数据挖掘论文大全11篇

时间:2023-03-22 17:38:25

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数据挖掘论文范文,希望它们能为您的写作提供参考和启发。

数据挖掘论文

篇(1)

2模糊集理论的引入

在讨论实际问题的时候,需要判定模糊概念涵义,如判断某个数据在模糊集的定义和归属,这时就需要普通集合与模糊集合可依某种法则相互转换。模糊理论中的截集是模糊集合和普通集合之间相互转换的一座桥梁。

3基于事务间数值型关联规则的数据挖掘算法

假设有一就业数据库,先通过数据整理,将原始数据记录值区间[0,10]偏置10个单位。由此就得到了经过偏置后的数据库记录。再依滑动窗口方法,设maxspan=1(该值可以依实际情况的需要来定),就可将偏置后的数据库数据整理转化为扩展事务数据库。再把扩展事务数据库记录通过隶属度函数转化为对应的隶属度。

篇(2)

1.1数据库环境的异构型

Web上的每个站点就是一个数据源,数据源之间是异构的,外加上各个站点的信息和组织的不同,Web网站就构成了一个巨大的异构数据库环境。要对这些数据进行挖掘,首先,要解决各个站点之间的异构数据集成,提供用户统一界面,从复杂的数据源中取得所需的有用的信息知识。其次,有关Web上的数据查询。

1.2数据结构的半结构化

Web上的数据比较复杂,各个站点的数据都独立设计,具有动态可变性。虽然Web上的数据形成半结构化数据。这些问题是进行Web数据挖掘所面临的最大困难。

2XML技术在Web数据挖掘中的优势

Web数据的异构使Web数据挖掘变得十分困难,通过XML可以解决这个问题。因为XML文档具有很好的自我描述性,他的元素、子元素、属性结构树可以表达极为丰富的语义信息,能够很好的描述半结构化的数据,因此在网络数据集成、发送、处理和显示的方面。开发人员能够用XML的格式标记和交换数据。XML在三层架构上为数据的处理提供了有用的途径。利用XML,Web设计人员能够构建文档类型定义的多层次互相关联的系统、元数据、数据树、样式表和超链接结构。基于XML的Web数据挖掘技术,能够使不同来源的结构化的数据很容易地结合在一起,解决Web数据挖掘的难题。

2.1XML技术在Web数据挖掘中具体作用利用XML技术我们在Web数据挖掘中可以完成以下几点:

2.1.1集成异构数据源

XML是一种半结构化的数据模型,可以完成和关系数据库中的属性一一对应,从而实施精确地查询与模型抽取。XML可以搜索多个不同数据库的问题,以实现集成。

2.1.2和异构数据进行交换

在Web数据挖掘程中,用户需要和异构数据源进行数据交换,XML通过自定义性及可扩展性来标识各种数据,从而描述从各站点搜集到的Web页中的数据。XML的出现解决了数据查询的统一接口。

2.1.3过滤信息并显示

XML描述数据本身,可以使得定义的数据以不同的方式显示,对获取的信息进行裁减和编辑以适应不同用户的需求。以不同的浏览形式提供给不同的用户。

3基于XML的Web数据挖掘模型

我们通过对XML及Web数据挖掘的分析,设计了一个基于XML的Web数据挖掘模型通过提供一个Web数据挖掘的集成环境,提高数据挖掘系统的整体性能。工作流程如下:系统根据用户要求搜集Web资源,经数据转换器处理成相应的XML数据存储,提供给挖掘器使用;挖掘器则根据要求从选取相应的算法挖掘,输出挖掘结果;用户根据自己的满意度,获得需要的挖掘结果,调整挖掘要求进入新一轮数据挖掘。通过系统的维护我们可以加入新的挖掘算法,实现升级。

3.1各模块具体功能

3.1.1数据收集

从Web站点上采集数据并存储,获得挖掘内容。针对异构数据源,可以多种方式提出相关需求,挖掘的重点是Web内容和Web使用的数据。把用户访问网站留下原始日志数据进行清洗、过滤和转换处理,转变成统一处理的数据结构,构建日志数据库。

3.1.2转换器

对检索得到的数据用XML技术进行预处理,建立半结构化数据模型,抽取其特征的元数据,用结构化的形式保存,为挖掘模块提供所需的数据。

3.1.3挖掘器

不同的挖掘算法有不同适用情况,挖掘综合器根据具体的需求和挖掘方法的不同选择策略到挖掘算法库中去选择挖掘算法或种组合算法执行挖掘任务。随着应用的深入,知识库中的算法和规则不断的丰富。挖掘算法库是挖掘分析方法的综合库,以插拔的形式组织存放各种挖掘算法。314结果生成与评估以直观的方式提交挖掘结果,便于用户的评估。通过模式分析和兴趣度度量,若结果使得用户满意,数据挖掘结束,输出用户感兴趣的内容;否则可以在此重新提出挖掘要求,重新挖掘。

3.2系统各模块实现方法

3.2.1数据收集

数据的收集也涉及数据挖掘的技术,其过程是:通过人工输入办法,给出查询主题,找到相关的Web页,然后,通过相应的数据挖掘的算法对训练数据集提炼,利用提炼出的数据模式,进行更大范围的搜索,以获取更多的数据源。最终形成较新和有效XML文档。

3.2.2数据的转换处理

数据抽取转换是模型实现一个重要环节,其主要方法是把现有的Web页面转换成XML格式,并使用相关工具处理XML结构数据检要把HTML中含有的与主题无关的标记过滤掉,然后转化到XML的格式存储。目前Web页面到XML文档的转换,有两部分数据构成:一是XML数据,二是非XML数据。XML数据,可以直接将它们提交给下一个模块。对于非XML数据,本文的实现方法是用到Tidy以改正HTML文档中的常见错误并生成格式编排良好的等价文档,还可以使用Tidy生成XHTML(XML的子集)格式的文档。通过构造相应的Java类完成将数据从HTML到XML的转换。

3.2.3挖掘方法

(1)文本分类:文本分类是指按预先定义的主题类别,把集合中的每个文档确定一个所属类别。这样,用户能够方便地浏览文档,并限制搜索范围来使查找更为容易。利用文本分类技术对大量文档进行快速、有效地自动分类。有关的算法通常采用TFIDF和NaiveBayes等方法。

(2)文本聚类:文本聚类与分类的不同之处在于,聚类不需要预先定义好的主题类别,它是将把文档集合分成若干个簇,要求同簇内文档内容相似度最大,而不同簇间的相似度最小。Hearst等人研究表明聚类假设,即与用户查询相关的文档通常会聚类比较靠近,而远离与用户查询不相关文档。可以利用文本聚类技术把搜索引擎检索结果分成若干个簇,用户只要考虑那些相关的簇,就能够缩小所需要浏览的结果数量。目前,常用的文本聚类算法,分为两种:以G-HAC等算法为代表的层次凝聚法,以k-means等算法为代表的平面划分法。

(3)关联分析:关联分析是指从文档集合中发现不同词语之间关系Brin提出一种从大量文档中查找一对词语出现模式算法,在Web上寻找作者和书名的模式,从而发现数千本在Amazon网站上查找不到的新书。

(4)模式评价:Web数据挖掘中十分重要的过程就是模式评价。常用的方法有预留法和交叉实验法,将数据分成训练集和测试集两部分,学习和测试反复进行,最后用一个平均质量模型来确定模型质量的好坏。

(5)预留法:从数据集合随机抽取预定大小一个子集作为测试集,其他数据则作为训练集。

(6)交叉验证法:把整个数据集合按照所要进行的学习测试循环次数分成一定数目的子集,在每次循环中,选取其一个子集作为测试集,其它子集并集则作为训练集。

篇(3)

2技术关键

本系统采用基于营销目的的商户聚类,技术关键包括三部分内容:数据预处理中的特征选择、基于限制目标的商户精确聚类和基于聚类结果的多层关联规则算法的研究。

2.1特征选择

假定获取的数据的维数为n,通常情况下n是很大的一个数,为简化模型,也为了防止模型陷入过拟合(维数灾难),需要进行降维处理,即仅把对项目改造判定起关键作用的因素挑选出来。本系统采用PCA算法来进行降维处理,过程如下:

1)计算标准化后的矩阵Z的样本的协方差矩阵Cov;

2)计算协方差矩阵Cov的本征向量e1,e2,…,en的本征值。本征值按大到小排序;

3)投影数据

到本征矢张成的空间之中,利用贡献分析取前m个向量Y1,Y2,…,Ym。

2.2基于营销目标限制的商户精确聚类算法

现有聚类算法一般没有约束条件,只根据相似度来进行聚类,为了能够体现约束条件,需要在聚类相似度或者样本距离之间把限制条件增加进去,这样在样本聚类的时候即可使得具有相同营销特性的样本或者客户被划分到同一个类中。烟草终端商户的大部分属性是分类属性,例如:地区、类别等,此外还有数字型属性、日期型属性,由于存在不同类型的属性,常规的聚类算法无法使用,为此,采用把数字属性和日期属性划分区间的思路,这样可以转化成分类属性的方式来进行聚类。进而可建立如下商户模型:分类对象X∈Ω,X=[A1=x1]∧[A2=x2]∧…∧[Am=xm],其中xj∈DOM(Aj),1≤j≤m,为简便起见,将对象X∈Ω用向量(x1,x2,…,xm)表达,如果属性Aj的值不存在,则Aj=ε。令Χ={X1,X2,…,Xn}为n个分类对象的集合,用集合方式表达分类对象,则Xi={xi,1,xi,2,…,xi,m},如果属性Aj的值不存在,则集合中不出现xi,j,容易得到|Xi|≤m。如果存在Xi,j=Xk,j,1≤j≤m,则Xi=Xk。为方便聚类,利用聚类汇总来压缩原始数据,从而达到提高算法效率的目的。一个类C可以由如下三元组(n,I,S)来表示。其中n为类C中的对象数量,I={i1,i2,…,iu}是C内所有属性值的集合,S={s1,s2,…,su},其中sj为ij在类C中的数量,ij∈I,1≤j≤u。集合S按升序排列,即s1≤s2≤…≤su,这同时也暗示集合I的元素按其在C中的数量按升序排列。三元组(n,I,S)被称作类C的聚类汇总CS,CS的三个成员分别记作CS.n、CS.I和CS.S;对于CS.I的任一元素ij∈CS.I,则记作CS.I.ij,对于sj∈CS.S,则记作CS.S.sj,其中1≤j≤u。

2.3基于烟草营销的多层关联规则的研究

针对本项目,对关联规则定义进行扩展,对形如:XY的关联规则,不再限定X和Y为一个项目集,而把X和Y定义为条件的合取范式,每个条件Ai=True/False为布尔表达式。此时的Ai为一个项目集,它的含义与原来的X和Y的含义相同,如果把结果中的条件布尔表达式写成Cj=True/False,则关联规则有如下形式:(A1=True/False)∧(A2=True/False)∧…∧(An=True/False)(C1=True/False)∧(C2=True/False)∧…∧(Cm=True/False)关联规则的开采问题可以分解成以下两个子问题:

①从数据集合或交易集合D中发现所有的频繁项目集。

篇(4)

二、数据挖掘的方法

1.统计方法。传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

3.聚类分析。聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异,常用的技术有分裂算法,凝聚算法,划分聚类和增量聚类。聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价,此外,聚类分析还用于对孤立点的检测。并非由聚类分析算法得到的类对决策都有效,在运用某一个算法之前,一般要先对数据的聚类趋势进行检验。

4.决策树方法。决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每个结点说明了对实例的某个属性的测试,该结点的每一个后继分支对应于该属性的一个可能值,分类实例的方法是从这棵树的根结点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应的树枝向下移动。决策树方法是要应用于数据挖掘的分类方面。

5.神经网络。神经网络建立在自学习的数学模型基础之上,能够对大量复杂的数据进行分析,并可以完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析,神经网络既可以表现为有指导的学习也可以是无指导聚类,无论哪种,输入到神经网络中的值都是数值型的。人工神经元网络模拟人脑神经元结构,建立三大类多种神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适应能力的种种优点。

6.遗传算法。遗传算法是一种受生物进化启发的学习方法,通过变异和重组当前己知的最好假设来生成后续的假设。每一步,通过使用目前适应性最高的假设的后代替代群体的某个部分,来更新当前群体的一组假设,来实现各个个体的适应性的提高。遗传算法由三个基本过程组成:繁殖(选择)是从一个旧种群(父代)选出生命力强的个体,产生新种群(后代)的过程;交叉〔重组)选择两个不同个体〔染色体)的部分(基因)进行交换,形成新个体的过程;变异(突变)是对某些个体的某些基因进行变异的过程。在数据挖掘中,可以被用作评估其他算法的适合度。

7.粗糙集。粗糙集能够在缺少关于数据先验知识的情况下,只以考察数据的分类能力为基础,解决模糊或不确定数据的分析和处理问题。粗糙集用于从数据库中发现分类规则的基本思想是将数据库中的属性分为条件属性和结论属性,对数据库中的元组根据各个属性不同的属性值分成相应的子集,然后对条件属性划分的子集与结论属性划分的子集之间上下近似关系生成判定规则。所有相似对象的集合称为初等集合,形成知识的基本成分。任何初等集合的并集称为精确集,否则,一个集合就是粗糙的(不精确的)。每个粗糙集都具有边界元素,也就是那些既不能确定为集合元素,也不能确定为集合补集元素的元素。粗糙集理论可以应用于数据挖掘中的分类、发现不准确数据或噪声数据内在的结构联系。

8.支持向量机。支持向量机(SVM)是在统计学习理论的基础上发展出来的一种新的机器学习方法。它基于结构风险最小化原则上的,尽量提高学习机的泛化能力,具有良好的推广性能和较好的分类精确性,能有效的解决过学习问题,现已成为训练多层感知器、RBF神经网络和多项式神经元网络的替代性方法。另外,支持向量机算法是一个凸优化问题,局部最优解一定是全局最优解,这些特点都是包括神经元网络在内的其他算法所不能及的。支持向量机可以应用于数据挖掘的分类、回归、对未知事物的探索等方面。

事实上,任何一种挖掘工具往往是根据具体问题来选择合适挖掘方法,很难说哪种方法好,那种方法劣,而是视具体问题而定。

三、结束语

目前,数据挖掘技术虽然得到了一定程度的应用,并取得了显著成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将在更加广泛的领域得到应用,并取得更加显著的效果。

参考文献:

篇(5)

由于信息技术的迅速发展,现代的档案管理模式与过去相比,也有了很大的变化,也让如今的档案管理模式有了新的挑战。让人们对信息即时、大量地获取是目前档案管理工作和档案管理系统急切需要解决的问题。

一、数据挖掘概述

(一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从而达到良好的档案管理工作效果。(二)数据挖掘技术分析。数据挖掘技术分析的方法是多种多样的,其主要方法有以下几种:1.关联分析。指从已经知道的信息数据中,找到多次展现的信息数据,由信息的说明特征,从而得到具有相同属性的事物特征。2.分类分析。利用信息数据的特征,归纳总结相关信息数据的数据库,建立所需要的数据模型,从而来识别一些未知的信息数据。3.聚类分析。通过在确定的数据中,找寻信息的价值联系,得到相应的管理方案。4.序列分析。通过分析信息的前后因果关系,从而判断信息之间可能出现的联系。

二、数据挖掘的重要性

在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,这样就极大地提升了档案相关内容的安全性,降低档案的磨损率。并且可以对私密档案进行加密,进行授权查阅,进一步提高档案信息的安全性。其次,对档案进行鉴定与甄别,这也是档案工作中较困难的过程,过去做好这方面的工作主要依靠管理档案管理员自己的能力和水平,主观上的因素影响很大,但是数据挖掘技术可以及时对档案进行编码和收集,对档案进行数字化的管理和规划,解放人力资源,提升档案利用的服务水平。第三,数据挖掘技术可以减少档案的收集和保管成本,根据档案的特点和规律建立的数据模型能为之后的工作人员建立一种标准,提升了档案的鉴定效率。

三、档案管理的数据挖掘运用

(一)档案信息的收集。在实施档案管理工作时,首先需要对档案信息数据的收集。可以运用相关档案数据库的数据资料,进行科学的分析,制定科学的说明方案,对确定的数据集合类型和一些相关概念的模型进行科学说明,利用这些数据说明,建立准确的数据模型,并以此数据模型作为标准,为档案信息的快速分类以及整合奠定基础。例如,在体育局的相关网站上提供问卷,利用问卷来得到的所需要的信息数据,导入数据库中,让数据库模型中保有使用者的相关个人信息,通过对使用者的信息数据进行说明,从而判断使用者可能的类型,提升服务的准确性。因此,数据挖掘技术为档案信息的迅速有效收集,为档案分类以及后续工作的顺利展开,提供了有利条件,为个性化服务的实现提供了保证。(二)档案信息的分类。数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者上网使用网址时,数据挖掘技术可以充分利用使用者的搜索数据以及网站的访问记录,自动保存用户的搜索信息、搜索内容、下载次数、时间等,得到用户的偏好和特征,对用户可能存在的需求进行预测和分类,更加迅速和准确的,为用户提供个性化的服务。(三)档案信息的整合。数据挖掘技术可以对新旧档案的信息进行整合处理,可以较为简单地将“死档案”整合形成为“活档案”,提供良好的档案信息和有效的档案管理。例如,对于企事业单位而言,培训新员工的成本往往比聘请老员工的成本要高出很多。对老员工的档案信息情况进行全体整合,使档案资源充分发挥作用,将档案数据进行总结和规划,根据数据之间的联系确定老员工流失的原因,然后建立清晰、明白的数据库,这样可以防止人才流失,也能大大提高档案管理的效率。

四、结语

综上所述,在这个信息技术迅速跳跃发展的时代,将数据挖掘技术运用到档案管理工作中是时展的需求与必然结果。利用数据挖掘技术,可以使档案管理工作的效率大大提升,不仅减少了搜索档案信息的时间,节省人力物力,避免资源的浪费,还能帮助用户在海量的信息数据中,快速找到所需的档案数据信息。数据挖掘技术的运用,使静态的档案信息变成了可以“主动”为企事业单位的发展,提供有效的个性化服务的档案管家,推动了社会的快速发展。

作者:于然 单位:扬州市体育局办公室

【参考文献】

篇(6)

2增量子空间数据挖掘算法

为了能够有效地在复杂网络中挖掘出目的数据流,使用了复杂网络数据流密度的分析方法在对复杂网络进行社区划分后,通过对社区网络进行无向环路遍历并得到社区网络的所有环路。接下来挖掘算法先后挖掘出目的数据流所属的社区以及环路,最终确定目的数据流的具置。

2.1基于社区网络遍历的数据流挖掘

当数据流i与社区k的相关度最大时,说明数据流i位于社区k的可能性就最大。但是当多个数据流的大小区别不大时,以数据流的大小作为指标来定义相关度会导致挖掘精度较低。这里我们也引入数据流的特征集和数据流中的分组队列长度来计算相关度。

2.2基于多增量空间的数据流挖掘

在采用基于社区网络遍历的数据流挖掘方法得到数据流的所属社区后,我们接着采用基于多增量空间的数据流挖掘方法来挖掘出数据流的所属环路。先将社区网络的环路进行多增量空间扩展,即先得到

目标数据流所经过的环路,再得到数据流所经过的节点与时间的相关系数,这样就可以在时空上确定目的数据流位于环路的哪个节点中。

3实验结果

为了验证本文提出的基于复杂网络数据流密度的增量子空间数据挖掘算法的效果,我们通过matlab7.0软件进行算法仿真,其中仿真的复杂网络由多种网络形式组成,网络节点有200个,数据流大小为500bytes,节点的接收能耗为10nJ/bit,发射能耗为50nJ/bit,进行信号处理和功率放大的能耗为10nJ/bit。其他节点干扰而产生的能量消耗为5nJ/bit。在对本文算法进行分析的过程中,我们采用了对比分析的方法,Lopez-Yanez等人提出一种基于时间序列数据挖掘的新的关联模型,该模型是基于伽玛分类,是一种监督模式识别模型,目的是为了挖掘已知模式中的时间序列,以预测未知的值。由Negrevergne等人提出的一种PARAMINER算法:一个通用的模式挖掘算法的多核架构。多核架构采用的是一种新的数据集缩减技术(称之为EL-还原),在算法中通过结合新的技术用于处理多核心架构的并行执行数据集。为了验证本文算法的挖掘有效性,我们分别在增多节点数量和社区网络数的情况下获取算法的数据挖掘精度。实验采用的精度为NMI[16],实验结果如图3和图4所示。在不同节点数量下基于复杂网络数据流密度的增量子空间数据挖掘算法的挖掘精度更高,挖掘精度高于85%,而文献[14]的挖掘精度在77%以上,挖掘精度在76%以上。因为、提出的关联模型、提出的多核架构没有准确把握数据流在不同时间段里与环路位置的相关情况。而本文算法采用社区网络遍历和多增量空间的方法可以有效地确定这种相关性。图4为不同社区数下的算法挖掘精度,从图中可以看出,当社区网络的种类增多时,会对算法的挖掘精度造成影响,本文算法的挖掘精度在社区数为10时是95.7%,当社区数增加到50时为87.5%。而基于时间序列数据挖掘方法的挖掘精度在社区数为10时是88.6%,在社区数为50时是77.4%,而PARAMINER算法在社区数为10时是86.7%,社区数为50时是78.2%。因此从数据分析来看,本文算法的数据挖掘精度在社区数增多时仍能保持在较高水平。

篇(7)

1.1领域本体对特定专业领域中的概念及之间关系的描述,即为领域本体,它是对一个应用领域的描述,具体来说,分为本体知识库和领域本体模式两种成分,进而描述特定的领域知识和信息,即为领域本体模式,此外,模式描述了应用领域的知识构成或静态信息。而所谓的顾客价值需求领域本体,描述的是逻辑关系、描述的对象是顾客价值需求目标概念机需求行为概念,明确则是指概念及约束是显式的定义,基于其具有计算机刻度的特点,构成了形式化,研究目的将领域体原语定义的具体情况如下:定义一:顾客价值需求领域本体的概念构成,Concerpts={Concerpts1,Concerpts2,Concerpts3},式中,顾客机制需求特性概念用Concerpts1表示,顾客的价值需求决策行为概念用Concerpts2表示,如环境约束分析、方略设计、实施等;顾客的基本特征概念则用Concerpts3表示。定义二:顾客价值需求领域本体形式化为三元组:ODomain={Concerpts,Relations,Instances},式中,领域概念的集合用Concerpts表示,领域概念间的关系集合用Relations表示,而ODomain为领域本体,本体实例的集合则用Instances表示,形成三元组。定义三:顾客价值需求领域本体的关系集合表示的是概念集合中各个概念之间的关系,具体数来,表现为n维笛卡尔积的子集。关系集合中存在5种关系,有Part-of:某个概念是另一个概念的属性。Means-end:不同需求概念之间因果解构关系。Subclass-of:概念之间的继承关系。Drive-adjust:不同需求概念之间因果解构关系。Attibute-of:某个概念是另一一个概念属性。也就是行为感知影响目标调整,且目标驱动行为,二者关系密切。定义四:领域模式在应用域的实例,即顾客价值需求领域本体的实例。如“大学生的移动产品需求”本体、“政府顾客的移动产品需求”本体等。

1.2任务本体对特定任务或行为求解方法的描述即为任务本体,对其的设计,应当以顾客需求管理领域决策信息及问题的需求为基础,有文献指出,顾客吸引、识别、保持及发展,为顾客生命周期管理涉及到的4个管理主题,如表1所示,也包括了上述主题的决策分析问题。综合数据挖掘的任务来看,其囊括了一个或多个挖掘子任务、挖掘算法等,结合本次研究,实施了对该领域的任务本体原语定义的设计,如下:OTaske=(Taskea,Inputsa,Methodsa,Outputsa)上式中,挖掘任务本体用OTaske表示;α管理主题下Taskea挖掘任务的输出变量用Inputsa表示,如兴趣参量、聚类变量、规则前、后件变量;α管理主题下的挖掘任务用Taskea,如顾客细分以及需求特征描述等;挖掘结果输出表达形式或格式用Outputsa表示,如聚类中心、“类”聚类变量均值、“类”样本数等;挖掘方法用Methodsa表示,如K-means聚类。另外,α∈(识别顾客,吸引、保留和发展顾客)共同构成了任务本体。

2对本体下顾客需求数据挖掘过程的改进

结合现实发展中的相关问题,在本体的顾客需求数据挖掘过程的改进方面,主要体现了挖掘目和任务、方法的选择及确定及数据源转化、约束参数的选择等。这种方式下,对目标的搜索范围进行了有效的缩小,进而在此基础上提高了挖掘质量和效率,如图1所示。

2.1支持管理决策的挖掘任务首先要进行的是对数据挖掘任务和目标的确定,基于操作中验证或探索可支持实际管理决策的信息结构,具有较大的价值,其知识内容包括了规则、规律、模式及关系等,结合文中研究主题,依据顾客需求相应决策问题来进行具体数据挖掘任务的设置,在对挖掘任务和目标的完善方面,有效地结合了领域知识的本体模型。在对应概念及关系语义匹配方面,根据该领域需求目标、行为信息的本体模型来进行,继而确定本次数据挖掘任务。

2.2挖掘数据空间及预处理在具体的实施过程中,以数据挖掘任务和领域本体模型为基础,指导完成数据集成、选择以及预处理3个环节,这便是挖掘数据空间及预处理,细分有以下内容:(1)提取、归并处理多数据库运行环境中顾客数据,以及遗漏和洗清脏数据等;(2)基于数据来进行数据的选择方面的需求,应依据数据挖掘任务需要分析的数据来实施,进而有效减少了不相关或冗余的属性,也得到了符合约束的数据挖掘有限数据基,实现了数据挖掘搜索效率的有效提高,使得相关属性或遗漏等现象得到了有效避免;(3)基于顾客“需求行为”领域本体的概念语义即为预处理,旨在检查转载的数据,确保其合法性,并及时修正其中的错误,预处理其中的异常数据。

2.3挖掘方法算法及执行流程依据本次研究的需要,在具体的执行过程中,设定先明确数据挖掘的任务和目的,详细可分为验证性、探索性挖两种,前者由用户事先给定假设,继而在挖掘中发现蕴含的某些规则或规律,对所做的假设进行验证;其次,对操作过程中的挖掘方法和算法进行确定,而挖掘方法和感兴趣参数的设置则要根据挖掘任务来进行,如表1所示;最后,确定挖掘结果的表达方式,一般有神经网络、树结构以及规则(模板)等[6]。

2.4评价挖掘结果作为整个实施过程的最后一个环节,对于挖掘结果的评价和诠释,对于整个操作过程具有十分重要的意义,在具体的评价过程中,不能有违背领域本体知识的行为,并要及时参与领域本体的概念关系,且还要采取相应的方法来提高综合评价的有效性,如置信度、支持度以及兴趣度等等,在必要的情况下,实施方应当反馈调整参数或约束等,继而形成对用户感兴趣知识的重新挖掘,对其进行完善,基于本体用严格的逻辑语言表述过程中产生的新知识,需及时在实践过程中的检验与完善,使得整个过程具有较高的可信度,收到良好的执行效益。

篇(8)

二、最小二乘法拟合直线

最小二乘法是一种数学优化技术。它以某一社会、经济或自然现象为对象,寻找一拟合曲线,以满足给定对象系统的一组观测数据。通常要求选择的拟合曲线会使各观测数据到拟合曲线的误差的平方和最小。

本文研究销售企业(如商场)异常客户的性质。设一段时期内客户的累计消费金额为y,对应的消费时期为x。假定测得客户的n个数据(x1,y1),…,(xn,yn),则在XOY平面上可以得到n个实验点:Pi(xi,yi)(i=1,…n),这种图形称为“散点图”(如图1,图2)。在利用最小二乘法进行分析时,各种非线性关系的拟合曲线均可线性化,因此此处选择直线y=ax+b作为拟合直线,寻求x与y之间近似线性关系时的经验公式。其中a为直线的斜率,b为直线在y轴上的截距。

如果Pi(i=1,…n)全部位于同一条直线上,则可认为变量之间的关系为y=ax+b,但一般情况下不会如此。记估计值=axi+b,则各实验点与拟合直线之间的误差为εi=-yi=(axi+b)-yi,它反映了用直线y=ax+b来描述(xi,yi)时,估计值与观测值yi之间的偏差大小。则有:

要求偏差越小越好。但由于εi可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度,这就是最小二乘原则。于是问题归结为根据这一要求来确定y=ax+b中的a和b,使得最小。因为F(a,b)是关于a、b的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,F取最小值时,有:

于是得到了符合最小二乘原则的相应解:

三、基于斜率的异常客户挖掘算法

1.问题描述

本文的目的是研究某一消费时期内,异常客户的消费倾向。取异常客户一年内各月份的累计消费金额为参考,记录的数据如下(表1,表2)。根据其散点图(图1,图2)可以看出,客户的累计消费金额随时间都呈上升趋势,所以难以观察出该客户是否对商场保持持久的忠诚度,是否有转向竞争对手的可能。基于斜率的异常客户挖掘算法正是要解决识别客户性质这一问题。

2.算法描述

算法:Outlier_Analysis。根据输出的a值来判断异常客户的性质:积极的或消极的。

输入:客户数据,即参考点,由有序点对(xi,yi)表示;参考点的个数n。

输出:a(直线的斜率),b(直线在y轴上的截距)。

方法:

(1)初始化a、b。

(2)对客户的n个观测数据(即n个记录点)进行相关数据计算:

(3)ifa<0then

客户购买金额呈减少趋势,为消极客户

else

篇(9)

2、系统设计与实现

2.1系统开发与运行环境硬件环境:CPUIntelI3380M/RAM2G/硬盘320G软件配置:操作系统:Windows7SP1开发工具:2005/VisualC#数据库管理系统:MSSQLServer2008辅助软件:SPSSClementine11.1;SQLServer2008AnalysisServices(SSAS)

2.2主要技术与系统实现通过对上述对客户购买数据挖掘系统模型的分析可知,该系统主要由用户接口模块、数据清洗模块、数据格式转换模块、数据库生成模块和数据挖掘引擎模块等组成。1)用户接口模块本系统最终目的还是为为客户的决策提供支持,因此友好的界面设计是用户与系统交互的基础。简洁而易于理解的界面有利于提高用户对系统的使用效率。2)数据预处理模块客户访问数据进入数据预处理模块进行清洗,去除无关的信息,剥离出对数据挖掘有价值的数据。数据预处理模块对原始访问数据进行分析,将用户购买数据记录逐条的分割成十个字段,分别为:u_id(访问者编号),u_date(到访日期),u_time(到访时间),u_orderid(订单编号),u_product(客户购买的商品),u_bowser(使用的浏览器类型),page(首次到访页面),place(客户所在地区),payment(支付方式),logistic(物流方式),同时删除访问数据中与以上字段不相干的数据。然后将经过预处理的数据存入中间文件。3)XML转换模块该模块程序使用.NET的相关的方法编写,主要功能将预处理过的客户购买数据转换成标准化XML格式的数据文件进行存储。该程序的主要实现原理是对经过预处理的中间文件中的数据记录逐个分割并存入数组,然后将数组的内容按照XML的格式写入文件,完成转换。4)数据库导入模块利用.NET的相关方法并结合数据库管理工具建立支持数据挖掘的客户购买数据库,编写相关程序将已经转换成XML格式的客户访问数据逐条的导入到数据库并形成日志数据表方便进行后续的数据挖掘。5)数据挖掘引擎模块数据挖掘引擎是实现客户购买数据挖掘系统的实现关键。优秀的数据挖掘算法不仅可以使数据挖掘的结果更加准确,也可以提高数据挖掘的效率。本系统主要用到的算法是该模块利用数据挖掘算法对数据进行挖掘,主要包括算法的优化、日志数据表的删除操作以及挖掘结果集的保存与删除操作等。这里主要用到的算法是K-Means算法。主要是利用该算法发现最相似的客户聚类,通过对聚类的分析来得出网店众多的顾客一般的购买行为模式,从而可以适当地调整网站营销的策略中的来提高网络营销的效果,进而增加销售量。

篇(10)

1.2分类。它能将数据库中的数据项,映射到给定类别中的一个。分类[3]定义了一种从属性到类别的映射关系,给定样本的属性值,根据已知的模式将其划分到特定的类中。

1.3聚类分析。聚类是根据一定的规则,按照相似性把样本归成若干类别。在对样本合理划分后,对不同的类进行描述。聚类通常用于将客户细分成不同的客户群,如有相同爱好的客户群。

1.4时间序列。按照时间的顺序把随机事件变化发展的过错记录下来就构成了一个时间序列。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。

1.5孤立点分析。孤立点在数学上是指坐标满足曲线方程,但并不落在曲线上的点。它也可以被看作是在数据集合中与大多数数据特征不一致的数据。对孤立点进行分析极有可能发现重要的隐藏信息。

1.6遗传算法。它是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法;是一个以适应度为目标函数,对种群个体施加遗传操作,实现群体结构重组,经迭代而达到总体优化的过程。目前,将数据挖掘技术应用于烟草行业的研究逐步受到重视。欧阳秀君,刘文在《数据挖掘技术在烟草CRM中的应用》一文中[4],主要探讨如何将数据挖掘中的关联规则、聚类、分类方法应用于烟草CRM中。康江峰,陈辉[5]将基于数据挖掘的技术应用于对烟草精准营销策略的研究。王辛盟[6]采用数据挖掘技术,利用SPSS统计软件,以某烟草配送中心的订单数据和客户资料数据为数据源,用聚类的方法对客户群进行细分。郑阳洋、刘希玉[7]采用基于多层次关联规则挖掘技术,对2007年山东省内某地级市卷烟商业企业的销售数据进行分析,得到“消费者在购买品名为红河(软甲)的客户中,有57%会同时购买类名为八喜的卷烟”的规则。但以上对于烟草行业的数据挖掘研究的方法主要集中在关联规则、聚类分析和分类三种方法上,在接下来的研究中,我将探讨如何将更多的数据挖掘方法应用于烟草行业的数据分析上。

2数据挖掘技术在烟草行业中的应用

2.1聚类分析在卷烟销售中的应用为了便于日常卷烟销售及统计,通常根据卷烟的属性对进卷烟行分类,常见的卷烟分类方法如下:一是按照价位段划分,5元以下、5-10元、10元以上等;二是按照利润贡献度,分为一类烟、二类烟、三类烟、四类烟和五类烟;三是按照卷烟品牌划分,泰山系列、黄鹤楼系列、七匹狼系列等;四是按照产地划分,鲁产烟、沪产烟、外产烟等;五是按照焦油含量划分,低焦油卷烟和高焦油卷烟。以上就卷烟的某一单一属性对卷烟类别进行区分,极大的方便卷烟的销售管理工作,然而,消费者在选择卷烟时,往往会考虑多方面的属性,因此单一属性的卷烟分类无法解释消费者偏好。因此需要引入基于多属性的卷烟分类方法,由于卷烟规格多且本身具有多重属性,基于主观判别分类方法难以满足分类要求,需借助统计学的方法对卷烟进行科学分类。聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程,同一类别的样本表现出较高的相似性。因此,可将聚类分析用于解决上述卷烟分类问题,根据多属性相似程度将卷烟分成几个类别,消费者在同一类别中的香烟偏好无显著差异,即同一类别中的香烟具有较高的替代效应。在实际销售过程中,当某一牌号的卷烟断货、紧俏时,可推荐此牌号所在类别的其它牌号的卷烟给消费者作为有效替代。

2.2时间序列用于卷烟销售趋势预测卷烟销售市场季节性特别显著,主要表现为两个方面:一是市场以节假日为节点,节前卷烟销售迅猛,节后消费趋于平淡;二是夏季是旅游市场的旺盛,旅游业带动外来人口流动增加,卷烟销售量也随同增加。同时,卷烟市场也受经济、人口结构等方面因素影响,使得卷烟销售量存在明显的非线性特征,波动范围比较大,传统线性预测模型难以准确预测。为了提高卷烟销售预测精度,建立一个基于时间序列、能够精确预测卷烟销售量的模型已经成为一种必然趋势。时间序列由四个影响成分所组成,分别是长期趋势、循环变动、季节变动、不规则变动。这四个影响成分与卷烟销售市场的变动规律相吻合。通过建立卷烟销售时间序列模型,对以往销售的历史数据进行分析,能够有效地预测未来卷烟销售市场的走势和发展规律,更好地掌握卷烟市场的供需关系。在此基础上,做好备货工作,设立合理库存,实现有效的货源供应。通过对区域市场变化趋势的预测并结合客户实时经营状况,能够对客户的需求总量做出相适应的预测,确保做好客户的合理定量工作,保障不同零售客户需求。预测结果还可为制定公平合理的货源投放政策提供依据,使得各类货源能够投放至有相应销售能力的客户手中,更好的满足消费者的需求。

2.3孤立点分析用于烟草专卖执法数据挖掘中的孤立点分析方法可以通过计算数据点之间的距离,稠密度等来模拟用户之间的属性差异,由此找到那些属性特征与正常点差异非常大的用户数据点。人们普遍认为孤立点的存在极有可能是度量或执行错误所导致的,因其不符合数据的一般模型,所以在研究普遍现象时,人们总是试图使孤立点的影响最小化,而尽可能排除它们。然而,孤立点可能隐藏着比一般的数据更有价值的信息。近些年来,孤立点挖掘作为一个重要的研究课题,已被广泛用于信用卡诈骗监测、市场内部交易侦测、工业设备故障探测等领域。在已建立的烟草分销数据库中储存着大量客户订单信息,这些订单信息包含多个维度,如用户ID、商品编号、订购数量、需求数量、同一品牌订货间隔等等。可利用孤立点挖掘算法对客户订单数据进行分析,建立客户评估监测模型,找到以下“孤立点”:订单金额高的,敏感牌号订购量大的,敏感牌号订购频繁的,以往订购敏感牌号频率低但最近一段时间频繁订购的,按照商圈不具备高端敏感牌号销路的却频繁订购等等。这类订单“异常”的客户,或者称为“孤立点”,可以被认为是存在相当大的“违规”可能性,我们的专卖执法人员应该对这一类的零售户采取进一步的跟踪调查。孤立点数据分析,势必成为专卖执法的又一利器。

2.4遗传算法用于车辆配送线路优化卷烟商业企业的销售收益主要来自于订单,销售成本主要产生在物流配送的环节。所以,在假设销售量不变的情况下,如何优化线路配置,降低成本,最大化公司利润,在当前烟草行业面临巨大的挑战和压力下,显得尤为重要。因此,采用科学的、合理的方法来确定配送线路将是车辆优化调度工作的重中之重,是物流系统优化、物流科学化的关键。烟草商业企业已有的线路优化系统中储存有客户商店位置、道路情况等信息,可以在此基础上,利用遗传算法对配送线路问题进行优化。将一系列实际中车辆配送的约束条件,转换成二进制编码(染色体)并随机产生初始种群,通过模拟达尔文的遗传选择和自然淘汰的生物进化过程,并借助于自然遗传学的遗传算子进行组合交叉和变异,逐代演化产生出越来越好的近似解,末代种群中的最优个体经过解码,可以作为最终问题的近似最优解,用以实现对车辆的优化调度,即合理地进行配货优化、货物配装优化,特别是配送路线优化。从而达到提高里程利用率,降低行驶费用,减少车辆空驶里程,增加货运量,节约燃料,降低大修费等,为企业带来更大的经济效益。另外,车辆优化调度在减少废气排放量,降低城市空气污染方面也起到积极作用。

篇(11)

2利用数据挖掘技术建立客户信用评价模型的实现方法

数据挖掘技术是通过分析大量数据,从中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式将找出的规律表示出来。数据挖掘的任务有关联分析、聚类分析、分类分析等。(1)数据挖掘方法。根据客户信用价值评价指标模型要求,在进行综合评价前,应先确定指标体系中各个指标的评价值,可采用数据挖掘技术中聚类方法加以分析。聚类分析是将个体或对象分类,使得同一类中对象之间的相似性比与其他类的对象的相似性更强。目的在于使类间对象的同质性最大化和类与类间对象的异质性最大化。通过对聚类算法的分析,针对电力客户信用分类的特征,提出了电力客户信用评价算法.得到了不同客户群的聚类中心以及客户的隶属度矩阵,为客户群的特征分析提供了量化依据,从而得到满意的客户聚类及分类结果。(2)数据挖掘算法。首先可采用K-means聚类算法对电力客户样本进行分类,利用该算法,给定客户分类个数k,按照样本间距离最近的原则,将n个电力客户划分到k个分类中去。k个聚类中心代表了聚类的结果;进而采用层次分析法将一个复杂的评价系统,按其内在的逻辑关系,以及评价指标为代表构成一个有序的层次结构,然后针对每一层的指标,运用专家或管理人员的专业知识、经验、信息和价值观,对同一层次或同一域的指标进行两两比较对比,并按规定的标度值构造比较判别矩阵。从而确定指标权重;最后根据聚类以后得出的各个类的中心点,计算得出的k类电力客户的信用得分,可以判断其所属的信用等级。

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

公文、讲稿、总结怎么写?

专家解答,全程指导

免费咨询
发表咨询 投稿咨询 范文咨询 杂志订阅 返回首页