绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇专家系统论文范文,希望它们能为您的写作提供参考和启发。
2.专家系统核心规则数据库逻辑上个性化推荐系统的静态数据库可以使用专家系统的核心规则数据库作为程序建立的核心内容,用来存放专家系统运行的领域知识结构以及内容,并设置相应的辅助参数保证专家系统核心规则数据库的良好运行。规则特性每一个规则包括四个特性,例如PREMISE规则的前提部分、ACTION规则的操作部分等等,同时注意CATEGORY规则按照上下文分类,每条规则只能用于某几个上下文,以便调用;设置参数每个设置参数应该各自存储一组属性,用来咨询以及程序调用,同时规定好每一个参数的参数组名称、参数取值范围、参数的类型结构。动态数据库电子商务网站的用户数据库以及产品数据库都隶属于动态数据库的存储范围,每一次客户登录或者登出的过程中,电子商务网站的动态数据库都会随之实时更新一次,添加相应的动态数据内容。动态数据库对数据的主要存储方式是根据相关对象、相关对象的具体属性以及相关对象的具体参数数值(对象可信度、对象参数、对象跟踪次数)来确定对该对象的信息存储、追踪和使用过程。
3.电子商务用户数据库电子商务用户数据库的存储信息主要是商务网站浏览和登录登出过程中各个用户的主要信息,包括用户的性别、年龄、职位、爱好、收藏、收入、购物经历以及其他相关信息等等。电子商务商品数据库电子商务商品数据库的存储信息主要是诸多网站商户的产品细细,包括产品的名称、品牌、价格、尺寸、重量、功能、材料、生产日期、保质期、售后服务以及其他相关的产品信息等等。资讯子系统资讯子系统的主要功能是根据客户在电子商务网站上的登录、访问、收藏、购物等一系列信息对网站的客户数据库提供对客户的定位信息,更好的做好客户个性化产品的推荐工作,同时有效的满足客户产品咨询的功能。规则子系统规则子系统的主要功能是专家系统的核心规则内容,专家智能系统能够凭借自身的核心规则以及规则子系统的有效连接来实现客户的产品推荐工作。结果子系统结果子系统的主要功能是记录客户浏览、咨询以及最终购买的过程,为客户的可信度数值提供相应的资讯信息,并记录下客户本次的操作内容,为客户的下次购买提供信息支持。
2 、鉴识专家系统的框架
设计人工神经网络方法其本质是基于历史经验模拟人脑的经验性判断,应用人工神经网络方法来模拟大型桥梁建设项目的鉴识反问题,其实质就是建立人工模拟的专家鉴识反应. 但是,如果每次鉴识都需要重新建立和训练合适的网络,无疑将每次鉴识都孤立化,不利于鉴识工作的传承发展,并且不便于维护和发展该网络. 为了提供更智能、更友好的鉴识平台,以神经网络作为分析推理的核心模块,将解决鉴识工程反问题的所有过程集成为一个可完善、可补充、可检验、可查阅、可训练、可计算分析的系统,这就是可用于解决鉴识反问题的专家系统.由于专家鉴识系统需要长期地收集和管理数据库和训练更加成熟的网络,为了便于长期的管理和维护,选用具有高效的数据库管理功能的 VFP ( Visual FoxPro) 语言来建立可视化的专家系统界面,协助工程师在鉴识过程中收集桥梁建设项目的鉴识样本和输入鉴识数据,并与神经网络工具 MATLAB软件进行嵌套,实现分析过程的可视化,使得专家系统的界面更加友好和直观.桥梁建设项目的专家鉴识系统主要由3 个模块构成:1) 基础数据模块,提供了进行桥梁鉴识信息的输入、维护.2) 神经网络模块,调用神经网络程序,利用样本库进行网络训练和鉴识分析.3) 系统维护和系统帮助模块,为用户提供系统基本维护工具,提供软件使用说明和用户帮助.其中,基础数据模块和神经网络模块是核心部分. 基础数据模块包括桥梁常见破坏数据库、桥梁破坏登记数据库、工程阶段风险数据库、专家责任意见数据库以及数据库的综合查阅 5 个窗口.神经网络模块包括神经网络训练、录入待算数据,计算源码管理以及神经网络计算 4 个窗口. 该模块是专家鉴识系统的推理分析的核心模块,用于实现神经网络方法对专家鉴识过程的模拟.专家鉴识系统的核心是基础数据模块和神经网络模块,而这两个模块分别基于 VFP 和 MATLAB语言而实现的,要建立完善友好的专家鉴识系统,需要实现这两个语言程序之间函数的相互调用.VFP 语言用于实现可视化的专家系统界面,便于用户进行样本的收集、完善和登记,以及输入鉴识初始资料所需,并最终将 MATLAB 神经网络训练、检验及鉴识的结果在可视化界面上进行直观的指示,方便操作用户的查询、检索. 而 MATLAB 则用于神经网络的计算和模拟,可调用 VFP 建立的数据库,使用专家系统所收集到的样本,进行训练和检验,以及进行所指定的鉴识工作. VFP 和 MATLAB 的程序关系如图 1 所示.。
3、 系统知识数据库模块的构建
本专家鉴识系统是基于 VFP 平台开发的,因此系统中的基本信息资料以基础数据库的形式存在,并可在系统中实现实时保存和更新,程序流程如图 2 所示.本系统的专家知识库在基础数据模块中建立,包括桥梁常见破坏、桥梁破坏登记、阶段风险和专家意见 4 个分项数据库.
1) 桥梁常见破坏数据库,主要用于对桥梁各主要构件的常见破坏现象进行归类管理,便于在鉴识过程中对破坏进行识别. 每一条破坏现象信息均包括桥梁型式、结构位置、破坏构件、构件的重要性系数、破坏形式、破坏形式对事故的贡献度、构件型式、破坏现象、该破坏现象对构件健康的影响度,以及造成该破坏的原因和机理. 该数据库的构建将作为桥梁破坏判断和评价的依据. 因此,该数据库的完善有助于提高专家评价的可靠性,需要在长期的鉴识实践中进行不断地补充和维护.
2) 桥梁破坏登记数据库用于桥梁破坏事故发生后,专业鉴识人员对事故现象进行调查的结果登记,以及专家对破坏的实际情况依据破坏的等级、破坏的影响度、破坏的贡献度、破坏构件的重要性进行分项评价,并给出考虑权重之后的量化的评价意见,即破坏分值. 桥梁破坏登记数据库是最为重要的桥梁破坏信息集成,在长期的鉴识实践中,应不断地进行更新和补充,以增加神经网络的训练样本,提高网络精度.
3) 阶段风险数据库是对桥梁全寿命期内立项、设计、概预算招投标、施工、运营维护、报废拆除 6 个典型阶段可能发生的风险类型,以及风险源注册,作为专家责任意见的评价依据.
4) 专家意见数据库是根据桥梁破坏登记数据库中,鉴识工程师对桥梁破坏现象调查的登记项目,依据阶段风险责任数据库中事故发生阶段的可能风险构成及风险贡献程度,并考虑各破坏项目的机理和成因,而对桥梁个案的破坏相关责任做出的评价. 该数据库包括桥梁的破坏信息、破坏的责任方、责任说明、贡献程度、个案的贡献权重以及最后的责任比例. 责任比例 Pi遵循式 ( 4) .Pi= αixi/ ∑αixi. ( 4)式 ( 4) 中: xi为参与方贡献程度,依据各工程参与方对该阶段事故风险的贡献能力进行定义; αi为贡献权重,依据桥梁破坏个案实际,对各工程参与方的风险贡献进行评价.
4 、系统神经网络仿真模块构建
专家知识数据模块中所构建的专家知识库,还需要专门的智能网络对其进行仿真,将所模拟得到的经验知识用于未来的专家判断. 为此,本系统开发了第 2 个核心模块即神经网络模块,该模块包括4 个管理窗口.
1) “神经网络训练” 窗口用于在专家系统中调用 MATLAB 程序,利用基础数据模块不断更新和完善的破坏登记纪录所形成的破坏样本数据,对网络进行训练.在该窗口可对基于 MATLAB 软件二次开发的桥梁建设项目鉴识神经网络程序进行直接的调用和运行,使得神经网络模块可以继承基础数据库模块所建立的专家知识样本库,并利用样本库对网络进行学习训练,以形成成熟的智能网络.神经网络的专家系统,其学习训练程序流程如图 3 所示.
2) “录入待算数据” 窗口用于对需要进行鉴识的案例数据进行整理和录入,与专家数据模块中的桥梁破坏登记窗口形式一致,最终在后台形成可为 MATLAB 程序调用的 “data. txt”数据文件.3) “计算源码管理” 窗口用于在 VFP 界面中直接对神经网络源程序进行调用、修改,并可以直接进行试算检测.考虑不同的案例对分析的精度和范围可能不同,为了方便网络的源码管理,还单独建立了神经网络的计算源码管理窗口.
4) “神经网络计算”窗口,用于利用训练成熟的网络,对被鉴识对象的破坏信息所形成的数据进行模拟和仿真,给出网络的鉴识分析结论,主要包括各工程相关责任方的事故责任构成,责任权重,责任比例,直接经济损失、间接经济损失和非经济损失的责任评价. 神经网络的计算分析流程如图4 所示.其算法通过检验后,可用于桥梁破坏责任和损失的评价分析.经过破坏调查后,对桥梁的破坏情况进行录入整理,就可以在 VFP 界面上利用训练成熟的神经网络对其进行鉴识分析,通过智能计算,判断其风险源的构成情况,在事故经济损失调查的基础上,给出经济损失和非经济损失的责任分配意见.
DOI:10.3969/j.issn.1008-0821.2012.02.040
〔中图分类号〕G250.71 〔文献标识码〕A 〔文章编号〕1008-0821(2012)02-0159-08
Knowledge-based Expert System Development Overview MapLiao Yi
(Political Department,National University of Defense Technology,Changsha 410073,China)
〔Abstract〕Artificial intelligence expert system is the most important and most active areas of an application,which implements the artificial intelligence research from theory to practice,turning from the general reasoning strategies of a major breakthrough in the use of expertise.This chronological order,the expert system into the 1980s before the 1980s,1990s,2000,after four stages.Articles using bibliometric methods,analysis of the expert system development process,development and trends,pointing out that the current phase is the development of expert systems,expert systems into a variety of commercial operation,need to address the knowledge acquisition bottleneck,matching conflicts and other issues for expert systems to understand and master the subject structure,evolution,development and so provide an unique perspective and knowledge.
〔Key words〕knowledge maps;expert systems;the development trajectory
专家系统作为人工智能的一个重要分支,发展已经超过50年,在很多应用领域都获得了广泛使用,取得了丰硕成果。本文运用文献计量这一独特视角对专家系统进行了再回顾和再分析,将智能科技划分为初创期、成长期、低谷期、发展期,利用词频分析、共引分析、作者共现分析等方法揭示专家系统的学科结构、影响程度、关键节点与时间点等重要而独特的知识,为了解和掌握专家系统的发展与演化过程提供了独特视角。
1 数据来源
SCI(Science Citation Index)是美国科学情报研究所ISI(Institute for Science Information)出版的期刊文献检索工具,所收录的文献覆盖了全世界最重要和最有影响力的研究成果,成为世界公认的自然科学领域最为重要的评价工具。本文以Web of Science中的SCI数据库为数据来源,选用高级检索方式,以“Expert System/Experts System”作为主题词,于2011年5月在Web of Secience中进行检索,一共检索到14 500篇相关文献记录。获得的年度分布如图1。所示。虽然,专家系统研究从20世纪五六十年代就开始了,但是从图1可以看出直到1982年才有主题词与专家系统相关的论文出现。图1表明1991年左右,专家系统相关论文达到了峰值,但随后呈逐年下降的趋势。到1999年,只有494篇。但21世纪开始,专家系统相关论文又出现了增加的趋势,并维持在一个稳定的水平中。图1 专家系统在SCI数据库文献发表年度变化情况
2012年2月第32卷第2期基于知识图谱的专家系统发展综述Feb.,2012Vol.32 No.22 专家系统前40年的发展
本文利用基于JAVA平台的引文分析可视化软件Citespace,首先设定时间跨度为1950-1991年,时间切片长度为1年,聚类方式为共被引聚类(Cited Reference),阈值选择为(2,2,20)、(3,3,20)、(3,3,20)。Citespace得出这些引文的时间跨度为1950-1990年,可以绘制出该时间段的专家系统论文时区分布图,如图2所示。我们以年代先后为序,将20世纪80年代以前作为第一阶段,80年代至90年代作为第二阶段。图2 1950-1991年各年度专家系统论文之间的时区分布图
2.1 专家系统起源时期
根据图2显示,这段时期有7个突出节点,既有7位代表人物。第一个节点代表的是“人工智能之父”――英国著名科学家阿兰・麦席森・图灵(Alan Mathison Turing),他于1950年在《心灵》杂志上《计算机器与智能》,提出了著名的“图灵测试”,探讨了机器智能的可能性,为后来的人工智能科学提供了开创性的构思[1]。
第二个节点代表的是美国工程院院士、加州大学扎德(LA.Zadeh)教授,他于1965年在《信息与控制》杂志第8期上发表题为《模糊集》的论文,提出模糊集合理论,给出了模糊性现象定量描述和分析运算的方法,从而诞生了模糊数学。1978年,扎德教授提出了“可能性理论”,将不确定性理解为可能性,为模糊集理论建立了一个实际应用上的理论框架,这也被认为是模糊数学发展的第二个里程碑。同年,国际性期刊《International Journal of Fuzzy Sets and System》诞生,这使得模糊理论得到普遍承认,理论研究高速发展,实际应用迅速推广。
第三个节点代表的美国两院院士、卡内基-梅隆大学教授艾伦・纽厄尔(Allen Newell),1972年,他出版了《人怎样解题》(Human Problem Solving)一书,书中描述了他和西蒙试图建立一个计算机化的“通用问题求解器”的历程:20世纪50年代,他们发现,人类的问题解决,在一定知识领域内可以通过计算机实现,所以他们开始用计算机编程来解决问题,1956年,他们研发出了逻辑理论家和通用问题求解器(General Problem Solver),并建立了符号主义人工智能学派。我们可以看出,这本书是对他以前所作工作的总结与归纳,而逻辑理论家和通用问题求解器正是专家系统的雏形,为专家系统的出现奠定了坚实的基础。
但是艾伦・纽厄尔的尝试无法解决大的实际问题,也很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大搜索空间也难于处理。为此,美国国家工程院院士、斯坦福大学教授费根鲍姆(E.A.Feigenbaum)等人在总结通用问题求解系统成功与失败的经验基础上,结合化学领域的专门知识,于1965年研制了世界上第一个专家系统dendral,可以推断化学分子结构。专家系统进入了初创期,其代表有dendral、macsyma(数学专家系统)等,第一代专家系统以高度专业化、求解专门问题的能力强为特点,向人们展示了人工智能应用的广阔前景[2]。
第四个节点代表人物是美国麻省理工学院著名的人工智能学者明斯基(Minsky)。1975年,他在论文《表示知识的框架》(A Framework for Representating Knowledge,McGraw-Hill)中提出了框架理论,框架理论的核心是以框架这种形式来表示知识。理论提出后,在人工智能界引起了极大的反响,并成为了基于框架的专家系统的理论基础,基于框架的专家系统适合于具有固定格式的事物、动作或事件。
第五个节点代表人物是美国普林斯顿大学教授格伦谢弗(Glenn Shafer),他在1976年出版了《数学理论的证据》(A mathematical theory of evidence)一书,介绍了由他和Dempster于1967年提出的D-S理论(即证据理论)。证据理论可处理由不知道因素引起的不确定性,后来,该理论被广泛应用于计算机科学和工程应用,是基于D-S证据理论的专家系统的理论基础。
第六个重要节点代表是美国斯坦福大学爱德华・汉斯・肖特利夫(Shortliff EH)教授,他于1975年在著名杂志《数学生物科学》上发表《A model of inexact reasoning in medicine》(《在医学模型的不精确推理》)一文,他结合自己1972-1974年研制的世界第一个医学专家系统――MYCIN系统(用于诊断和治疗血液感染及脑炎感染,是第二代专家系统的经典之作),提出了确定性理论,该理论对专家系统的发展产生了重大影响。
第七个节点代表人物是美国麻省理工学院计算机科学和人工智能实验室的戴维斯(Randall Davis)教授,他于1976年提出元知识的概念,并在专家系统的研制工具开发方面做出了突出贡献――研制出知识获取工具Teiresias,为专家系统获取知识实现过程中知识库的修改和添加提供了工具[3],关Teiresias,他于1977年在《Artificial Intelligence》杂志上中进行了详细介绍,而这也为本时期专家系统的快速增多和广泛应用奠定了坚实基础。
20世纪70年代后期,随着专家系统应用领域的不断开拓,专家系统研发技术逐渐走向成熟。但同时,专家系统本身存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一等问题也被逐渐暴露出来。人们从各种不同类型的专家系统和知识处理系统中抽取共性,人工智能又从具体研究逐渐回到一般研究。围绕知识这一核心问题,人们重新对人工智能的原理和方法进行探索,并在知识的获取、表示以及知识在推理过程中的利用等方面开始出现一组新的原理、工具和技术。
2.2 专家系统发展的黄金时期
20世纪80年代是专家系统突飞猛进、迅速发展的黄金时代,根据图2显示,这段时期共有论文982篇,有7个突出节点。
1980年,出现了第一个节点代表――美国斯坦福大学计算机科学系系主任尼尔森(NILS J.NILSSON),他出版的《人工智能原理》(《Principles of artificial intelligence》)一书,表明了拉近理论和实践的距离的目标,书中对基于规则的专家系统、机器问题解决系统以及结构对象的代表等都进行了具体的论述。
1981年,出现了第二个节点代表――英国赫特福德大学教授Clocksin,威廉F,他出版的《PROLOG语言编程》一书,引起了计算机科学界的极大兴趣,并已被证明是一个重要的编程语言和人工智能系统的新一代基础,是专家系统的重要编程语言。
1982年,出现了第三个节点代表――美国匹兹堡大学教授米勒(Miller RA),他在《英格兰医药分册》上发表了《基于计算机的医学内科实验诊断顾问》(An Experimental Computer based Diagnostic Consultant for General Internal Medicine.N Engl J Med,307,468-76,1982)一文,属当时诊断专家系统的代表力作,书中介绍了著名的内科疾病诊断咨询系统INTERNIST-1,之后将其不断完善成改进型INTERNIST-2,即后来的CADUCEUS专家系统,其知识库中包含了572种疾病,约4 500种症状。
1983年,出现了第四个节点代表――美国的海斯罗斯(Hayes-Roth,F)教授,他于1983年发表著作《建立专家系统》,对专家系统建立的原则和要素、开发的生命周期等重要问题进行了详细讲解,为研究与开发各种类型的专家系统提供了理论依据。
1984年,出现了第五个节点代表――美国匹兹堡大学计算机科学、哲学和医学教授布鲁斯・布坎南(Bruce G.Buchanan),他于1984年发表著作《规则的专家系统:斯坦福启发式编程项目Mycin实验》(《Rule Based Expert Systems:The Mycin Experiments of the Stanford Heuristic Programming Project》,这是有史以来关于医疗诊断系统MYCIN的实验规则库公布。基于规则的专家系统MYCIN是专家系统开发过程中一个里程碑,研究其开发思路与方法具有非常重要的意义。
1985年,出现了第六个节点代表――美国人工智能专家、加州大学教授哈蒙(Harmon P),他出版了《专家系统:人工智能业务》(《Expert systems:artificial intelligence in business》)一书。书中阐述了专家系统如何解决问题,代表知识,并得出推论,并介绍了人工智能的具体制度,确定了专家系统的市场。
1986年,出现了第七个节点代表――著名的专家系统学者沃特曼(Waterman DA),他出版了《专家系统指南》一书,该书对专家系统的概念、组成、建立过程、建立工具、应用领域等做了深入浅出的系统介绍与论述,是当时全面介绍专家研发与应用的经典书籍。
20世纪80年代初,医疗专家系统占主流,主要原因是它属于诊断类型系统且容易开发。80年代中期,出现大量投入商业化运行的专家系统,为各行业带来了显著的经济效益。从80年代后期开始,大量新技术成功运用到专家系统之中,使得专家系统得到更广泛的运用。在这期间开发的专家系统按处理问题的类型可以分为:解释型、预测型、诊断型、设计型等。应用领域扩展到农业、商业、化学、通信、医学等多个方面,成为人们常用的解决问题的手段之一。
然而,与此同时,现有的专家系统也暴露出了自身严重的缺陷,使不少计算机界的知名学者对专家系统产生了怀疑,认为专家系统存在的问题有以下几点:(1)专家系统中的知识多限于经验知识,极少有原理性的知识,系统没有应用它们的能力;(2)知识获取功能非常弱。为了建造专家系统,必须依赖于专家获取知识, 不仅费时, 而且很难获取完备性和一致性的知识;(3)求解问题的方法比较单一,以推理机为核心的对问题的求解尚不能反映专家从认识问题到解决问题的创造性过程;(4)解释功能不强[4]。等到学者们回过头重新审视时,20世纪90年代的专家系统理论危机已然爆发。
3 90年代专家系统向多个方向发展
由于20世纪80年代专家系统研究迅猛发展,商业价值被各行各业看好,导致90年代大批专家系统从实验室走出来,开始了它们的工程化市场化进程。从图1看以看出,在20世纪90年代,专家系统的相关论文不增反减,进入一个局部低谷期,这期间以“Expert System/Experts System”为主题词的论文共7 547篇。本文利用Citespace软件,设置参数为(4,4,20)(4,3,20)(4,4,20),获取了该时期论文的引文聚类图(如图3所示)。图2 专家系统1990-2000年的论文引文聚类图
从图3中我们可以看出,全图的节点比较分散,没有形成大的聚类,这表示该阶段没有形成重点研究方向,也没有重大科研成果和标志性著作产生,专家系统的市场化进程严重牵引了研究者们的注意力,这是专家系统研究陷入低谷期的重要原因。
这段时间专家系统的研究工作大致分以下几个方面:第一个研究方向依旧是建立在扎德(LA.Zadeh)教授模糊理论上的模糊专家系统,它同样是该年代专家系统研究的重点方向。
第二个研究方向是骨架专家系统,代表人物有美国斯坦福大学的爱德华・汉斯・肖特利夫(Shortliff EH)教授。1974年末,MYCIN系统基本建成后,MYCIN的设计者们就想到用其它领域的知识替换关于感染病学的知识,可能会得到一个新的专家系统,这种想法导致了EMYCIN骨架系统的产生。EMYCIN的出现大大缩短了专家系统的研制周期,随后,AGE、OPS5、KEE、KBMS、GESDE等骨架系统应运而生,它们在20世纪90年代专家系统的研究进程中,发挥着重要作用。
第三个研究方向是故障诊断专家系统,代表人物有美国麻省理工学院的兰德尔・戴维斯(Randall Davis)教授。他于1984年在《人工智能》杂志上发表了《基于结构和行为的诊断推理 》(《Diagnostic Reasoning Based on Structure and Behavior》)一文,该论文描述了一个利用知识结构和行为,在电子电路领域进行故障诊断排除的专家系统。之后,故障诊断专家系统在电路与数字电子设备、机电设备等各个领域已取得了令人瞩目的成就,已成为当今世界研究的热点之一。
第四个研究方向是基于规则的专家系统,布鲁斯・布坎南(Bruce G.Buchanan)的著作对基于规则的专家系统在这个时期的发展仍有着积极的指导作用。多种基于规则的专家系统进入了试验阶段。传统基于规则的专家系统只是简单的声明性知识,而目前,规则的形式开始向产生式规则转变,并趋向于提供较完善的知识库建立和管理功能。
第五个研究方向是知识工程在专家系统中的运用。代表人物是美国斯坦福大学的克兰西教授(Clancy W J),他于1985年在《人工智能》杂志上发表了重要论文《启发式分类》(《Heuristis classification》),启发式分类即对未知领域情况的类的识别过程。它是人类思维解决问题的重要方法,在人工智能、专家系统中可常用启发式设计计算机程序,模拟人类解决问题的思维活动。
第六个研究方向是机器学习在专家系统中的运用。代表人物是机器学习领域前辈、澳洲悉尼大学著名教授John Ross Quinlan。他于1986年在《机器学习》(《Mach.Learn》)杂志上发表《决策树算法》(《Induction of Decision Trees》)一文,文中他详细描述了决策树算法的代表――ID3算法。之后,有大量学者围绕该算法进行了广泛的研究,并提出多种改进算法,由于决策树的各类算法各有优缺点,在专家系统的实际应用中,必须根据数据类型的特点及数据集的大小,选择合适的算法。
第七个研究方向是神经网络专家系统,代表人物有人工智能专家Stephan I.Gallant和美国加利福尼业大学教授巴特・卡斯科(Bart Kosko)。Gallant于1988年在《ACM的通信》上发表了《连接主义专家系统》(《Connectionist expert systems》)一文,文中讲述Gallant 设计了一个连接主义专家系统(Connectionist expert system),其知识库是由一个神经网络实现的(即神经网络知识获取),开创了神经网络与专家系统相结合的先例。
第八个研究方向是遗传算法在专家系统中的运用。代表人物是遗传算法领域著名学者、美国伊利诺伊大学David Goldberg教授和人工智能专家L.Davis。1989年,Goldberg出版了专著《搜索、优化和机器学习中的遗传算法》,该书系统总结了遗传算法的主要研究成果,全面而完整地论述了遗传算法的基本原理及其应用;1991年,Davis编辑出版了《遗传算法手册》,书中包含了遗传算法在科学计算、工程技术和社会经济中的大量应用实例,该书为推广和普及遗传算法的应用起到了重要的指导作用。这些都推动了基于遗传算法的专家系统的研发推广。
第九个研究方向是决策支持系统在专家系统中的运用,代表人物是美国加利福尼亚大学伯克利分校教授埃弗雷姆・特班(Efraim Turban)。他于1990年出版了《决策支持和专家系统的管理支持系统》(《Decision support and expert systems:management support systems》)一书。20世纪80年代末90年代初,决策支持系统开始与专家系统相结合,形成智能决策支持系统,该系统充分做到了定性分析和定量分析的有机结合,将解决问题的范围和能力提高到一个新的层次。
第十个研究方向是各种理论知识在专家系统中的综合运用,代表人物是美国加利福尼业大学教授巴特・卡斯科(Bart Kosko)和美国伊利诺伊州研究所教授Abdul-Rahman K.H。卡斯科(Kosko)于1992年出版《神经网络和模糊系统:一个拥有机器智能的动力系统方法》(《Neural networks and fuzzy systems:a dynamical systems approach to machine intelligence》)一书,这是第一本将神经网络和模糊系统结合起来的读本,也是神经网络与模糊理论综合应用于专家系统建设的经典著作;Abdul-Rahman K.H教授于1995年,在美国电气和电子工程师协会的《电力系统及自动化》(《Transactions on Power Systems》)会议刊上发表了《人工智能模糊无功负荷的最优VAR控制方法 》(《AI approach to optimal VAR control with fuzzy reactive loads》)一文,论文提出了一个解决无功功率(VAR)控制问题,这个方法包含了专家系统、模糊集理论和人工神经网络的重要知识。
虽然专家系统大量建造,但投入实际运行的专家系统并不多,且效率较低,问题求解能力有待进一步提高。原因之一就是专家系统主要是模拟某一领域中求解特定问题的专家的能力,而在模拟人类专家协作求解方面很少或几乎没有做什么工作。然而在现实世界中,协作求解具有普遍性,针对特定领域、特定问题的求解仅仅具有特殊性,专家系统虽然在模拟人类专家某一特定领域知识方面取得了成功,但它仍然不能或难以解决现实世界中的问题。其次,开发的专家系统的规模越来越大,并且十分复杂。这样就要求将大型专家系统的开发变成若干小的、相对独立的专家系统来开发,而且需要将许多不同领域的专家系统联合起来进行协作求解。然而,与此相关的分布式人工智能理论和实用技术尚处在科研阶段。只有分布式系统协作求解问题得以解决,才能克服由于单个专家系统知识的有限性和问题求解方法的单一性等导致系统的“脆弱性”,也才能提高系统的可靠性,并且在灵活性、并行性、速度等方面带来明显的效益[5]。
4 21世纪专家系统进入稳定发展时期
进入21世纪,专家系统开始缓慢发展,这期间以“Expert System/Experts System”为主题词的论文共5 964篇。本文利用Citespace软件,设置参数为(6,6,20)(5,5,20)(5,5,20),获取了该时期论文的引文聚类图(如图4所示)。图4 专家系统2000-2010年的论文引文聚类图
这个时期专家系统有3个主要研究方向:第一个是研究方向是节点明显的基于模糊逻辑的专家系统研究方向。90年代以来,模糊控制与专家系统技术相结合,进一步提高了模糊控制器的智能水平。基于模糊逻辑的专家系统有以下优点:一是具有专家水平的专门知识,能表现专家技能和高度的技巧以及有足够的鲁棒性(即健壮性);二是能进行有效的推理,能够运用人类专家的经验和知识进行启发性的搜索和试探性的推理;三是具有灵活性和透明性。
第二个是研究方向是Rete模式匹配算法在专家系统中的应用,代表人物是美国卡内基―梅隆大学计算机科学系的Charles L.Forgy教授,1979年,他首次提出Rete算法。专家系统工具中一个核心部分是推理机,Rete算法能利用推理机的“时间冗余”特性和规则结构的相似性,并通过保存中间运算结果的方法来提高推理的效率。1982年,他在《人工智能》杂志上发表《Rete算法:许多模式/多对象的模式匹配问题的一个快速算法》(《Rete:A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem》)一文,该文解释了基本算法的概念,介绍了详细的算法,描述了模式和适当的对象交涉算法,并说明了模式匹配的执行操作。
第三个是研究方向是专家系统在电力系统中的运用。世界各国的专家们开始热衷于在电力生产的各个环节使用专家系统,代表人物有日本的福井贤、T.Sakaguchi、印度的Srinivasan D、美国伊利诺伊州研究所的Abdul-Rahman K.H、希腊雅典国立技术大学的Protopapas C.A、和中国的罗旭,他们在美国电气和电子工程师协会的《电力传输》(《IEEE transactions on power delivery)会议刊及《电源设备系统》会议刊(《On Power Apparatus and Systems》)上发表了多篇有影响力的论文,内容涉及系统恢复、电力需求预测、变电站故障诊断和报警处理等多方面。
这十年间,专家系统的研究不再满足于用现有各种模型与专家系统进行简单结合,形成基于某种模型的专家系统的固有模式。研究者们不断探索更方便、更有效的方法,来解决困扰专家系统的知识获取瓶颈、匹配冲突、组合爆炸等问题,而这也推动了研究不断向深层次、新方向发展。但是,由于专家系统应用的时间长、领域广,他们遭遇的瓶颈问题一时得不到有效解决,导致了这一时期末,专家系统研究呈现出暂时的下滑现象。
5 专家系统发展趋势分析
图一发展曲线上第二个时间节点是1992年,从该年起专家系统相关论文呈下降趋势,然后在2002年又开始缓慢增长,近一年多来又开始下降,这标志着专家系统研究在布满荆棘的道路上前行,前景是光明的,但道路是曲折的。本文以5年为一个单位,统计了1990-2009年20年期间专家系统相关论文中高频词的变化情况,如表1所示,从该表可以获得这个时期专家系统研究的一些特点。
(1)在1990-1999年期间,人工智能出现新的研究,由于网络技术特别是国际互连网技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究,使人工智能更加实用,这给专家系统带来了发展的希望。正因为如此,我们从词频上可以看出,人工智能(artificial intelligence)一词在这十年一直位居前两位,在专家系统研究中处于主导地位,而与其相关的知识表示(knowledge representation)、知识获取(knowledge acquisition)等,也成为了学者们研究的重点方向。
(2)该时期的第二个特点是神经网络研究的复苏。神经网络是通过模拟人脑的结构和工作模式,使机器具有类似人类的智能,如机器学习、知识获取、专家系统等。我们从词频上可以看出神经网络(neural network)一词得以快速增长,1995年时位列第一,进入21世纪也是稳居第二位,神经网络很好地解决了专家系统中知识获取的瓶颈问题,能使专家系统具有自学习能力,它的出现为专家系统提供了一种新的解决途径[6],同时也显示出他独有的生机与活力。
(3)该时期是模糊逻辑的发展时期。模糊理论发展至今已接近三十余年,应用范围非常广泛,它与专家系统相结合,在故障诊断、自然语言处理、自动翻译、地震预测、工业设计等方面取得了众多成果。我们从词频上可以看出,模糊逻辑(fuzzy logic)一词,除在1990-1994年期间位居第六位外,之后都位居前三甲,2000-2004年期间更是位列第一。模糊控制与专家系统技术相结合,进一步提高了模糊控制器智能水平,这种控制方法既保持了基于规则的方法的价值和用模糊集处理带来的灵活性,同时把专家系统技术的表达与利用知识的长处结合起来,能处理更广泛的控制问题。
(4)故障诊断成为专家系统研究与应用的又一重要领域。故障诊断专家系统的发展起始于20世纪70年代末,虽然时间不长,但在电路与数字电子设备、机电设备等各个领域已取得了令人瞩目的成就,已成为当今世界研究的热点之一。这从高频词分布可以开出,故障诊断(fault diagnosis)从1995-1999年间的最后一位攀升至2005-2009年间的第一位,足见其强大的生命力。在专家系统己有较深厚基础的国家中,机械、电子设备的故障诊断专家系统已基本完成了研究和试验的阶段,开始进入广泛应用。
(5)遗传算法的应用逐渐增多。20世纪90年代,遗传算法迎来了发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高。进入21世纪,遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。这在高频词分布中可以看出,以2000作为临界点,遗传算法(genetic algorithms)从20世纪90年代的10名之后,到位于高频词前六强之中,充分反映出它发展的良好势头。
6 小 结
专家系统是20世纪下半叶发展起来的重大技术之一,它不仅是高技术的标志,而且有着重大的经济效益。“知识工程之父”E.Feignbaum在对世界许多国家和地区的专家系统应用情况进行调查后指出:几乎所有的ES都至少将人的工作效率提高10倍,有的能提高100倍,甚至300倍[7]。
专家系统技术能够使专家的专长不受时间和空间的限制,以便推广稀缺的专家知识和经验;同时,专家系统能促进各领域的发展,是各领域专家专业知识和经验的总结和提炼。
专家系统发展的近期目标,是建造能用于代替人类高级脑力劳动的专家系统;远期目标是探究人类智能和机器智能的基本原理,研究用自动机模拟人类的思维过程和智能行为,这几乎涉及自然科学和社会科学的所有学科,远远超出了计算机科学的范畴。
随着人工智能应用方法的日渐成熟,专家系统的应用领域也不断扩大。有人类活动的地方,必将有智能技术包括专家系统的应用,专家系统将成为21世纪人类进行智能管理与决策的工具与助手。
参考文献
[1]百度百科[EB].http:∥baike.省略/view/2130.htm.
[2]黄可鸣.专家系统二十年[J].计算机科学,1986,(4):26-37.
[3]路耀华.思维模拟与知识工程[M].北京:清华大学出版社,1997.
[4]赵致琢.专家系统研究[J].贵州大学学报:自然科学版,1990,(6):40-48.
二、基金项目管理的特点
基金项目除了具有科技项目的一般特性外,还具有如下特点:(1)基金项目是基础研究,其研究过程和研究成果具有很大的不确定性,简单的量化管理是不适合的。(2)基金项目管理除了国家自然科学基金委员会(以下简称基金委)外,离不开依托单位、专家的支持,而基金委与依托单位、专家是一种松散的关系。(3)基金项目的体量大。2011年基金项目申请量达到了15万项左右,2011年资助项目34000项左右。(4)基金委负责组织科学基金项目管理的整个业务过程的运转,并对依托单位的具体管理工作进行宏观指导。(5)基金委依靠评审专家对基金项目进行评价与遴选。(6)依托单位具体负责基金项目实施的管理和监督。
三、“科学基金共同体”在基金项目管理过程中的作用
“科学基金共同体”是在共同价值观的基础上,通过一定的规范和制度,建立和协调各个组成部分之间的关系,实现科学知识生产的松散组织[1]。韩智勇等[2]阐述了科学基金共同体的“四支队伍”(研究专家队伍,评审专家队伍,基金委工作人员队伍,以及依托单位、联络网、地方科技主管部门)、“三类机构”(依托单位及其联络网、地方科技主管部门和联合资助机构与基金委)和“两大系统”(专家系统和管理服务系统)的内涵和作用。科学基金共同体的各组成部分是一个有机的整体,各部分相互协作、相互依存,各自在基金项目过程管理中发挥着不同的作用。
1.专家系统是“基金制”的基础
“宏观引导、自主申请、平等竞争、同行评审、择优支持”是科学基金制的基本特点。包括申请者、承担人和评审专家在内的专家系统是过程管理的主体,是基础研究的承载者,是科学基金项目绩效能否实现的关键因素。专家系统既直接参与基金项目整个生命周期,又参与业务过程的评估和信息反馈。专家系统的学术水平、科研道德水平决定了这个群体能否尊重科学规律,自由探索,甘于寂寞,潜心从事“敢为天下先”的风险性强的研究;能否尊重首创精神,发扬学术民主,公平、公正、无私地评价和遴选出探索性强的项目。
2.管理服务系统是科学基金的保障
包括基金委、依托单位及其联络网、地方科技主管部门和联合资助机构及其工作人员在内的管理服务系统是科学基金项目运行的保障。基金委是一个学术性管理机构,是基金项目管理过程中的协调者和政策制定者,其职责是制定、解读、宣传政策和各类基金项目的管理办法,组织专家系统和服务管理系统开展各项工作,保证科学基金项目的顺利实施,实现科学基金项目的绩效。由于基金委工作人员没有时间也没有精力跟踪每一个项目,因此科学基金项目具体实施必然离不开依托单位及其联络网、地方科技主管部门和联合资助机构及其工作人员,他们与基金委工作人员一道组成科学基金项目的保障系统。
四、建立基金项目过程管理的必要性
基于上述基金项目管理的特点,特别是随着科研人员对基础研究的重视,基金项目申请量与资助量逐年增加,资助经费也逐年快速增长,项目管理的复杂度和工作量大幅提高,对科学基金的专家系统和管理服务系统提出了挑战。而且,随着社会、经济的发展,公众也越来越关注国家自然科学基金在提高我国原始创新能力、服务于创新型国家建设中的作用。因此,有必要积极研究和探索对基金项目的管理规律,对基金项目管理过程进行科学、有效的评价,从而不断改进和创新基金项目管理过程,以适应基金项目的不断发展,充分发挥自然科学基金在国家创新体系中的作用。基金项目过程管理,就是充分发挥科学基金共同体的作用,运用先进的信息技术,通过对基金项目业务流程的跟踪、监督,在建立较为科学、可行、规范的评价体系的基础上,不断创新和改进基金项目管理的每一个业务过程的绩效,从而提高国家自然科学基金的绩效,实现基金委的“卓越管理战略”。
五、基金项目过程管理构建设想
1.建立基金项目业务过程的评估体系
过程管理的特点之一就是,通过不间断地监控各业务过程的运行情况,进而实时评价和优化业务过程。对各业务过程进行信息采集是优化管理业务过程的基础性工作,对各业务过程进行评估是优化业务过程的必然要求。基金项目管理的业务过程主要包括项目申请、项目评议(包括通讯评审与会议评审)、项目批准与实施、项目中期检查与结题验收、后期成果跟踪。为了有效地评估基金管理各业务过程,需要采集基金管理业务过程的信息,建立各业务过程的绩效目标和评估方法。需要采集的信息主要包括:
(1)“项目申请”业务过程采集的信息包括:项目指南、申请书内容、管理办法、年度申请通告等。
(2)“项目评审”业务过程采集的信息包括:评审要求、通讯评审意见、通讯评审专家信息、会议评审意见、会议评审专家信息。
(3)“项目批准与实施”业务过程采集的信息包括:项目计划书、调整计划书、进展报告、项目信息变更等。
(4)“项目中期检查、结题验收”业务过程采集的信息包括:中期检查意见、中期检查专家、结题验收意见、结题验收专家信息、经费使用情况等。
(5)“后期成果跟踪”业务过程采集的信息包括:延续研究的进展情况、后期发表的论文、专利、奖项等。2007年国务院颁布的《国家自然科学基金条例》中明确指出了国家自然科学基金的绩效是:“提高国家自然科学基金使用效益,促进基础研究,培养科学技术人才,增强自主创新能力”。基金项目管理的各业务过程的绩效目标是:
(1)“项目申请”业务过程的绩效目标是:便于申请者获得项目申请的有关信息和政策导向,鼓励和引导申请者自由申请,勇于提出高风险性的研究项目。
(2)“项目评审”业务过程的的绩效目标是:公开评审标准和程序,公正、公平、透明地遴选出风险性较强、创新性较强的研究项目。
(3)“项目批准与实施”业务过程的绩效目标是:按照审批程序批准项目,及时启动项目研究,组织协调并处理项目执行中需要协调、处理的问题。
(4)“项目中期检查、结题验收”业务过程的绩效目标是:及时了解项目进展情况,监督、规范项目经费的使用,恰当评价项目进展情况,促进项目研究过程不断改进,达到项目预期研究目标。
(5)“后期跟踪管理”业务过程的绩效目标是:了解项目的后续进展情况。由于基础研究项目研究过程和研究成果的不确定性,因此对基金项目管理的业务过程的评价宜采取定性的评估方法,不适于定量的评估方法。建议由第三方定期对科学基金项目管理的业务过程,根据业务过程绩效进行评估。
2.优化基金管理的业务过程
业务过程优化的目的是:根据组织的管理目标,管理层能够有效地监督和控制各个业务过程,优化资源的分配,降低管理成本,提高投入产出比,达到最佳的管理目标。假定把整个基金项目管理整体看做是一个业务过程,笔者认为优化基金项目过程管理的标准是:(1)是否能将原始创新项目遴选出来;(2)是否凝聚和培养了基础研究队伍;(3)是否给专家更多专心进行科学研究的时间;(4)遴选项目过程是否公开、透明、民主;(5)业务过程是否便于公众监督与检查;(6)是否有利于自由的学术研究气氛的营造;(7)是否符合国家的法律、法规和管理办法;(8)是否有利于管理效率的提高;(9)是否充分利用了先进的信息技术、网络技术。
3.完善基金项目管理的反馈系统
反馈就是由控制系统把信息输送出去,将反馈的结果与预期目标进行比对后,对再次输出的信息进行必要的调整,使其作用的结果接近理想的目标。过程管理的目的就是要不断提升和改进项目绩效。对基金项目是否进行了有效的管理,需要建立一个实时、准确、灵敏的反馈系统,及时了解各业务过程的运行情况,不断分析研究实际管理过程中出现的各种因素,优化基金项目的管理过程。
4.完善基金项目的评价系统
国家自然科学基金绩效由每一个基金项目所取得的进展和成果汇集而成,因此如何遴选出原创性的项目是整个业务过程的核心。笔者认为项目评价系统分3个部分:评价标准、评审专家和评审环境。为加强和改进科学技术评价工作,建立健全科学技术评价制度,规范科学技术评价活动,正确引导科学技术工作健康发展,2003年科学技术部颁布了《科学技术评价办法》(试行)(以下简称《评价办法》)。《评价办法》主要明确了评价目的、原则、分类方法、评价准则及监督机制。
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)16-0116-02
一、引言
随着我国高校大规模的扩招,高等教育已由精英型教育过渡到大众型教育,教学对象的阶梯层次也发生了较大的变化。在扩招量较大的本科第二批招生院校中,学生理论知识基础和学习能力等方面的素质相对下降,而社会又迫切需求大量应用型人才。为了适应新形式的教学要求,各高校都在寻求提高培养人才质量的教学管理方法,广泛进行教学制度的改革。智能控制是高校本科自动化及其相关专业的重要专业课,智能控制是当今国内外自动化学科中十分活跃和具有挑战性的领域,代表着当今世界控制理论和技术的发展方向之一,是一门集理论研究和工程实践于一体的综合性课程[1],因此在教学改革中如何提高该课程的教学质量是非常重要的。为了适应当今社会对人才素质教育培养的要求,注重对学生创新能力和综合素质的培养,近年来,结合课堂教学,我们对智能控制的教学改革做了一些探索。
二、“智能控制”课程的特点和目标
智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论和信息论等多种学科的高度综合与集成,是一门新的交叉前沿学科[2]。由于智能控制在社会生产中所体现出的巨大研究价值和广阔应用前景,使得这门原先只在研究生阶段才开设的课程,现在已经在众多高校自动化相关专业的高年级本科生中开设。其目的是使学生在学习自动控制原理和现代控制理论等基础理论课程之后,对控制理论前沿发展方向有所了解和学习。智能控制属于偏理论的专业课程,具有多学科交叉性。其理论分支较多,内容丰富,涵盖了模糊数学与模糊控制、人工神经网络、遗传算法和专家系统等前沿学科理论。该课程内容抽象、模糊控制、神经网络、专家系统等涉及的内容理论性都比较强,对于本科生相对抽象、枯燥、难懂,他们往往不易理解。
智能控制本身所具有的特点决定了本科教学过程中该课程的教学目标。通过该课程的学习,使学生了解学科发展前沿,掌握智能控制研究的一般方法,帮助学生获得智能控制的基本知识,使学生掌握智能控制分支及其特点,包括模糊控制理论基础、模糊控制系统、人工神经网络模型及其神经网络控制,使学生理解并掌握用智能控制方法分析和设计系统的基本工具、原理和实现方法,能够设计简单的智能控制系统。
针对课程特点和教学目标,在教学过程中应从教学内容和教学方法等方面进行改进,以吸引学生的学习兴趣,激发学生的学习积极性和主动性,达到预期的教学目标。
三、教学改革措施与途径
1.优化教学内容,增强新颖性和实用性。智能控制课程具有前沿性、抽象性和理论性强等特点,相关内容极其广泛。然而,作为本科生的一门专业课,教师在教学内容的选取方面应尽可能做到:注重控制思想的融会贯通,减少烦琐公式的推导,多采取简易示例演示,从而提高学生的学习兴趣。在实际教学中,可以采用具体的简单示例来展示智能控制器的设计,如模糊PID控制器的设计思想为自适应调节控制参数,BP神经网络的设计思想为逆向迭代算法,等等。
本科高年级学生在掌握了专业基础知识之后,主要关心学科前沿知识的应用领域和使用方法,学生希望能学到很多较新和较实用的智能控制算法,不愿花太多时间在复杂的理论理解上,因此在教学过程中要注重知识的应用性。此外,大学高年级学生即将走出校门,走向工作岗位,关于一些新的和正在研究的智能控制方法和技术的概况对于他们也非常重要。特别是近期发展起来的方法和技术,如模糊神经控制、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。
2.培养学生设计思想,注重工程应用。为了巩固学生对智能控制理论的理解和增强学生的学习兴趣,教师应该更注重从工程应用角度来引出智能控制概念,并通过具体实例来说明智能控制如何应用,如模糊控制在家用电器中的应用,这样更能激发学生的学习积极性。智能控制在航空航天控制、交通运输系统、家用电器等方面有着广泛的应用。自动化及相关专业毕业的学生,毕业后大部分从事工程或产品设计方面的工作,因此工程设计能力的培养是非常重要的,设计能力是通过设计人员的设计思想、设计原则和设计方法体现出来的。学生通过较典型的具有代表性的基本模糊控制器、模糊PID控制、BP神经网络控制的实际应用,应用MATLAB语言编出简单程序并进行最基本的仿真实验,了解和掌握智能控制系统的设计方法,使学生在校学习期间既能掌握设计要领,又具有一定的设计能力,从而为今后工作或研究生学习打下良好基础。
3.引入仿真软件,改善教学效果。智能控制中的模糊控制、神经网络等内容理论性较强,相对抽象、枯燥难懂。如果引入更加专业、有效的工具,采用更加生动、明了、有新意的教学方法,就能吸引学生的学习兴趣,激发他们的学习积极性。目前应用较为广泛的仿真软件是MATLAB[3],在教学中借助于MATLAB平台,对智能控制中难以采用解析方法的复杂系统进行模块化、可视化分析与设计,有助于学生理解和掌握课堂教学内容。如运用MATLAB软件中的模糊控制工具箱,可以轻松设计模糊控制器,并将其应用到系统控制中,使学生直观感受模糊控制的优越控制效果。同时,为了让学生更深入地了解智能控制算法的实质,鼓励学生运用MATLAB软件的M语言自行编写各种智能控制算法程序,这样学生不但进一步加深了对理论的理解,而且产生了一定的成就感,从而激发了学生学习的主动性和创新性,培养了学好这门课的自信心。
4.创新意识和能力的培养。应用型人才培养的主要目标之一是培养创新意识、训练创新思维、传授创新方法、提高创新能力。智能控制与自动控制理论(古典控制)和现代控制理论不同,智能控制理论和技术还远未成熟,是一个充满生机活力和不断发展的学科[4],这就要求教师要善于引导和培养学生的创新意识和独立思考、分析问题的能力。课堂教学中要正确引导学生看待学科的发展,同时也提供了一个培养学生创新意识和能力的机会。因此在课堂教学中要充分展示创新给一门学科带来的无穷生命力,多创造机会来培养和激发学生的创新能力,如实验教学、课程小论文和综合设计等。
5.突出以学生为中心的教学理念。学生是教学过程的核心,所有的教学环节都要以有利于调动学生自主学习能力为原则。课堂教学将讲授法、讨论法、实验法、自学指导法、实例教学法等优化组合,充分利用板书、投影、录像、计算机等媒体,调动学生的积极性,启发学生的思维,培养学生正确分析问题、解决问题和自主学习的能力,注重学生的个性发展,由以传授知识为主变为以培养学生能力为主。如采用质疑导入法提出问题从而激发学生的思考并抓住学生的注意力;精心设计适当数量的问题让学生讨论和回答,通过这种互动的教学形式活跃课堂气氛,使学生真正成为课堂教学的主体,教师更多的时候作为一个组织者和引导者。
6.考核方式的改革。智能控制是一门理论性较强的课程。限于考试时间,期末考试只能出比较简单的题目,仅凭期末考试成绩很难判断学生分析问题、解决问题及创新的能力。针对这种状况,在教学过程中,应将平时作业、课堂提问、小测验、实验、出勤结合起来作为平时成绩,并将此成绩按照一定比例记入总平成绩。这有利于促进学生平时只有多努力,才能取得好成绩,明了靠最后期末突击取得高分是非常困难的。对平时作业按照A、B、C、D四个等级来评分,对作业中存在的问题及时纠正,对课堂上互动表现好、实验取得好成绩的学生予以表扬鼓励,有利于调动学生的积极性。这样的考核,给出的成绩,既公平又合理,也促进了学生学风的转变。
四、结论
本文根据智能控制课程的特点,给出了在智能控制教学过程中教学内容和教学方法上改革采取的一些措施,在教学实践过程中取得了较好的教学效果,但也难免存在一些问题和不足,希望在进一步的教学研究和教学实践中,不断地更新和完善教学内容,改进教学方法,将控制理论课的教学改革推向一个新的台阶。
参考文献:
[1]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社,2007.
DOI:10.16640/ki.37-1222/t.2017.06.205
1 概述
随着电子信息技术和人工智能技术的不断发展,导弹武器系统性能指标不断提高,相应的测试及自检程序也变得更加复杂和耗时。由于导弹测试本身的限制,测试任务要分舱段、多设备多次测试才能完成,如何缩短测试时间,减少测试次数,优化测试流程变得越来越重要。
目前,国内导弹武器系统的测试主要侧重于武器系统的测试设备研发,围绕功能需求和测试指标进行专用测试设备研制,无法做到武器系统的测试研究与武器系统设计同步开展。以空空导弹为例,内部子系统之间的通讯有多种总线方式,具体包括:1553B、429、RS-422、LVDS等,如何实现系统地自检和自诊断功能,合理的利用总线技术完成对导弹的性能测试是一个紧迫的课题,在导弹设计时利用软硬件结合的自诊断技术,将测试指令与数据在子系统与外部测试设备之间直接传递,提高测试效率。
2 导弹自检测试技术
所谓自检就是利用事先编制好的监测程序对系统的主要功能进行自动检测,并对故障进行定位。自检功能给导弹系统的使用和维护带来了很大的方便,是提高导弹系统可靠性的重要手段。
导弹自检一般包括两种类型:上电自检和在线自检,上电自检是指导弹加电后,各子系统首先进入自检程序,检测各功能模块是否处于正常工作状态;在线自检是指导弹在外部测试设备的控制下,按照操作指令对各个功能模块或特定功能进行测试的自检。在实际应用中,两种类型的自检都必须具备。图1是自检系统的结构框图。
2.1 导弹自检测深度
导弹自检测深度是指导弹系统的各子系统进行自检时,能够检测到功能模块的层级与全部功能层级的比值,导弹各功能模块自检测深度的平均值,为导弹自检深度。图2为自检测深度示意图。
由图2可知,导弹自检测深度呈现金“字塔型”,顶端为全弹,再往下是各子系统,子系统下依次为组件、分组件、部件等直至最小功能模块乃至电子元器件。“金字塔”越往下,表示被检测模块越多,自检测的任务量越大,与之对应,自检测深度就越高。为了提高导弹自检测深度,在导弹设计初期的系统论证、设计阶段,对重要的功能模块电路就必须考虑自检BIT技术的可达性,在硬件设计时加入相应自检BIT测试模块或电路,以便完成子系统内的功能模块检测。导弹自检测深度达到90%是可能的,考虑到各种因素的限制,特别是研制成本和硬件开销等,自检测深度与成本和硬件开销成反比。
2.2 导弹测试覆盖率
导弹测试覆盖率是指导弹的各子系统进行检测时,对最小功能模块中各元器件和信号检测的覆盖率,各子系统测试覆盖率取平均值,为导弹测试覆盖率。图3为测试覆盖率示意图。
导弹测试覆盖率越高,所需的测试时间越长,从理论上来讲,测试覆盖率是可能达到80%的,但是会给导弹设计带来严重软硬件负担和开销。在自检测试设计时,必须要对内部功能和信号非常了解,合理规划自检测试流程,上电自检的测试覆盖率不宜太高,在线测试的自检测试覆盖率可根据需要适当提高。
3 自检方法
3.1 算法模型自检
算法模型自检的基本原理是首先检测主要的被测参数,在测量的过程中另外测量多组变量,然后依据一定的模型和算法进行分析、测量和计算,从而来判断测量结果是否正确。所以,这类仪器除了需要输出测量结果以外,还需要输出的一个状态信号来判断测量的状态。如图4所示。
3.2 叠加信号自检
叠加信号的基本原理是在测量输入信号的同时,连续或周期性的输入一组信号。这些信号可以是多种类型的信号,如高频或脉冲信号,它与被测量信号叠加后经过测量通道在信号处理单元进行处理,最后经过特定的算法处理后,输出测量数据和状态数据,其基本流程如图5。
3.3 周期性自检
周期自检的流程如图6所示,可以看出,一个自动开关周期性地将测量信号和一些已知变量输入通道,经过测量通道到达信号处理单元,同样经过特定的算法和计算后,最后输出测量数据和状态信息。这个方法比较有效,但它的缺点是使测量信号离散,从而可能产生失真和误差。
4 基于1553B总线的导弹测试技术方案
外部测试设备、飞控子系统通过变压器耦合的方式挂接在1553B总线上;在导弹内部,飞控子系统以飞控计算机为控制核心,通过1553B总线与其他子系统通讯,如图7所示。在该总线结构中外部设备与飞控计算机通讯时,飞控计算机作为远程终端(RT),外部设备作为总线控制器(BC),外部设备不与导弹内其他子系统通讯,飞控计算机与弹内其他子系统通讯时,飞控计算机作为总线控制器(BC),其他子系统作为飞控计算机的通讯终端和被控对象(RT)。
飞控子系统与其他子系统进行数据通讯时,需要交换不同类型的数据,如BIT检测控制信号和检测结果、导弹正常工作中数据交换等。导弹与载机通讯时,飞控子系统是作为RT终端,飞控子系统根据载机通讯要求,划分不同发送和接收RT子地址,以M足不同数据交换要求。导弹内部1553B通讯中,飞控子系统作为总线控制器,其他子系统作为RT终端,因此,其他子系统应该设置不同类型发送和接收RT子地址,以满足导弹内部1553B通讯时序要求。
5 导弹系统中BIT虚警分析
BIT技术对提高导弹系统测试性、维修性和保障性方面发挥了重要作用,但是也暴露出一些问题,较高的虚警在其中尤为突出。虚警是指设备的BIT系统或其他监控系统指示有故障,而实际上不存在故障的情况,它直接导致了飞控子系统可用性降低和全寿命周期费用提高,使得使用及维修人员对BIT逐步丧失信心,直接影响了BIT的应用与推广,严重制约了BIT技术更深入、广泛的应用。
BIT的虚警问题会在从飞行任务到后勤保障维护等多个方面造成严重后果,错误的BIT指示使得产品/部件功能得不到正常有效地利用,并且会因而影响飞行任务。需采取硬件措施和软件措施降低BIT虚警率。包括必要的硬件滤波措施,数字滤波和卡尔曼滤波技术,可以有效消除干扰噪声对实际信号的影响;理设置判故门限,以取得BIT故障检测率和虚警率的合理折中,多余度信息的数据融合,在BIT故障诊断算法中引入诸多专家系统、自适应和神经网络技术等智能理论和方法等。
6 结束语
目前,国内导弹武器系统的设计不太重视自检技术,而西方发达国家研制的导弹武器系统弹内大多采用总线设计,非常重视自检BIT技术及应用,所以武器系统的可靠性高,测试性好。本文深入研究基于1553B总线的测试技术及应用,可以大大简化测试流程,提高测试效率,同时降低对测试设备和测试环境的要求,具有很高的应用价值。
参考文献:
[1]张荣锋,朱坚,夏文元,孙胜利.基于PCI总线的1553B总线接口电路的设计与实现[J].红外:2008(01).
中图分类号:TP393文献标识码:A文章编号:1009-3044(2009)24-6842-02
Web Services and its Application on Fault Diagnosis
WU rui
(Information Center Pipeline Storage and Transportation Company Sinopec, Xuzhou 221008, China)
Abstract: In this paper, a analysis system based on the technology of Web Services and XML is proposed and applied to fault diagnosis. It is very useful to solve the problem that the difficulty of recomposing and reusing as well as the nonsupport for isomerous and distributed of data and system, which is brought by the traditional analysis system.It is useful to increase the product quantity in a collaborative enterprise.
Key words: analysis system; web services; XML; SOAP; fault diagnosis
1 概述
随着信息技术和网络技术的发展,制造业正面临一场生产模式的变革,要求生产企业对瞬息出现的市场机遇作出敏捷反应,而资源重组、资源共享、优势企业动态组合和异地协同合作将成为一种正常的生产组织形式,一个按照市场要求驱动的具有快速响应机制的网络化制造模式正在逐步形成。在这种模式下,已有的制造技术和软件资源得到充分的重复利用,而适应制造技术的数字化、智能化和协同化发展趋势的新的故障诊断技术与方法正不断被研究[1-3]。
一些企业将信息服务扩展成为业务服务,促进和完善了企业间的相互合作和应用集成。高效、快速地利用这些服务资源已经成为企业在日益激烈的市场竞争中致胜的法宝。由于数据挖掘、人工智能、知识库技术的成熟和广泛应用,将分析作为一种可以随时提供的服务已经成为可能,并日渐被人们所重视。但在现有的网络环境下,传统的分析服务存在着很多的局限性。本文提出了一种分布式分析服务系统解决方案,并且运用于企业设备故障诊断决策中。
2 设备监测及故障诊断原理
设备故障诊断技术是近20年发展起来的新学科。从本质上讲,设备诊断技术是一个模式分类及模式识别问题,即把机器的运行状态分为正常和异常两类,诊断过程就是研究信号的样本究竟属于哪种运行状态(或故障状态)。
设备诊断流程分为信号采集、信号处理和故障诊断三个阶段,相关的信号采集、信号处理及故障诊断等基础理论以及系统论、信息论、控制论、非线性科学、小波分析及神经网络等最新的技术在其中都有广泛的应用。
机器在运行过程中,内部零件受到力,热以及摩擦、磨损等多种因素的作用,其运行状态不断变化,一旦发生故障,往往会导致严重的后果。因此在故障诊断系统中,能否正确地处理故障信息,获取有效的故障特征量是对可能发生的故障进行分析、识别和预防的前提。只有有效地分析及确定故障发生的原因,才能采取相应的措施,尽可能减少经济损失和提高生产率。机械设备故障监测与诊断系统如图1所示。
3 分布式分析服务关键技术
为了实现分析服务系统在Internet/Intranet上的扩展,增强其对分布性及异构性的支持,改善其重组性和重用性,必须依靠多种技术手段。其中关键技术有Web Services和XML。
Web Services是一种在Internet上共享数据和功能的手段,其查找、描述和调用遵循特定的技术标准,如XML协议、简单对象访问协议SOAP、服务描述协议WSDL、服务注册、查找、集成协议UDDI。Web Services架起了不同分析服务之间交互的桥梁。
另外,XML这种标记语言是使用文本形式描述数据的,并可以在异构系统间进行数据交流。它的一个突出的优点就是XML与具体的软硬件平台是无关的,所以用XML表达知识可以达到最大的通用性[4]。知识包含概念、事实、规则三个层次。常用的知识处理语言PROLOG是建立在一阶谓词逻辑(Horn子句)的基础上。下面举例说明如何利用XML来表示PROLOG中Horn子句以达到表达知识的目的。例如有一个Horn子句like(Emily,Music),它表示“Emily喜欢听音乐”这个事实。其中关系名为like,对象为Emily和Music这两个常量。于是上述这个例子用XML就可写成:
like
Emily
Music
4 分布式分析服务系统设计
将Web Services和XML技术与传统的分析服务相结合产生了一种全新的分布式分析服务系统解决方案:基于WebServices的分布式分析服务系统,较好地解决了系统的分布性、异构性、重组性以及重用性等问题。
4.1 体系结构
整个分析服务系统是建立在分布计算环境之上的,主要由系统数据平台、分析服务器、Web服务调用框架、Web服务器、Web浏览器等部分组成。其系统体系结构如图2所示。
其主要模块功能如下:
1) 系统数据平台。系统的数据来源于分布在整个网络空间中的所有相关的异构数据库、知识库甚至是数据仓库。它们组成了整个系统的低层数据平台。
2) 分析服务对象。本身带有一定的分析推理机制,可以直接从系统的数据平台上提取分析所需的数据,独立完成具体的分析处理工作;也可以请求相关的分析服务器进行分析处理;甚至可以请求本地或远程的其他分析服务进行分析。其建立可以基于不同的技术机制,比如EJB,CORBA或Java。
3) 分析服务器。具备强大的数据分析功能,但是必须提供可编程的接口。
4) 客户端。使用浏览器从Web服务器下载HTML页,根据用户需求调用相应的Web服务,并将返回的数据直观地提供给用户。
5) 分析服务注册中心。它是一个全局的、共享的分析服务点。分析服务提供者将分析服务的描述信息,包括服务详细分类、服务接口、知识表示说明以及服务提供者的信息等通过UDDI管理工具进行注册。分析服务使用者使用UDDI查询工具可以检索这些信息,按照分析服务分类标准可以快速定位到自己需要的分析服务,然后获得并解析服务的WSDL文件,从而发起对服务的调用请求。
4.2 工作原理
1) 数据采集,在Matlab 应用程序支持下,系统接受设备加工状态、运动状态中的数据,并对其进行实时处理、神经网络训练,同时保存设备状态参数、运动参数、系统调整信息等,供使用设备的用户查询、浏览。
2) 处于客户端的用户使用浏览器向Web服务器发出调用请求,其中包含了进行分析所需要的各种参数。
3) Web服务器分析请求。如果是SOAP请求,直接将其交给XML转换引擎;如果为HTTP请求,则将其交由分析请求处理器进行预处理,再将其封装成SOAP请求,交给XML转换引擎[5]。
4) XML转换引擎主要做如下的工作:①解析SOAP报文,从中得到调用服务的名字以及所要传递的参数值,为下一步对服务的调用做准备。②映射服务调用到对应的格式,并具体实施对服务的调用。因为不同的服务对象可能会由不同的技术实现,比如CORBA,EJB或Java,所以对它们的调用方法就会有所不同。
5) 分析服务对象得到调用,提供相应的分析服务。可以有以下几种工作模式:① 不使用分析服务器,而是由分析服务对象直接实现在底层数据平台上的分析推理,分析服务对象直接执行分析任务,获得分析结果。② 使用分析服务器,利用它提供的编程接口发出分析请求,分析服务器分析处理后直接返回分析结果。③ 如果能找到直接满足需求的分析服务,则分析服务对象就向它发起调用;否则,如果复杂分析过程可以分解成几个子过程,则分析服务对象寻找相应的分析服务并调用之,最后获得综合的分析结果。
6) 分析服务对象将经过分析与综合的基于XML的知识返回给XML转换引擎。
7) XML转换引擎将分析结果封装成SOAP响应直接返回web服务器或分析请求处理器,再经它们返回给用户。
4.3 优点
与传统的分析服务相比较,分布式分析服务在服务范围、服务的重用、重组以及异构和分布性方面有明显的优势:首先,虽然每个具体服务还是针对某个特定的需求,但由于使用者可以在整个网络中搜索自己所需的服务,所以从整体上看,服务的应用范围很广。其次,对于服务提供商来说,只要适当调整服务粒度,就可以使得不同的服务可以灵活地集成、重组,以满足不同用户的需要。最后,由于采用了Web Service和XML技术,使得在不同格式、不同位置的数据和分析服务可以很好地集成和共享,最大限度地满足了用户多变的分析需求。
5 应用实例
5.1 实现方案
我们以一个设备诊断决策分析系统来说明分布式分析服务的特点。设备故障诊断决策系统类似于一个专家系统,其主要的任务是根据检测到的实时设备状态信息分析,确定故障性质、类别、程度、原因、部位,提出控制故障继续发展和消除故障的对策,最后将诊断结果返回给分析服务的调用者。设备诊断决策子系统的实现方案如图3所示。
5.2 系统特点
首先,分析服务调用灵活,服务的重组性和重用性好。如图3所示,由于诊断设备具有层次性,对每个大设备的诊断,调用其不同部件的诊断服务并将之集成,避免了使用者自己重新开发设备诊断分析机制的困难,降低了设备维护的难度和风险,同时提高了诊断服务的重用性和重组性。其次,就是服务的动态调用机制 故障诊断系统需要动态集成诊断分析服务,Web服务器接收用户的诊断请求,根据诊断设备的厂商、设备所属设备系统编码以及具体诊断设备,并采用规范化编码.实现动态调用诊断分析服务。
6 总结
本文提出了基于web Services的分布式分析服务的慨念、体系结构、工作原理,并将其运用于设备故障诊断分析系统的设计和实现中,提高了分析资源的利用率,改善了分析服务的重组性和重用性,简化了分析处理过程的复杂度。为提高协同企业制造产品的质量提供了有力支持。
参考文献:
[1] 杨叔子,吴波,,等.网络化制造与企业集成[J].中国机械工程,2002(2):45-48.
[2] 王隆太,李吉中,李雪峰.基于网络化制造模式的数控系统的研究[J].中国制造业信化,2003(2):98-100.
[关键词]网络经济会计时空观会计假设缺陷会计系统变化
在我们跨入21世纪之际,由现代信息技术,特别是网络技术引发的全球信息化浪潮冲击着传统社会生活的每一个角落,网络化、数据化、知识化已成为时代的主旋律。网络时代改变了整个社会经济的生产结构和劳动结构,打破了传统的企业管理模式和会计模式,由此,也动摇了传统会计理论的框架,其中,首当其冲的是改变了会计的时空观。
一、网络经济与会计
现代社会经历的信息革命是人类历史上文明发展的崭新阶段。随着20世纪40年代末信息论、系统论、控制论的产生,经典理论中关于宇宙\"实体\"和能量要素的观念被物质、能、信息三要素理论所取代。从信息角度对事物客体加以新的描述,已成为现代人的认识和思维方式。[1]目前,微电子技术、现代通讯技术、生物工程、人工智能、CI设计等知识密集型产业的迅速倔起,形成了继第一产业(农业)、第二产业(工业)、第三产业(商业)之后的第四产业,从而将人类社会从\"工业文明\"推进到\"信息文明\"。在现代信息技术的催化下,全球的网络经济已具雏形,网络己不仅仅是信息传递的媒介,更为企业的生产经营活动提供了新的场所,开创出一些全新的经济组织(如虚拟企业)和经营方式(如电子商务)。因特网给世界经济上足了发条:以往建立一个公司直到其上市,通常需要几年甚至十几年时间,可是今天的网络公司,从几个人的小作坊摇身一变成为几亿美元的上市公司,只需十个月;电子计算机从50年代开始发展,40多年间,从286到386……到奔腾,芯片的发展速度呈现出每18个月翻一番,同时保持成本基本不变的趋势,这就是著名的\"摩尔定律\"。因特网驱赶着IT业一路狂奔,加紧工作,不断创新,因为18个月后\"不成功便成仁\"。可以说,因特网己渗透到整个世界的每一角落,正深刻改变着经济社会的\"游戏规则\"。[2]
会计是社会生产力发展的产物,\"经济越发展,会计越重要\"。会计作为社会经济计量的支柱,从内容到形式总是体现着各个时代经济发展的主要风貌,它的不断发展标志着社会文明和经济管理的进步。就信息文明对会计学科的影响而言,它便会计发展史经历了由会计电算化到会计信息化两次重大变革。
会计电算化是以电子计算机替代人工记账、算账、报账的过程,它的出现是会计技术手段上的一次\"革命\"。会计电算化的到来,把广大会计工作人员从那种日夜埋头于抄写、计算、整理、汇总、核对等繁重的手工作业中解放出来,使他们得以腾出精力,逐渐由\"核算型\"转向\"管理型\",从而提高了会计工作的效率,促进了会计工作的规范化,为整个管理规则的信息化和现代化奠定了基础。值得注意的是,尽管手工会计系统的纸张、笔墨、算盘己被电子计算机所替代,但会计规则(如会计假设、会计原则)并没有因使用计算机而改变。因此,有人将此时的电算化会计系统称之为\"手工会计系统的仿真\"。[3]
近期来,现代信息技术、尤其是网络技术在会计领域的应用和发展,预示着会计技术手段由会计电算化进一步跨越到会计信息化阶段。会计信息化的目标是通过将会计与现代信息技术(主要是网络技术)的有机结合,对会计基本理论与方法、会计实务工作、会计教育等多方面均进行全面发展,进而据以建立满足现代企业管理要求的会计信息系统。因此,会计信息化的本质是会计与现代信息技术相融合的一个发展过程。作为会计发展史上的又一个里程碑,会计信息化是一次\"质\"的飞跃,其意义在于:它不再是会计技术手段的简单替代,或电子计算机的延伸,而是由此引发的对现行会计规则的挑战,以及对传统会计理论与方法的整合。对此,一些有识之士,适时提出\"网络财务\"[4]或《网络会计\"的全新概念。
二、从网络经济角度重新审视会计的时空观
康德哲学认为,宇宙本体之下,最基本的范畴是时间和空间。经济学意义上的时空观意味着满足人类需求的衡量:农业文明,产品生产者就是自身产品的需求者,没有商品交换,没有产品的社会性,不需要也不可能跨越时间和空间去满足他人需要;工业文明,产品变成商品,扩大了人们的经济交往范围。商品生产者投人资本进行商品生产,资本是一种时间的等待,就是牺牲当前的消费,投资于长远的利益。此外,为实现商品价值,需要通过动力型的生产力,也就是蒸汽机来跨越商品生产者与商品消费者之间的空间距离;信息文明,由于因特网,世界变成了一个地球村,此刻,时间和空间的距离又变小了。只要在线,发个E@M队IL,瞬间即可沟通信息,与地球另一边的企业距离变得很近。如不上网,与隔壁企业的距离却很远,这完全是另外一种意义上的时空概念。因特网的本质就在于使时间和空间的距离为零,或近似于零,也就是便距离带来的磨擦系数降低,减少科斯所说的交易成本,加速度地实现商品流通。[5]目前,随着信息文明的到来,会计所面临的社会环境和经济环境与工业时代相比,发生了巨大变化。但现行的会计理论与方法仍局限于工业文明的层次,这种过时的思维模式如同机器上的固定齿轮,僵化呆板而又缺乏大局观。如果从网络经济的角度重新审视,展示在我们面前的将是一片会计时空的新视野。
(一)网络会计的空间观对会计主体假设的影响
空间,是指运动着的物质的伸张性和广延性,一定的空间范围对物质运动的发展有制约和影响作用。传统会计的主体假设从空间上限定了会计工作的具体范围,在这一假设基础上,资产、负债、所有者权益、收入、费用、利润等基本要素才有空间的归属。[6]在网络经济时代,企业作为会计主体,其外延不断变化,至少表现在两个方面:
1.模糊性。例如,已构成母、子公司关系的企业集团出现后,会计为之服务的主体已具有双重性;再如,基于网络的一种临时性结盟组织(VIRTUALFIRMS虚拟公司)已不同于传统意义上的企业组织,它借助于计算机网络根据工作任务或市场变化的需要,可以迅速地进行分合、重组,即其\"主体\"可能时而膨胀、时而缩小、甚至解散;[7]以及近期出现并快速发展的基金项目。如此,便会计核算的空间范围处于一种模糊状况。对于会计主体的这种模糊性,需要重新认识和拓展会计主体假设的空间界限。
2.整合性。随着全球经济一体化和国际资木流动的加剧,企业间不断进行分化、重组、兼并,跨地区、跨行业、强弱联合、强强联合,成立企业集团,乃至跨国集团公司,会计主体呈不断整合之势。以往由于受传统方式的空间局限,集团型企业(总公司)对异地机构(子公司、分公司)的会计核算和财务管理,在技术难度和管理成本上都是高昂的。因而,在一定程度上,制约了资本的流动和企业的整合。基于互联网的会计系统突破了这一空间局限,无需远行,通过远程报表、远程监控,使物理距离变成鼠标距离,使其管理能力能够轻易地延伸到全球的任何一个结点。从而,也使得\"大企业变小\"、\"复杂机构变得简单明了\"。从这个意义上来说,又缩小了会计为之服务的空间范围。
(二)网络会计的时间观对持续经营、会计分期假设的影响
时间,是指事物运动的持续性和顺序性,是运动着的物质存在的形式。时间是无限的,但具体事物运动的时间是有限的,它是一种不可再生的资源。持续经营假设和会计分期假设确立了会计工作的时间范畴,前者设定会计主体是一个\"健康肌体\",后者的设定是为了便于对会计主体\"健康状况\"的定期诊断。网络会计对持续经营、会计分期假设的突破表现在:
1.即时性。持续经营假设设定了企业在未来的一定期间内不会发生解体清算的前提条件,这是进行资产计价和收入配比、费用分配的基础。但现代经济中的不确定因素不断增加,随时都可能导致企业解体,比如,按照\"摩尔定律\"IT业企业的生命周朔只有18个月;而短期的基金项目、网络会计的虚拟公司是一种临时性组织,从事的多是一次易,完成后即告解散,生命周期极短,显示出即合即分的\"即时性\"特征。因此而引发对持续经营假设的否定,缩短了会计的时间界限。
2.实时性。会计分期假设为定期报告企业财务状况,确定经营损益提供了前提,同时,它也是权责发生制、会计要素确认与计量的依据。在网络环境下,计算机强大的运算和传输功能,使手工处理信息高成本的障碍被扫除。如果说PC时代的会计系统主要解决工作量问题,那么网络会计将在此基础上重点突破速度问题。时间上便会计核算从事后达到实时,财务管理从静态走向动态,只要需要,无需顾及和等待会计期末,击点鼠标即可生成所需的会计信息,丰富了会计信息的内容,提高了信息的质量和价值。由此,可以满足期货业务、衍生金融工具的特殊需求,满足广大投资者(股民)的投资需求,去年11月,国际会计准则委员会就了\"因特网上的会计报告\"的文件。网络会计的实时性便会计分期假设消除了时间的断点。
三、穿越网络时空隧道的会计反思
会计的时空观是构架会计理论与方法的哲学。网络环境下,它的重大改变必将引起会计系统的一系列变化:
l.集成化。会计信息是对企业经济活动的反映,其数据源于业务部门(如,人、财、物、供、产、销)。基于互联网的企业管理信息系统,将企业整个生产经营活动的每个信息采集点都纳入企业信息网之中,大量的数据通过网络从企业各个管理子系统(如生产管理系统、库存管理系统、人事管理系统)直接采集,并通过公共接口,与有关外部系统(如银行、税务、经销商等)相联结,便会计系统不再是信息的\"孤岛\",绝大部分的业务信息能够实时转化,直接生成会计信息,会计数据处理呈集成化之势。
2.简捷化。由于电子计算机具有强大的运算功能,系统由计算机来执行从会计凭证到财务报告全过程的信息处理,人工干预大大减少,客观上消除了手工方式下信息处理过程的诸多技术环节,如平行登记、错帐更正、过帐、结帐、对帐、试算平衡等。[8]再者,计算机又承担起存货计价、成本计算和计提折旧等繁杂的核算工作。因此,相对于手工会计而言,会计电算化的技术性及其复杂程度也大幅度降低,传统的手工会计处理将逐渐退出历史舞台。
3.多元化。即:(1)收集与提供信息多元化。在经济社会一体化、数字化、网络化的基础上,会计系统通过对企业内外各个机构、部门的信息接口转换、接收货币形态的信息,同时亦可接收非货币形态的相关信息,其信息渠道更加宽敞;随着多媒体技术的采用,电算系统除了提供数字化信息,也可提供图形化信息(如财务分析、预测的直方图、折线图)以及语音化信息(如有声财务分析报告);(2)处理信息方法多元化。电算化条件下,会计系统在主体认定的计算方法(如固定资产折旧的直线法)的同时,如果需要亦可选用其他备选方法(如双倍余额递减法、年数总和法)进行计算,比较差异。为加强管理与考核,甚至可以启用手工方式下所不得不放弃的核算方法,例如,零售企业的\"售价数量金额核算法\"、工业企业的\"作业成本法\"等全新的核算方法;此外,由于系统可以接收(或调用)大量非货币形态的相关信息,便于系统运用有关数学模型,进行财务分析、预测和决策;(3)提供信息空间多元化。借助于信息处理方法多元化的结果,会计系统提供信息的空间非常广阔,根据需要,有货币形态的信息,亦有非货币形态的相关信息(如职工的招聘与下岗、社会公益事项),既有历史信息(历史成本),也有现在信息(重置成本、公允价值)和未来信息(预定成本、目标利润),最终的会计信息将摆脱现有模式,能够满足不同用户的个性需要,用户可以通过\"菜单\"或\"会计频道\",[9]选择搭配会计信息的\"套餐\"或\"节目\"。
4.电子化。我国会计电算化的初级阶段便会计手段由算盘到键盘,从账本到磁盘。而网络会计将便会计介质继续变化,迅速走向电子化,如各种发票、结算单据均以电子化的形式出现,会计数据流动过程中的签字盖章等传统确认手段失去意义。此外,随着电子商务的兴起,货币的\"质地\"也将变化,不再是原来的纸币或硬币。网络会计环境是一个集供应商、生产商、经销商、用户、银行等机构为一体的网络体系,巴不存在货款的直接交易,而代之以电子货币进行网上结算。计算机信息处理的集中性、自动性,使传统职权分割的控制作用近于消失,信息载体的改变及其共享程度的提高,又使手工系统以记账规则为核心的控制体系失效。[10]对此,现代信息技术给企业的内部控制赋予了新的内涵:如口令控制、数据加密、职能权限管理、访问时间权限管理、操作日志管理等。
5.开放化。基于互联网的会计系统,大量的数据通过网络是从企业内外有关系统(如证监会、银行、企业的生产部广]、人事部门等)直接采集。特别是企业外部的各个机构、部门(如会计师事务所、财政、审计、税务、银行、证券监管、保险监管等)可根据授权,在线访问,通过Intemet进入企业内部,直接调阅会计信息。瞬间沟通便会计信息系统由封闭走向开放,由数据的微观处理逐步登上宏观数据运作的殿堂。对此,企业会计信息系统必须注意系统的安全性,加强回叫设备(C/L「一BM旺DEVIC磅)以及防火墙(FI旺WML)等技术,防止网上泄密和恶意攻击。[11]会计信息透明度的增强,有效地避免会计处理的\"黑箱\"操作,有利于对企业会计信息系统的社会监督和政府监督。
6.智能化。电算化会计系统可以理解为一个由人、电子计算机系统、网络系统、数据及程序等有机结合的应用系统。它不仅具有核算功能,而且更具控制功能和管理功能,因此,它离不开与人的相互作用,尤其是预测与辅助决策的功能必须在管理人员的参与下才能完成。所以,会计信息化不再是一个简单的模拟手工方式的\"仿真型\"或\"傻瓜型\"系统,而是一个人机交互作用的\"智能型\"系统。目前,随着我国经济体制改革的深化,面对已经来临的全球化知识经济的浪潮,会计工作加快了由核算型向管理型的重心转移。由此,要求会计系统必须放大功能,而网络会计所表现出来的集成性、简捷性、开放性、多元性、实时性等技术特征,为此提供了坚实的技术基础。并且,在这种战略性转移的过程中又不断推陈出新,例如,建立以会计为核心的\"企业管理信息系统(EIP)\"[lz]、\"智能型会计专家系统\"等,从而,又推动会计职能向更深的层次延伸。
综上所述,在网络经济环境下,会计系统以计算机、网络技术等新型的信息处理工具置换了传统的纸张、笔墨和算盘。而这种置换不仅仅是简单的工具改变,也不再是手工会计的简单模拟,更重要的是它所带来的对传统会计理念、理论与方法前所未有的、强烈的冲击与反思,如果我们能够认识到这一点,充分发挥现代信息技术的潜能,将会引发又一场会计发展史上的大革命。
主要参考文献:
1(美)A沃尔勃特·信息经济学·吉林:吉林大学出版社·1992
2石子强·改变游戏规则·北京晚报,北京:北京晚报社,2000年2月15日
3薛云奎·电算化会计的局限:仿真手工·财会世界,北京:中国财经报社,2000年2月24日
4王文京、胡迸平·网络财务时代扑面而来·会计研究,1999;10:37一41
5奇平;无需远行,无需久等·南方周末,广东:南方周末报社,1999年11月5日
6王世定·论会计假设·见:中国会计学会,1994年会计学论文选,北京:中国财经出版社,1996:157一169
7雷光勇、黄斌·试论网络公司及其对财务会计的影响·会计研究,1999;1:24一27
8刘志涛·会计电算化对会计理论和实务发展影响的研究·见:中国会计学会,中国会计学会重点科研课题文集,北京:中国财经出版社,1998:33一48
9薛云奎·管理集成与会计频道·会计研究,1999;11:30一36
[关键词]网络经济会计时空观会计假设缺陷会计系统变化
在我们跨入21世纪之际,由现代信息技术,特别是网络技术引发的全球信息化浪潮冲击着传统社会生活的每一个角落,网络化、数据化、知识化已成为时代的主旋律。网络时代改变了整个社会经济的生产结构和劳动结构,打破了传统的企业管理模式和会计模式,由此,也动摇了传统会计理论的框架,其中,首当其冲的是改变了会计的时空观。
一、网络经济与会计
现代社会经历的信息革命是人类历史上文明发展的崭新阶段。随着20世纪40年代末信息论、系统论、控制论的产生,经典理论中关于宇宙\"实体\"和能量要素的观念被物质、能、信息三要素理论所取代。从信息角度对事物客体加以新的描述,已成为现代人的认识和思维方式。[1]目前,微电子技术、现代通讯技术、生物工程、人工智能、CI设计等知识密集型产业的迅速倔起,形成了继第一产业(农业)、第二产业(工业)、第三产业(商业)之后的第四产业,从而将人类社会从\"工业文明\"推进到\"信息文明\"。在现代信息技术的催化下,全球的网络经济已具雏形,网络己不仅仅是信息传递的媒介,更为企业的生产经营活动提供了新的场所,开创出一些全新的经济组织(如虚拟企业)和经营方式(如电子商务)。因特网给世界经济上足了发条:以往建立一个公司直到其上市,通常需要几年甚至十几年时间,可是今天的网络公司,从几个人的小作坊摇身一变成为几亿美元的上市公司,只需十个月;电子计算机从50年代开始发展,40多年间,从286到386……到奔腾,芯片的发展速度呈现出每18个月翻一番,同时保持成本基本不变的趋势,这就是著名的\"摩尔定律\"。因特网驱赶着IT业一路狂奔,加紧工作,不断创新,因为18个月后\"不成功便成仁\"。可以说,因特网己渗透到整个世界的每一角落,正深刻改变着经济社会的\"游戏规则\"。[2]
会计是社会生产力发展的产物,\"经济越发展,会计越重要\"。会计作为社会经济计量的支柱,从内容到形式总是体现着各个时代经济发展的主要风貌,它的不断发展标志着社会文明和经济管理的进步。就信息文明对会计学科的影响而言,它便会计发展史经历了由会计电算化到会计信息化两次重大变革。
会计电算化是以电子计算机替代人工记账、算账、报账的过程,它的出现是会计技术手段上的一次\"革命\"。会计电算化的到来,把广大会计工作人员从那种日夜埋头于抄写、计算、整理、汇总、核对等繁重的手工作业中解放出来,使他们得以腾出精力,逐渐由\"核算型\"转向\"管理型\",从而提高了会计工作的效率,促进了会计工作的规范化,为整个管理规则的信息化和现代化奠定了基础。值得注意的是,尽管手工会计系统的纸张、笔墨、算盘己被电子计算机所替代,但会计规则(如会计假设、会计原则)并没有因使用计算机而改变。因此,有人将此时的电算化会计系统称之为\"手工会计系统的仿真\"。[3]
近期来,现代信息技术、尤其是网络技术在会计领域的应用和发展,预示着会计技术手段由会计电算化进一步跨越到会计信息化阶段。会计信息化的目标是通过将会计与现代信息技术(主要是网络技术)的有机结合,对会计基本理论与方法、会计实务工作、会计教育等多方面均进行全面发展,进而据以建立满足现代企业管理要求的会计信息系统。因此,会计信息化的本质是会计与现代信息技术相融合的一个发展过程。作为会计发展史上的又一个里程碑,会计信息化是一次\"质\"的飞跃,其意义在于:它不再是会计技术手段的简单替代,或电子计算机的延伸,而是由此引发的对现行会计规则的挑战,以及对传统会计理论与方法的整合。对此,一些有识之士,适时提出\"网络财务\"[4]或《网络会计\"的全新概念。
二、从网络经济角度重新审视会计的时空观
康德哲学认为,宇宙本体之下,最基本的范畴是时间和空间。经济学意义上的时空观意味着满足人类需求的衡量:农业文明,产品生产者就是自身产品的需求者,没有商品交换,没有产品的社会性,不需要也不可能跨越时间和空间去满足他人需要;工业文明,产品变成商品,扩大了人们的经济交往范围。商品生产者投人资本进行商品生产,资本是一种时间的等待,就是牺牲当前的消费,投资于长远的利益。此外,为实现商品价值,需要通过动力型的生产力,也就是蒸汽机来跨越商品生产者与商品消费者之间的空间距离;信息文明,由于因特网,世界变成了一个地球村,此刻,时间和空间的距离又变小了。只要在线,发个E@M队IL,瞬间即可沟通信息,与地球另一边的企业距离变得很近。如不上网,与隔壁企业的距离却很远,这完全是另外一种意义上的时空概念。因特网的本质就在于使时间和空间的距离为零,或近似于零,也就是便距离带来的磨擦系数降低,减少科斯所说的交易成本,加速度地实现商品流通。[5]目前,随着信息文明的到来,会计所面临的社会环境和经济环境与工业时代相比,发生了巨大变化。但现行的会计理论与方法仍局限于工业文明的层次,这种过时的思维模式如同机器上的固定齿轮,僵化呆板而又缺乏大局观。如果从网络经济的角度重新审视,展示在我们面前的将是一片会计时空的新视野。
(一)网络会计的空间观对会计主体假设的影响
空间,是指运动着的物质的伸张性和广延性,一定的空间范围对物质运动的发展有制约和影响作用。传统会计的主体假设从空间上限定了会计工作的具体范围,在这一假设基础上,资产、负债、所有者权益、收入、费用、利润等基本要素才有空间的归属。[6]在网络经济时代,企业作为会计主体,其外延不断变化,至少表现在两个方面:
1.模糊性。例如,已构成母、子公司关系的企业集团出现后,会计为之服务的主体已具有双重性;再如,基于网络的一种临时性结盟组织(VIRTUALFIRMS虚拟公司)已不同于传统意义上的企业组织,它借助于计算机网络根据工作任务或市场变化的需要,可以迅速地进行分合、重组,即其\"主体\"可能时而膨胀、时而缩小、甚至解散;[7]以及近期出现并快速发展的基金项目。如此,便会计核算的空间范围处于一种模糊状况。对于会计主体的这种模糊性,需要重新认识和拓展会计主体假设的空间界限。
2.整合性。随着全球经济一体化和国际资木流动的加剧,企业间不断进行分化、重组、兼并,跨地区、跨行业、强弱联合、强强联合,成立企业集团,乃至跨国集团公司,会计主体呈不断整合之势。以往由于受传统方式的空间局限,集团型企业(总公司)对异地机构(子公司、分公司)的会计核算和财务管理,在技术难度和管理成本上都是高昂的。因而,在一定程度上,制约了资本的流动和企业的整合。基于互联网的会计系统突破了这一空间局限,无需远行,通过远程报表、远程监控,使物理距离变成鼠标距离,使其管理能力能够轻易地延伸到全球的任何一个结点。从而,也使得\"大企业变小\"、\"复杂机构变得简单明了\"。从这个意义上来说,又缩小了会计为之服务的空间范围。
(二)网络会计的时间观对持续经营、会计分期假设的影响
时间,是指事物运动的持续性和顺序性,是运动着的物质存在的形式。时间是无限的,但具体事物运动的时间是有限的,它是一种不可再生的资源。持续经营假设和会计分期假设确立了会计工作的时间范畴,前者设定会计主体是一个\"健康肌体\",后者的设定是为了便于对会计主体\"健康状况\"的定期诊断。网络会计对持续经营、会计分期假设的突破表现在:
1.即时性。持续经营假设设定了企业在未来的一定期间内不会发生解体清算的前提条件,这是进行资产计价和收入配比、费用分配的基础。但现代经济中的不确定因素不断增加,随时都可能导致企业解体,比如,按照\"摩尔定律\"IT业企业的生命周朔只有18个月;而短期的基金项目、网络会计的虚拟公司是一种临时性组织,从事的多是一次易,完成后即告解散,生命周期极短,显示出即合即分的\"即时性\"特征。因此而引发对持续经营假设的否定,缩短了会计的时间界限。
2.实时性。会计分期假设为定期报告企业财务状况,确定经营损益提供了前提,同时,它也是权责发生制、会计要素确认与计量的依据。在网络环境下,计算机强大的运算和传输功能,使手工处理信息高成本的障碍被扫除。如果说PC时代的会计系统主要解决工作量问题,那么网络会计将在此基础上重点突破速度问题。时间上便会计核算从事后达到实时,财务管理从静态走向动态,只要需要,无需顾及和等待会计期末,击点鼠标即可生成所需的会计信息,丰富了会计信息的内容,提高了信息的质量和价值。由此,可以满足期货业务、衍生金融工具的特殊需求,满足广大投资者(股民)的投资需求,去年11月,国际会计准则委员会就了\"因特网上的会计报告\"的文件。网络会计的实时性便会计分期假设消除了时间的断点。
三、穿越网络时空隧道的会计反思
会计的时空观是构架会计理论与方法的哲学。网络环境下,它的重大改变必将引起会计系统的一系列变化:
l.集成化。会计信息是对企业经济活动的反映,其数据源于业务部门(如,人、财、物、供、产、销)。基于互联网的企业管理信息系统,将企业整个生产经营活动的每个信息采集点都纳入企业信息网之中,大量的数据通过网络从企业各个管理子系统(如生产管理系统、库存管理系统、人事管理系统)直接采集,并通过公共接口,与有关外部系统(如银行、税务、经销商等)相联结,便会计系统不再是信息的\"孤岛\",绝大部分的业务信息能够实时转化,直接生成会计信息,会计数据处理呈集成化之势。
2.简捷化。由于电子计算机具有强大的运算功能,系统由计算机来执行从会计凭证到财务报告全过程的信息处理,人工干预大大减少,客观上消除了手工方式下信息处理过程的诸多技术环节,如平行登记、错帐更正、过帐、结帐、对帐、试算平衡等。[8]再者,计算机又承担起存货计价、成本计算和计提折旧等繁杂的核算工作。因此,相对于手工会计而言,会计电算化的技术性及其复杂程度也大幅度降低,传统的手工会计处理将逐渐退出历史舞台。
3.多元化。即:(1)收集与提供信息多元化。在经济社会一体化、数字化、网络化的基础上,会计系统通过对企业内外各个机构、部门的信息接口转换、接收货币形态的信息,同时亦可接收非货币形态的相关信息,其信息渠道更加宽敞;随着多媒体技术的采用,电算系统除了提供数字化信息,也可提供图形化信息(如财务分析、预测的直方图、折线图)以及语音化信息(如有声财务分析报告);(2)处理信息方法多元化。电算化条件下,会计系统在主体认定的计算方法(如固定资产折旧的直线法)的同时,如果需要亦可选用其他备选方法(如双倍余额递减法、年数总和法)进行计算,比较差异。为加强管理与考核,甚至可以启用手工方式下所不得不放弃的核算方法,例如,零售企业的\"售价数量金额核算法\"、工业企业的\"作业成本法\"等全新的核算方法;此外,由于系统可以接收(或调用)大量非货币形态的相关信息,便于系统运用有关数学模型,进行财务分析、预测和决策;(3)提供信息空间多元化。借助于信息处理方法多元化的结果,会计系统提供信息的空间非常广阔,根据需要,有货币形态的信息,亦有非货币形态的相关信息(如职工的招聘与下岗、社会公益事项),既有历史信息(历史成本),也有现在信息(重置成本、公允价值)和未来信息(预定成本、目标利润),最终的会计信息将摆脱现有模式,能够满足不同用户的个性需要,用户可以通过\"菜单\"或\"会计频道\",[9]选择搭配会计信息的\"套餐\"或\"节目\"。
4.电子化。我国会计电算化的初级阶段便会计手段由算盘到键盘,从账本到磁盘。而网络会计将便会计介质继续变化,迅速走向电子化,如各种发票、结算单据均以电子化的形式出现,会计数据流动过程中的签字盖章等传统确认手段失去意义。此外,随着电子商务的兴起,货币的\"质地\"也将变化,不再是原来的纸币或硬币。网络会计环境是一个集供应商、生产商、经销商、用户、银行等机构为一体的网络体系,巴不存在货款的直接交易,而代之以电子货币进行网上结算。计算机信息处理的集中性、自动性,使传统职权分割的控制作用近于消失,信息载体的改变及其共享程度的提高,又使手工系统以记账规则为核心的控制体系失效。[10]对此,现代信息技术给企业的内部控制赋予了新的内涵:如口令控制、数据加密、职能权限管理、访问时间权限管理、操作日志管理等。
5.开放化。基于互联网的会计系统,大量的数据通过网络是从企业内外有关系统(如证监会、银行、企业的生产部广]、人事部门等)直接采集。特别是企业外部的各个机构、部门(如会计师事务所、财政、审计、税务、银行、证券监管、保险监管等)可根据授权,在线访问,通过Intemet进入企业内部,直接调阅会计信息。瞬间沟通便会计信息系统由封闭走向开放,由数据的微观处理逐步登上宏观数据运作的殿堂。对此,企业会计信息系统必须注意系统的安全性,加强回叫设备(C/L「一BM旺DEVIC磅)以及防火墙(FI旺WML)等技术,防止网上泄密和恶意攻击。[11]会计信息透明度的增强,有效地避免会计处理的\"黑箱\"操作,有利于对企业会计信息系统的社会监督和政府监督。
6.智能化。电算化会计系统可以理解为一个由人、电子计算机系统、网络系统、数据及程序等有机结合的应用系统。它不仅具有核算功能,而且更具控制功能和管理功能,因此,它离不开与人的相互作用,尤其是预测与辅助决策的功能必须在管理人员的参与下才能完成。所以,会计信息化不再是一个简单的模拟手工方式的\"仿真型\"或\"傻瓜型\"系统,而是一个人机交互作用的\"智能型\"系统。目前,随着我国经济体制改革的深化,面对已经来临的全球化知识经济的浪潮,会计工作加快了由核算型向管理型的重心转移。由此,要求会计系统必须放大功能,而网络会计所表现出来的集成性、简捷性、开放性、多元性、实时性等技术特征,为此提供了坚实的技术基础。并且,在这种战略性转移的过程中又不断推陈出新,例如,建立以会计为核心的\"企业管理信息系统(EIP)\"[lz]、\"智能型会计专家系统\"等,从而,又推动会计职能向更深的层次延伸。
综上所述,在网络经济环境下,会计系统以计算机、网络技术等新型的信息处理工具置换了传统的纸张、笔墨和算盘。而这种置换不仅仅是简单的工具改变,也不再是手工会计的简单模拟,更重要的是它所带来的对传统会计理念、理论与方法前所未有的、强烈的冲击与反思,如果我们能够认识到这一点,充分发挥现代信息技术的潜能,将会引发又一场会计发展史上的大革命。
主要参考文献:
1(美)A沃尔勃特·信息经济学·吉林:吉林大学出版社·1992
2石子强·改变游戏规则·北京晚报,北京:北京晚报社,2000年2月15日
3薛云奎·电算化会计的局限:仿真手工·财会世界,北京:中国财经报社,2000年2月24日
4王文京、胡迸平·网络财务时代扑面而来·会计研究,1999;10:37一41
5奇平;无需远行,无需久等·南方周末,广东:南方周末报社,1999年11月5日
6王世定·论会计假设·见:中国会计学会,1994年会计学论文选,北京:中国财经出版社,1996:157一169
7雷光勇、黄斌·试论网络公司及其对财务会计的影响·会计研究,1999;1:24一27
8刘志涛·会计电算化对会计理论和实务发展影响的研究·见:中国会计学会,中国会计学会重点科研课题文集,北京:中国财经出版社,1998:33一48
9薛云奎·管理集成与会计频道·会计研究,1999;11:30一36
在我们跨入21世纪之际,由现代信息技术,特别是网络技术引发的全球信息化浪潮冲击着传统社会生活的每一个角落,网络化、数据化、知识化已成为时代的主旋律。网络时代改变了整个社会经济的生产结构和劳动结构,打破了传统的企业管理模式和会计模式,由此,也动摇了传统会计理论的框架,其中,首当其冲的是改变了会计的时空观。
一、网络经济与会计
现代社会经历的信息革命是人类历史上文明发展的崭新阶段。随着20世纪40年代末信息论、系统论、控制论的产生,经典理论中关于宇宙\"实体\"和能量要素的观念被物质、能、信息三要素理论所取代。从信息角度对事物客体加以新的描述,已成为现代人的认识和思维方式。[1]目前,微电子技术、现代通讯技术、生物工程、人工智能、CI设计等知识密集型产业的迅速倔起,形成了继第一产业(农业)、第二产业(工业)、第三产业(商业)之后的第四产业,从而将人类社会从\"工业文明\"推进到\"信息文明\"。在现代信息技术的催化下,全球的网络经济已具雏形,网络己不仅仅是信息传递的媒介,更为企业的生产经营活动提供了新的场所,开创出一些全新的经济组织(如虚拟企业)和经营方式(如电子商务)。因特网给世界经济上足了发条:以往建立一个公司直到其上市,通常需要几年甚至十几年时间,可是今天的网络公司,从几个人的小作坊摇身一变成为几亿美元的上市公司,只需十个月;电子计算机从50年代开始发展,40多年间,从286到386……到奔腾,芯片的发展速度呈现出每18个月翻一番,同时保持成本基本不变的趋势,这就是著名的\"摩尔定律\"。因特网驱赶着IT业一路狂奔,加紧工作,不断创新,因为18个月后\"不成功便成仁\"。可以说,因特网己渗透到整个世界的每一角落,正深刻改变着经济社会的\"游戏规则\"。[2]
会计是社会生产力发展的产物,\"经济越发展,会计越重要\"。会计作为社会经济计量的支柱,从内容到形式总是体现着各个时代经济发展的主要风貌,它的不断发展标志着社会文明和经济管理的进步。就信息文明对会计学科的影响而言,它便会计发展史经历了由会计电算化到会计信息化两次重大变革。
会计电算化是以电子计算机替代人工记账、算账、报账的过程,它的出现是会计技术手段上的一次\"革命\"。会计电算化的到来,把广大会计工作人员从那种日夜埋头于抄写、计算、整理、汇总、核对等繁重的手工作业中解放出来,使他们得以腾出精力,逐渐由\"核算型\"转向\"管理型\",从而提高了会计工作的效率,促进了会计工作的规范化,为整个管理规则的信息化和现代化奠定了基础。值得注意的是,尽管手工会计系统的纸张、笔墨、算盘己被电子计算机所替代,但会计规则(如会计假设、会计原则)并没有因使用计算机而改变。因此,有人将此时的电算化会计系统称之为\"手工会计系统的仿真\"。[3]
近期来,现代信息技术、尤其是网络技术在会计领域的应用和发展,预示着会计技术手段由会计电算化进一步跨越到会计信息化阶段。会计信息化的目标是通过将会计与现代信息技术(主要是网络技术)的有机结合,对会计基本理论与方法、会计实务工作、会计教育等多方面均进行全面发展,进而据以建立满足现代企业管理要求的会计信息系统。因此,会计信息化的本质是会计与现代信息技术相融合的一个发展过程。作为会计发展史上的又一个里程碑,会计信息化是一次\"质\"的飞跃,其意义在于:它不再是会计技术手段的简单替代,或电子计算机的延伸,而是由此引发的对现行会计规则的挑战,以及对传统会计理论与方法的整合。对此,一些有识之士,适时提出\"网络财务\"[4]或《网络会计\"的全新概念。
二、从网络经济角度重新审视会计的时空观
康德哲学认为,宇宙本体之下,最基本的范畴是时间和空间。经济学意义上的时空观意味着满足人类需求的衡量:农业文明,产品生产者就是自身产品的需求者,没有商品交换,没有产品的社会性,不需要也不可能跨越时间和空间去满足他人需要;工业文明,产品变成商品,扩大了人们的经济交往范围。商品生产者投人资本进行商品生产,资本是一种时间的等待,就是牺牲当前的消费,投资于长远的利益。此外,为实现商品价值,需要通过动力型的生产力,也就是蒸汽机来跨越商品生产者与商品消费者之间的空间距离;信息文明,由于因特网,世界变成了一个地球村,此刻,时间和空间的距离又变小了。只要在线,发个E@M队IL,瞬间即可沟通信息,与地球另一边的企业距离变得很近。如不上网,与隔壁企业的距离却很远,这完全是另外一种意义上的时空概念。因特网的本质就在于使时间和空间的距离为零,或近似于零,也就是便距离带来的磨擦系数降低,减少科斯所说的交易成本,加速度地实现商品流通。[5]
目前,随着信息文明的到来,会计所面临的社会环境和经济环境与工业时代相比,发生了巨大变化。但现行的会计理论与方法仍局限于工业文明的层次,这种过时的思维模式如同机器上的固定齿轮,僵化呆板而又缺乏大局观。如果从网络经济的角度重新审视,展示在我们面前的将是一片会计时空的新视野。
(一)网络会计的空间观对会计主体假设的影响
空间,是指运动着的物质的伸张性和广延性,一定的空间范围对物质运动的发展有制约和影响作用。传统会计的主体假设从空间上限定了会计工作的具体范围,在这一假设基础上,资产、负债、所有者权益、收入、费用、利润等基本要素才有空间的归属。[6]在网络经济时代,企业作为会计主体,其外延不断变化,至少表现在两个方面:
1.模糊性。例如,已构成母、子公司关系的企业集团出现后,会计为之服务的主体已具有双重性;再如,基于网络的一种临时性结盟组织(VIRTUALFIRMS虚拟公司)已不同于传统意义上的企业组织,它借助于计算机网络根据工作任务或市场变化的需要,可以迅速地进行分合、重组,即其\"主体\"可能时而膨胀、时而缩小、甚至解散;[7]以及近期出现并快速发展的基金项目。如此,便会计核算的空间范围处于一种模糊状况。对于会计主体的这种模糊性,需要重新认识和拓展会计主体假设的空间界限。
2.整合性。随着全球经济一体化和国际资木流动的加剧,企业间不断进行分化、重组、兼并,跨地区、跨行业、强弱联合、强强联合,成立企业集团,乃至跨国集团公司,会计主体呈不断整合之势。以往由于受传统方式的空间局限,集团型企业(总公司)对异地机构(子公司、分公司)的会计核算和财务管理,在技术难度和管理成本上都是高昂的。因而,在一定程度上,制约了资本的流动和企业的整合。基于互联网的会计系统突破了这一空间局限,无需远行,通过远程报表、远程监控,使物理距离变成鼠标距离,使其管理能力能够轻易地延伸到全球的任何一个结点。从而,也使得\"大企业变小\"、\"复杂机构变得简单明了\"。从这个意义上来说,又缩小了会计为之服务的空间范围。
(二)网络会计的时间观对持续经营、会计分期假设的影响
时间,是指事物运动的持续性和顺序性,是运动着的物质存在的形式。时间是无限的,但具体事物运动的时间是有限的,它是一种不可再生的资源。持续经营假设和会计分期假设确立了会计工作的时间范畴,前者设定会计主体是一个\"健康肌体\",后者的设定是为了便于对会计主体\"健康状况\"的定期诊断。网络会计对持续经营、会计分期假设的突破表现在:
1.即时性。持续经营假设设定了企业在未来的一定期间内不会发生解体清算的前提条件,这是进行资产计价和收入配比、费用分配的基础。但现代经济中的不确定因素不断增加,随时都可能导致企业解体,比如,按照\"摩尔定律\"IT业企业的生命周朔只有18个月;而短期的基金项目、网络会计的虚拟公司是一种临时性组织,从事的多是一次易,完成后即告解散,生命周期极短,显示出即合即分的\"即时性\"特征。因此而引发对持续经营假设的否定,缩短了会计的时间界限。
2.实时性。会计分期假设为定期报告企业财务状况,确定经营损益提供了前提,同时,它也是权责发生制、会计要素确认与计量的依据。在网络环境下,计算机强大的运算和传输功能,使手工处理信息高成本的障碍被扫除。如果说PC时代的会计系统主要解决工作量问题,那么网络会计将在此基础上重点突破速度问题。时间上便会计核算从事后达到实时,财务管理从静态走向动态,只要需要,无需顾及和等待会计期末,击点鼠标即可生成所需的会计信息,丰富了会计信息的内容,提高了信息的质量和价值。由此,可以满足期货业务、衍生金融工具的特殊需求,满足广大投资者(股民)的投资需求,去年11月,国际会计准则委员会就了\"因特网上的会计报告\"的文件。网络会计的实时性便会计分期假设消除了时间的断点。
三、穿越网络时空隧道的会计反思
会计的时空观是构架会计理论与方法的哲学。网络环境下,它的重大改变必将引起会计系统的一系列变化:
l.集成化。会计信息是对企业经济活动的反映,其数据源于业务部门(如,人、财、物、供、产、销)。基于互联网的企业管理信息系统,将企业整个生产经营活动的每个信息采集点都纳入企业信息网之中,大量的数据通过网络从企业各个管理子系统(如生产管理系统、库存管理系统、人事管理系统)直接采集,并通过公共接口,与有关外部系统(如银行、税务、经销商等)相联结,便会计系统不再是信息的\"孤岛\",绝大部分的业务信息能够实时转化,直接生成会计信息,会计数据处理呈集成化之势。
2.简捷化。由于电子计算机具有强大的运算功能,系统由计算机来执行从会计凭证到财务报告全过程的信息处理,人工干预大大减少,客观上消除了手工方式下信息处理过程的诸多技术环节,如平行登记、错帐更正、过帐、结帐、对帐、试算平衡等。[8]再者,计算机又承担起存货计价、成本计算和计提折旧等繁杂的核算工作。因此,相对于手工会计而言,会计电算化的技术性及其复杂程度也大幅度降低,传统的手工会计处理将逐渐退出历史舞台。
3.多元化。即:(1)收集与提供信息多元化。在经济社会一体化、数字化、网络化的基础上,会计系统通过对企业内外各个机构、部门的信息接口转换、接收货币形态的信息,同时亦可接收非货币形态的相关信息,其信息渠道更加宽敞;随着多媒体技术的采用,电算系统除了提供数字化信息,也可提供图形化信息(如财务分析、预测的直方图、折线图)以及语音化信息(如有声财务分析报告);(2)处理信息方法多元化。电算化条件下,会计系统在主体认定的计算方法(如固定资产折旧的直线法)的同时,如果需要亦可选用其他备选方法(如双倍余额递减法、年数总和法)进行计算,比较差异。为加强管理与考核,甚至可以启用手工方式下所不得不放弃的核算方法,例如,零售企业的\"售价数量金额核算法\"、工业企业的\"作业成本法\"等全新的核算方法;此外,由于系统可以接收(或调用)大量非货币形态的相关信息,便于系统运用有关数学模型,进行财务分析、预测和决策;(3)提供信息空间多元化。借助于信息处理方法多元化的结果,会计系统提供信息的空间非常广阔,根据需要,有货币形态的信息,亦有非货币形态的相关信息(如职工的招聘与下岗、社会公益事项),既有历史信息(历史成本),也有现在信息(重置成本、公允价值)和未来信息(预定成本、目标利润),最终的会计信息将摆脱现有模式,能够满足不同用户的个性需要,用户可以通过\"菜单\"或\"会计频道\",[9]选择搭配会计信息的\"套餐\"或\"节目\"。
4.电子化。我国会计电算化的初级阶段便会计手段由算盘到键盘,从账本到磁盘。而网络会计将便会计介质继续变化,迅速走向电子化,如各种发票、结算单据均以电子化的形式出现,会计数据流动过程中的签字盖章等传统确认手段失去意义。此外,随着电子商务的兴起,货币的\"质地\"也将变化,不再是原来的纸币或硬币。网络会计环境是一个集供应商、生产商、经销商、用户、银行等机构为一体的网络体系,巴不存在货款的直接交易,而代之以电子货币进行网上结算。计算机信息处理的集中性、自动性,使传统职权分割的控制作用近于消失,信息载体的改变及其共享程度的提高,又使手工系统以记账规则为核心的控制体系失效。[10]对此,现代信息技术给企业的内部控制赋予了新的内涵:如口令控制、数据加密、职能权限管理、访问时间权限管理、操作日志管理等。
5.开放化。基于互联网的会计系统,大量的数据通过网络是从企业内外有关系统(如证监会、银行、企业的生产部广]、人事部门等)直接采集。特别是企业外部的各个机构、部门(如会计师事务所、财政、审计、税务、银行、证券监管、保险监管等)可根据授权,在线访问,通过Intemet进入企业内部,直接调阅会计信息。瞬间沟通便会计信息系统由封闭走向开放,由数据的微观处理逐步登上宏观数据运作的殿堂。对此,企业会计信息系统必须注意系统的安全性,加强回叫设备(C/L「一BM旺DEVIC磅)以及防火墙(FI旺WML)等技术,防止网上泄密和恶意攻击。[11]会计信息透明度的增强,有效地避免会计处理的\"黑箱\"操作,有利于对企业会计信息系统的社会监督和政府监督。
6.智能化。电算化会计系统可以理解为一个由人、电子计算机系统、网络系统、数据及程序等有机结合的应用系统。它不仅具有核算功能,而且更具控制功能和管理功能,因此,它离不开与人的相互作用,尤其是预测与辅助决策的功能必须在管理人员的参与下才能完成。所以,会计信息化不再是一个简单的模拟手工方式的\"仿真型\"或\"傻瓜型\"系统,而是一个人机交互作用的\"智能型\"系统。目前,随着我国经济体制改革的深化,面对已经来临的全球化知识经济的浪潮,会计工作加快了由核算型向管理型的重心转移。由此,要求会计系统必须放大功能,而网络会计所表现出来的集成性、简捷性、开放性、多元性、实时性等技术特征,为此提供了坚实的技术基础。并且,在这种战略性转移的过程中又不断推陈出新,例如,建立以会计为核心的\"企业管理信息系统(EIP)\"[lz]、\"智能型会计专家系统\"等,从而,又推动会计职能向更深的层次延伸。
综上所述,在网络经济环境下,会计系统以计算机、网络技术等新型的信息处理工具置换了传统的纸张、笔墨和算盘。而这种置换不仅仅是简单的工具改变,也不再是手工会计的简单模拟,更重要的是它所带来的对传统会计理念、理论与方法前所未有的、强烈的冲击与反思,如果我们能够认识到这一点,充分发挥现代信息技术的潜能,将会引发又一场会计发展史上的大革命。
主要参考文献:
1(美)A沃尔勃特·信息经济学·吉林:吉林大学出版社·1992
2石子强·改变游戏规则·北京晚报,北京:北京晚报社,2000年2月15日
3薛云奎·电算化会计的局限:仿真手工·财会世界,北京:中国财经报社,2000年2月24日
4王文京、胡迸平·网络财务时代扑面而来·会计研究,1999;10:37一41
5奇平;无需远行,无需久等·南方周末,广东:南方周末报社,1999年11月5日
6王世定·论会计假设·见:中国会计学会,1994年会计学论文选,北京:中国财经出版社,1996:157一169
7雷光勇、黄斌·试论网络公司及其对财务会计的影响·会计研究,1999;1:24一27
8刘志涛·会计电算化对会计理论和实务发展影响的研究·见:中国会计学会,中国会计学会重点科研课题文集,北京:中国财经出版社,1998:33一48
9薛云奎·管理集成与会计频道·会计研究,1999;11:30一36