绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇高等数学教学论文范文,希望它们能为您的写作提供参考和启发。
高等数学教学过程中,数学知识本身就是通过社会实践来得出的对事物的客观认识,是推动社会发展的基础条件,是人类生存繁衍的财富。而智力是人类对知识的掌握与运用能力的具体体现。电大成人高等数学教学根本目的是培养学生的思维能力和运用数学知识解决实际问题的能力,因此需要加强对学生智力的开发与培养。现阶段,我国电大成人教育高等数学教学在学生智力培养方面还存在缺陷,需要加以弥补和纠正。
2.教学课时、内容等存在不合理现象
接受成人教育的不少学生基础较差或已经淡忘,在学习的过程中相对吃力。另外由于电大成人教育以函授、网络教育、电视教学等形式为主,数学教学的面授课时相对较少,为了能够使学生更好地全面接受知识,在课时减少的情况下,高等数学教学内容却没有减少。这样就导致教师一节课不得不讲授几个课时的内容,这对教师以及学生都是一个巨大的挑战,一些本身基础就差的学生很难在这种教学模式下掌握数学知识,更谈不上掌握数学知识的运用能力。
3.电大成人教育高等数学教学师资力量有待加强
随着我国教育事业的发展,电大成人教育已被人们广泛地接受,越来越多的人开始接受电大成人教育,使得电大成人教育招生规模不断扩大,学生人数逐渐地增多。然而,整体而言,电大成人教育学生的增长率远远高于电大成人的教师的增长率,导致教师教学压力较大。由于高等数学是电大成人教育教学的公共基础课程,对主讲教师的要求很高,不仅要求教师能够系统化地讲解相关内容,还要能够调节课堂气氛,做到生动、有趣、严谨、自然,培养学生的学习积极性。然而就现在电大成人教育院校师资力量来说已经很难满足多个方面的具体要求,这就给高等数学教学带来一定的困难。
二、探索电大成人教育高等数学教学的措施
针对电大成人教育高等数学教学现状,具体的优化措施需要从教学内容以及教学方法两个方面进行,具体措施如下:
1.电大成人教育高等数学教学内容优化措施
在教学内容方面,具体的优化措施体现在以下几个方面:
①简化教学难点。在电大成人教育高等数学教学过程中,教师应该根据具体专业特点,充分研究课程要求,适当的调整教学内容。在教学过程中,教师需要结合学生的知识储备,将新旧知识链接作为教学的关键,减轻教学的负担,排除教学难点。
②针对现阶段电大成人教育高等数学教学重理论轻实际应用的现象,教师在教学内容上应该赋予其更多的时代性。如今数学理论以及数学方法已经渗透到包括信息、航天科技等新兴高科技领域在内的各个领域。因此,在教学过程中,教师应该根据不同专业开设不同的教学窗口,选用合理的教材,在讲解具体章节的过程中,可以延伸到某一章节相关的知识。如函数学习过程中,教师可以向学生介绍一些求极限的函数,包括单利、复利、人口模型等。对这些教学内容的调整,不仅能够巩固理论知识,还能够培养学生对数学知识的实践应用观点和能力。
③开设数学实验课。教师可充分利用计算机网络技术,把在教学中遇到的问题用形象的作图和动画表示出来,并将一些复杂的计算问题安排在实验课上,这样既能节省上课时间,又让学生直观地理解所学的知识。高等数学教学不仅要让学生掌握必要的基础知识,还要培养学生善于在解决实际问题中应用数学知识建立数学模型的能力,培养学生使用计算机进行计算、分析的能力。
2.电大成人教育高等数学教学方法优化措施
在电大成人教育高等数学授课教学方法方面,具体的优化措施体现在以下几个方面:
①改进教学方式,注重学生自主创新能力的培养。教师应该突破传统数学教学思想的束缚,探究多元化的高等数学教学方法,除了对必要的基础知识讲解外,还应适当地增加学生自习课、问题式教学法等。在学习方法上,教师应该引导学生主动对知识进行归纳与总结,提炼有用的知识,提出问题并探索解决问题的办法。
②充分利用现代化教学理念与设备,充实高等数学教学方法。传统的高等数学教学方式主要是通过教师板书与讲授相结合的模式,在课堂上,教师往往只注重对数学知识、定理等的讲解,而忽略了对课堂气氛的把握,这样很容易使得数学课堂变得枯燥,从而让学生的学习兴趣逐渐消弱,甚至有的学生会产生厌学情绪。利用多媒体教学模式,则可以充分发挥学生的课堂主体地位作用,丰富数学教学的趣味性,提高学生学习的积极性。此外,电大成人教育院校还应该加大师资队伍建设,聘用更多的优秀教师,并加强对教师的考核力度,优化教师结构。
大学的高等数学教学一般是开设在大一期间。但它相比较其它的学科来说具有较强的抽象性和严密的逻辑性,从而也加大了学习的难度,很多学生都对高数产生了一种“恐惧”心理。所以在大学刚开始期间就开设最难的学科,摆出一副高深莫测的面孔,这实际上是不利于学生更好的培养数学素质的。大学的高等数学的最初是函数理论,是从函数的基本概念到基本初等函数,再到初等函数。这些其实在学生读高中期间就有所接触了,但如果因为这样就在讲授知识时一笔带过不进行详细讲解的话,将会导致高等数学与之前所学的初等函数脱节,因而学生的知识也会出现一段空白,不利于提升大学生的综合素质。如果要提升教学效率,起点的重要性是不容小视的,而大学开设的高等数学应该要具体根据每个学生的具体情况来因材施教,在教学过程中着重重点、难点的讲解。使得学生们能够通过步步攀登而最终到达学习的顶峰状态。
2、大学高等数学的教学模式
大学生大多数都是成年人,有着自己的判断力与以及各自固定了的学习能力,针对这些特点,大学的高等数学则应该要采取一种以提出、讨论、解决问题的教学模式。在中国,较为传统的一种数学教学模式往往是教师通过书本上所给出的内容按定义、性质、相关理论、具体运算等步骤来的。学生通过多年的学习经历往往也较为适应了这种教学模式。但这样的教学模式虽然有着独特的优势,能够提高学生的逻辑思维能力,但是所掌握的知识都太过于书面化而缺乏与实践结合,同时容易使学生与教师都颠倒教学发现过程,抹掉知识本来所具有的前因后果关系,逻辑推理严格,传授知识是高效率的,可使学生少走弯路,打下扎实的理论基础;但这种思维模式,往往忽略甚至颠倒了数学发现过程,抹掉了知识本来的前因后果关系,掩盖了数学思维的本质特征。而在教学过程中采用提出问题、讨论问题、解决问题的方案进行教学能够更好的提升学生的学习兴趣,师生共同去发现、探索知识。让学生在学习过程中不仅仅是作为一个接受者,同时还能够开发自己的思维,更加系统的掌握数学知识。
二、高阶思维能力及数学高阶思维能力
1、高阶思维能力
知识时代下,社会对人才素质的要求逐渐偏向于高阶能力的培养。高阶能力主要包括:创新、决策、批判性思维、信息素养、团队协作、兼容、获取隐性知识、自我管理和可持续发展能力九个方面。这九个方面主要以高阶思维为核心,主要指发生在较高认知水平层次上的心智活动或较高层次的认知能力。这些能力在处理未来信息社会中的各类需求是十分必要的。拥有这些技能的人们将会成为信息时代的首领。因此,现代教育的一个持久的、长期的目标就是帮助学生超越目前较低的思维能力,获得较高水平的思维能力。学生的高阶思维能力是可以培养和训练的。问题的关键就是,如何培养和训练学生的高阶思维,运用什么工具来培养。因此,探讨促进学习者高阶思维发展的教学设计假设,是当代教学设计研究最为重要的课题之一。
2.数学高阶思维能力
我们结合数学学科自身的特点来看,则可以理解数学高阶思维即是指发生在数学思维活动中的较高认知水平层次上的心智活动或认知能力,并且它还具有严谨性、深刻性、定量性、批判性、独创性、灵活性等特点:数学高层次思维的这五个方面不是完全分离、互相独立的,它们是相互联系、相互渗透的统一体。其中深刻性是数学高层次思维的基础;灵活性和独创性在深刻性的基础上发展;批判性也以深刻性为基础;批判性又直接制约着独创性;敏捷性则以其他四个因素为前提。
三、大学数学教育提升大学生综合素质的举措
1、教学内容要更为强调数学知识的应用
在教学过程中,要适当的引入一些重要的概念和方法,将数学的相关理论引用到实践中,在教学内容中则可以选择一些实践性较强的问题作为例证,相对集中的选用一些章节的末尾中附有的实例进行讲解,因此而提高学生的学习兴趣,引导学生参与从实际问题抽象出数学问题,将生活与学习联系在一起,再提取数学结构的过程。
2、加强大学数学教学中的实践教学环节
教学模式有很多种,中国自古以看来所遵循的教学原则往往会忽视了与实践的结合。要解决这一问题就要求在大学开设的高等数学课程在教学过程中更倾向于从实际问题出发,把数学知识、数学建模思想和方法及数学软件的应用等多方面有机的结合起来,在学生在学习过程中能够自觉地将所学到的理论知识与实际生活结合起来。这可以通过组织学生参加课外科技活动而得到缓解。近三十年来,中国的许多高等院校纷纷组织了学生去参加全国大学生数学建模竞赛等形式多样的校内外科技活动,这些活动的设立不仅提高了学生学习数学的兴趣,还可以在多方面培养学生的能力,比如:综合分析与处理原始资料和数据的能力;使用技术手段求解数学模式的能力等等。总而言之,通过这些课内外的活动可以培养大学生应用数学知识来解决实际生活中的问题,启迪学生的创新性思维,培养学生的实践能力和创新能力。
教师可以根据教学内容,创设问题情境,将声音、文字、图表、影像结合成教学课件,通过视觉和听觉享受,营造轻松愉悦的学习环境,让学生寓学于乐,激发学习兴趣、克服畏惧心里。提出问题可来源于专业需求方面、生产实际当中、知识产生的一些历史背景或者历史故事。例如,以积分学产生的历史背景提出积分问题。
(二)运用现代教育技术实破教学重点和难点
高等数学中,许多重要知识点难点是非常抽象难以理解难以掌握的,利用现代教育技术将概念、图形通过动画展示,变抽象为直观,变静止为运动,可使学生在愉悦的环境中轻松地掌握。例如:通过对极限双变过程的动画演示,讲授定积分的概念及几何意义。
(三)运用现代教育技术、开展创新教育
在学生创造性思维可能出现的关键点,发挥现代教育的优势,培养学生发散性和创造性思维。例如:变连续点为间断点,观察面积变化,引导学生将可积条件由连续变为有限间断。
二、运用现代教育技术“学”
(一)创设情境,激发动机
教师为学生创设一种情境,使学生产生冲动、激发学生求知欲,使学生的学习成为一种有目标的自主积极的学习。可以采取多种方式“创设情境”:1)猜想式。教师对某一问题提出猜想,激发学生去思考和证明。教师提出的猜想要符合学生的实际能力,不能过易也不能过难。例如:教师在讲授完“定积分的第二换元法”之后,提出“定积分的值只与被积函数和积分区间有关,而与积分变量用何字母表示无关”的猜想,让学生去研究。2)引导式。教师有目的地创设问题情境,诱导学生发现问题,提出问题、再解决问题。例如,教师在讲授完“定积分的第二换元法”之后,有目的地选择一些题目,这些题目隐含着怎样巧妙地处理对称区间积分的问题。学生在作这些题目时必然会遇到这些问题,并产生解决问题的动机。3)提问式,教师根据教授的内容,明确地提出问题,并提供资料资源,让学生进行归纳和总结。例如,教师在讲授完不定积分的凑微分法后,明确提出凑微分法有哪些常用的凑微分形式,让学生归纳总结。
(二)独立操作,自主探究
学生在自己确定的学习目标下,按照自己设想的探索途径去通过适合自己的方式去学习,以达到自定的学习目标,它当然涵盖教材的学习,一些优秀的教辅书籍,再有网上资料的查询等。例如,对前面提到的专题,教师鼓励学生独立或自愿组成研究小组,通过一定的时间段,一步步达成自己的目标,继而完成自己的专题研究。
(三)交流合作,信息重构
给学生一个主题一个主页,让学生展示各自的研究成果,例如在学校“QQ群”上建立“学生论坛”栏目,让学生把自己的专题研究报告出来,让大家评议和交流,学生也可以在“学生论坛”上提出自己的问题,寻求解答等。
三、运用现代教育技术“做”
本文的“做”是指学生在数学实验室做数学实验。
(一)第一层次数学实验课
第一层次的数学实验与理论教学同步进行。例如在讲授完定积分的计算之后,安排学生做“求定积分”的实验,实验的目的是:掌握Matlab及GeoCebra求定积分的方法。做完例题后,教师安排学生进行练习,学生可个人独立操作,也可以结成小组共同讨论。
二、现代教育技术在高等数学教学中的应用
有机整合现代教育技术与高等数学,将信息资源、技术以及方法和高等数学的教学目的、内容以及技术进行整合。由于高等数学是一门应用型学科,对逻辑性和严密性的要求很高,因此数学教师在引进现代教育技术时,必须要使学生能有效认知数学的严密性和逻辑性,在教学时注重对学生的启发性,增强学生的求知欲。一般而言,现代教育技术有三个特点:一是生动灵活性;二是直观仿真性;三是画面可塑性。下面就分析现代教育技术的特点对高等数学教学的优化作用。
(一)培养学生的学习积极性
现代教育技术为高等数学教学提高了良好的平台,有利于提高高等数学的教学质量,在高等数学中,微积分是其核心部分,数学教师在对学生讲授微积分知识时,需要从量的方面来研究微积分学,并对其采用微元分析法,传统的教学方式和教学手段无法充分展现量的变化过程,而现代教育技术却能弥补这一不足。如在定义定积分时,必须要先对曲边梯形的面积进行计算,任意分割曲边梯形,并随意在每个小区间上选取一点,小窄曲边梯形的面积用小窄矩形面积近似代替,求取出所有小窄曲边梯形面积的代数和,曲边梯形面积的近似值也就可以快速指导,并求其极限,从而得到曲边梯形面积的精确值。利用现代教育技术的功能,将其进行动画演示,能够将教学内容化整为零,求零为整,将较为抽象的内容变得生动具体,便于学生理解和接受。
(二)提高学生创新思维能力
高等数学研究的对象一般是函数,函数作为高等数学与初等数学的分界线,其研究的基本方法是极限的方法,因此学生要想提高高等数学水平,必须要对极限的相关理论有充分的认识。数学教师在对极限理论进行教学时,可以利用现代教育技术,通过仿真演示,使学生能够理解极限理论的思想。另外数学教师在教学中,可以将数列的具体表达式展现给学生,并对学生演示无限增大时,其是否无限接近某个数值,数学教师并以此为依据,对教学内容进行适度讲解,将极限的定义进行整理归纳,使教学内容具体简单化,激发学生的学习兴趣,培养学生的逻辑思维能力,提高学生的创新思维能力。
二、“有效教学”理论及对高等数学教学改革的适切性
什么是“有效教学”,如何衡量“有效教学”?教学的有效性是教学追求的基本价值“,其实,教学作为一种传递知识、培养技能的社会活动,从它存在的那一天起,就不可能不关注和讲求是否有效的问题。如果某种形式的教学是无效的,或者是低效的,那么它将无法得以存在和延续。人们之所以提出教学的有效性问题,正是说明现实中的教学存在着无效或低效现象,需要进行改革,提高教学的有效性。”作为现代教学论重要概念的有效教学是在20世纪上半叶提出的,随着科学主义思潮的泛起,教学科学化运动兴起,研究者通过研究教师的特征对学生学业成就的关系,分析教师课堂教学行为与教学结果的关系等以探究教学的效率问题,并逐渐通过系统研究如何提高教学全过程的效率,提出了有效教学的策略、标准和模式。有学者认为,有效教学(effectiveteaching)追求的核心问题是教学的效益,即什么样的教学是有效的,是高效、低效还是无效。实现有效教学的三大策略:教学准备策略、实施策略和评价策略。研究者概括了有效教学的主要特征,包括正确的目标、充分的准备、充满热情、促进学生学习、以融洽的师生关系为基础、高效利用时间和激励学生。而这种促进是有效果、有效益同时又是高效的。这样说来,有两个问题需要明确:一是有效教学不仅是一种教学的理念,有自身“多元的、综合的评价课堂的指标体系”,有效教学是一个带有价值判断的概念,换言之,有效教学是好的教学,“通俗地讲就是‘什么样的课才算是好课’的问题”。这样的判断又产生了另一个问题,即有效教学仅仅是个教学技巧、教学技术的改进吗?比如,有效提高应试能力的教学是否就是有效教学呢,答案显然是否定的。20世纪60年代以来发展起来的有效教学理论,是在20世纪以来知识自身和社会转型的大背景之下生长起来的。“知识转型推动着教育改革,构成教育改革的一个深刻动力和社会背景”。在这一时期发展起来的有效教学模式,着眼点在于有效提升学生全面素质,而不仅仅是提高掌握知识的效率。衡量有效教学的落脚点在于促进学生的发展。李兴洲概括有效教学秉持的理念,一是强调给予学生真正的帮助和提高;二是追求教学的有效性;三是关注教师的教学反思和教学能力。因此,有效教学模式中,知识学习的过程是主体参与、合作学习,注重差异发展,是促进了学生能力发展的教学模式。综上所述,有效教学理论的核心内容可以概括为:教学目标中心式的教学设计,重视“有效教师”的研究,关注“教”向“学”的转化,重视对教学效能的即时化控制等。这些观点对于探寻有效高数教学模式与策略提供了理念支持。独立学院高等数学有效教学模式的引入有着特殊的意义。前文所述,独立学院高等数学的改革已经成为大家的共识,但是对问题的分析往往就数学而谈数学,独立学院人才培养的目标定位为本科应用型的人才,要求重视知识应用能力和实际操作能力的培养。但是这个总目标如何落实到各科教学中,并没有十分清晰的方案。一般而言,参与教学过程的诸如教学环境、教师、学生、教学内容等因素,围绕人才培养目标,系统设计教学过程及控制影响因素是教学有效性的关键。独立学院的高等数学教师群体,一般来自培养学术、理论型教师的师范院校。而其生源与普通高校相比,既包括普通高中生,又有职业高中学生,知识背景和基础相对普通高校学生较低,且参差不齐。在高等数学等基础理论课教学中,如果照搬普通高校教学方案实施教学,教学的低效在所难免,自然也就影响人才培养目标的实现。而导入有效教学理论进行高等数学教学改革也具有理论与实践的适切性。按照有效教学理论设计与改革数学教学模式,是对数学教学的系统性变革,因为“有效教学应是一个动态的转化过程……这一过程就是教师把自己的专业素养与教学材料、学习者活动及其他课程资源(如学校环境等)有机结合,使课程获得生命形态的过程。一方面要求教师的教学要密切结合实践,将问题置于真实的问题情境中,以有效手段激发学生兴趣,维持学习的动机,实现学生的意义学习。另一方面要设计学生学习目标,重心由“教”向“学”转化。在这方面,以培养学生工程实际能力的CDIO教学模式提供了很好的借鉴,CDIO教学大纲将学习目标分为四个层面:(1)技术知识和推理;(2)个人能力、职业能力和态度;(3)人际交往能力,包括团队工作和交流;(4)在企业和社会环境下构思、设计、实施、运行系统。在课程计划改革中,要求“首先学科课程之间必须像实际工作中那样是相互支撑的;其次,个人、人际交往能力以及产品、过程和系统的建造能力必须交织到学科教育中去。”独立学院高等数学通过有效教学理论和教学模式的导入,可以提高学生主动获取新知识的能力、分析问题和解决问题的能力以及交流与合作的能力,促进学生在知识与技能、数学思考、解决问题以及情感态度和价值观等方面得到全面充分的发展,教学在实现数学的工具意义、培养学生应用能力的同时,充分展现数学内在蕴含的教育价值,培养和提高学生的科学素养和创新能力。因此,探索独立学院高等数学教学改革,有效教学模式应该作为一个重要的选项。
三、高等数学课程实施有效教学的策略
结合上述理念,我们认为:在独立院校中,高等数学课程实施有效教学,需要教师在教学设计、教学方法、师生互动和教学策略等各个方面进行改进和提高。
(一)提高高等数学教师的教学素质
有效教学模式对教师的素质及教学风格提出了要求,有研究者通过对高校教师有效教学的特征研究发现,对教学工作认真负责、有自己的教学风格和特点是所有有效教学的教师都具有的最基本的特征。教师的有效性是教学有效性的基石,“有效教师”的关键品质就是卓异的教学素质。对高数教师而言,其教学素质的有效性就体现在教师设定的教学计划及其对教学目标实现的程度上。教学过程中,教师要按照有效教学的要求,有目的地优化教学诸要素,激发和促进学生的学习,也就是通过有效的教学行为影响学生的学习效果。教师的教学行为又是在一定的教学观念支配下进行的,“高校教学中存在的‘有效性问题’首先是教师的教学观念问题”。全面科学认识高校教学价值,确立整体有效教学观念是实施有效教学的关键。教学中,教师要真正落实在课堂教学中的地位,改变学生以往被动、机械的学习状态,形成多样化的学习方式,积极引导学生进行发现学习、活动学习。在此基础上,不仅使学生掌握系统扎实的基础知识和基本技能,形成良好的情感态度和价值观,而且具有较强的创新精神和实践能力。因此,有研究者也指出,有效教学不仅仅注重教学目标的实现及教学效率的提高,更应该关注学生以怎样的方式和代价掌握了所学内容,学习过程中是否是自主探究主动建构等方面的问题。要将教学过程视为生活方式,在提升学生生命价值的同时,实现自身的生命价值。具体到高等数学教学中,教师实施有效教学在转变教学观念、实现由教学型向教学研究型转变之外,最关键的是围绕课程需要解决的问题,进行系统的教学设计,有效教学设计是有效教学的前提。传统备课环节重点关注教材的研读,重点、难点和知识体系的掌握。有效教学模式中,教师围绕教学目标进行 系统整体的设计,教学目标设计中,要明确自身教学任务,重要的是确定学生应该达到的学习效果,这个目标是具体的,包括知识、能力和素质的具体要求。教学内容的设计要以教材为主,但不唯教材。作为理、工、商等专业重要的基础理论课的数学,要在内容设计中根据学生专业类型及发展的方向,结合自身专业实际和生活实际设计教学的内容,要注意体现以下特点:(1)教学内容中要包含一些重要的数学思想,数学方法,以及应用数学解决实际问题的实例。(2)呈现教学内容的同时,突出重要的解决实际问题的数学思想方法,如不规则图形的面积可以用规则图形的面积进行近似计算,进而求取精确值。这种解决问题的思路就是贯穿高等数学始终的极限思想的具体体现。(3)突出从实际问题建立数学模型的基本思想,将数学建模课的相关内容融入高等数学教学中,加强学生从实际问题提炼数学模型,进而通过计算机求解模型的能力。
(二)摆正大学生的主体地位
有效教学对教师课堂教学行为提出了更高的要求,教学又是师生共同完成的一项工作。要改变教师教,学生听或看的传统数学课堂教学模式,创设条件,以问题为中心,发挥学生主体作用,促进学生在教师指导下主动地富有个性地学习,通过学生的积极主动参与课堂教学的活动,掌握知识和相关的思想方法,形成独立获取知识、创造性地运用知识以及解决现实问题的能力,同时形成良好的个性和人格。有研究者总结了三种有效教学中促进学生自主创新学习的模式:一是专题学习的模式,教师根据学科的特点,设计具有挑战性的专题研究项目,在教师指导下开展教学工作。二是问题解决学习模式,教师根据具体的教学内容,设计“问题链”、“问题串”,由学生自主学习解决。三是系统自主学习模式,其中高等数学有效教学中,前两种学习模式是值得借鉴和应用的。如微分应用可以通过一个问题引入:一个半径为1cm的小球,在表面镀铜,厚度为0.01cm,估计一下需要铜多少克?(铜的密度是8.9g/cm3)这个问题可以有两种解决方法:一是直接计算体积的增量,进而求取镀铜的质量:二是利用微分近似计算体积的增量,进而求取镀铜的近似质量。在教学中可以提出问题后让学生讨论这两种方法的优劣,从而加强学生对于微分在近似计算中应用的理解。总之,通过引导学生积极参与,使每一个学生都得到展现自己的机会,使学生有更多的机会体验、经历数学学习,学会应用数学解决实际问题的能力。课堂教学中,学生的参与状态和参与度,有赖于教师的教学观念以及对教学内容、教学方式的整体把握。教师要创设情境,鼓励学生自主探索和研究,引导学生在不断质疑、主动探究中掌握学习的内容。
2学生层次的具体划分以及实际课堂教学工作
下面就如何在高等数学课堂教学过程中实施分层次教学试谈如下.
2.1充分了解学生,做好分层次课堂教学的基础工作
在高等数学教学中,面对的是来自天南海北的朝气蓬勃的学生,由于他们家庭环境不一样,中学阶段的数学学习情况不一样,因此每个人的学习基础就会有所不同.对于刚入大学校门的大一新生,学生的知识基础、适应能力等因素直接影响着学生接受知识的能力,所以根据这样特点,我们实行几个时间阶段推进分层次教学工作.在第一阶段刚开课第一个月内的高等数学授课过程中,并没有分班教学,而是一边通过课堂教学,一边和学生课后交流以及结合学生平时作业情况,任课教师对学生的学习习惯、学习态度、学习基础进行全面了解,然后再结合教学内容的安排,在学习过程中定期的安排课程测试,最后根据所评定的学业成绩,把学生分成2种类型,从而确定不同层次的学生组合,以便于采取针对性措施.这样确定的“层”可明确教师的教学方针和对策,对教学内容进行分层设计,使得教学对象更有针对性、课堂教学更有成效.
2.2分层组班,合理自愿流动
在实际课堂教学中,有2个老师分别担任过控专业13级1,2班和3,4班的任课教师,在不影响教学进度的前提下,我们以高等数学的教学内容及教学计划为参照,按照高等数学教学内容的完整性即单变量极限内容授课结束后,我们进行了第一次课程测试,所有考试流程均按照期末全校通考的程序一样遵守,严格的考试时间,教师的严格监考制度,严格的试卷评判标准,我们始终做到给出每一位学生公平公正的学习成绩.这一系列的工作都是在新学期第一节课就事先告知学生的情况下进行的,所以当快要考试的那段时间,学生们都很认真的复习准备,最后根据考试平均成绩,制定分层的标准,综合学生的上课学习情况,第一次把过控专业13级学生4个班按照层次要求及班容量进行分层组成2班.一个班我们定位为A班,一个班定位为B班.这样可以把学习成绩相近、某些特征相似、需求相同的学生分在一层,教师可以根据每层学生特点,有针对性的施教,有区别的帮助学生.这一方案在实施过程中我们想到可能会遇到一些困难,往往老师的出发点是好的,可以调动有些学生的学习积极性,当然在后续的实践教学中老师已深切感受到一些学生在通过这样的层次分班下学习的热情和积极性,但还有一点担忧就是若分班稍有不妥,有可能会给极个别学生带来自卑感,反而适得其反,为了树立每一位同学学习高等数学的自信心,我们一方面遵守分层的标准,一方面还是做到合理自愿流动.合理自愿流动是指根据学生的实际情况把学生调整到相应层次的动态管理过程.分层教学阶段流动与平时流动相结合,在整整一年的高等数学课堂教学过程中我们进行多次类似的测试评定,A、B两个班的学生相继又进行不同层次的自愿流动.值得肯定的是4个班的学生始终是一个整体,在教学进度一致的情况下,合理自愿流动的分层教学促进师生的交流和互动,使得学生学习的竞争意识,积极性都得到很大的提高,同时两个任课教师根据学生实际情况具体制定分层教学模式的教学目标:A班学生:掌握知识较好,教学内容在重基础、重收获的前提下,对A班学生综合性、理解性的习题要求要高一些,我们要求以优良成绩完成高等数学课的学习任务,具备普通高等学校学生应具备的文化基础课通用能力.B班学生:接受知识慢一些,我们放慢教学进度,在运用知识的能力方面分出层次,加强基础性知识的练习,要求以合格成绩完成高等数学课的学习任务,具备学习专业课的必备的文化基础课通用能力.这样通过在教学内容拓宽、教学目标明确的基础上可以让学生在不同学习阶段、不同层次班级的合理自愿的流动,使学生获得最适合自己的学习条件,包括学习内容、学习方法和教师,目的是激发学生的学习兴趣,培养学生的竞争意识.
3课堂教学实践的成果
在这一年的高等数学实践教学中,作为任课教师是深有感触:一方面感受到通过分层次教学带给学生积极向上的学习劲头,一方面也带给任课教师自身素质的提高.表1是任课班级的部分学生在分层次教学下不同阶段的测试成绩抽样调查结果.总之,分层次教学方法对学生的学习进步起到了很好的推动作用,也为任课教师提供了很多经验总结:一是优化课堂教学课程内容,提高学生的学习积极性.在保证整体教学水平的前提下,根据当前素质教育的要求,面向全体学生,主动承认学生个体差异,改变统一的教学模式,因材施教.针对于不同的学科专业,有效地选择授课内容.针对不同层次的学生设计不同的教学内容,多与实际应用结合,在教学中恰当引入数学史,把数学史中积极向上的一面灌输给学生,活跃课堂气氛的同时对学生进行思想教育,激发学生的学习兴趣.二是实现教学方法的创新模式.打破统一大纲、统一讲授的传统教学管理模式,实现由传统式教育向创新式教育的转变,由整体模式的培养到注重个人培养的转变,激发学生的创新潜能.加强学生对数学方法、数学思想的培养,有助于培养学生全新的思维模式、提高学生的抽象思维能力以及运用数学思想解决实际问题的能力.三是实施合理流动的分层制.不同的层次教学,教学标准应有不同,分层次不是固定不变的,而是动态流动的,公平合理的,学生可以根据考试成绩和一个阶段的学习情况作出新的选择.虽然每个层次的教学标准不同,但各个层次的教学过程都要遵守一个基本原则,就是要把激励、鼓舞学生的主体意识贯穿教学过程的始终.
成人高等教育从1986年实行全国统一招生考试,经过短短的二十多年的发展,已成为高等教育体系中重要的组成部分。根据中国教育网《2002年全国教育事业发展统计公报》的信息,裁止到2002年底我国高等教育本科、高职(专科)在校生1462.52万人,其中成人高等教育在校生554.16万人,占38.23%。
数学是成人高校一门十分重要的基础课,它是研究客观世界的空间形式和数量关系的科学,具有很强的概括性、抽象性和逻辑性,也是应用极其广泛的一门学科。在高新技术的信息时代,要求企业的职工尤其是企业的决策者与管理者具有良好的数学素质,具有抽象思维能力与解决间题的能力,具有对所从事的经济与生产活动做出定量分析与定性分析的能力。目前在技术界广泛流传一个说法是:“高新技术本质上就是数学技术”。为了培养高素质的员工与管理人才,适应现代化管理的需要,提高成人高等教育的数学教学质量,提高学生数学应用能力就显得尤为重要。
一、成人高等数学教学方法现状分析
1.忽视成人学生的基础,教学方法“普教化”、单一化。
一方面,由于近几年成人人学门槛越来越低,导致学生数学基础较差,学生欠缺基本的数学基础知识、基本技能,思维能力很差,分析问题解决间题的能力更有限,没能形成有效的学习方法。另一方面,由于许多成人高校依附于普通高校办学,或者干脆就是普通高校的一个分支,导致我国成人高等数学教育的教学方法长期以来沿袭或模仿普通高校的那一套,缺乏成人特色;教学条件和教学手段相对落后,缺乏起码的现代化教学手段,导致老师教学方法单一。这些都严重影响了成人高等数学教学质量。
2.忽视成人特点,缺乏理论联系实际。
成人学生的学习特点以间接兴趣为主,具有明确的指向性、不稳定性,只有感到所学内容“实际、实用、实效”,才会好学,学习质量才会提高。传统的高等数学教学忽视成人学习特点,注重知识的传授,忽视职业技能的培养,理论脱离实际。比如:学习《线性规划》的“单纯形法”,却不知道“单纯形法”的经济含义,在《企业管理》的学习中不会应用,更谈不上把经济活动中的实际问题化为数学问题,用数学知识和方法解决问题。在学员的毕业设计中几乎找不到用数学模型来解决生产过程与经营管理中实际问题的论文。由于数学教学的严重脱离实际,使得学生普遍觉得学习数学又费时,又难学,又无用,实在枯燥无味,学习起来既没有兴趣更缺乏动力。
二、改进教学方法的对策研究
1.生动有趣的直观教学方法
因为数学比其它学科更抽象,所以选用直观教学方法提高学生的理解能力。即利用图形、图表、情感等手段,通过学生的感知,使他们获得清晰的表象。心理实验表明,人们从视觉获得的知识一般能记住25%,只从听觉获得的知识一般能记住15%;如果人们能把听觉与视觉结合起来,能记住的就增加到65%。利用这一原理,综合调动学生的感觉器官进行教学,可以大大提高数学教学质量。
(1)描述形象化。《微积分》中蕴含着许多重要的数学思想、数学方法,这是课程中讲解的重点,却往往也是难点,这时举个例子、打个比方,形象化地描述,能够事半功倍。比如在讲左、右极限蕴含着一个重要的数学思想:两边逼近的思想。在给学生讲了一个两头狮子从两边合围捕牛的故事后,学生就轻松理解两边逼近的思想。
(2)理解情感化。充分利用学生感性知识理解数学,形象生动的语言会让人身临其境,增强理解能力。比如:在讲解极大值不一定比极小值大时,问学生一个问题:在自已的家族里,有没有叔叔比侄子小的情况?学生说“有”,课堂气氛非常活跃,学生一下子就理解了有时极大值比极小值小这个问题。
(3)文字图形化。图对于数学来说是不可或缺的,如果把图从数学中删去的话,就好比一只老虎没有了牙。对于一些难以理解的概念,把文字图形化,会让学员更轻松的理解和掌握。比如利用图象介绍连续这个概念。
(4)语言趣味化。讲导数可以求二阶导、三阶导、n阶导时,我们说就像影星伊丽莎白·泰勒,在她的第二次婚姻变成过去式之后猛然省悟,“为什么我一定要停在第二次呢?”以后她一而再,再而三的结婚,当然首先是离婚。在此你也可以一而再,再而三求导数。让学生在微微一笑中理解了一个平时去师磨破嘴皮都不见得能理解的知识点。
2理论联系实际的教学方法:
数学的根源在于普通的常识,数学实质上是人们常识的系统化,即数学是现实世界的抽象反映和人类经验的总结,所以数学教育应该源于现实,用于现实,应该通过具体的问题来教抽象的数学内容,应该从学习者所经历所接触的客观实际中提出问题。
(1)案例式教学方法。在成人高等教育财经管理类专业中,数学是核心课程,主要包括:微积分、线性代数和线性规划、概率论与数理统计,总结这些数学在经济管理类专业中的应用,发现数学的应用极其普遍。如:国民经济计划中的投人产出法;西方经济学中的边际效益;信息经济学中的博弈论;市场营销中的各种概率值计算;企业战略中的决策论;运输调度中的网络分析;建筑施工中的工期运筹等。所以在教学时采用案例式的教学方法,有针对性地选择一些问题进行理论分析,如:不同还款方式贷款购房的比较、多种商业保险款项的比较等。这样充分发挥了成人学生有一定工作和生活经验,问题意识强的特点,使成人学生更主动地参与到教学中来。
所谓奇异美就是指该物质有着与其他任何物质都不相同的美。实际上,数学就是这样一门课程,它的变化让我们切身感受到奇异所带来的震撼。高等数学教师必须主动引导并帮助学生去发现高等数学中的奇异美,在打牢高等数学理论基础的同时,注重培养学生发掘奇异美的能力以及运用到高等数学去解决生活中实际问题的能力。
(二)对称美
对称美在当前普通高等院校高等数学教材中极为常见。图1所示就是一种常见的对称曲面:图1上图所示是圆锥曲面,其对应的方程式取决于其在三维坐标系中顶点及对称轴的选择,对于顶点在坐标原点且对称轴为Z轴的图像,其方程式为:单从图像来看,其本身就给人以美感,这就激发起学生的求知欲,这么美的图像还能用一个具体的方程式表示出来,而且方程式也这么对称、工整,这让学生印象深刻,从而更多地去发现数学中的美,由此更好地掌握高等数学。
(三)简洁美
“简约不简单”是对高等数学简洁美的完美诠释。高等数学符号的使用、高等数学应用问题的解决、高等数学公式的出现等等,无不体现着简洁美。如下面的积分公式:其中,F(x)是f(x)的原函数,C为常数,∫为积分号。其含义是对f(x)的自变量微元化,然后与其对应的因变量f(x)做乘积求和。此公式在工程应用中有很重要的意义,是一类很复杂的问题的高度抽象。高等数学发展到今天,其体系已经非常完善。不管多么复杂的应用问题、多么复杂的表示式、多么怪异的形状,都可以通过高等数学公式或者函数来加以表达。(四)统一美基于高等院校招收学生的特点,在实际教育教学过程中不仅要注重对学生理论基础的教育,同时还要努力提高学生的自我学习能力。数学是一门应用性较强的学科,需要学生结合以往学习到的数学知识,加上自身的理解,应用于实际生产生活中。这就涉及到对知识的整理与总结。学生只有能从整体上对高等数学相关理论知识进行概括,才能够去深入感知高等数学所体现出来的统一美。
二、普通高等院校高等数学教学中实施美育教学的思路
(一)挖掘美育因子,制订教学方案
高等数学教学中的美育因子表现为一些具有抽象意义的数学符号,通过严谨的运算方法和变换展现给每一个受教育者。教师在实际教育教学过程中,通过对学生学习情况的了解,分析不同性格的学生对于高等数学美育因子的感知能力,以便在今后的教育教学过程中更好地帮助不同性格的学生去感悟高等数学,去深入了解这门课程。
(二)优化教学结构,发挥课堂教学主渠道作用
大学课堂是高等教育实施的重要场所,现阶段很多优秀的教育教学理论已经被广泛应用于实际教学中。针对高等数学美育教学而言,教师应该将现有的教育教学理论与美育教学理论相结合,给学生创造更为全面、更为优越的学习环境,从根本上调动学生的学习积极性,换言之,就是将教学与学习有机地结合起来。高等数学教材也是该课程实际教学中的关键影响因素,应尽可能地将美育因子与相关理论相结合,吸引学生的注意力,提高学生的学习兴趣。
二、在习题课的授课过程中应注意的问题
(一)精心选取习题
1.习题的选取要具有典型性与针对性,同时还要兼顾可行性,要注意服从习题课教学大纲的基本要求,要从学生实际出发,把握深广度,不要盲目地解决课后习题,要通过习题的选取、编排适当的次序、合理的内容搭配,使学生很好地消化所学理论。如果设计的题目过难,就会对学生要求过高,给学生造成学习上的困难,影响学生对这门课的学习积极性;而过于简单的习题又会影响学生思维的质量,思维活动不能得到充分的展开,缺乏对其应有的激励作用。教师是否能够把握好这个“度”,对调动学生的学习兴趣有很大的关系。
2.习题的选取要注重课本中的习题,但也不要局限于课本。课本中习题均是经过专家多年经验的总结,多次筛选后的题目,都是比较典型而且有代表性的,这就要求教师在题目选编中,要优先考虑课本中的例题与习题,适当延伸、演变,使其源于教材,又不拘泥于教材。在教学过程中精心设计和编制出一题多解、一题多变、一题多用、多题一法的具有代表性的习题,来提高学生灵活运用知识的能力。
(二)注重学生解题思想的正确引导教师在习题课授课过程中对题目的讲解要指导到位,针对每一个选题教师要熟悉本题的训练内容、训练目的、主要难点、哪些地方常犯错误等,都要做到心中有数,对学生指导要有针对性,尽量注意做到照顾所有学生,对学生普遍存在的、易犯错误的地方通过反复强调来加深印象,切忌随意性和盲目性,使学生每解一道题目都能有所收获。教师在指导过程中要注意对学生多采用启发引导的方式,留给学生足够的独立思考的时间,先让他们说出自己的想法,然后针对学生的想法进行启发引导,这样久而久之能够锻炼学生的独立思考与创新能力,学生一旦受启发而发现题目的某种解法,就会显著提高对高等数学的学习兴趣,从而使习题课的效能得到充分的发挥。
(三)习题课教学过程中多媒体和数学软件的综合运用随着高新技术的迅猛发展,电脑等电子产品的应用已不再是什么新鲜事,多媒体教学已经在很多专业普遍使用,由于数学这门课程自身的原因,虽没有普遍得到应用,但也慢慢进入了高等数学的部分课堂教学中。多媒体教学可以解决数学抽象和想象困难的难点,比如需要求体积的问题基本上都是一些三维图形,如果学生的空间想象力不好,不能很好地想象出图形的话,可以借助多媒体结合数学软件编程给大家做出具体的演示,可以在上课的过程中介绍一些如Maple、MATLAB等数学中常用的软件,碰到有些题目的图像不容易在黑板上画出就可以做一下演示,这样可以加深对题目的理解,例如第九章第二节“二重积分的计算法”,求两个底圆半径都等于R的直交圆柱面所围成的立体的体积。
(四)在习题课教学过程中融入数学建模的思想数学建模就是用数学语言来描述实际现象的过程。数学建模突出的就是一个“建”字,针对同一个问题,不同的人有不同的思想,建立的实际模型往往也不同,这样就得到了不同的“最优解”,所以数学建模没有最好,只有更好,关键是要看建立模型的独特之处。因此,怎样通过具体的实际问题引入数学建模的思想来激发学生的创造性思维,这是非常关键的。在每次习题课要结束的时候,教师最好能介绍一些与本次习题课有关的数学建模题目和内容,虽然时间可能不多,但是每次都要渗透一些,留给学生回去考虑、研究,久而久之,学生逐渐了解了什么是数学建模、怎样建模。通过建模思想的渗透使学生综合素质与科研能力得到有效地提高,增强了学生学习数学知识和专业知识的兴趣,培养了学生合作研究的习惯,等等。这些都体现了数学建模的意义所在。
二、解决高等美术教育基础教学问题的对策
1.调整高校美术专业入学考试方式
固有的考试方式只重视学生的手绘能力,不利于培养学生美术的创造力和想象力,考试方式也仅限于默写和写生。因此针对参考的美术专业学生,国家推行了“大综合”模式,增加了对其他美术造型能力的考察,如三维空间塑造能力、美术鉴赏能力等。当然,考试形式上应更加多样化,如在传统的考试方式上增加电脑图形图像制作等。考试内容应实行模块化,将所有的内容划分为若干个模块,考生可以抽签选择其中几个进行考试,从而确保考试的公平性。
2.调整大一阶段基础教育的内容与形式
在接受高等美术教育前,学生所受的是泛美术基础教育,而大学的基础教育更具有针对性。由于各个专业学科存在一定的差异,对学生的基础知识结构和表现力要求也不同。如大一阶段美术专业的学生以写生为主,这实质是对中学美术基础教育的一种巩固与增强。因此,美术教师应根据大一学生的实际能力,结合专业教学任务、内容,对该阶段美术基础教学的内容和形式进行调整,增加有本专业特色的基础内容,采取有专业特色的训练方法,培养学生正确的学习方法和获取知识的能力,促进学生美术专业技能的提高。
3.增强教师教学的自主性
由于美术院系教师往往兼任多门课程,教学压力大,容易产生厌烦情绪,降低教学的自主性,对高等美术基础教学质量的提高十分不利。因此,学校应根据美术院系的发展规模,公开招聘专业技能高、教学经验丰富的美术教师,尽可能地减轻美术专业教师的工作压力,同时还应给予美术教师更多的关注,不定期地组织他们外出学习,积极进行教研活动,将教师评优评干、教研成果与年度绩效考核挂钩,充分调动教师工作的积极性和自主性,使其更好地为学生服务,为国家和社会培养更多的优质人才。
通过与影像专业的学生成绩进行对比,我们不难发现,公管专业的学生普遍成绩较低,尤其是不及格的同学,所占的比例比较大,出现这种情况的原因主要是由于该专业的学生数学基础较差。影响专业的学生都是里科生,而很多同学选择报考文科的原因就是因为数学学的不好,甚至有一些同学在高考时因为数学考的不好,而与理想的大学失之交臂,因此,在大学中学习《高等数学》时,必不可免的会出现听不懂,跟不上的问题,这是成绩不好的第一个原因。
2.学习目的不明确
通过与预防专业的学生成绩进行对比,我们发现,虽然两个专业的平均成绩相近,但总体来说,预防专业的同学成绩还是普遍偏好。这两个专业在录取时分数都不高,学生的基础相差不多,导致后来成绩间有差异的主要原因是很多文科同学在学习《高等数学》时都会存在一个困惑:"文科生学数学,有什么用处呢?就算要用,也往往是在用之前,就被遗忘和荒废了。"这种实用主义的思想在学生中很常见,学了没有用,所以不用学,也不想学,正是因为这种不正确的思想,使得很多同学放弃了对数学的学习。
3.学习态度不端正
临床专升本科班的同学是从大专甚至是中专通过专升本考试考到该专业的,可以说这些同学的基础比公管专业的学生还要差,他们绝大多数人已经3年没有学习过数学了,甚至有些同学压根就没有经历过高中教育,但是通过对这两个专业学生成绩的比较,我们会看到专升本的同学比公管专业的同学成绩要好,所以可见,数学基础、学习兴趣只是决定数学成绩的一部分原因,最重要的一个因素就是坚持与努力的精神。
二、教学方法初探
1.从培养个体的角度出发进行教学
文科生在学习数学时,必不可免的会遇到很多的困难,这就要求授课的教师,不能按照传统的教学方式“一刀切”,应该针对不同专业学生的实际情况及该专业对于数学的实际需求来制定相应地教学大纲、教学计划,要以人为本,从培养个体的角度出发,进行有针对性的教学。
2.明确教学的目的
在正式学习数学之前,教师应首先明确学习的目的及意义。文科生学习数学的目的主要有两个:第一,为后续课程打基础。什么是文科?文科不能一概而论,都与数理化无关,例如很多的文科专业,像历史、艺术,但是如果日后做文化市场调查,还是会用到统计学,而统计学是以数学作为理论基础的;而作为人文学科大类的管理学和经济学,和数学的关则系更加紧密。在医学类院校的公共事业管理专业,统计学甚至是专业课及考研的主要课程。由此可见,数学学不好,对于专业课的后续学习还是有一定影响的。第二,学习数学可以锻炼学生的逻辑思维。虽然很多人都认为文科生学习数学没有用处,但是,大部分专家学者都认为数学能训练文科学生的逻辑思维,和文科学生形成互补,所以“肯定要学”,但与理科生相比,难度应该有所下降。
3.多种教学方法并用,提高学习兴趣
教师在教学过程中,应从传统的“传授式”教学、“填鸭式”教学向新的教学形式过渡。教学是一个双边的过程,首先教师应将学生看成的平等的个体,采用探讨、研究的方式,逐步引导学生学习新的知识。其次,可以尝试让学生自己去讲解一些新的知识,通过授课,加深对于知识的理解,并且主动的去吸收知识。再次,在授课时可采用启发式的教学方法,引导同学们自己去总结解决问题的方式,通过引入一些与专业有关的例子,解决一些与实际相关的问题,帮助同学们理解数学,掌握数学,应用数学。