绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇电气自动化控制论文范文,希望它们能为您的写作提供参考和启发。
(2)显示控制屏按钮齐全,显示直观,指示灯寿命长,光效好,可靠性强。控制计算机不仅具有动态协调能力,还可以存储记录,分析相关报告。其启动控制方式大小不一,如小功率采用直接启动的控制方式,大功率采用星形或三角形启动控制的方式,还有的采用变频调速控制的方式。这些不同的控制方式很好的确保了生产设备的运行稳定。
(3)确保运行时各种数据处理和信息收集的准确性,同时提出相应的应急措施,确保电气系统可以在最好的状态下运行。设备一旦出现故障,人可以马上进行连锁控制,非常人性化。
2电气自动化控制系统的设计原则
(1)优化供配电的设计,促进电能的合理利用。设计时首先考虑的是设计的适应性,满足工程的动力、供应、控制和安全等要求制定,以满足建筑运行的要求,同时可以使它的运行处于一种安全的环境中。
(2)提高设备运行效率,力求简单、经济、使用以及维修方便。在整个的设计过程中,安全和满足工程的运行时整个设计的基本前提,在该前提下,一方面要注意不断的扩大工程的效益,另一方面也要注意不断的降低工程的成本,这就要求工作人员不仅仅应该使控制系统简单经济,而且还要使得系统的使用、维护方便、成本低,不宜盲目的追求自动化和高指标。
(3)合理调整负荷,提高设备利用率。在设计的过程中,要尽可能的提高系统的质量,使它的的负荷量在一个合理的范围内,当在一个特殊的用电环境中,可以合理的选取节能方法,提高店的利用率。
3电气自动化控制系统发展的现状
我国的电气自动化技术和国外发达国家相比差距仍然很大。到现在为止DCS系统的应用在自动化控制系统中仍然有着重要的不可取代的地位。
(1)电气自动化工程的分散控制系统,它是由过程控制和过程监控来组成的计算机系统,该系统的基本思想是集中操作、分级管理、配置灵活和组态方便四大方面,在生产、生活中的应用非常的广泛。但是该系统缺点明显,如可靠性能低,维修困难;生产厂家之间缺乏统一的标准,维修互换性低;价格昂贵等。
(2)WindowsNT和IE是电气自动化控制系统的标准语言规范。第一点是,在电气自动化领域,具有灵活性和易集成化等优点的人机界面操作,已成为一种主流的发展方向。第二点是,对于电气自动化控制系统的维护难度减小。
(3)监控的集中化。其缺点是处理速度缓慢,成本费用大,可靠性能低、设备很难扩容操作、故障查找难度大等。
(4)信息的集成化。在存储和读取信息时,需要使用规定的浏览器才可以访问到信息,并且信息技术会在电气自动化设施、系统和机器中进行横向扩展比较。
4电气自动化控制系统的发展趋势
随着我国经济的不断发展,科技的不断进步,伴随而来的是电气自动化控制系统技术方面的竞争,不但竞争愈演愈烈。同时,此系统对节约有效资源,降低成本费用,甚至改变我国工业的发展都有着积极意义。所以,我们必须根据自身的发展情况,来对自动化控制系统进行相应的规划,积极的发挥自己的有力的条件,实现我国的自主研发,只有这样才有可能在有限的时间内抢占先机。
(1)软件地位大大提升。随着信息技术的发展,网络技术以及计算机发展与应用的广阔前景,尤其是OPC技术、IEC61131标准和Win-dows平台的发展与广泛应用,计算机在电气自动化控制系统融合方面的作用,已无可替代。
(2)电气自动化控制系统统一化、信息化。为了独立开发系统,更为了方便达到客户要求,使得电气设备、计算机监管体系和企业工程管理体系之间数据信息能够及时的传递和畅通的交流,那么需要对电气自动化控制系统进行统一化的管理。此外,信息化是电气自动化控制系统的另一发展趋势,即实现设备与网络技术结合,实现网络自动化和管控一体化。也就是说信息技术不仅渗透在管理层面上,同时在应用信息技术的基础上迅猛发展。
(3)科技的不断发展是电气自动化行业的关键,由于电气自动化是结合了多门学科的一项技术工程,在它的组成原件方面科技的含量比较高,由于在自动化的关键技术是大部分的企业都没有属于自己的知识产权,造成同行业的企业以较低的价格和各种的渠道来加大自己的竞争力,所以,技术的不断发展的选择是整个自动化行业的突破点,也是关于电气行业长远发展的关键所在。只有在不断的科技发展中,电气自动化制系统不断突破,才能在全球化市场竞争中,立于不败之地。
建筑电气自动化控制技术的应用必然需要各种电气设备的参与,并且设备的质量在整个的建筑电气自动化控制技术应用中占据着重要的位置,一旦电气设备存在一定的问题的话就会直接影响到整个建筑电气自动化控制技术的实施质量,进而影响到后期建筑电气自动化控制技术的应用,具体来看,设备对于建筑电气自动化控制技术的影响主要体现在两个方面:(1)设备自身的问题,电气设备对于建筑电气自动化控制技术的影响一个主要的问题就是我们所应用的设备自身存在质量问题,这种质量问题存在的原因有很多,比如设备在生产过程中可能就存在着质量问题,一旦在建筑电气自动化控制技术应用中采用这些质量不达标设备的话就会影响到建筑电气自动化控制技术的质量,另外,设备规格不符合我们所需要的要求的话也会影响到建筑电气自动化控制技术的质量,设备在运输或者安装过程中受到一定的损害的话必然也会影响到后期的正常使用;(2)环境因素的影响,电气设备对于周围环境的依赖性也是比较强的,尤其是对于电气设备周围空间内的温度和湿度的要求虽然不是特别的苛刻,但是一旦温度或者湿度变化过大的话也会严重的影响设备的正常使用,最终影响建筑电气自动化控制技术的质量。
1.2技术对建筑电气自动化控制技术的影响
建筑电气自动化控制技术作为一种最为新型的技术手段自然也离不开技术的支持,因此,反过来说,技术必然也会对建筑电气自动化控制技术的质量产生直接影响,技术水平的高低也就直接决定着建筑电气自动化控制技术运用水平的高低,但是就当前我国的建筑电气自动化控制技术中的技术水平现状来看,仍然存在着一些问题,这些问题主要表现在两个方面:(1)技术升级不及时,虽然建筑电气自动化控制技术就当前来看算是一种较为新型的技术手段,但是就建筑电气自动化控制技术本身来说仍然需要不断地进行技术升级才能更好地适应当前人们对于建筑电气不断提高的要求,一旦建筑电气自动化控制技术升级不及时导致电气自动化技术落后于人们日益提高的要求的话就会严重的影响建筑电气自动化控制技术的应用价值,也不利于建筑电气自动化控制技术的发展;(2)在技术管理方面存在一定的缺陷,技术管理对于整个建筑电气自动化控制技术的重要性不言而喻,一个完善的技术管理体系能够使得建筑电气自动化控制技术最大程度的发挥自身的优势,甚至能够最为及时的针对自身的不足进行更新换代,而当前我国建筑电气自动化控制技术不存在完善的技术管理制度和体系,进而就极有可能导致建筑电气自动化控制技术在具体运用中出现质量问题。
1.3人员对建筑电气自动化控制技术的影响
建筑电气自动化控制技术的施工和具体应用都离不开具体人员的操作,因此,人员也会对于建筑电气自动化控制技术的质量产生重要影响。就建筑电气自动化控制技术本身而言,其应用的最根本的目的就是发挥自动化功能来减少建筑电气工程使用中对于人员的依赖,但是这并不代表着在实施中就可以减少人员的使用,或者是降低施工人员的素质,就当前我国建筑电气自动化控制技术的现状来看,人员的影响主要表现在以下两点:(1)专业素质不高,建筑电气自动化控制技术作为一种新型的科学技术手段,其科技水平相对传统电气工程来说更高,因此,就对具体的工作人员提出了更高的要求,尤其是在专业性上更是要求人员具备较高的素质,一旦工作人员专业水平不够的话就会在很大程度上影响实施的质量,最终影响建筑电气自动化控制技术的应用效果;(2)缺乏对工作人员的监督,工作质量的高低和监督存在着密切的联系,如果我们对工作人员的施工质量进行密切监督的话就会在一定程度上提高工作人员施工的质量,进而提高建筑电气自动化控制技术的水平,而如果监督不到位的话,那么就会很容易使工作人员产生懈怠,甚至会出现工作失误,最终影响建筑电气自动化控制技术的质量。
2建筑电气自动化控制技术的发展方向
2.1在建筑电气自动化控制技术中融入网络技术
网络信息技术作为当前较为先进的另一种科学技术也应该使其在建筑电气自动化控制技术中发挥一定的作用,网络技术的合理运用能够在很大程度上提高建筑电气自动化控制技术的更新速率,扩展建筑电气自动化控制技术的应用范围;并且除此之外,在建筑电气自动化控制技术中合理的运用网络技术能够在很大程度上提高建筑电气自动化控制技术的管理水平,促进建筑电气自动化控制技术的快速发展。
2.2加强系统的修复和维护
建筑电气自动化控制技术在实施和具体应用过程中离不开系统的修复和维护过程,并且建筑电气自动化控制技术的维护和修复极为关键,加强对于建筑电气自动化控制技术的维护和修复管理能够提高建筑电气自动化控制技术的运用水平,确保建筑电气自动化控制技术的应用稳定性。
2.3提高系统更新频率
当前科学技术的发展速度越来越快,电气自动化控制技术的更新也应该紧随科学技术发展的步伐提高自身系统更新的速率,以满足当前人们对于建筑电气自动化控制技术不断提高的要求。
1 前言
电气自动化系统在我们日常的生产中扮演着重要的角色,维持其工作的稳定性至关重要,而就当前我国电气自动化运行现状来看,存在着很多因素影响着电气自动化控制设备的稳定性,进而可能导致电气自动化运行的终止,因此,我们在工作中应该着重加强电气自动化控制设备的稳定性,提高生产的安全性。
2 电气自动化控制设备稳定性的重要性
随着我国科学技术的发展,当前电气自动化的水平也正在逐步提高,尤其是电气自动化的智能化水平越来越高了,需要用到的人员也越来越少了,虽然这在一定程度上大力的解放了人力资源,减少了人工消耗,但是却不利于电气自动化设备的有序运行,一旦出现问题而又无法及时解决的话就会导致极为严重的后果。电气自动化控制设备稳定性,指的是在相应环境条件下,或者是在规定时间的范围之内,可以完成,或者是可以完成某一特定任务的能力。然而,要想完成某种特定任务能力的大小及其完成质量的高低,在很大程度上决定着电气自动化控制设备稳定性的高低。通常来讲,电气自动化控制设备稳定性的高低最容易在相对恶劣的环境条件中表现出来。
目前,在全球范围内,对电气自动化控制设备稳定性的使用范围界定还比较宽松,不管是较大的系统,还是小的设备和单元,都需要采用稳定性来加以衡量,在实际的衡量中最好采用概率来描述。一般情况下,电气自动化可以依照预先设定的程序或者计划进行操作、控制、监视等一系列的必要功能,而且其相关设备还能在无人或者少人的状态下自动运行。由于在电气自动化设备的工作环境中,操作和管理无需更多人员,甚至不需要任何人员即可工作,所以电气自动化控制设备的稳定性已经成为生产者与使用者之间的关键问题。在经济全球化冲击下,各国经济之间的竞争日益激烈,只有提高电气自动化控制设备的稳定性才能促进我国经济的发展,才能提升电气自动化控制设备的市场竞争力,即探讨电气自动化控制设备的稳定性是当前的主要任务。
3 电气自动化控制设备稳定性现状
关于电气自动化的控制设备稳定性的现状分析,主要是要考虑工作环境多样化的情况下,从而形成的操作维护不当现象。众所周知,不同行业具有不同的工作环境,甚至有的工作环境极其恶劣,实际运行中,电气自动化控制设备必须面对各种各样的工作环境,以便消除环境因素对电气自动化控制设备造成的不良影响。经实践证明,引起这些不良影响的环境因素主要有气候因索、机械作用力因素,电磁干扰因素等。
3.1 气候因素
对气候因素进行分析,主要体现在湿度、电气自动化控制设备的稳定性措施探究文/王宏友电气自动化控制设备的稳定性体现于特定时间和环境下能达到规定功能的能力,特别是在不利环境中,电气自动化控制设备的稳定性对于控制和把握设备运行过程中的细节问题至关重要。摘要气压、温度、大气污染、厌恶等方面,此类不利的环境因素会对电气自动化控制设备的性能带来严重干扰,进而损坏电气自动化的设备结构、运动的灵活性,及其温升过高等重要环节,更严重的情况下,也会导致电气自动化设备完全毁坏而无法正常工作。
3.2 机械作用力因素
对机械作用力因素进行分析,具体表现为,在不同运载的工具中,电气自动化控制设备可能会受到不同种类的机械作用力,比如:冲击、震荡、离心加速力等方面。在这些机械作用的严重影响下,电气自动化控制设备的元器件容易受到损坏,参数易发生变化,甚至会出现元器件发生变形和断裂情况,以及电气自动化设备的金属件也会因疲劳而受到严重损坏。
3.3 电磁干扰因素
对电磁干扰因素进行分析,这方面的因素尽管属于一种看不见、摸不着的因素,但是它对电气自动化控制设备所造成的不良影响不可忽视。通常来讲,电气自动化控制设备的工作运行中,同时充斥着各种各样的电磁波,这些电磁波会不同程度地增大设备的输出噪声,由此导致电气自动化控制设备的运行失去稳定性,甚至会形成安全事故。
4 电气自动化控制设备稳定性的作用
4.1 稳定性能够衡量设备质量
产品要实现其自身价值,产品质量是硬道理,同时也是一个企业生存的生命线,而要确保产品质量的要素,主要体现在产品的特性上,涉及其性能、稳定性、实用性、安全性等。可见,稳定性在确保产品质量的过程中起着不可估量的主导作用,即稳定性越高,电气自动化控制设备发生的故障次数就越少,维修费用也越低,同时也大大提高了安全性能。一句话,稳定性是产品质量的精髓所在,也是每一个企业家必须寻求的最高目标。
4.2 稳定性能够提高设备市场竞争力
当今社会,国家经济的发展速度非常快,用房对产品质量的要求也在不断提高,现代人不但要求性能比较优的产品,同时更加重视产品的稳定性能,特别是电气类产品。在市场竞争非常激烈的今天,优者则胜,劣者就会被淘汰,只有提高产品质量的稳定性,才能赢得现代化市场经济发展的主动权,才能获得公众认可和青睐。因此,在电气自动化控制设备自动化程度、复杂度的不断提高下,稳定性技术能够提高设备的市场竞争力。
5 提高电气自动化控制设备稳定性的措施
5.1合理地制定设计方案
首先要认识和把握产品的自身特点、实际应用环境、应用条件,需要依据这三种影响因素的综合情况,对设计方案进行确定。值得注意的是,在此过程中,由于各个厂家所生产的产品都不尽相同,他们之间会存在许多差异,所以在同一个项目当中,最好统一使用同一种常见的产品,以便最大程度地保证各个设备之间的良好协调性。
5.2 选择合适的零部件
在满足设计合理的条件下,必须选择合适的零部件,这就要考虑相关电路的实际性能,最好选择专业常见的零部件,只有这样,才能有所保证,不论是在产品质量上,还是在后期维护上,都能有效地保障电气自动化控制设备的稳定性。此外,选择零部件的时候,还需要高度重视零部件的使用参数。
5.3 强化控制设备的散热防护
在各种电气设备的运行过程中,温度是一个极其危险的因素,由于温度变化容易大大降低电气设备的精度和稳定性,同时温度变化过大也会发生严重事故。究其原因,这主要由于电气自动化设备在运行当中不断向外散发热量造成的,如果散发的热量不能及时排出,就会积累在较小空间内,从而使设备周边环境温度不断升高,结果不堪设想。因此,在进行电气自动化控制系统的设计时,要关注散热问题,合理地确认散热方式,从最大程度上避免设备本身
6 结束语
综上所述,深入探讨电气自动化控制设备的稳定性,不但要有一定的理论基础,也要具备充足的实践经验,这样才能全面把握电气自动化控制设备的稳定性。与此同时,研究电气自动化控制设备的过程中,很有必要注意研究方法,坚决杜绝盲目操作的不良现象。因此,需要科学地结合国内外电气自动化控制设备的实际情况,不断学习新技术,根据最新的稳定性试验方法制定更加合理的控制措施。
前言
伴随着电气自动化的提高,控制设备的可靠性问题就变得非常突出。控制设备的可靠性是可靠性学科的一个重要组成部分。在20世纪70年代,我国就建立了电子产品的可靠性与环境试验研究所,开始了可靠性增长的研究工作。1984年组建了全国统一的电子产品可靠性信息交换网,并颁布了GJB299-87《电子设备可靠性预计手册》,有力地推动了我国电子产品可靠性工作。
电气自动化就是使产品的操作、控制和监视,能够在无人(或少人)直接参与的情况下,按预定的计划或程序自动地进行。随着机械电子技术、微电子技术迅猛发展,电气自动化控制在国民经济的各个行业都得到了广泛的应用,大大方便了人们的生活。电气自动化程度是一个国家电子行业发展水平的重要标志,同时,自动化技术又是经济运行必不可少的技术手段。电气自动化具有提高工作的可靠性、提高运行的经济性、保证电能质量、提高劳动生产率、改善劳动条件等作用。
1加强控制设备可靠性研究的重要意义
1.1可靠性提高产品质量
产品质量就是使产品能够实现其价值、满足明示要求的特征和特质。概括其特性,主要包括:性能、可靠性、经济性和安全性。由此可见,可靠性在产品质量中占有主导地位。只有可靠性高,发生故障的次数才会少,那么维修费用就少,相应的安全性也随之提高。因此,产品的可靠性是产品质量的核心,是生产厂家追求的目标。
1.2可靠性可以增加市场份额
随着国家经济的高速发展,用户不仅要求产品性能好,更重要的是要求产品的可靠性水平高。研究发现,只有那些具有高可靠性指标的产品,才能在日益激烈的竞争中得以取胜。随着电气自动化控制设备自动化程度、复杂度越来越高,可靠性技术已成为企业在竞争中获取市场份额的有力工具。
2控制设备的可靠性现状
2.1工作环境、使用及维护不当是控制设备可靠性指标低的重要原因
电气设备所处的工作环境多种多样。气候条件、机械作用力和电磁干扰是影响控制设备可靠性的主要因素。
(1)气候条件主要包括温度、湿度、气压、盐雾、大气污染等因素,对控制设备的影响主要表现在使电气性能下降、温升过高、运动不灵活、结构损坏,甚至不能正常工作。
(2)机械条件是指电气设备在不同的运载工具中使用时所受到的振动、冲击、离心加速度等机械作用,使得控制设备元器件损坏失效或电参数改变,结构件断裂或变形过大以及金属件的疲劳破坏等。
(3)控制设备工作的周围空间充满了由于各种原因所产生的电磁波,造成外部及内部干扰。由于电磁干扰的存在,使设备输出噪声增大,工作不稳定,甚至不能安全工作。同时,操作人员在没有完全掌握控制设备原理的基础上进行操作,导致对控制设备不能熟练而正确的操作,并且不能对设备进行及时的维护和保养,都会导致控制设备可靠性指标低。
2.2元器件质量低下是控制设备可靠性指标偏低的一大原因
目前元器件生产厂家众多,参差不齐。如果控制设备的使用企业规模较小,质量管理体系不健全,导致零部件进厂检查出现漏洞;同时,元器件厂家间的恶性竞争,导致产品价格低廉,迫使企业不顾及元件质量进行采购,这些都会导致控制设备可靠性指标偏低,并且降低了使用寿命。
3提高控制设备的可靠性对策
要提高电气自动化控制设备的可靠性,必须根据控制设备的特点,采用相应的可靠性设计方法,从元器件的正确选择与使用、散热防护、气候防护等入手,使系统可靠性指标大大提高。
(1)在控制设备设计阶段,研究产品与零部件技术条件,分析产品设计参数,研讨和保证产品性能和使用条件,正确制定设计方案;其次,根据产量设定产品结构形式和产品类型。因为产量的大小决定着生产批量的规模,生产批量不同,其生产方式类型也不同,因而其生产经济性也不同;同时,运用价值工程观念,在保证产品性能的条件下,按最经济的生产方法设计零部件:在满足产品技术要求的条件下,选用最经济合理的原材料和元器件,以求降低产品的生产成本;全面构思,周密设计产品的结构,使产品具有良好的操作维修性能和使用性能,以降低设备的维修费用和使用费用。
(2)从生产角度来说,设备中的零部件、元器件,其品种和规格应尽可能少,尽量使用由专业厂家生产的通用零部件或产品。立足于使用国产材料和来源多、价格低的材料;设备(含零部件)的加工精度要与技术条件要求相适应,不允许无根据地追求高精度。在满足产品性能指标的前提下,其精度等级应尽可能低,装配也应简易化,尽量不搞选配和修配,力求减少装配工人的体力消耗,便于自动流水生产。
(3)电子元器件的选用准则。根据电路性能的要求和工作环境的条件选用合适的元器件,元器件的技术条件、技术性能、质量等级等均应满足设备工作和环境的要求,并留有足够的余量;优先选用经实践证明质量稳定、可靠性高、有发展前途的标准元器件,不选用淘汰和禁用的元器件;应最大限度地压缩元器件的品种规格,减少生产厂家,提高它们的复用率;除特殊情况外,所有电子元器件应按不同的要求经过必要的可靠性筛选后,才能用到产品中;优先选用有良好的技术服务、供货及时、价格合理的生产厂家的元器件。对关键元器件要进行用户对生产方的质量认定;仔细分析比较同类元器件在品种、规格、型号和制造厂商之间的差异,择优选择。要注意统计在使用过程中元器件所表现出来的性能与可靠性方面的数据,作为以后选用的依据。
(4)控制设备的散热防护。温度是影响电子设备可靠性最广泛的一个因素。电子设备工作时,其功率损失一般都以热能形式散发出来,尤其是一些耗散功率较大的元器件,如电子管、变压管、大功率晶体管、大功率电阻等。另外,当环境温度较高时,设备工作时产生的热能难以散发出去,将使设备温度升高。
例如,半导体器件对温度反应很敏感,过高的温度会使器件的工作点发生漂移、增益不稳定、噪声增大和信号失真,严重时会引起热击穿。因此,通常半导体器件的温度不能过高,如锗管不超过70~100℃;硅管不超过150~200℃。表1列出了常用元器件的允许温度。
元件名称 允许温度/℃ 元件名称 允许温度/℃
碳膜电阻 120 陶瓷电容 80~85
金属膜电阻 100 锗晶体管 70~100
印刷电阻 85 硅晶体管 150~200
铝制电解电容 60~85 硒整流管 75~85
电介质电容 60~85 电子管 150~200
云母电容 70~120 变压器 95
薄膜电容 60~130 扼流圈 95
表1 常用元器件允许温度
因此对于半导体分立器件散热需要考虑:对于功率小于100mW的晶体管,一般不用散热器;大功率半导体分立器件应装在散热器上;散热器应使肋片沿其长度方向垂直安装,以便于自然对流。散热器上有多个肋片时,应选用肋片间距大的散热器;半导体分立器件外壳与散热器间的接触热阻应尽可能小,应尽量增大接触面积,接触面保持光洁,必要时在接触面上涂上导热膏或加热绝缘硅橡胶片,借助于合适的紧固措施保证紧密接触;散热器要进行表面处理,使其粗糙度适当并使表面呈黑色,以增强辐射换热;对于热敏感的半导体分立器件,安装时应远离耗散功率大的元器件。
(5)电子设备的气候防护。潮湿、盐雾、霉菌以及气压、污染气体对电子设备影响很大,其中潮湿的影响是最主要的。特别是在低温高湿条件下,空气湿度达到饱和时会使机内元器件、印制电路板上产色和凝露现象,使电性能下降,故障上升。
当电子设备受到潮湿空气的侵蚀,会在元器件或材料表面凝聚一层水膜,并渗透到材料内部,从而造成绝缘材料表面电导率增加,体积电阻率降低,介质损耗增加,零部件电气短路、漏电或击穿等。潮气还能引起覆盖层起泡甚至脱落,使其失去保护作用。通常采用浸渍、灌封、密封等措施。
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法 技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支 它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器.该领域的研究包括机器人.语言识别、图像识别 自然语言处理和专家系统等。电气自动化是研究与电气工程有关的系统运行、自动控制,电力电子技术、信息处理、试验分析 研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是电气自动化和人工智能研究的交汇点。积极运用人工智能的新成果无疑有利于电气自动化学科特别是自动控制领域的发展.也有利于提高电气设各运行的智能化水平.对改造电气设备系统,增强控制系统稳定性.加快生产效率都有重大意义。
1、人工智能应用理论分析
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。
当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。
2、人工智能控制器的优势
不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:
(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。
(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。
(3)它们比古典控制器的调节容易。
(4)在没有必须专家知识时.通过响应数据也能设计它们。
(5)运用语言和响应信息可能设计它们。
总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。
3、人工智能的应用现状
随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。
3.1 优化设计
电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。
3.2 故障诊断
电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。
变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。
3.3智能控制
人工智能控制技术在自动控制领域的研究与应用已广泛展开.但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法.因而它的应用实例最多。
4、结语
人类智能主要包括三个方面.即感知能力.思维能力 行为能力。而人工智能是指由人类制造出来的 机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。人工智能的应用体现在问题求解.逻辑推理与定理证明,自然语言理解 自动程序设计.专家系统,机器人学等方面,而这诸多方面都体现了一个自动化的特征.表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化.因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法 技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支 它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器.该领域的研究包括机器人.语言识别、图像识别 自然语言处理和专家系统等。电气自动化是研究与电气工程有关的系统运行、自动控制,电力电子技术、信息处理、试验分析 研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是电气自动化和人工智能研究的交汇点。积极运用人工智能的新成果无疑有利于电气自动化学科特别是自动控制领域的发展.也有利于提高电气设各运行的智能化水平.对改造电气设备系统,增强控制系统稳定性.加快生产效率都有重大意义。
1、人工智能应用理论分析
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。
当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。
2、人工智能控制器的优势
不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:
(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。
(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。
(3)它们比古典控制器的调节容易。
(4)在没有必须专家知识时.通过响应数据也能设计它们。
(5)运用语言和响应信息可能设计它们。
总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。
3、人工智能的应用现状
随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。
3.1 优化设计
电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。
3.2 故障诊断
电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。
变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。
3.3 智能控制