设置类的名称为.theme.theme{width:100%;border-bottom:1pxdashed#e6e6e6;padding-top:5px;padding-bottom:20px;}宽度为100%,和父层content层的宽度一样,下边框为1px虚线,颜色为#e6e6e6,上填充为5px,下填充为20px。
4.婚纱系中的标题部分。用h2实现,h2同样也可以看作是一个盒子,设置h2的CSS属性,h2{font-size:14px;color:#333;padding-left:8px;}字体大小为14px,颜色为#333,左填充为8px。
5.婚纱系中的图片部分。用img实现,img同样也可以看作是一个盒子,设置img的CSS属性,img{border:1pxsolid#ccc;padding:2px;margin:08px;}边框为1px实线,颜色为#ccc,填充为2px,上下边界为0,左右边界为8。
6.写真系部分。复制婚纱系所在层所有内容,更改相应的图片,文字内容即可。通过以上步骤,使用盒子模型完成了一个具体案例。
六、关于盒模型还有以下几点需要注意
1.边框默认的样式可设置为不显示(none)。
2.填充值不可为负。
针对模具类专业的知识结构和特点,根据企业对模具人才技能的需求,对课程体系进行优化整合,针对模具成形工艺特点对产品造型设计的要求,有选择地设置课程内容,使课程内容与本专业知识与技能相结合,结合其在今后的工作中对产品造型设计能力的需求,有针对性地进行课程内容与讲授方式的设置,使其在把握产品造型发展趋势、产品造型能力、创造能力、创新能力、艺术审美能力与运用方面得以提升,能够把握产品造型设计方向,切实做到所学知识的“必须”与“够用”。
2.课程内容体系构建
对课程的核心知识点进行提炼,将模具成形工艺与产品造型课程知识点进行有机结合,融入造型设计所涉及的模具成形加工知识点,让学生们在学习产品造型课程的同时,兼顾考虑产品造型的成形方法、成形工艺,让产品造型设计更加符合模具成形工艺性,做到既懂设计又懂工艺,多课程知识点融入,对产品造型在模具专业中的应用有更加深入的理解与把握。以课程内容第一部分产品造型设计概论为例,该部分具体涉及两个方面的内容,造型设计概念、要素和造型设计基本发展趋势,在课程设计上将上述两个方面的内容与模具知识点穿插结合,将造型设计要素与模具成形工艺结合,汽车造型发展与金属成形、先进汽车模具制造技术结合。融入具体设计案例贯穿知识主线,配合项目任务加深对所学知识内容的全面深入理解。
二、课程教学模式的改革与实施利用
将产品设计知识与理论融入具体的模具成形产品设计案例的方式教学,通过具体产品设计案例,分析讲解其所涵盖的知识点,并构成在模具成形产品设计时所要用到的提升核心设计能力的完整知识体系,使那些不适于工科类学生知识背景并且难以理解的设计艺术类理论内容与具体案例结合,将产品设计造型与成形加工制造工艺相结合,基于模具类学生知识体系与专业背景对设计理论进行讲解,注重结构设计与成形工艺性的结合,设计出符合制造加工工艺的产品。注重理论的理解与实际运用,使学生切实合理地运用相关设计知识,具有进行独立的模具成形产品造型设计的相关技能。根据所归纳的知识点与知识体系将产品设计所涉及的相关知识内容融入到具体模具成形产品的设计案例中,产品案例的选择具有广泛性与针对性,涵盖工业产品的各个门类,所使用案例产品必须时代性强、代表性强。同时考虑某些产品的更新换代较快,建立相关产品库,跟踪该类型产品的最新发展趋势,以更新融入案例。所融入的案例产品要有相当一部分具有多种设计知识的分析性,可以从设计优劣两个方面进行分析。案例产品对比性强,设计创新性强,能够启发引导学生在开阔思路的同时接受所融入的相关知识点。教学方式分为理论教学与实践,注重智力技能的训练。每个教学单元应该设置为:提出本单元所涉及的具体问题—讲授融入具体案例的相关知识—扩展讨论—总结归纳—思维训练—课业。构成完整的教学体系,在具体教学中突出互动性,对案例产品所涉及的相关知识内容分析讲授并进行讨论,让同学主动学习,开阔思路,举一反三,触类旁通。案例产品中所涵盖的知识点分析完成后,再从产品案例库中拿出其他产品案例让同学对比分析,分组讨论,分析其中设计理论与知识点的应用,同时在思维训练环节利用系统知识分析设计教师提出需要设计或改进的产品,提高学习知识点的质量。在理论教学之后,注重相关技能的学习与训练,能够熟练运用专业产品造型设计软件(Rhino)进行计算机辅助造型设计,在进行造型训练中也是针对具体造型案例进行设计造型,在对比与工程类3D软件(如Pro/e、UG)的区别后,在工程类3D软件不擅长的复杂曲面造型领域,采用专业产品造型设计软件(Rhino)进行设计表达,做到软件之间的切换运用与互相补充。
2铝型材挤压模具优化的主要现状
2.1有限体积法
所谓有限体积法是从限差分法进而一步一步的发展形成的,是在对欧拉描述当中,对空间做的网格划分,并且覆盖在计算区域当中的,它可以把物理量进行对应的存储,再通过质量和动量以及能量的守恒一一列出微分方程,再通过在单元体上把体积与时间进行积分,做到离散形式,再通过这种形式组成一个代数方程,进而得到一个物理量的分布。这种方法在对其计算时,已经在流体力学中应用的比较宽广了,在应用时我们也注意到了,它已经占到了重要位置。在现阶段,在各个生产环境当中都已经开始应用这种方法了,并且建立了一个有效的模拟系统,这也是我们在进行求解时的一个重要因素,结果就得出了一个的分步的信息继承与传递数据。在实际当看出,应用这种方法可以模拟出薄壁类铝型材的挤压成形,也表明,该方法是模拟挤压成形最为有效的一种方式了。在有限体积法的原理下,可以建立一个金属塑性的弹塑性有限元列式的有限体积控制法。而提出这种方法的数据传递,则可以建立一个了复合系统,并且对其数值模拟,在这个过程当中也就说明了,金属在成形时是具有非常强烈的塑,所以更有理论价值。
2.2有限元法
有限元法可以大量的应用在模拟铝型材的挤压过程当中,它的工艺参数、模具结构等一些参数都会对产品质量产生直接的影响。在数值模拟的生产过程当中,在很大程度上都是应用了刚塑性模型的,从而模拟出非稳态等温的生产过程,在这个过程当中我们主要考虑的作用包括几个方面:必须要应用具有大变形的弹塑性材料,也可以对角铝型材料进行模拟数值。如果我们是利用二维模型对其进行模拟它的流动速度,此时,在生产时我们可以通过利用它的模型结构,对它的摩擦系统进行进一步的研究分析。如果在挤压时,它的数值模拟是截面型材,而我们应用的模拟模具就必须是等价的,因此,在实际应用当中,这也是相对有效的方法之一。近年来铝型材挤压模拟过程常用的软件有Msc/SuperForge、DEFORM3D、hyerxtrude等,可以进行挤压过程金属流动模拟,得到挤压模具应力,速度场应力场分析,温度场分析以及模具应力变形分析。充分发挥了有限体积法和有限元法各自的优势,成功地分析材料流动和模具受力情况,为模具设计及结构优化提供了有效的参考。
3发展趋势
在实际应用当中我们可以看出,有限元法可以更好的进行铝型材挤压模拟,它的主要优势是可以更好的适应几何形状,并且对材料的性质进行精确的定义,可以确定边界条件与变量状态,可以有效的解决更为复杂的一些难题。通常有限元法应用拉格朗日的坐标,它的网格节点一旦出现一定的程度的移动,就会出现很大程度的变形,促使网格发生变形,出现交叉问题,导致精准度失灵,这时就必须对网格重新划分、模拟。在网格进行重划时也会存在一些偏差,这主要是因为在传递数据时会造成一定的误差,所以进行计算时它的精度就是有所降低。此外,因为网格重划的速度是非常快的,这就会造成有限元边界节点对模拟会产生很大程度的影响,也就是说,它的几何形状在和边界节点进行脱离时会出现一定程度的敏感性,如果应用步长较小,仍然会促使挤压件的形状存在很大的偏差。所以,在当前情况下,对有限元数值模拟也仅限于比较简单的形状。但是,在未来的发展过程当中,对于研究有限元法更为突出的一个重点就是要在有限元网格的三维技术领域,其次也就是要解决怎样才可以更好的避免网格重划的问题。而应用有限体积法的最大优势就是具有欧拉网格在静止不动的状态下,它的节点是不会任意流动的,不需重划。这种方法的另一个优点是所具有的物理环境,在一定范围之内可以控制离散方程,即它在各个方面都具有守恒性,同时确保了它的计算精度。由于这种方法在流体流动以及传热时计算数值已经发展的非常成熟了,所以把它应用在金属成形的模拟数值,是具有一定前景的。
一、建立“过程考核”教学考核模式
随着高职生源的变化,学生的学习综合素质和学习主动性有所下降,传统的理论考试或理论+实践的考试评价方式只能评价学生的学习结果,如果复习不到位,还往往造成大面积的不及格局面。高职教育以知识够用,掌握职业技能为导向,所以,评价方式应以学生是否掌握专业技能为主,兼顾学习过程及学习态度。过程考核是在教学过程中对学生学习效果进行测试的考核方式,这种考核方式突出学生在学习过程的自我评价和自我改进,能够使学生获得亲身参与实践操作的体验,并在实践中发现问题、解决问题,锻炼团队协作的能力。《包装造型设计》课程是一门理实一体的课程,为了更好地评价学生掌握包装容器造型设计的能力,过程考核的评价方式是该课程在考核方式上进行改革的一个重要内容。过程课程教学上要求学生自主或团队完成15个工作任务,前面12个工作任务是每个5分,共60分,学生完成每个工作任务中相应包装容器的设计与制作,设计图为3分,成品实物为2分,学生完成任务后老师当场对作品进行评价和给分。后3个综合工作任务为每个10分,共30分,综合工作任务的实施以学生小组的形式完成,每组中组长分配每个组员不同的小任务,之后选取一个学生对本组的完成的工作任务在班级中进行陈述,其他组学生进行分析评价。最后还有10分为学生平时分享和团队协作能力的表现。同时,老师在整个教学过程变得很轻松,只要讲解适当的理论知识,之后整个课堂就以学生为主,老师只需要对学生的学习情况的进行全面掌控,充当评价的角色,待15个工作任务全部完成,该课程的教学也结束了,学生的成绩也出来了。整套过程考核设计中体现了更加公平,以及注重能力的培养,让学生养成“过程即结果”的正确观点,有助于培养学生正确的价值观,也有助于学生今后的职业发展。
二、结合专业竞赛
以赛促学为了更好地调动学生学习的积极性,使学生掌握专业技能,开展技能竞赛是一种较好的方式。学生通过对《包装造型设计》的学习已经基本掌握了常规包装容器的设计和算法,在这样的基础再进行包装类设计大赛不但是对学生已有知识的考察,同时也是让学生发挥创新能力的一个机会。因此,在教学的后三分之一的时间,举办院级的包装结构设计大赛,比赛时间为五周,学生根据大赛主题设计作品,作品交给评审组后统一评审,得出各个奖项。为了能广泛地调动学生积极参加比赛,各奖项不但设有奖金,还将比赛结果与《包装造型设计》课程成绩相结合。在参加的艾司科全国包装结构设计大赛中先后有2人获优胜奖,12人获优秀奖,参加全国轻工类包装设计大赛获一等奖三名,二等奖2名,三等奖5名,参加江淮杯工业设计大赛获优秀奖2名。通过竞赛的激励,可以锻炼学生的专业技能,让学生获得荣誉,有利于学生更好地就业,而且将比赛与课程教学紧密结合,大大提高了学生学习的积极性。基于工作任务的教学内容,以完成具体工作任务为目的的教学设计,“过程即结果”的考核方式及以赛促学的激励措施使得《包装造型设计》课程教学模式在包装技术与设计专业中已形成了鲜明的特色。同时课程组老师们编写了《包装设计》实训指导书,该指导书在总结教学经验的基础上编写,突出职业技能的训练,具有较强的实用性和创新性,充分满足教学的需求。通过改革,该课程的教学效果得到显著提高,教学效果连续3年达到优秀。
作者:郑美琴涂亮单位:安徽新闻出版职业技术学院
1.1在培养目标上对学生应用能力的培养有所偏离
许多应用型本科院校在课程设置上都不同程度地存在着重理论知识,尤其是陈述性知识的传授,轻实践教学环节,没有做到结合社会需要,培养学生解决实际问题的应用能力。如产品设计专业课程存在内容设置过细与课程周期短的差异,学生专业学习内容过多与学科知识面狭窄的差异,单一的课程设置和市场整体综合设计的差异等。
1.2在培训模式上,理论与实践脱节情况仍然严重
在教学实践中很多学生前期看轻专业理论学习和专业实践训练,仅仅重视专业技能训练和产品表现形式,导致学生在后期综合设计中创新意识和创新能力缺乏,一味地追逐技法,难免会变成匠人之艺,缺乏深度,更为重要的是,在未来的的道路上走不长,会受到商业等其他事物的诱惑,进而迷失方向。应用型学科固然在于实际应用,然而须有理论指导,没有理论指导的实践,不可能从根本上摆脱盲目性,导致学生的设计缺乏创新和延展性。
1.3教学方法上的问题
教学中单调、封闭式的教学方法、手段与适应社会发展需要的设计专业人才的差异。由于部分高校产品设计专业教师欠缺,绘画教师被迫走上设计绘画之路。但是其自身缺乏对产品设计的基本了解,造就了设计基础教育的缺失,使得设计基础课程训练与专业应用设计脱节。再加上单调、封闭式的满堂灌式的课堂教学,老师与学生的积极性无意间被消磨,出现了师生相互应付的局面。为了调动师生的积极性及适应信息时展的需求,建立一个开放的、创新型的产品设计教育体系势在必行。
2产品设计创新应用型人才培养探索
2.1面向行业需求,优化专业结构和课程体系设置
在进行专业结构调整时,通过传统优势学科之间的交叉和融合衍生新专业,使新专业建设起点高、条件好。按照前沿、交叉、急需的原则,发展建设需要的专业;根据行业人才需求主动调整专业方向,更加准确有效地实现现有高等院校对设计专业课程本身与企业需求之间的契合度,更好地提升学生毕业后的市场竞争力,满足现代企业用人需求。学校应根据应用型人才培养目标,转变过于强调基础课程体系的系统性和完整性的想法,坚持基础教学为专业教学服务,为相通相近学科搭建基础课程平台,按专业实际有针对性、选择性地设置基础模块,并根据专业需求,适度加大专业课程模块学时比例,同时构建与理论教学体系相辅相成的、循序递进的多层次实践教学体系。
2.2坚持教育教学改革,确保教育质量的稳定提高
高等院校的产品设计专业教育要坚持教育教学改革,丰富产品设计专业人才培养模式,应用探究式教学方式,不断以创意思维、创新设计、创业实践为三大模块贯穿于设计教学中,营造良好的探究性的教学气氛,激发学生创意热情,鼓励教师在课堂教学中采用案例教学法、问题教学法、研讨教学法、模拟教学法、项目教学法,同时推进考试方法改革,形成以引导创新思维为核心的一体化的课程教学模式,培养学生创新设计、创业实践能力。将专业理论知识传授与实践技能培养相结合,现代设计教育研究与民间工艺技能培训相结合,培养创造能力与培养适应社会需求的创新人才相结合。教学中随时考察企业需求和企业对人才培养的要求,打造适应社会发展的人才培养模式,提高师生的实践教研水平和服务社会需求的能力。更好地从机制上保证教学工作的顺利开展,保证正常的教育教学秩序,以此来确保教学质量的提高。
2.3建设具有高素质的教师队伍
创新意识的养成和实践应用能力的训练并不能简单地通过课程设置得以实现,更多要依赖于教师把创新能力的培养意图贯穿于理论和实践教学以及考核的各个环节设计中。加强教师自身素质的培养,定期举办与开展教师培训课程以及专题讲座,让教师在理论教学的基础上,参与企业设计实践,进入企业参观,了解现代设计专业发展趋势,了解企业对人才需求状况,使教师更好的掌握最新设计软件,提升相关专业技能,以此服务于教学活动中,给与学生最新的专业发展前景咨询,真正使得人才的培养符合企业需求。教师要树立团队意识,将设计教育与创新文化产业紧密联系,才能适应社会发展和设计水平整体提高的需要。
本文所研究的用户是针对于社会网络中的用户,用户之间具有一定的交互行为,用户总数表示为U.定义1.用户A与用户B在状态、日志、照片、相册等方面进行了一次交互操作,如用户A对用户B的状态进行一次评论,即视为用户A与用户B发生一次交互,记为(A,B).定义2.用户与其它用户的交互行为时间流称为该用户的行为模式.
1.2基本假设
直观分析,社会网络中用户间存在一定交互行为,用户交互时主要依赖于当前的交互,对于以前的交互特性并不敏感,也就是用户间的交互行为满足Markov性,所以我们假设用户交互行为是一个Markov过程.由于用户在长期行为中会形成稳定的行为习惯和偏好,所以用户行为具有相对稳定性,经过较长一段时间后,用户的行为模式将趋于稳定状态,也就是用户交互行为的Markov随机过程可以收敛.用户行为Markov模型能够描述用户内在的特性.采用用户行为Markov模型进行聚类基于如下假设:假设:用户行为具有偏好性,不同用户在行为模式上存在一定差异,用户间行为模式并不完全相同,但若干用户间行为模式会存在一定相似性,这些用户相较于其他用户行为模式相似程度较高,存在一定相关性,相反存在若干用户间相似程度较低.
2基于行为模式的社会网络用户谱聚类算法
本文提出一种基于行为模式的社会网络用户谱聚类算法(SpectralClusteringAlgorithmforUserBehaviorPatterns,SCBP).SCBP算法主要包含2个阶段,第一阶段建立用户行为Markov模型,学习相应参数;第二阶段对用户行为模型进行谱聚类,获得用户划分结果.
2.1社会网络用户行为模型
SCBP方法使用一阶齐次Markov模型对社会网络用户行为进行建模,将Markov模型的状态与用户间的交互行为相对应.在确定Markov模型的状态时,主要有以下3步:1)获取每个用户交互行为数据.设用户ui的交互行为数据为B=(d1,d2,…,db),它是对用户ui与其它用户的历史交互行为进行预处理后得到交互行为流,其长度为b,其中di表示按时间顺序产生的第i个与用户ui发生交互行为的用户.2)提取交互行为数据流B中互不相同的用户,设B中互不相同的用户有N个(N≤b),分别记为^d1,^d2,…,^dN,并计算这些用户在B中出现的频率.设第i个用户^d2在B中的出现频率。3)给定频率阈值η,对于^d1,^d2,…,^db中出现频率大于或等于频率阈值η的用户形成Markov模型的状态.设在B中出现频率大于或等于频率阈值η的用户共有S个.
2.1.1学习一步转移矩阵在学习一步转移矩阵时,采用极大似然估计法学习相关参数.首先,依据用户行为Markov模型的状态将交互行为序列中所有的交互行为对应为相应的状态,获得用户的状态序列.其次,依据用户的状态序列学习各个状态间的转移次数及转移概率,从而得到一步转移矩阵.一步转移矩阵的学习算法表1所示.
2.1.2学习收敛后的Markov分布在学习收敛后的Markov分布时,需要获得用户的一步转移矩阵和初始Markov分布.我们采用差值法判断Markov分布是否达到收敛,计算当前Markov分布与之前一次Mark-ov分布的差值,并将所得差值与规定阈值ε进行比较,若所得差值小于或等于规定阈值,说明Markov分布已经达到收敛,此时Markov分布即为收敛后的Markov分布.在初始Markov分布的选择上,可以选择所有状态均为同一概率的初始分布,也可依据已有的先验知识,对不同状态分配不同初始概率,以此作为初始分布.收敛后Markov分布的学习算法如表2所示,通过differentof函数计算当前Markov分布与之前一次Markov分布的差值,并将所得差值与阈值ε比较.
2.1.3学习收敛后的n步转移矩阵在学习收敛后的n步转移矩阵时,需要输入用户的一步转移矩阵和误差阈值ε.为了加快算法执行,采用迭代次数作为算法退出条件.通过不断迭代计算新的n步转移矩阵,直至达到n步转移矩阵稳定或者达到迭代次数,获得收敛后的n步转移矩阵.收敛后n步转移矩阵的学习算法如表3所示,依据一步转移矩阵和当前n步转移矩阵计算新的即下一步n步转移矩阵,然后依据isconvergent函数判断相邻两次n步转移矩阵差值,若所得差值小于阈值ε,则停止迭代.
2.2SCBP聚类算法
通过建立用户行为Markov模型,我们对每个用户的行为模式构建一步转移矩阵、收敛后Markov模型和收敛后n步转移矩阵3种形式化表达,在3种表达基础上,利用谱聚类思想,构建了面向用户行为Markov模型的谱聚类(SCBP)算法.SCBP聚类算法的输入是对象间的相似度矩阵,所以需要定义一步转移矩阵、收敛后Markov分布和收敛后n步转移矩阵对应的相似度矩阵.我们分别采用矩阵L2范数和KL散度定义一步转移矩阵、收敛后n步转移矩阵和收敛后Markov分布基础上的用户行为相似度.根据差值矩阵的L2范数和Markov分布的KL散度,我们定义用户p与用户q的相似度,给定用户p和用户q的一步转移矩阵或者n步转移矩阵,则定义用户p与用户q的转移矩阵相似度为:
3实验与结果分析
3.1实验设计与评价指标
实验数据分别采用人人网(Renren)和Facebook用户的行为数据集,人人网是中国最大、最具影响力的SNS网站.而Facebook为国外知名社交网站,具有庞大的用户数量.人人网数据集包含了435名用户在三年间的活动记录,预处理得到用户间交互行为信息,包含相册交互数据6613条,日志交互数据2921条,照片交互数据130591条,状态交互数据557963条.Facebook数据集为新奥尔良网络数据集1.该数据集包含45813个用户,但其中很多用户的交互行为较少,我们对其中的交互次数大于30的用户进行筛选,选择出2000个用户作为实验数据集.由于SCBP后期采用了KMeans聚类,所以我们采用KNN作为比较方法,KNN是带监督的学习方法,我们从人人网数据中选择行为模式差异较大的50个用户进行标注,分成5类,作为初始学习类别.对于Facebook数据集,则选择行为模式差异较大的50个用户分成5类作为初始分类点.我们设计了2组实验:1)精确聚类结果比较,聚类结果与人工标注结果对比.2)无标注聚类结果比较.将所有用户采用不同聚类方法进行聚类,然后分析各聚类方法结果的合理性.我们采用指标F值和D值对比聚类效果.F值和D值是衡量聚类效果的常见指标.聚类结果评价指标F值和D值的计算方法.1)F-Value(F值),也称为聚类密集性,F-value的计算方法如下。其中ci是类i的中心,cj是类j的中心,D值代表类与类之间的差异程度,D值越大表示类与类之间的距离值越大,类之间越分离,聚类效果越好.
3.2实验结果与比较
3.2.1精确聚类结果比较本文对50名人人网用户根据行为特征进行人工标注,得到人工聚类结果.然后根据一步转移矩阵(One)、收敛后Markov分布(M)和收敛后n步转移矩阵(n)进行不同度量下聚类,得到SCBP和KNN的聚类结果.通过将各个聚类对象得出的结果与人工标注的分类结果进行对比,计算各个聚类的精度(Precision,P)和召回率(Recall,R).不同度量、不同方法的精度和召回率如图1所示.从图1上可以看出:1)SCBP聚类的精度和召回率均在0.8以上,相较于KNN,SCBP聚类的精度和召回率明显更高,更加符合依据用户行为划分准则的结果.两种算法在收敛后Markov分布上的差异较大;2)SCBP和KNN使用收敛后的Markov分布聚类的精度和召回率均稍高于使用一步转移矩阵和收敛后n步转移矩阵进行聚类,说明采用收敛后Markov分布进行聚类更有效;3)SCBP聚类算法在三种度量上所得的精度和召回率差异相对较小,且SCBP聚类算法中所得的精度和召回率相比KNN算法中的结果均更高.由此可见SCBP聚类算法能够适应不同的聚类基础,在实际应用中具有较好的适应性.
3.2.2人人网无标注聚类结果比较我们将所有用户采用不同聚类方法进行聚类,聚类结果的D值和F值对比分析结果如下页图2所示.从图上可以看出:1)对比三种聚类度量下的F值和D值可以看出,无论是KNN还是SCBP,使用收敛后Markov分布进行聚类的F值均小于使用一步转移矩阵和收敛后n步转移矩阵聚类的F值,并且使用收敛后Markov分布进行聚类的D值均大于使用一步转移矩阵和收敛后n步转移矩阵聚类的D值.这个结果与50个用户上的聚类结果一致,说明采用收敛后Markov分布进行聚类最合理;2)SCBP聚类中使用收敛后的Markov分布相较于使用一步转移矩阵和收敛后n步转移矩阵聚类的F值下降很大,而D值保持较高值,说明SCBP聚类结果中每个类内部成员更为紧凑,并且类与类之间的差异更大.这个结果与50个用户上的聚类结果也一致,说明SCBP聚类算法能够适应不同的度量;3)对比SCBP聚类和KNN方法的F值和D值,SCBP聚类的F值均小于KNN方法的F值,并且SCBP聚类的D值均大于KNN方法的D值,即SCBP聚类相较于KNN方法,每个类内部成员更为紧凑,并且类与类之间的差异更大.通过对比两种聚类方法的F值和D值,可以明显得出SCBP聚类效果优于KNN方法.
3.2.3Facebook数据集实验结果分析由于Facebook数据集的用户没有个人信息,难以准确判别用户关系,所以没有进行人工分类,直接对其进行聚类.根据人人网数据集上的实验结果,可以知道基于收敛后Markov分布上的聚类结果表现较好,所以我们在收敛后Markov分布上进行SCBP聚类和KNN方法,然后分析结果.SCBP聚类和KNN方法的F值和D值结果如图3所示.从图3可以看出,使用收敛后的Markov分布,SCBP在Facebook数据集上的F值和KNN方法差异较小,SCBP略低于KNN.在表示聚类不同簇间差异性的D值上,SCBP却明显高于KNN.实验结果说明SCBP聚类结果中每个类内部成员紧凑,并且类与类之间的差异程度很高,类之间的区分度大.由于Facebook数据集内的用户间交互存在一定的偶然性,一个聚类簇内的用户在行为上具有一致性,不同簇间的差异性越高,说明能够区分不同行为特征的用户群.相较于KNN方法,SCBP聚类方法不同簇中的用户在行为模式上差别较大,使不同类别的用户得到了较好、较为准确的划分,在一定程度上减少了误分类的情况,提高了用户划分准确度.同时,也说明SCBP方法能够满足社会网络上具有一定噪声和随机性的用户聚类,这对于发现用户兴趣、用户推荐、社区挖掘等具有重要的价值.
1.产学研互动式教学模式
该模式的特征在于园林专业本科毕业论文(设计)的选题即是导师的科研项目,有具体的实际工程应用背景,形成教学、科研、生产相互促进,教学质量有保证,又能促进科技进步、服务生产第一线,创造实际效益的教学模式。其主要特点为:该模式园林专业本科毕业论文(设计)选题具有前沿性,有利于提高学生的主动性和创造型,有利于保证园林专业本科毕业论文(设计)成果的先进性。在教学经费上相对充足,有利于安排学生到工程实际现场进行调研实习,以进行充分的文献检索,实际科研能力和工程综合能力训练比较充分。实施该模式的导师大多有立项的科研项目,一般教学科研能力较强,层次较高,能够全面培养学生的综合素质和能力。在布置毕业论文(设计)任务和内容时,使学生了解科研项目全貌的同时,将项目进行合理的分解,形成独立的研究小组,使每个学生承担各自毕业设计的任务和内容,分工协作。对于理论基础好、综合能力强的学生来说,这是一个比较好的模式,可以充分发掘学生的潜力。
2.面向市场的短、平、快课题教学模式
此种园林专业本科毕业论文(设计)教学模式的特点是,题目内容的真实性和实用性强,一般面向市场和社会需求选择一些小的、较短时间内能够完成的设计项目,寻求与中小型企业合作,开发横向课题,将其作为学生的毕业论文(设计)选题,通过此类训练,学生全过程参与项目的完成,并取得有效成果。
该模式可以从企业处获得一定的经费支持,同时需要指导教师做大量的准备工作,组织好学生与公司企业间的技术交流沟通。由于要求产生实用性成果,指导教师对学生的研究设计更要严格把关,甚至亲自参与研究设计,做到心中有数。而学生实习调研充分,项目全过程参与和具体研究成果的取得,会促使学生的素质和能力得到培养和提升。该模式通常工作量饱满,有利于调动学生的积极性和创造性,毕业论文(设计)质量较高。
3.“双导师制”教学模式
由于科技的飞速发展,完成一个课题需要多学科专业知识的参与,采取“双导师制”教学模式,改变学生只有一名教师单独指导的情况,可以弥补单个指导教师知识和能力结构的不足,尤其是老教师与年轻教师、校内教师与校外导师优势互补,对学生的指导更为有利,可以使学生得到更多的收获。
这种模式不局限于同一学科、同一专业有助于形成一个很好的互动局面,客观上每位学生更容易随时随地得到不同教师的指导,对学生综合素质和能力的培养更为有利。此外,该模式还有利于学校指导教师水平的提高,也确保了每名学生的毕业论文(设计)质量。
4.学生自选课题教学模式
随着时代的发展,园林专业高等教育愈加重视学生创新能力的培养,愈加重视学生的个性发展,因此,这些年来学生自选毕业论文(设计)课题的想法比以往更加强烈,人数逐年增多,目前已成为主流趋势。该模式的特点是:
学生自选课题,更容易发挥学生的主动性和创造性,特别是与实习工作相结合,兴趣高,投入精力大,容易出成果。但是学生自选的课题需要进行严格的把关和筛选。教师与学生间需要进行充分的交流和沟通。
学生自选课题模式更应注重指导教师与学生间的双向选择;指导教师对学生的创新精神应该给予充分肯定和支持。但也正是由于学生自选课题,指导教师缺乏一定的准备,因此,指导教师除指导学生拓宽工作思路和提供方法引导外,也应该亲自参与课题的研究,充分掌握学生研究设计进展和存在的问题。