绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇继电保护技术论文范文,希望它们能为您的写作提供参考和启发。
1继电保护发展现状
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。
我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。
2继电保护的未来发展
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
2.1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。\
2.2网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。
对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。
由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
2.3保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。
2.4智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
3结束语
建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。
作者单位:天津市电力学会(天津300072)
参考文献
1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwith
DirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)
4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)
5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988
6HeJiali,Luoshanshan,WangGang,etal.ImplementationofaDigitalDistributedBus
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。
我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。
2继电保护的未来发展
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
2.1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。\
2.2网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。
对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。
由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
2.3保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。
2.4智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
3结束语
建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。
作者单位:天津市电力学会(天津300072)
参考文献
1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)
4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)
5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988
2电网系统中对继电保护自动化技术的具体运用分析
2.1继电保护自动化技术对线路的接地保护
对于电力系统自动化保护装置,从线路接地的不同设置上来说,有两种不同的方式。第一种是要保证电路出现问题时,第一时间将电源切断,从而保障电路整体的安全性,这种是在大电流情况下实施的保护措施,因此被称为大电流型接地保护电路。而另一种则是要保证在电路出现小问题时,及时发出预警信号,使相关人员能够尽快维修,这种电路主要针对小电流经过情况下实施的保护措施,也被成为小电流型接地保护电路。当电力系统电路粗线出现问题时,采取一定的措施,可以在短时间内,促使电路恢复正常运转。以下三种为比较常见的情形:(1)零序电压。在正常的电路系统中不存在零序电压情况,电力系统的三个电压属于对称关系,且每一个系统都相互独立。但当电路出现问题时,零序电压会在电路中出现,保护装置将在这种情况下,则会对系统发出预警信号,并自动完成电压降低工作,使得维修人员能够及时根据电压情况确定故障来源。(2)零序电流。电路出现问题时,零序电压的产生,会引发零序电流的升高。此时,保护装置会自动断开电源,最大限度的保护整个电路。(3)零序功率。零序电流的升高范围,随着故障的出现而保持相对稳定性,此时的零序功率会自动改变方向,这样就能够确保装置,有效预测整个电路的故障,并给予相应的保护。
2.2继电保护自动化技术对变压器的保护
变电器在电力系统中扮演着重要角色,其能够改善电力系统的运行状态,达到稳定运行的目的,同时强化电力系统的运行安全性,防止电力事故的发生。
2.3技术是影响变压器的关键性因素
(1)变压器接地保护。电压器的种类有两种,分别为接地和不接地。对于第一种可以通过零序电流对其进行保护。而第二种则通过零序电压进行保护。(2)变压器瓦斯保护。变压器在应用的过程中存在一定的危险性,尤其是绝缘材料、油料等易被分解的物质,在具体应用过程中一旦受到电弧影响,就会产生危害人体健康的气体。所以需要建立预警系统一旦油箱受到危害,产生毒气,就应立即断电,同时发出预警信号。(3)变压器短路保护。短路是变压器常见问题之一,在实际工作过程中,一旦出现短路现象,就会造成变压器工作停滞,进而影响整个电力系统。因此变压器应提前做好应对工作,采用电流继电器保护变压器不受短路的影响。在对变压器进行阻抗保护时,主要依靠阻抗元件的作用,在运转到达限制时间后,变压器就可以自动断电,避免发生短路现象。
电能是一种即发即用、便于传输、使用的清洁能源。我国电力工业发展速度2000年全国发电量为1368.5TWH发电装机容量达到319GW,居世界第二位。电气化水平也得到了极大提高。电能已经成为我国各方面建设及人们生活中不可缺少的能源。电能的使用已遍及各行各业。如:电能用于金属熔炼、焊接、切割及金属热处理,用于电解、电镀及电化加工,电能还用于运输工业、医疗及农业灌溉等。现在,电能正愈来愈多地用来改善居住环境等。
1接地方式
长期以来,电力安全运行及正确使用电能一直是人们关心的问题,而配电系统的正确接地及有效保护技术又是安全利用电能的重要方面。
电力系统中,有两种接地方式,即中性点直接接地(亦称大电流接地系统),另一种是中性点不接地(或经消弧线圈接地,亦称小电流接地系统)。在110kV及以上的高压或超高压电力系统中,一般采用中性点直接接地,这是为了降低高压电器设备的绝缘水平,也可以防止在发生接地故障后产生的过电压,可免除单相接地后的不对称性。这种接地方式下,接地故障所产生的零序电流足够使继电保护灵敏动作,所以保护可靠。
中压配电系统一般中性点不接地,所以,一旦发生单相接地故障,系统还能在不对称方式下运行二个小时。但是地下电力电缆大量使用及城市用电负荷急增,不少地方已开始采用中性点接地方式。
对380/220V的低压配电系统,除某些特殊情况外,绝大部分是中性点接地系统,其目的是为了防止绝缘损坏后运行人员遭受触电的危险。
这里举一例说明(见图1),低压三相四线制变压器二次侧中性点经接地,电气设备外壳不接地。当外壳带电时,有人触及外壳,此时流过人体的电流为:
Iren=
式中:ux——相电压(V)
rren——人体电阻(Ω)
r0——接地装置电阻(Ω)
由于r0<<rren≈1500Ω,则Iren≈≌0.147A,结果远大于安全允许值。
2漏电保护器
国家标准GB16917.1—97《家用或类似用途带过电流保护的剩余电流动作断路器的一般要求》等标准规定,漏电保护器可分:
(1)漏电动作开关(仅有漏电保护的保护器);
(2)漏电动作断路器(带过载、短路和漏电三种功能保护器);
(3)漏电继电器(仅有漏电报警功能的保护器)。
2.1保护器的工作原理
漏电保护是一种电流动作型漏电保护,它适用于电源变压器中性点接地系统(TT和TN系统),也适用于对地电容较大的某些中性点不接地的IT系统(对相-相触电不适用)。
漏电保护器工作原理见图2。三相线A,B,C和中性线N穿过零序电流互感器,零序电流互感器的副边线圈接中间环节及脱扣器。
在正常情况下(无触电或漏电故障发生),由克氏电流定律知道:三相线和中性线的电流向量和等于零,即:
+++=O
因此,各相线电流在零序电流互感器铁芯中所产生磁通向量之和也为零,即:
+++=0
当有人触电或出现漏电故障时,即出现漏电电流,这时通过零序电流互感器的一次电流向量和不再为零,即:
Δ+++≠0
零序电流互感器中磁通发生变化,在其副边产生感应电动势,此信号进入中间环节,如果达到整定值,使励磁线圈通电,驱动主开关,立即切断供电电源,达到触电保护。
2.2漏电保护器性能参数说明
2.2.1额定漏电动作电流(In)
它是指在规定条件下,漏电保护器必须可靠动作的漏电动作电流值。国家标准(GB6829—86)规定为0.006、0.01、0.015、0.03、0.05、0.075、0.1、0.2、0.3、0.5、1、3、5、10、20A计15个等级,在0.03A(30mA)以下为高灵敏度,0.03~1A为中灵敏度,1A以上为低灵敏度。
2.2.2额定漏电不动作电流(In0)
这是为防止漏电保护器误动作的必需技术参数,即在电网正常运行时允许的三相不平衡漏电流。国家标准规定In0不得低于In的1/2。
2.2.3漏电动作分断时间
动作时间是从突然施加漏电动作电流开始到被保护主电路完全被切断为止。为达到人身触电时的安全保护作用和适应分级保护的需要,漏电保护器分快速型、延时型及反时限型三种。
2.2.4灵敏度α
一般漏电信号电流不可能很大,又要保证人身安全,我国规定的30mA信号电流可直接接触保护,国外可小到6mA。
漏电互感器的灵敏度由下式表示:
α=
式中:
E——副边绕组中感应电动势模;
I——一次漏电流的模。
α反应了漏电互感器对漏电流的反应能力。根据电磁感应原理计算得到:
=1/
采取加大铁芯截面积,增加匝数N1,可以增加励磁阻抗Zm,及增加负载阻抗ZL,则可以得到高的灵敏度。3低压配电系统的接地
3.1三种接地系统
在我国的《民用电气设计规范》(JGJ/T16—92)标准中将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
TT系统:电源变压器中性点接地,电气设备外壳没有专用保护接地线(PE)。
IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳没有专用保护接地线(PE)。
3.2TN系统
电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。
3.2.1TN—C系统(见图3)
其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;
(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;
(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
3.2.2TN—S系统(见图4)
整个系统的中性线(N)与保护线(PE)是分开的。
(1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源,如果线路较长,可在线路首端装设RCD,靠它切断故障电流;
(2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位;
(3)TN—S系统不必重复接地,因为重复接地后对N线断后保护设备作用不明显;
(4)TN—S系统适用于工业企业、大型民用建筑。
3.2.3TN—C—S系统(见图5)
它由两个接地系统组成,第一部分是TN—C系统,第二部分是TN—S系统,其分界面在N线与PE线的连接点。
(1)当电气设备发生单相碰壳,同TN—S系统;
(2)当N线断开,故障同TN—S系统;
(3)TN—C—S系统中PEN应重复接地,而N线不宜重复接地。
PE线连接的设备外壳在正常运行时始终不会带电,所以TN—C—S系统提高了操作人员及设备的安全性。
3.3TT供电系统(见图6)
如图6,电源中性点直接接地,电气设备的外露导电部分用PE线接到接地极(此接地极与中性点接地没有电气联系)。
(1)当电气设备发生相碰壳接地,环路阻抗Z=ZL+ZPE+Zf+RA+RB
式中:
ZL——相线阻抗;
ZPE——PE线阻抗;
Zf——相线与外壳间接触电阻;
ZA——用电设备接地电阻;
ZB——电源中性点接地电阻。
由于ZL、ZPE、Zf很小,可忽略,接地电流:
Id==
按JGJ/T16—92标准规定RA·I'd≤50V,及I'd=
U——相电压;
I'd——为低压断路器瞬时或延时过电流脱扣整定值(A);
Id——单相短路电流(A)。
RA≤(15/29)·RB
如果RB≤4Ω,则:RA≤·RB=2.07Ω;接地电阻的要求极其苛刻,较难实现,因此一般要求RA取值范围为4Ω~10Ω。
如果RA≤4Ω,则Ia≈12.5A。
由RL1型熔断器特性曲线与自动开关保护特性曲线得到的保护装置允许最大整定值列于下表。
由表可知RA≤4Ω时,熔断器熔体的额定电流Ie≤4A或Ie≤2A,而低压断路器瞬时动作整定值Ie≤11A才能保证在规定时间内切断故障回路。在工程上,这么小的整定值是没有实际意义的,另外,容量较大的分支负荷或支路负荷也无法采用熔断器或自动开关作这种TT接地系统的保护电器,因此要采用RCD保护电器。
(2)TT系统在国外被广泛应用,在国内仅限于局部对接地要求高的电子设备场合,如果在负荷端和首端装设RCD而干线末端装有断零保护,则可适用于农村居住区、工业企业及分散的民用建筑等场所。
3.4IT系统
电力系统的带电部分与大地间无直接连接(或经电阻接地),而受电设备的外露导电部分则通过保护线直接接地(如图7)。
图7(a)配电中性点与地绝缘;图7(b)配电中性点经电阻(阻抗)接地;图7(c)配电中性点经阻抗接地而设备外露导电部分接到电源的接地体上。
下面分析发生单相短路故障时的情况这里只论述图7(b)。在发生第一次接地故障时。
Id≤U/(Z+RA+RB+ZL+Zf)
式中:
Z——配电系统中性点的阻抗
RA——用电设备的接地电阻,一般RA≤4Ω
RB——配电设备中性点的接地电阻,一般RB≤4Ω
U——电源相电压,220V
ZL——相线电阻
Zf——相线与外壳之间接触电阻
ZL、Zf数值很小,略去不计。按IEC标准,Z的阻抗推荐5倍于相线电压数值,
Z=5×2201000Ω
Id≤220/(1000+4+4)=0.218(A)
设备外露部分的电压:Uf≤Id·RA=0.218×4=0.872V,这个电压不会造成触电伤害,因此第一次出现这种情况,不用切断电源,而是发一个声光告警。
在发生第二次接地故障时(图8),M1设备的L3相接地,M2设备的L2相接地时,必须满足RA·Ia≤50V及RC·IC≤50V,式中Ia、IC分别为M1,M2保护器的动作电流。
在一般情况下,RA=RC=4Ω,则Ia=Ic≈50V/4Ω=12.5A;如果采用熔断器或空气断路器作保护时,IT系统只能提供小容量负荷。如果采用RCD,则IT系统可以提供较大负荷量。4漏电保护器的配置
4.1漏电保护器的配置技术
一般仅有一级保护,额定动作电流In≤Vr/Rs。式中:Vr——安全触电电压,特别潮湿场所为2.5V,潮湿场所取25V,而干燥场所取56V;Rs为设备外露导电部分接地电阻。
如果有二级保护,图9表示了两级保护的动作时间和动作电流的配合关系。其第一级的目的是为了防止人身间接接触触电,被保护电网面积大负载电流大,通常150kVA变压器总出线电流216A,动作电流取100~300mA,而动作时间为0.2s以上;其第二级的目的是防止直接接触触电事故,被保护电网覆盖小,动作电流选30mA,动作时间≥0.04s。
如果多级漏电保护时,多级漏电保护In1≥3In2t1≥tfd,式中,In1是上一级,In2为下一级RCD额定动作电流,tfd为上一级RCD可返回的时间;tfd为下一级RCD分、合断时间。
如果要采取三级保护,则(1)末线路端用电设备In=30mAt≤0.1s;(2)分支路选择RCD,取In=100mAt≤0.3s;(3)干线选择In=300mAt≤1s。
4.2安装漏电保护器的注意事项
(1)漏电保护器能否正常工作,它与接地方式及安装方式有很大关系。这里仅举一例说明In=100mAt≤1s。
由于两个漏电保护器出线后的线路混用(见图10),而造成两个漏电保护器不能同时供电。
图中,由于临时将照明灯泡跨接在两个漏电保护器出线后的相线与中性线之间,它是跨接在2LDB中的相线与的1LDB中性线之间,当灯泡亮后,其相线电流流经2LDB和1LDB回到中线,很明显2LDB使出现不平衡电流,1LDB中也出现差流,从而2LDB和1LDB一起动作,切断了电源,因此造成两个回路都无法正常工作。
(2)安装漏电保护器时,一定要注意线路中中性线的正确接法,即工作中性线一定要穿过漏电电流互感器,而保护中性线决不能穿过漏电电流互感器,如图4—(a)(即TN-S系统)。5结论
关键词:保护地棚室;茄子;栽培技术
茄子是人们非常喜爱的蔬菜,营养元素含量丰富,是餐桌上的必需品,但在东北地区由于气温较低,种植受季节的影响非常明显,要想满足广大群众的需求,必须大力推广保护地棚室茄子种植技术。现将其栽培技术要点介绍如下。
1保护地棚室
(1)保护地棚室设施。在不适宜植物生长发育的寒冷、高温、多雨季节,人为创造适宜植物生长发育的微环境所采用的定型设施。
(2)日光温室。由采光和保温维护结构组成,以塑料薄膜为透明覆盖材料,东西向延长,在寒冷季节主要依靠获取和蓄积太阳辐射能进行蔬菜生产的单栋温室。
(3)塑料棚。采用塑料薄膜覆盖的拱圆形棚,其骨架常用木、钢材或复合材料建造而成。
(4)育苗设施的规格要求。①育苗温室:矢高2.8~3.5m,跨度6~8m,长度不限。②塑料中棚:矢高1.5~2.0m,跨度4~6m,长度不限。③塑料大棚:矢高2.5~3.0m,跨度6~12m,长度30~60m。
2栽培季节
春秋栽培:年初育苗,3月下旬定植,6月至9月中下旬上市;春夏种植:春季育苗定植,夏季采收;夏秋种植:夏季育苗定植,秋季采收。
3品种选择
选用抗病性强、品质好、商品性好、产量高的优良品种和杂交种,如齐杂茄2号、沈茄系列、黑又亮、黑珊瑚、日本紫长茄。
4育苗
4.1种子处理
用50~55℃热水烫种15min,并不断搅动种子使其受热均匀,待水温降至25~30℃时浸种8h。出水后用黄砂搓洗2~3遍,投洗干净后进行变温处理。白天放在20℃条件下12h,夜间放在0~2℃下12h,连续处理7d即可播种
4.2播种
床土配制为:葱蒜地表土或肥沃大田土4份,腐熟有机草炭土5份,腐熟大粪面1份混匀筛细。分苗移植营养土配制为:葱蒜地表土或肥沃大田土5份,腐熟的草炭土或陈马粪3份,细砂或炉灰2份,1m3营养土加入大粪面25kg、二铵2kg、过磷酸钙3kg,充分混拌后装入营养钵。温室育苗,厢(盘)或床播种,分苗移植到8cm×8cm营养钵内。苗龄80~90d。
4.3苗期管理
播种后白天温度保持在30~35℃,夜间25℃。当有70%苗出土时立即降温,白天25℃,夜间15~17℃。2片真叶时分苗移植到营养钵中。采用嫁接技术育苗的茄子砧木移到(10~12)cm×(10~12)cm营养钵中,接穗移到苗床内株行距6cm×6cm即可。移植缓苗后进行根外追肥,用0.3%磷酸二氢钾或0.3%尿素喷叶。
5定植
在定植前30~35d扣棚烤地。化冻后整地,并施足优质有机肥作底肥。起垄或高畦覆膜。行距50~60cm,株距30~35cm。采用嫁接技术的株行距要加大,应在65cm×(45~50)cm。
6田间管理
定植后缓苗前不通风或通小风。白天温度保持在28~30℃,夜间保持在15~18℃;缓苗后至开花结果期,白天温度为25~28℃,夜间15℃以上。定植7d后浇1次缓苗水。门茄瞪眼时浇1次水,并随水追施发酵好的鸡粪水。门茄采收后浇1次鸡粪水,1次清水,交替进行。门茄开始膨大时进行整枝打叶,摘除门杈以下的腋芽、叶片及病叶。7月上旬(入伏前后)在“四面斗”处10cm长刈头,刀口呈斜面。7d后选健壮枝条苗7~8个。刈头后在垄帮破开,重施1次有机肥。
7病虫害防治
病害主要有茄子黄萎病、茄子褐纹病、茄子绵疫病等,虫害主要有红蜘蛛。采用嫁接技术防治黄萎病效果十分明显,砧木选用“托鲁巴姆”。防治茄子褐纹病,在结果后开始喷洒75%百菌清可湿性粉剂600倍液,或58%甲霜灵锰锌可湿性粉剂500倍液。防治茄子绵疫病,在发病初期用75%百菌清可湿性粉剂500~600倍液,或64%杀毒矾可湿性粉剂500倍液,7~10d喷1次,连喷2~3次。防治红蜘蛛用8%阿维菌素乳油3000倍液,或25%蛾螨灵1000倍液,或5%尼索郎乳油1500倍液喷雾。
8采收
根据生长条件和市场需求及时采收。
参考文献
电子文件的载体材料是磁性物质和光盘。聚酯底基是磁盘和磁带的支持体。聚酯底基具有易产生静电而吸引尘埃导致卷曲、易与磁粉脱离、伸长后不易恢复等缺点。粘和剂起着连接底基和磁粉的作用,它具有易热胀冷缩、磨损、脱落、粘连、生霉等缺点,直接影响信息再现。磁粉中的磁性氧化物颗粒的剩磁感应强度是记录和再现信息的决定因素,它极易受外磁场影响而导致退磁、消磁等。光盘是利用激光进行信息存取的,它呈圆盘状,由盘基、记录介质和保护层等部分组成。目前光盘常用的记录介质主要有碲、碲合金、硒、碳铝化合物以及一些在激光热效应作用下易产生物化性质变化的材料。这些材料不稳定、易氧化、易与碱溶液发生反应。与纸质档案载体相比,电子文件载体材料的寿命要短得多,一般仅为5—15年。
二、环境条件影响的差异
1、温湿度影响的差异。不适宜的温湿度对磁性载体、光盘和纸张均有影响。对纸张而言,高温高湿,可促进纸张发生水解-氧化反应,加速纸张内部不利化学成分对纸张的影响,也可使字迹材料发生扩散、洇化现象。而电子文件载体受温湿的影响方式截然不同。在温度过高或过低条件下,聚酯底基易膨胀或收缩变形,光盘载体中使用的塑料、铝和多碳材料也会弯曲变形,影响激光束精确定位和数据的读写。实验证明,保存纸质档案的标准温度为14℃—24℃,相对湿度为45%—60%,而保存电子文件的理想温度为16℃—20℃,相对湿度为40%±5%,可见,温湿度对电子文件和纸质档案的影响程度是不同的。
2、灰尘影响的差异。灰尘对纸张的危害主要是机械磨损纸张、使纸张发生粘结而形成“档案砖”、给纸张带来霉菌等。而灰尘对电子文件载体的损坏主要有物理损坏、化学损坏和生物损坏。物理损坏是指污染、划伤磁盘、磁带、光盘表面,造成记录信息的损毁;化学损坏是指灰尘中所含的化学成分会不同程度地引起磁盘、磁带、光盘载体腐蚀、降解等化学作用而毁坏,造成记录信息消失;生物损坏是指灰尘是霉菌孢子的传播者,也是霉菌的培养基、繁殖地,霉菌分泌的酶和有机酸会损坏磁性载体和光盘,使数据丢失。综上所述,灰尘均可以损坏纸张和电子文件载体。只是对纸张而言,即使灰尘已经对其产生实质性的损害,如磨损纸张、形成“档案砖”、产生色斑和霉斑等,也可通过修复手段在很大程度上恢复其所记录信息。而灰尘一旦对电子文件载体造成危害,载体上所记录的信息可能会局部丢失,在计算机系统上便无法读出原始信息,使电子文件失去保存价值。因此,防止灰尘对电子文件载体的危害有特别重要的意义,在电子文件形成和使用过程中,要采取严密的防灰尘措施。
3、外来磁场和机械震动影响的差异。磁场和机械震动对纸质档案无任何影响,而对电子文件的磁性载体则是最重要的影响因素。外来磁场作用于磁性载体,能使磁性涂层的剩磁发生消磁或磁化,造成信号失落或信噪比降低,破坏记录信息,影响读出效果。此外,强烈的机械震动也会影响磁性载体材料中磁分子的排列次序,造成剩磁衰减,从而破坏记录信号。因而要防止外磁场的影响,如远离强磁场,将磁性载体存放在有抗磁性的框架内或金属盒内等等,并避免强烈的机械震动。
4、光线和有害气体影响的差异。光线和有害气体对纸张的危害主要是促进纸张发生水解氧化反应,导致纸张强度的降低。而有害气体和光线特别是紫外线对电子文件的破坏力更大。有害气体主要是二氧化硫、硫化氢、二氧化氮和氯气等具有酸性和氧化性,在一定条件下,腐蚀、破坏磁性载体和光盘,致使盘基带基老化、变质和磁粉脱落,使电子文件信息丢失。光线能使电子文件载体材料发生光氧化反应,使盘基带基老化,强度下降。同时,紫外线的能量足以破坏磁性载体的剩磁的稳定性,导致信号衰减,影响磁性记录信息的读写效果。
三、技术寿命的差异
纸质文件一旦形成,其制成材料——纸张、字迹材料、字迹三者永远结合在一起,它的寿命与其内部诸因素和保护环境条件有关。而电子文件的寿命不仅与其内部诸因素和保护环境条件有关,更与技术革新有关。因为电子文件是通过计算机将信息与载体结合在一起而形成的,必须通过计算机才能识读。一旦技术过时,则载体上的信息就无法读出。技术过时的表现有两个方面,一是技术革新,使旧的存贮技术消失。二是由于商业性的原因,使由单个厂家生产或销售的电子文件设备会由于厂家的破产或改变产品生产而很难找到配套产品。一般说来,大多数电子文件载体的预期寿命都超过了识读它的硬件和软件的技术期限,也就是说,技术过时对电子文件安全性的影响显得更为重要。因此,对于电子文件中数字化信息的长期存取而言,技术过时比载体损坏是更为严重的危害。针对技术过时,欧美国家在理论上提出三种解决办法:将阅读电子文件的设备与软件保存到某种技术博物馆中;在纸与缩微胶片上制作拷贝;将电子文件转换为尽可能中性格式的文档。这三种方法只能是在没有其它更好措施的情况下的暂时性办法,因为随着需要保存的电子文件数量的增大,这三种方法都将花费大量的人力物力。最近,信息专家提出了用标准化的方法,即用国际标准化组织用于连接开放系统的互连标准,使不同系统和不同软件的数据可以进行互换。这种方法不失为解决技术过时的新途径。
中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)19-5381-02
继电保护装置是一种利用电磁感应原理而发展起来的电力系统保护装置,随着电子技术和网络通信技术的飞速发展,目前已经发展到微机型阶段,并且利用软件技术可以实现由软件技术驱动硬件而实现微机继电保护,这就是目前研究很热的技术――基于虚拟仪器技术的继电保护系统。利用虚拟仪器技术实现的微机继电保护装置,具有传统微机继电保护装置所不具备的优势,例如控制更加安全可靠等。
本论文主要将虚拟技术应用于微机保护实验系统,拟对基于虚拟仪器技术的微机保护系统进行开发,并从中找到可靠有效的微机保护实验方法与建议,并和广大同行分享。
1 微机继电保护概述
1.1 微机继电保护的基本构成
微机继电保护装置,其基本结构构成与普通的电力保护装置一样,也是有硬件和软件两大部分构成。硬件部分主要由数据采集系统、数据处理系统及逻辑判断控制模块等几个部分构成,主要由数据采集模块负责对电力系统的相关电参数实现检测与采集,并将数据传送至数据处理系统,数据经过运算之后,由逻辑判断控制模块调用软件控制程序,并发出相应的控制信号,驱动保护装置执行保护动作,从而实现电力继电保护的功能。
随着集成电子电路技术的发展,目前发展的微机型继电保护装置,其硬件系统主要由CPU(微处理器)主机系统、模拟量数据采集系统和开关量输入/输出系统三大部分组成,尽管结构构成已经发生一定变化,但其实实现继电保护的基本原理仍是一样的,由模拟量数据采集系统负责相关保护参数的采集,微机继电保护装置是以微处理器为核心,根据数据采集系统所采集到的电力系统的实时状态数据,按照给定算法来检测电力系统是否发生故障以及故障性质、范围等,并由此做出是否需要跳闸或报警等判断。
1.2 微机继电保护装置的特点
微机保护与常规保护相比具有以下优点:
1) 微机继电保护装置主要由微处理器为核心而构成的硬件系统,因此借助于现代功能强大的微处理器,微机型继电保护装置可以实现一定程度的智能化。
2) 相比于传统的机械式硬件实现的硬件保护装置,微机型继电保护装置能够依靠数据采集模块实现对相关参数的检测与采集,整个过程实现数字化流程,这就为继电保护装置的控制功能的稳定性、可靠性提供了技术条件;另一方面,依靠微处理器内部的软件程序,微机继电保护装置能够进行周期性自检,一旦发现自身硬件或者软件发生故障,能够立即实施报警,从而保障了继电保护装置功能的可靠性。
3) 传统的机械式硬件实现的硬件保护装置,其保护功能较为单一,仅仅是实现基本的保护功能,动作依靠一次性机械元件完成,一旦该部件发生故障,则整个继电保护装置无法工作;而微机型继电保护装置除了能够利用弱电驱动控制实现继电保护的功能外,还能够依靠数据采集系统对整个电力系统的相关电力参数都实施监测与采集,通过程序的分析,实现对电力系统整体性能的检测,保护功能大大丰富。
4) 传统的机械式硬件实现的硬件保护装置,其功能调试复杂,工作量大,而且极容易造成内部晶体管集成电路的失效,而现代微机继电保护装置,依靠内部的核心微处理器,能够开发专用的人机交互系统,利用人机交互系统实现继电保护装置的调试,简单易行,还可以自动对保护的功能进行快速检查。
5) 利用微机的智能特点,可以采用一些新原理,解决一些常规保护难以解决的问题。例如,采用模糊识别原理或波形对称原理识别判断励磁涌流,利用模糊识别原理判断振荡过程中的短路故障,采用自适应原理改善保护的性能等。
2 基于虚拟仪器的微机保护实验系统开发设计
2.1 总体结构设计
本论文探讨的是基于虚拟仪器技术的微机继电保护系统,因此首先面临选择合适的虚拟仪器开发平台的问题,这里选择基于G语言的LabView开发平台是目前国际最先进的虚拟仪器控制软件,集中了对数据的采集、分析、处理、表达,各种总线接口、VXI仪器、GPIB及串口仪器驱动程序的编制。基于虚拟仪器的微机继电保护装置系统,是利用虚拟仪器开发平台,构建虚拟的微机继电保护装置,实现完整的微机继电保护装置的全部功能,并对设计的虚拟继电保护装置进行评估和改进,从而完成微机继电保护系统设计的一种设计手段。
利用虚拟仪器技术进行微机继电保护系统的开发设计,从具体设计流程来说,主要从以下几个环节入手进行总体结构的设计:
根据微机继电保护系统的设计目标、设计功能,列出所需要的相关硬件,构建整体微机继电保护系统结构框架;另一方面,尽量采用模块化的开发设计模式,将微机继电保护系统按照不同的功能环节,设计各功能模块之间的结构关系。
如下图所示,是本论文所探讨的利用虚拟仪器平台所开发的微机继电保护系统结构原理图。这种方式既便于模块的单独调试,节省系统开发周期,又便于系统功能的改变,使系统具有更强的移植与升级功能。
如图1所示,基于虚拟仪器技术的微机保护系统结构主要由一次系统、转换模块、数据采集模块、保护测量模块及保护决策软件系统等几部分构成,一次系统主要负责面向电网系统模拟设置合适的传感器,将相关拟生成电网的二次侧电压、电流信号,信号经过转换、调理电路变换成符合要求的-5V~+5V模拟信号送数据采集模块,数据采集模块主要由DAQ数据采集卡构成,能够自动将模拟产生的模拟电压信号进行A/D转换,并进行初步的数据处理转换再传送给以虚拟微处理器为核心的保护决策模块,最终将生成的继电保护控制决策信号输出到保护策略模块,最终实现微机继电保护系统的功能。
2.2 数据采集模块的设计与实现
本文中微机实现的继电保护实验系统输入信号来源于继电保护测试仪,根据保护系统测试输入信号的特点,本论文采用数据采集卡来负责数据的采集与高速传输。
2.2.1 数据采集卡的选择
要实现基于虚拟仪器技术平台的微机继电保护系统,一次系统在完成相应电力系统电参数的传感检测之后,数据采集模块要能够按照微机继电保护系统的功能于设计要求实现相应数据的转换与采集,因此,数据采集卡的选择成为整个微机继电保护系统保护功能实现的关键。目前的数据采集卡,主要有12位或16位的DAQ数据采集卡,在具体决定选用12位还是16位的DAQ设备时,主要从采集精度和分辨率这两个指标考虑,可以由给定的系统精度指标衡量出DAQ卡需要的整体精度。
在本论文中,这里选取PCI-1716数据采集卡。PCI-1716是研华公司的一款功能强大的高分辨率多功能PCI数据采集卡,它带有一个250KS/s16位A/D转换器,1K用于A/D的采样FIFO缓冲器。PCI-1716可以提供16路单端模拟量输入或8路差分模拟量输入,也可以组合输入。它带有2个16位D/A输出通道,16路数字量输入/输出通道和1个10MHz16位计数器通道。PCI-1716系列能够为不同用户提供专门的功能。
2.2.2 虚拟数据采集程序的实现
在选择了数据采集卡硬件设备之后,需要借助于虚拟仪器平台为整个系统设计虚拟护具采集程序。在具体进行设计时,由系统内部虚拟程序产生数据采集卡锁需要的相应信号,具体来说就是CT、PT信号,因此,在具体编程时,首先将CT、PT信号传输至相应的滤波器,LabVIEW提供了各种典型的滤波器模块,根据需要可以设置成低通、高通、带通、带阻等类型的滤波器;其次,将经过数据滤波处理之后的数据进行输出。数据采集模块的程序如图2所示。
2.3 微机保护模块的设计与实现
既然在数据采集模块之后需要进行数据的滤波,尽管LabVIEW提供了各种典型的滤波器模块,但是仍然需要借助于虚拟滤波模块设计专用的滤波算法,而且在微机继电保护系统中,对电力系统的继电保护功能的实现,主要是由相应的滤波保护算法实现的,因此有必要为虚拟微机电力保护系统设计滤波保护算法程序。
本论文采用如下的设计方法对滤波保护算法进行设计:
1) 利用LabVIEW自带的滤波器进行数据的排序滤波。
2) 按照系统保护功能所需要的数据频带,设置相应的低通、高通、带通、带阻等灯滤波保护功能。按照上述方法,基于虚拟仪器平台的微机继电保护系统,其滤波器输入得到的数据序列,多数是传感器采集到的电参数,如电压和电流,而电压和电流数据是离散的数字量序列,其中包含了大量的谐波干扰信号,因此有必要进行滤波。在本论文中,采用了二级滤波保护算法,即分别进行前置滤波和后置滤波,实现对数据的二级滤波保护,从而提高整个微机继电保护系统的稳定性和可靠性。前置滤波模块如图3所示,后置滤波模块如图4所示。其中前置滤波模块提供了差分滤波器、积分滤波器、级联滤波器、半波和1/4周波傅立叶滤波器、半波和1/4周波沃尔氏滤波器,可以根据需要自行选择;后置滤波模块提供了平均值滤波器、中间值滤波器,也可以自由选择。
3 结束语
利用虚拟仪器技术进行微机继电保护装置系统的设计开发,能够很好的避免了实物硬件开发设计所带来的周期较长、调试较复杂以及成本较高等劣势,所有的开发设计任务全部在虚拟仪器平台上完成。本论文将虚拟仪器技术应用到了微机保护装置的设计,对于进一步提高微机继电保护装置的可靠性与稳定性具有优势,同时借助于虚拟仪器技术的开发,能够更好的实现电气继电保护功能的完善与提升。
参考文献:
[1] 李佑光,林东.电力系统继电保护原理及新技术[M].北京:科学出版社,2003.
[2] 王亮,赵文东.微机继电保护的现状及其发展趋势[J].科技情报开发与经济,2006,16(18):150-151.
中图分类号:G642.3 文献标识码:A 文章编号:1002-4107(2013)01-0033-02
电力系统、计算机技术、电子技术与通信技术的飞速发展给电力系统继电保护不断注入了新的活力,提出新的要求。现代电力系统是高度数字化、信息化和自动化的超大区域网络结构,电力系统继电保护是对其安全稳定运行至关重要的一门技术[1]。21世纪继电保护的未来发展趋势是计算机化;网络化;保护、控制、测量、数据通信一体化;智能化[2]。以新疆农业大学(以下简称“我校”)为例,在现有教学模式基础上,本文探讨继电保护课程教学中提高学生实践与创新能力的方法,为将学生培养成具有实践能力、创新精神的人才而努力,为该课程的教学改革提供理论支持和智力保证。
一、电力系统继电保护课程的特点
我校“电力系统继电保护原理”课程理论教学36
学时,网络教学6学时,总计42学时,作为电气工程及自动化及农业电气化与自动化的专业必修课,设置在大四上学期初;“微机继电保护”课程共26学时,均为课堂理论教学学时,作为专业选修课安排在“电力系统继电保护原理”结束后的大四上学期末开设,目的是顺应现代电力系统高度数字化的趋势,让学生了解现代数字式继电保护硬软件的知识,内容涉及到原理、保护算法、硬软件设计方法等;“继电保护课程设计”为期一周,与“微机继电保护”同时安排在大四上学期期末,目的是培养学生综合运用所学的基础理论知识分析与解决电力系统中的实际问题的能力[3]。
二、继电保护课程教学存在的问题
为适应现代数字电力系统继电保护技术的新发展,目前我校继电保护的教学内容已加入“微机继电保护”,作为少学时内容与“电力系统继电保护”共同设置在大四上学期,同时开设的其它几门专业课使得学生大四上学期课程较为集中,学习任务量较大。此时学生即将面临毕业设计开题、复习考研或找工作,第一学期过高的学习任务和课程的相对集中对其学习效果有一定影响;在课程教学上,基本停留在传统模式:即利用板书或者多媒体课件形式,将继电保护原理及其实现方法按照教材的章节和顺序进行课堂讲授,这主要存在以下几个问题。
(一)重理论,轻实践,无法提高学生的实践能力与创新精神
对教师而言,继电保护原理单纯靠板书或多媒体课件较难讲透;对学生而言,继电保护内容比较抽象且实践性强,知识描述更需要形象化演示去理解,配合学生自主实践学习才会有好的效果。比如,“零序过电流保护原则上是按照躲开在下级线路出口处相间短路时出现的最大不平衡电流来整定”,若单纯由教师口头讲授原理,学生难以理解; “微机继电保护”课程主要分析现代数字式继电保护软硬件相关知识,内容涉及原理、保护算法、硬软件设计方法等。若单纯讲解微机继电保护算法,使学生难以消化,从而会削弱其学习的积极性。
(二)教学理念不够强,教学内容需要优化
继电保护课程组与“单片机技术”、“数字信号处
理”、“电力系统自动化”、“高低压电气设备”等课程有很多联系,但教学上往往孤立、脱节,缺乏全局梳理,使学生对继电保护完整系统缺乏全面认识。课堂上,教师若能将继电保护教学作为一个整体,以实例联系相关课程内容,紧跟行业发展前沿并且结合实践,教学效果会更好;此外,目前继电保护教科书内容繁多,与其他专业课程也有所重复,需要对课程内容进行整合优化。
(三) 学生自主选择力不强
学生对继电保护内容的兴趣点各有不同,部分学生未来并不从事继电保护工作,或考研方向与此关系不大。目前情况是,继电保护课程组教学课时相对较多,内容较为宽泛,对于上述内容部分学生显得索然无味,学生根据自己情况自主选择的能力不够强。为此,以学生为本,可以在课程形式上稍做一些调整。
三、教学模式的探索及实践
针对继电保护课程教学存在的问题,本文探讨了几种改进模式和方法,且部分已开始具体实施,取得了一定的教学效果。
(一)优化专业培养计划
将原本设置在大四上学期分开教学的“电力系统继电保护原理”和“微机继电保护”两门课整合为一门,设置在大三下学期。“继电保护课程设计”可设置在大四上半学期。这样设置有两方面考虑:内容上,减少学生学习任务量,突出重点,使教学有针对性。比如,可缩减“电力系统继电保护原理”教材中电磁型继电器、断路器等与“高低压电气设备”教材有所重复的内容,减少或者删除“微机继电保护”教材中与“微机原理与应用”、“单片机技术”“数字信号处理”等相关课程的重复内容;时间上,我校电气专业学生于大三至大四暑假期间设置了为期5周的发电厂生产实习,实习前对继电保护内容的理论学习,为生产实习期间学生对继电保护装置、电力系统设备等内容建立感性认识打下基础,从而提高学生的实践与创新能力。
(二)改进教学手段与教学方法
教师可采用多样化的教学手段和方法进行教学。以传统教学手段为辅,以现代化网络媒体、实验教学等方式为主。以提高学生学习的积极性及其实践创新能力为目的,建立学生对电力系统继电保护的整体概念,使学科前沿知识与教材内容相结合,课堂教学与实践教学相结合。
1.网络课程建设。利用学校现有网络平台,上传电子教案、视频,演示动画等资源,并建立一套自测系统,使学生可以主动借助网络课程平台观看和使用这些资源。教案、课件既可以作为学生的预习资源以及弥补疏漏的课后复习资料,也可以作为教师选择的教学资源库;视频资源以声、像集合的形式使学生直观了解继电保护的动作过程及原理;具有交互性的演示动画可以提高学生学习的趣味性,比如,利用FLASH将继电保护动作过程制作成SWF动画,或用Visual C++开发保护动作演示模块[4];自测系统可以使学生在正式考试前自我检测,弥补疏漏的知识点。利用网络交互平台有助于增强课后教师与学生之间的互动性,使教师及时了解学生遇到的问题并展开网上讨论,以提高学生对课程学习的主动性。因此,网络资源的建设需要教师有针对性地选择教学内容,或利用专业软件开发演示模块,并及时更新资源。目前,我校网络课程建设已取得初步成果。
2.实验平台建设。微机保护已成为当前继电保护的主要形式。华北电力大学、湖南大学等高校先后自主开发了微机型线路保护教学仿真实验装置。实验平台建设思路为面向实践平台的建设,使学生能够对本专业内容形成完整的知识链[5]。我校可采用引进设备或者利用现有教师队伍和资源对微机继电保护实验设备进行开发。目前,我校基于TMS320F28335+PC机的继电保护教学实验平台的研制正在进行。
实验平台可作为本专业教学科研平台,不仅方便用于学生实验、课程设计和毕业设计,也可以作为教师的科研平台。该平台能够使学生直观了解微机继电保护硬件结构,并且通过配置不同的软件模块实现不同原理、不同对象的继电保护功能;开设综合性实验和设计性选做实验,有利于提高学生的积极性及实验、设计能力,有助于开阔学生的视野、发挥创新能力。
3.课程设计内容优化,加强毕业论文设计。课程设计是培养学生的实践能力、创新能力和综合能力的重要环节[6],在传统设计内容基础上可以充分利用实验平台,先进行整定计算,后在平台上模拟故障时继电保护动作;建立以任务驱动,由教师引导、学生进行自主探究学习的框架。根据继电保护原理建立主题,比如,电流保护、距离保护、纵差保护等;也可以根据继电保护对象形成“主题”,比如,电力变压器保护、输电线路保护等。
课程设计可以在大三下学期上课期间布置下去,使学生带着问题学习,并结合大三暑假为期五周的“发电厂生产实习”,使课程设计更具针对性、实践性,从而激发学生的创新意识。此外,通过毕业论文的设计强化为工作打下基础。
4.完善评价体系。适应新的教学方法与手段,改进传统课程考核评价方式。继电保护理论课成绩应综合考勤、课堂表现、小组讨论、平时作业、网络自测、综合实验等教学环节进行考评。将平时成绩比例增大,有利于激发学生平时学习的积极性;课程设计可以对每个学生进行公开答辩及严格书面考核;毕业论文(设计)成绩评定标准应以提高学生的实践与创新能力为目的,综合文献综述、论文质量、创新能力、实验态度等因素进行考评。
本文以新疆农业大学电气工程专业、农业电气化专业为例,对继电保护课程的教学模式进行探索与实践,重点激发学生平时学习的主动性,使其能够掌握必要的工程技术、测试方法以及先进设备的研究方法。若能将每个环节都做好做实,师生就能在一整套良好有序的教学体系中受益,从而培养出适应智能电网时代、具有实践能力、创新精神的人才。
参考文献:
[1]何瑞文,陈少华.现代电力系统的继电保护课程教学改革与建设[J].电气电子教学学报,2004,(3).
[2]付乔.继电保护发展现状综述[J].攀枝花学院学报,2006,(2).
[3]李文武,袁兆强.继电保护课程组教学改革的探索[J].中国电力教育,2010,(12).
Abstract: With the development of electric power technology and the scale of the network’s rapid development and the popularization and application of microcomputer protection, setting calculation of relay protection work should also gradually increase. In order to promote the stable development of relay protection work, so as to ensure the safe and stable operation of power grids. According to relevant regulations, combined with the actual production and operation of power grid relay protection management in the existing problems, and puts forward some measures for improvement.
Key words: power system; relaying protection; setting management
中图分类号: 文献标识码: A文章编号:2095-2104(2012)01-0020-02
当前电网继电保护整定管理存在的问题
继电保护从业人员配置方面的问题
继电保护整定计算人员作为继电保护整定工作的具体实施者,其工作经验、专业技能及综合素质等都会对工作效率产生直接的影响。因此,我们对继电保护工作的管理首先应该从人员管理着手。继电保护人员的现状如下:第一,有些县级供电公司未能配备专职的继电保护整定计算人员,且从业人员的技术水平参差不齐,加之工作人员频繁变动,从而难以确保继电保护整定计算工作整体水平的持续发展;第二,整定计算原则以及整定计算过程中的问题。不同的整定计算人员所进行的整定计算过程是有区别的,在整定计算过程中因为所选择的整定原则和选用的技术参数都存在着个别的差异,最终会导致计算结果也不尽相同。
基础资料方面的问题
2.1.未能构建一套完整的设备缺陷归档管理机制。在保护专项检查以及保护装置验收中发现有些保护装置或二次回路总会存在一定的缺陷,例如现场的试验结果同装置所显示的跳闸矩阵控制字不一致,个别的回路功能不能正常运行甚至还会出线未接线的情况,另外,有些工作人员只通过口头形式传达资料信息,未曾整理书面资料建立存档。
2.2.在新建、改建、扩建工程中,工程管理单位不能按照规程规定按时给整定计算部门提供相关的资料,即便提供了也会时常出现误报、漏报的现象,这样,整定计算工作任务就不能按时、按计划开展完成,从而影响了继电保护定值计算的时效性,在一定程度上也影响到定值单的按时发放以及工程的按时投运,同样也给安全生产造成了一定的隐患。
2.3.没有及时更新二次设备资料档案,致使错、漏缺陷普遍存在。例如工程项目要进行更改却没有设计变更说明,改建或扩建工程的竣工资料不完整、所存的说明书以及图纸资料等不是当前的有效版本、在工程项目竣工移交资料环节方面未能进行有效的技术管理监督。
2.4.保护装置的更新换代或版本升级速度较快,过去一些老版本的保护装置不能与之衔接,这将严重束缚了继电保护人员在整定计算工作或保护装置调试中的创造性思维。
电网继电保护整定管理问题的改进措施
专业人员对工作熟悉程度的改进措施
根据电网结构、运行方式及继电保护装置的配置情况,编写并制定相关的继电保护运行管理规程;结合年度电网运行方式、保护配置、时限配置、整定计算原则,及时编制继电保护整定方案说明书,用于日常工作中继电保护整定计算人员的培训和整定计算工作核查。同时,也可用于调度员在日常工作中准确分析判断故障的理论参考依据;还可作为不同电网结构时期的保护整定计算文献资料,为今后整定计算人员特别是新上岗的保护工作人员日常开展工作提供理论性指导。
基础资料方面的改进措施
首先对整定计算资料的上报和所报资料的准确性以及资料的规范化进行相应的整合管理,制定出切实可行的业务流程及管理考核制度,使相关部门充分明确各自的职责,从而保证上报资料的正确性;同时也为整定计算人员能够如期实施开展工作提供相应的技术保证。其次,在保护定值执行过程中,特别是在继电保护年度检验及定期检验工作中,将已执行的保护定值通知单与现场进行严格核对,把检查中所发现的问题与缺陷及时回知到继电保护相关部门,以便于保护人员及时整改解决。
加强电网主保护的配置
在实际生产运行中,遇有特殊的运行方式,如因为设备损坏、人为或自然灾害等原因造成的电网大面积停电事故,会直接给社会和电网造成不可估量的严重后果。此时就要靠电网的主保护发挥积极的作用,利用电力系统继电保护及自动装置快速可靠的将故障点切除,使电网能够尽快恢复正常供电,保证电网安全稳定运行,使人们的工作生活尽快恢复正常。因此,从业人员对电网主保护的配置选型、整定计算、运行维护等工作要重点加强,达成共识,以利于继电保护及自动装置在电网运行中发挥更好的作用。
3.1.加强主保护通道形式的构建
光纤通道有着良好的抗干扰性能,且通道有着稳定可靠的传输质量,所以,近些年来被广泛地运用于继电保护当中。首先,光缆路由通道至少采用一路点对点路由;其次,积极运用载波机并以此来代替保护专用收发信机方式,在使用载波机的过程中应该采用相相耦合的方式;第三,为了确保保护装置不会受到错误的光纤通道接线的影响,所以建议对光线电流差动保护装置进行地址编码功能的增设,这样一来,即使保护装置不同,而在电网中却具有唯一性。
3.2.全线速动的主保护配置双重化
因为保护装置需要进行定期检查试验,而且时常会有故障发生,所以,为了保证电网能够安全、可靠、稳定的运行,务必要实现主线保护双重化:
第一,所设置的两套全线速动主保护要同时具有完整性与独立性;第二,两套主保护的电压回路、交流电流以及直流电源之间应该是相互独立的;第三,所设置的主保护能够随时切除全线路所发生的各种类型故障;第四,为了促进三相跳闸以及分相跳闸的实现,每套主保护应该设有独立选相功能;第五,所设立的两套全线速动主保护装置应该有其各自的远方信号传输设备;第六,断路器有两组跳闸线圈,因此每套主保护应该各自承担一组跳闸线圈的启动。
4.合理简化后备保护
1.取消零序Ⅰ、Ⅱ段的可行性
在正常情况下,零序Ⅰ段的保护范围可以达到全线的百分之七十至百分之八十左右。然而,如遇到系统方式发生改变,零序Ⅰ段的保护范围也会因此受到影响,很可能会极大的缩短,不仅无法达到70%,有时候甚至还达不到10%。但是,接点距离Ⅰ段可以有效控制保护范围在70%左右,基本上不会因系统方式变化而受到影响。同时,实测参数在整定计算中也尤为重要,没有实测数据,用设计参数进行理论计算得出的结果不是很精确,会直接影响到保护装置动作的快速性及灵敏性。但是,在实际工作中往往不尽人意,整定计算人员通常不能及时收集到实测参数;因为考虑到基建工程的按时投运不受影响,部分已投运的旧线路无实测数据等因素,只有利用设计参数进行预算,计算过程中需要通过调整可靠系数来防止零序保护的误动与拒动,然而可靠系数的取值较难把握,因此,计算得出的结果也不是很精确,会直接影响到零序保护的灵敏度。另外,就四段式的零序保护而言,对于220kv及以上电压等级线路的保护,零序I段可以用压板或控制字来直接投退,而大部分装置零序Ⅱ保护没有设置保护压板投退功能,所以只能靠整保护定值的取值来完成零序Ⅱ的投退。
对距离Ⅱ段的配合加以改善
依据整定计算的原则,距离Ⅱ段应该考虑本线路末端所发生金属短路故障有足够的灵敏度以及与相邻线路距离Ⅰ段保护的配合来进行整定,如果其与距离Ⅰ段无法进行有效配合则选取与相邻距离Ⅱ段保护配合整定。在当前每套全线速动保护及电网加强型主保护功能完整的情况下,带延时的相间保护与接地距离Ⅱ段无法与相邻线路距离Ⅰ段进行有效配合,应该采取与相邻线路的纵联保护相配合的措施,以此促使动作时间的整定配合能够进一步被简化,从而促进了整定计算配合条件的改善。
总之,不论是电网继电保护的配置同运行问题的分析还是整定计算的原则问题,均应该给予主保护的加强来进行后备保护基本原则配置与整定的简化,同时,还需促进继电保护标准化、规范化管理工作,从而推动工作效率的提高,最终以确保电网运行的安全性与稳定性。
【参考文献】
1. 陈寿连 浅谈电网继电保护整定管理[期刊论文]-中国新技术新产品2011(3)
2. 许小舟 电力系统继电保护仿真研究[期刊论文]-化学工程与装备2008(4)
中图分类号:TM7文献标识码:A 文章编号:1009-0118(2011)-12-0-02
社会的进步带动了经济的高速发展,经济的发展又提高了人们的生活水平,而伴随着人们生活水平的不断提高,人们的用电量有了很大的提升,人们对于电的要求也日益增加。我国电网如异军突起,发展强大。在电网发展的同时,继电保护技术也随着电网的发展而发展着,继电保护从过去的晶体管继电保护、集成电路继电保护,再到后来的微机继电保护时代,已经走过了六十多个年头。但随着计算机技术、电子技术和通信技术的快速发展,电力系统对继电保护的要求也越来越高,继电保护向保护、控制、测量、数据通信一体化和人工智能化发展是必然的趋势,下面笔者就继电保护系统故障的专家诊断进行了简要的分析。
一、继电保护故障专家诊断的作用
所谓的继电保护就是当电力系统发生故障时,能迅速、准确的自动切除故障,保证电力系统的稳定、安全运行。
继电保护在电力公司日常工作中占有重要地位,它是建立在设备状态评价这一基础之上的,而设备状态评价主要包括寿命预测、可靠性评价以及故障专家诊断。在进行设备状态评价以后,电力公司要把设备状态以及分析诊断结果作为继电保护的根据,安排好检修项目和检修时间,对于电力系统和设备进行主动的检修。由于电力系统中的电气设备在一般情况下都是按照规定的时间进行检修,这个固定的检修时间被我们称为“检修期”,而在检修期对电力系统中的电气设备所进行的检修主要包括电力系统中电气设备的维护、试验以及调试。对于电力系统中的电气设备进行检修的时间是一个周期,这个周期是固定不变的,周期可能是一年也可能是几年。
继电保护故障专家诊断有利于加强有关专家及时、便捷地了解电力系统设备的状态,因为继电保护的故障专家诊断能够使电力专家在办公室里随时的浏览整个管变电站中任何一台电气设备的历史状态和当前状态,继电保护的故障专家诊断作用不止包括这一点,它还能够使电力专家迅速的对电气设备的未来处于什么状态进行及时的预测。对于其检测出来的电气设备存在的隐患,电力专家可以在网上进行远程诊断,在网上远程诊断中,有关电力专家会对存在故障隐患的电气设备进行诊断,且会做出对该电气设备是否进行维修以及何时进行维修、怎样维修等等问题的决策,这就为电气设备维修提供了平台。
二、继电保护故障专家诊断主要内容
继电保护故障专家诊断的实践主体是设备制造厂,继电保护的故障专家诊断内容应该包括省、市级电力专家对故障专家诊断分析的系统平台、通信通道以及变电站的现场元件这3个部分,笔者现对这3个故障专家诊断内容进行分析。
(一)继电保护故障专家诊断分析的系统平台
继电保护故障专家诊断分析的系统平台的主体就是电力专家,这些电力专家都是省级和市级以上的专家,继电保护故障专家诊断分析的系统平台就是这些省级和市级以上的电力专家分析的系统平台,他们通过一种现代的管理方式进行管理程序的编写,这种现代的管理方式是通过对相关单位的实际管理方式进行采集来实现的,而编写管理程序是指专家们对一些大众化的程序进行管理程序编写,在进行编写以后会进行资源共享和状态共享,在这里,资源共享和状态共享的实现媒介是有关单位,也就是在有关单位进行状态共享和资源共享的实现,从而做到有关电力专家的远程诊断。
(二)继电保护故障专家诊断分析的通信通道
继电保护故障专家诊断分析的通信通道也可以与调动自动化共同使用,例如载波、光纤、无线扩频等等,在被网络覆盖所允许的情况下,也可以使用现代所流行的VPN路由器加上ADSL线路通过加密这一方式,拟定一个虚拟专网。这个虚拟专网必须在调度中心与变电站之间实现。
(三)继电保护故障专家诊断分析的变电站现场元件
变电站现场元件就是指集中器、采集器、现场后台软件、主屏以及各种传感器等等,这里所指的各种传感器主要包括电压、温度、压力、湿度及位移等等。
三、继电保护故障的专家诊断注意事项
继电保护在故障专家诊断中是有一定要求的,因为继电保护是一项复杂的系统工程,这就要求故障专家诊断建立一套完整的方法机制、保障体系、技术手段、管理体制规范,以达到电气设备继电保护的目的。
(一)建立方法机制
建立方法机制就是指在进行电气设备继电保护这一重要工作时所运用的方法和机理,其主要体现在一系列的评价导则、检修工艺导则、技术导则以及试验规程等。例如,目前电力设备品种繁多,对于各种各样的电气设备开展状态评价,这就需要运用状态量定义、检测方法、评价模型以及评估方法等,这一过程的实现就是继电保护对故障专家诊断要求的方法机制建立。
建立继电保护对故障专家诊断的方法机制主要包括继电保护的评估、状态量采集方法的研究、状态量存储方法的研究、诊断方法研究、电气设备的特征量、电气设备的状态量定义、对于不同的设备类型进行不同设备故障模式的研究、继电保护的管理模式适用性研究以及故障专家诊断评估的管理流程研究等内容。
(二)建立保障体系
继电保护对故障专家诊断要求的保障体系建立主要是指对于继电保护工作开展顺利所需要的辅工作保障的建立,例如标准文件的制定;装置入网的检测、运维;人员培训;继电保护工作的仿真模拟等等内容。
(三)建立技术手段
继电保护对故障专家诊断要求的技术手段建立是指在状态评价工作的进行中,通过实现相关的评估和检测方法的过程,而相关评估和检测方法过程的实现要求必须通过相关技术手段。在现代继电保护中,国家电网公司提出了基于状态量加权评分这一电气设备状态的评价方式,并被广泛的应用在继电保护电力领域之中。笔者在这里提出了国家电网公司的评价方式,现代社会中存在着一些比国家电网公司所提出的评价方式更好的评价方式,但是每种评价方法都有自身的局限性和优点,如果想更好的对电气设备进行继电保护就要综合考虑现代有关的各个行业和各个领域的安全的评价方法,用多种状态评价方法互相结合这一技术手段来实现故障专家诊断的状态评价,这样做有利于实现电力领域故障专家诊断和评价的标准化和专业化。继电保护管理是一门学问,还需要我们更深层次的发掘和研究。
(四)建立管理体制
继电保护对故障专家诊断要求的管理体制建立主要是指继电保护工作中所需要的种种组织形式,其还包括这些组织形式中的相关分工以及相关职责。笔者主要强调继电保护的主要工作流程体系,继电保护的主要工作流程体系主要包括工作流程、组织体系以及绩效评估等。
四、结语
近些年来,社会得到了不断进步,经济也得到了快速的发展,再加上信息技术科学的研发和不断提升,继电保护故障专家诊断为继电保护技术的发展开辟了新的道路,必将为电力系统的发展注入新的活力。
参考文献:
[1]商彦蕊,黄定华,杨敬坡.灌溉农区农业旱灾系统脆弱性诊断与评估――以暖温带半湿润地区河北邢台县为例[J].地域研究与开发,2006,(05).
[2]段辉文,仲崇山,白福海.胜利油田电网实施状态检修探讨[A].山东省石油学会油田电力、通信及自动化技术研讨会优秀工程技术论文集[C],2009.
继电保护技术的发展是电力安全发展趋势的一种必然选择,也是企业在供电过程中不可缺少的一种重要应用工程。该技术的运用必将随着电力的不断发展而提升。在现代化的电力需求中,家电设备增多、企业用电机器增多、发电机容量增大等多种客观方面的原因使得电力系统中正常工作电流和短路电流都不断增大。这就需要一种既能够保护机器正常运转,又能够对短路等用电现象提出及时警报的技术。无疑,继电保护技术便应运而生。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。本文试就继电技术的发展运用作探析。
一、继电保护技术的理解
继电保护技术是指在正常用电的过程中,能够对电路故障进行及时的警报,并能够有效地防止事故发生的一项技术,其核心是继电保护的装置。继电保护的装置随着现代电力的发展变化也由原先的机电整流式向集成微机处理式过渡。尤其是近三十年以来,将计算机运用技术融入继电保护装置,使得微机继电保护技术得到了长足的发展,也使得保护的性能得到进一步的增强。
继电保护技术的主要特点是:(1)自主化运行率提高,计算机的数据处理技术能够使得继电设备具有很强的记忆功能,加之自动控制等技术的综合运用,使得继电保护能更好地实现故障分量保护,提高运行的正确率;(2)兼容性辅助功能强,继电保护技术在保护装置的制造上采用了比较通用兼容的做法,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能;(3)操作性监控管理好,该技术主要表现在一些核心部件不受外在化境的影响,能够产生一定的使用功效。与此同时,该保护技术能够通过计算机信息系统,具有一定的可监控性能,大大降低了成本。
二、继电保护技术的在电力系统中的运用特性
(一)继电保护技术的智能化运用特性增强
现代化的电力管理越来越体现了智能化的控制管理模式,具有一定的人工智能化的特征。这些特征,一方面使得电力系统在管理上减少了不必要的资源浪费;另一方面为其他各项技术的运用提供了广阔的技术空间。正是在这样的技术背景下,继电保护技术出现了一定的人工智能化,使得保护装置在设计上更具有合理性和科学性。
这些智能化的信息特征使得继电保护技术在发展的过程中逐渐地进入了自动化的发展进程。目前,在我国主要大城市供电公司的继电保护设备中已采用了模拟人工神经网络(ANN)来进行对用电的保护。因此,进一步推进了继电保护技术智能化的发展前景。据现有的资料介绍,在输电过程中出现的短路现象一般有几十种,如果出现这样的情况用人工进行排除,至少需要12小时以上。但若是采用上述的神经网络继电保护方法,可通过采集的数据样本对发生故障进行检测,从而能在半小时之内得出故障出现的原因,大大缩短了维修时间。这些人工智能方法通过计算机辅助体统的帮助运用,可使得电力运输效率大大加强。
(二)继电保护技术的网络化更新发展显著
继电技术的运用离不开计算机网络的支持。这种网络化的技术,不仅给继电技术提供了可操作检查的直观空间范围,也给其发展更新提供了更为广泛的动力支持和保障。这也正是继电技术开放性发展的必然要求。继电保护的主要功能在于保护电力系统的安全稳定,而这种保护离不开计算机网络的数据模拟生成系统,需要依据计算机通过数据采集和分析来检测故障存在的原因,进而发出警报。
这些网络化的发展,一方面,能够通过数据的的采集和模拟生成,综合分析可能出现的各种故障;另一方面,在显示故障的同时,能够准确地反映出故障的缘由、位置的情况,便于工作人员能够采取有效的解决策略。例如,现在的各种环保节能发电厂就是采用了该种装置,通过总调度室计算机监控,不仅能够知晓现有线路的运行前那个框,还能够对各条线路出现的短路等现象作出判断,以便维护人员能够进行及时正常地维修。
(三)继电保护技术的自适应性发展迅猛
继电保护技术的自适应性也是值得关注的方面。我们知道自适应控制技术在继电保护中的应用具有如下的作用:(1)使得继电保护更具有一种适应性,能够适应多种故障的检测;(2)有效延长保护时间,能够使得电气设备产生更长的使用寿命;(3)能够提高经济效率,即这种保护能够针对用电过程中出现的问题进行排除,不仅减少了人工操作的麻烦,还能够节省成本。
当前电力系统在发展过程中出现的各种问题,除了需要一定的人工操作之外,采用继电保护技术的自适应性技术,一方面,能够真正发挥继电保护的“保护”功能,使得人们的生产生活得以顺利地开展,满足人们的发展需要;另一方面,能够使得这种适应性能面对各种形势的变化发展,最大限度地提高电力设备的使用寿命,以减少故障的发生。这种适应性应该离不开计算机网络环境的支持。因此,就更具有广泛的适应性能。
三、继电保护技术的发展前景
(一)电子数据主动化的特性显著
随着计算机数据自动化的发展,继电保护技术的现代化发展也必然得到充分的体现,即电子数据主动化性能必将得到显现。
(二)继电保护功能将进一步拓宽
在计算机辅助设计功能的帮助下,继电技术的功能性必将得到进一步的增强,可根据故障的显性进行适当的控制运用。
(三)继电保护技术的运用方便灵活
在该项技术的指引下,使得电力线路维护调试也更方便。在运行过程中,操作者可根据电流值,可进行适当调整。
综上所述,继电保护技术在电力系统网络化的发展趋势中,定会综合各种学科的发展,必将步入更为广阔的发展空间,由数字时代跨入信息化时代,增强电力发展的安全性。
参考文献
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安交通大学出版社,1996.