绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数字信号处理论文范文,希望它们能为您的写作提供参考和启发。
一、随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。
所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。
典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中,在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。
人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。
二、数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。
促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。
信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论。随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且IT缺少二维多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。
事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。
参考文献:
[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).
[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)
[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).
[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).
[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).
作者简介:李磊(1981-),男,河南南阳人,郑州大学物理工程学院,讲师;杨洁(1983-),女,河南商丘人,郑州大学物理工程学院,讲师。(河南 郑州 450001)
基金项目:本文系2012年度教育部大学生创新创业训练计划课题(项目编号:1210459084)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)23-0056-02
“数字信号处理”课程是电子信息、通信工程、自动化工程及相近专业必修的专业课,在电气工程、测控技术、计算机技术等领域得到了广泛应用。[1]当前国家越来越重视大学生的创新意识和实践能力的培养。通过实施教育部大学生创新创业训练计划和卓越工程师计划,促进高等学校转变教育思想观念,改革人才培养模式,强化创新创业能力训练,增强高校学生的创新能力和在创新基础上的工程实践能力,培养适应创新型国家建设需要的高水平创新人才。为了提高学生的创新意识和应用知识解决实际问题的工程实践能力,需要调整“数字信号处理”课程的教学内容,引入新的教学手段和教学方法来提高学生学习的积极性,这是专业基础课教师所面临的重要课题。笔者介绍了一种针对本科生教学的分层教学模式,突破单一的理论灌输的教学弊端,显著提高学生们学以致用的能力,并运用实例介绍了这种分层教学模式。
一、“数字信号处理”课程教学现状
数字信号处理是一门理论性很强的课程,内容抽象,公式繁多,课程内容涉及很多数学推导与计算。目前,传统的教学模式主要存在以下问题:[2,3]
1.教学内容过度重视理论推导,不注重理论和实践相结合
国内大学的很多任课老师往往注重讲授公式性质、定理的由来,注重理论的严谨与正确性,这势必大大占据有限的授课时间。这种教学思路使课程陷于数学推导和计算,而使学生感到枯燥乏味,抓不住重点,教学效果大打折扣。
2.课程实验内容单一,与工程实践还有距离
课程实验内容一般都以MATLAB软件作为仿真平台,对课程中的时域离散信号、系统的时频域理论和数字滤波器设计理论进行仿真实验。诚然,MATLAB仿真软件作为信号处理的实验手段,具有信息量大、形象直观的特点,在很大程度上补充了单一的理论教学模式。但是仿真手段毕竟是理论的数学编程,还是脱离了工程应用的实际背景。仿真不能完全取代本课程的实验和实践内容。算法仿真内容过于形式化、过于简单,只能作为工程实践的前期阶段设计内容。
二、分层教学法原则与内容
传统的数字信号处理课程大多只讨论算法的理论及其推导,较少涉及工程实现方法及相应的软硬件技术。大学的教学应是理论教学、实践教学和科学研究为一体的,实践教学作为理论和科学研究的桥梁,是现有理论的源头,也是未来科研开拓的基础。理论课程应实现教学形式的多样化,包括多种实验、课程设计、科技竞赛和创新活动等。数字信号处理课程可以分为理论学习,算法仿真,数字信号处理工程应用平台实验,课题为导向的数字信号处理课程工程实践拓展训练四个层次。[4]
1.第1层:理论学习
广义来说,数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科。目前本科生只是学习经典的数字信号处理理论,主要包括有关数字滤波技术、离散变换快速算法和谱分析方法。因为教学时间有限,现代信号处理或者数字图像处理的内容只能根据项目需求有针对性进行学习和研究。教师可以鼓励学生去搜索相关文献,查找资料,激发他们的自学热情和能力。
2.第2层:算法仿真
算法仿真往往是电子信息工程实施以前必经的重要阶段。MATLAB语言具有强大的科学计算和可视化功能。它作为数字信号处理的有力助手,成为教学的重要部分。其以矩阵运算为基础,具有丰富的数值计算功能,强大的绘图功能,更重要的是具有完备的数字信号处理函数工具箱。比如FIR滤波器的设计,包含三种方法:程序设计法、FDATool设计法和SPTool设计法。其中FDATool(Filter Design & Analysis Tool)是MATLAB信号处理工具箱专用的滤波器设计分析工具,操作简单、灵活,可以采用多种方法设计FIR和IIR滤波器。在MATLAB命令窗口输入FDATool后回车就会弹出FDATool界面。SPTool是MATLAB信号处理工具箱中自带的交互式图形用户界面工具,它包含了信号处理工具箱中的大部分函数,可以方便快捷地对信号、滤波器及频谱进行分析、设计和浏览。学生可以采用MATLAB进行电子工程中算法的前期仿真,然后将MATLAB程序转换成C语言移植到硬件平台上。
3.第3层:数字信号处理工程应用平台实验
数字信号处理算法需要借助特有的硬件平台实现工程应用,采用的编程语言一般是C语言。目前数字信号处理系统的硬件实现方式一般有三种:(1)利用通用可编程DSP芯片进行开发的方式。由于是采用基于C语言进行编程,算法实现过程简单,但资源受到限制,并行度差。(2)采用专用集成电路ASIC方式进行开发。虽然效率高,但开发流程长,成本高,开发出来的系统不能更改。(3)采用FPGA芯片进行开发。可以提供高效率和高质量的数字系统。在实际硬件平台选型中,使学生能够对单片机、ARM、DSP、FPGA的应用领域加以区分,从而更加深刻认识到DSP和FPGA实现数字信号处理的巨大优势。
4.第4层:课题为导向的“数字信号处理”课程工程实践拓展训练
课题为导向的教学模式是提高学生实践能力的新型教学模式。它以大学生创新实验项目为平台,以基于案例为教学模式,以科学研究的方式组织和引导学生获取和运用知识,培养学生创新性思维和分析解决问题的能力。这种方式克服了教学和实验中单纯模仿的弊端,发挥学生的主观能动性,拓展学生的眼界,引导学生解决开放性问题,促使学生不断提出新问题、发现新问题和解决新问题。
以上这四个层次并不是单一的顺序递进关系,而是不断交互的关系。比如工程实际问题的解决过程往往促使学生回归理论学习层次去深入研究,反过来能够更好地去解决工程实践中遇到的技术难题。算法仿真采用的MATLAB语言需要转换成数字信号处理工程应用平台实验使用的C语言进行移植,这也需要第二层和第三层内容的不断交互。
三、教学实例
为了实现对学生实践能力的综合培养、潜力开发和工程创新精神的激励,学校积极为学生们搭建工程实验平台,为学生参加“全国电子设计竞赛”、全国挑战杯、大学生创新实验计划项目等活动奠定基础。下面基于教育部大学生创新实验课题“基于麦克风阵列声源定位的动态视频跟踪系统”来例证“数字信号处理”课程的分层教学模式。[5]
首先,学生们经过调研确定项目需求,选取合适的算法模型进行研究。基于课题驱动的教学模式促使学生从需求这个工程项目源头进行考虑。经过广泛的调研,学生们发现在日常生活中,常规的摄像头监控系统的摄像头安装是固定的,监控方位是静态的,只能监控有限的方位区间。这样的监控系统监控方位区间狭窄,难免存在很大的监控盲区,无法很好地实现监控功能。由人类的耳朵和眼睛协调工作的仿生原理得到启发,人类的耳朵相当于一个二元声音传感器阵列,捕捉到声源信息,通过大脑判断,得到声源的方位信息。然后驱动我们的脖子扭转到声源方向,我们的眼睛就可以实时看到声源目标,做出视觉的判断。为此,学生们用微型麦克风阵列来代替人耳,用一个步进电机来代替脖子,用摄像头代替眼睛,用DSP处理器来代替人脑实现信号的运算处理和控制功能,从而实现一个基于麦克风阵列声源定位的动态视频跟踪系统,如图1所示。这样,该视频监控系统通过麦克风阵列进行多传感器联合信号处理,可以首先根据声源的声音有无来判断是否启动监控,再通过声源的方位可以驱动步进电机,自动转动摄像头跟踪实时运动的目标,实现无盲区、全角度实时自动监控。
算法模型的确定促使学生广泛阅读文献,最终找到了阵列信号处理理论作为麦克风阵列数学建模的理论基础。通过MATLAB仿真分别分析了仿真的宽带音频信号和实验采集的音频信号,验证理论模型和实验结果能够很好地匹配。该本科生研发团队把宽频声音信号的特点和传统的远场声源方位估计算法相结合,依据到达时间差的声源定位原理,提出了一种频域波束形成算法,系统框图如图2所示。系统上电后,多路麦克风分别接收音频信号,并进行采样缓存,送入DSP处理器中进行端点检测,如当前信号为噪声或无用信号,则丢掉已采集的信号帧数据;如检测到有用信号,则对其进行频域波束形成和进一步处理,最后采用基于能量值的谱搜索算法计算出声源的方位,从而控制步进电机驱动摄像头转向声源所在方位,使声源出现在摄像头视野范围内。该课题针对当前智能视频监控存在的监控盲区的问题,提出并实现了一种基于麦克风阵列的宽频声源定位系统。通过采用频域波束形成和基于能量值的谱搜索算法,实现了二维空间声源的快速准确定位。经验证该系统在室内及室外对各种声源的实时响应表现良好,在现代视频监控中具有一定的工程实用意义。通过该课题学生们申请了实用新型专利和发明专利各一项,学术期刊论文2篇,了解了电子信息工程设计的步骤和培养了科学研究的基本素养。
四、结语
按照上述的分层次递进教学模式,使学生按照基础理论实验、仿真实验和DSP工程实现理论和实践的交互学习。这一体系从简单到复杂,从理论到实践,循序渐进,逐步提高。经过工程实践的训练,激发了学生们学习“数字信号处理”课程的热情,巩固了课本上的知识,拓展了工程实践的视野。同时,大大提高了学生们独立解决问题的能力和工程实践创新能力。学生在专利申请和论文撰写的训练中,实践了科学研究的方法,为将来的科学研究奠定基础。通过上述的教学实践,取得了良好的教学效果,得到了广大师生的认可。
参考文献:
[1]程佩青.数字信号处理教程[M].北京:清华大学出版社,2007.
[2]王典.数字信号处理课程分类和分层教学模式探索[J].实验技术与管理,2013,(2):31-32.
【Abstract】The view of comprehension and application of digital signal processing techniques vary with different major. Some discussion is apposed in the paper about the consummation and innovation of digital signal processing teaching contents and methods under the characteristic and demand of the major of measurement & control techniques and instruments.
【Keywords】measurement & control techniques and instruments, digital signal processing, teaching contents and methods
数字化和信息化的迅速发展,使得数字信号处理技术与应用在日常生活中的地位越来越突出,新的算法(或改进算法)层出不穷,新的器件频繁更替。对于仪器科学与技术学科下的测控技术与仪器专业,“数字信号处理”是一门重要的专业基础课程,该课程不仅理论性强,工程应用背景也十分明确。作为一门涉及面广的学科专业基础课程,如何与学科的应用需求接轨、与学生的知识体系融合,改革教学内容与授课方法,全面提高教学质量与效果,与时俱进、科学发展,创建有专业特色的示范性课程是课程组面临的问题。
论文以学校课程体系建设的目标与要求为出发点,结合国防科学技术大学测控技术与仪器本科专业的特点和建设需求,在“数字信号处理”课程教学内容的完善、教学方法的革新等方面进行了探讨,提出了一些观点和看法。
1 学科与专业对数字信号处理的专门需求
仪器是信息获取、处理与应用的工具,而仪器学科与技术则是研究以获取信息为目的的信息转换、处理、传输、存贮、显示与应用等技术与装置的应用科学,其核心内容可以用四个关键词概括,即:计量、测量、仪器和传感器[1]。没有测量就没有科学,仪器科学与技术的领先程度决定了科研和生产的先进程度和竞争能力[2]。从这个角度来看,测控技术与仪器专业更加强调数字信号处理的物理意义,也就是信号对象的物理属性,包括:时间属性、频率熟悉、误差范围、测量精度等。
目前该校仪器科学与技术学科逐渐形成了以现代传感技术及系统、空间仪器工程、无线电测量理论及应用为主要方向,以信息获取与处理为主要内涵的省重点特色学科,本科专业为测控技术与仪器,要求学生掌握信号采集、分析与处理等方面的基础理论与技术,在测控、测量及测试等方面具有良好的理论素养和技术基础。开设了“电工与电路基础”、“信号系统与控制”、“数字信号处理”、“现代测试系统”等一系列专业课程。主要课程见表1。
表1:测控技术与仪器主要专业课程情况
从表中可见“数字信号处理”首当其冲成为一门重要的专业基础课,并且为测控技术与仪器专业服务,有着明显的信号采集、测量、微弱信号检测、仪器系统设计等方面的应用需求。在本专业知识体系中,“数字信号处理”紧密连接传感器的信号调理,与信息转换、处理甚至是传输和存储等有密切的关系,其内涵更加偏向于真实信号物理量的采样与处理,目标更加注重于数字信号的物理意义和应用方向。课程内容包括:采样过程及误差分析、离散时间信号与系统、离散变换及其快速算法、数字滤波器设计、数字信号处理系统的实现、多采样率信号处理等。课程将通过讲授、练习、实验使学生掌握数字信号处理的基本理论和方法,并能使用软硬件工具进行相应的数字信号处理工作。
2 依据学科专业特点改革教学内容与方法
根据课程体系建设的需求,在教学内容与方法方面尝试提出了如下建设目标:
2.1 结合学科专业特点,吸收国外先进教学理念,与国际著名院校课程内容设置充分融合,以经典“数字信号处理”课程体系为基础,以现代测量系统中备受关注的信号处理方法和技术为导向,紧扣真实信号物理量采样与处理的学科背景,结合国外相关专业知名教材,在专业课程体系内将教学的内容、课程间的关系与教学实践紧密配合一起,积极梳理课程体系之间的关联,根据学科和理论技术的发展,科学地完善教学内容。
2.2 开拓国际化视野,充分采用启发式、交互式、研讨式的教学方法和课堂、网络和实践相结合的教学手段;尝试通过引进国外教学名师开展课外专题讲座,提高学生的兴趣、拓展学生的专业思路,提升授课效果;用仪器科学与技术大专业的通识教育理念,建立典型案例素材库,完善学生的专业知识体系及应用能力;结合科研条件,采用软件仿真和硬件验证相结合实践教学系统,实践环节的比重达到30%以上;网络教学突出互动性,答疑和研讨环节能够通过网络教学平成。
3 开拓思路积极探索改革举措
测控技术与仪器专业学生有着明显的工程技术培养需求,“数字信号处理”课程是专业理论和实践相结合的桥梁,必须结合学科特点,与国际化教学内容融合,与电工技术、信号系统与控制等课程密切配合、融合[3,4],充分体现测控技术、仪器、传感器对信号处理的更高要求和需求、拓展数字信号处理的广度和深度,在无线电测量、精密仪器信号处理和微弱信号处理等方面突出授课重点,为学科专业打下坚实基础。举措如下:
3.1 结合学科专业特点,与国际著名院校类似专业课程内容设置充分融合,将教学的内容、课程间的关系与教学实践紧密配合一起,充分提升授课效果,结合学科需求,将“数字信号处理”教学内容与国际接轨,并能根据学科和理论技术的发展而动态适应。
优秀教材与普通教材的区别,并不在于内容及其先进性,也不仅仅在于语言,主要在于教学的理念和方法[5],对于本专业的“数字信号处理”课程更是如此。因此必须融合国外教材和国内教材的特点,合理安排教学内容的讲授方式、时机与深度,引入概念方法时,注重启发性、直观性,可使学生先知其然,而后再知其所以然。在叙述方式上,同一内容由浅入深,在不同章节,从不同层次加以阐述,力图体现各部分间有机联系;同时注意结合自上而下和自下而上的方式,注重启发、实用的同时,多帮助同学拎出主线和脉络[6],如表2所示。必要时做一些知识补充,以使学生不仅掌握一些具体的原理、实用的方法,还建立起比较系统的认识,以供进一步深造之需。
表2:数字信号处理课程内容分类
3.2 结合“电工与电路技术基础”、“信号系统与控制”课程内容,与之优化整合,使“数字信号处理”课程内容与专业课程体系融会贯通。用仪器科学的通识教育理念,优化“数字信号处理”课程的授课内容、提升授课效果,完善学生的专业知识体系及应用能力。
“电工与电路技术基础”、“信号系统与控制”和“数字信号处理”三门课程构成了专业体系中重要的“电路、系统、信号分析与处理”基础课程体系。“电工与电路技术基础”课程主要学习电路基本理论与分析方法相关的经典理论;“信号系统与控制”课程主要学习确定性信号的时频域分析方法,线性时不变系统的描述方法与特性,以及线性时不变系统的变换域分析方法;“电工与电路技术基础”和“信号系统与控制”是“数字信号处理”的理论基础,“数字信号处理”是“电工与电路技术基础”和“信号系统与控制”在离散域中的深入扩展与应用。
然而,传统情况下“电工与电路技术基础”、“信号系统与控制”和“数字信号处理”课程各自施教,在一定程度上存在授课内容重复、衔接不合理、综合不够等诸多问题,这些问题随着教学计划的修改和课时的减少显得更加突出。如,在 “电工与电路技术基础”课程中,已涵盖了许多“信号与系统”课程中连续信号与系统分析的相关内容,而“数字信号处理”课程中也存在“信号与系统”课程中大量离散信号与系统分析内容的重复[3]。各门课程自身内容体系的最优不一定是整个教学计划的最优,因此,有必要结合“电工与电路技术基础”、“信号系统与控制”课程内容,与之优化整合,使“数字信号处理”课程内容与专业课程体系融会贯通,如此才能更好地完善学生的专业知识体系及应用能力。
3.3 仪器科学与技术是一个应用性较强的学科,“数字信号处理”是应用性很强的课程,因此该课程的教学应该是理论、实践和科学研究的三元一体。
理论教学主要是通过课堂教学环节完成的。在教学过程中,应强调基本概念的建立和基本内容的深刻理解,淡化公式的推导和解题技巧,强化所学知识的综合应用能力与创新能力的培养。加大教学内容和课程体系改革,建设形式上理论教学与实践教学独立设课,内容上互相交叉和融合,分层次按需设置的完整的理论和实践教学体系[7],通过实践教学和简单的科学研究思路,增强学生对基础理论的认识,强化学生理解能力,深刻了解“数字信号处理”与专业相关课程的联系。
配合课程教学预先安排了4 个教学实验,要求学生用Matlab进行原理仿真,通过之后并在采样信号处理综合实验系统上进行调试和运行,从而锻炼学生对理论知识的掌握与应用能力,以及简单的科研能力。如表3所示。
表3:数字信号处理课程的教学实验内容
3.4 将授课效果作为第一评判标准,采用启发式、交互式教学方法、通过多媒体、网络、专题讨论课等方法,提高学生对课程的掌握程度;在支撑学科发展的大视野下,根据课程在学科课程体系中的地位和作用,改革传统教学手段,理论联系实际,培养学生的创新思维和创新能力,加强梳理与其他课程或竞赛之间的相互关联,全面提高学生专业应用素质。
下面以文献[6]中的实例为例,说明教学方法和教学手段的效果。在讲授序列的傅里叶变换(DTFT)和离散傅里叶变换(DFT)时,学生很难理解这两种形式傅里叶变换的区别。实际上,DTFT和DFT都是从频谱分析的角度来分析一个序列。对于DTFT,只要该序列满足绝对可和的条件,则它的傅里叶变换一定存在且连续,由于其一个域是连续的,因而不适合在计算机上运算。而DFT是专门针对序列“有限长”的特点而提出的,其频谱也是离散的,因而适于在计算机上运算,同时也可以通过快速傅里叶变换(FFT)实现。为了让学生不产生混淆,在教学过程中,可以利用MATLAB进行现场仿真,让学生通过仿真结果直观掌握二者的关系和区别。实验中,采用矩形序列x(n)=R5(n),N=32。其中图a是序列的波形图及其DTFT变换的连续谱,周期为2π,图中显示的为主值区间([0,2π])频谱。图b是通过16点和32点FFT来实现的序列DFT变换,其中图线的包络即为信号的DTFT连续谱,从中明显可以看出,DFT实际上是对主值区间上的DTFT连续谱在频域进行抽样,抽样点数即变换的点数。通过这样的现场仿真分析,学生很容易掌握和理解DTFT和DFT的关系和区别。
图1:一种启发式多媒体教学手段实例[6]
3.5 教师回归“师者”的本位——传道、授业、解惑,加强疏导,发挥学生主动性。所谓传道就是传授其中的基本规律和变化趋势,引领学生入门;授业是传授解决问题的方法和技能,发挥学生主动性;解惑就是答疑,持续发现并消除学生心中的疑惑。通过深入浅出、抓重点、理脉络的方式解答学生在课程学习过程中的疑惑,提高其提出问题、分析问题、解决问题的能力。“授人以鱼,不如授人以渔”。
4 结束语
“数字信号处理”是一个理论实践性都很强的课程,每个学科对其应用和理解都可能会有所偏重,因此在教学内容与方法探索上应该认真分析本专业课程建设需求与现状,不断研究解决教学内容与方法建设中存在的问题,全面归纳、总结经验,在充分研讨的基础上对教学内容与方法进行详细地规划,才持续地推进“数字信号处理”课程建设水平和授课效果,优化学生知识体系结构,满足学科专业对本课程的需求。参考文献
[1] 潘仲明,仪器科学与技术概论[M],北京:高等教育出版社,2010:1
[2] 殷纯永,仪器科学与技术发展建议[J],中国机械工程,2000,11(3):264~266
[3] 李俊生,张立臣,蒋小燕,“电路分析”、“信号与系统”和“数字信号处理”课程的优化整合[J],常州工学院学报,2009,22(6):89~92
[4] 谢守清,胡毅,“信号与系统”和“数字信号处理”的优化教学[J],电气电子教学学报,2009,31(6):18~21
【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)05-0016-02
【Abstract】According to the characteristic of the course of digital signal processing, the innovation of the teaching, such as the contents, the methods, and the exam of teaching, network construction and improvement are presented in this paper. Facts have shown that this method has achieved a better teaching effect, it not only stimulate students to explore, but also and enhance the enthusiasm of the students’ comprehensive quality and designed.
【Key words】Digital signal processing Practice The exam of teaching Network construction
一、引 言
随着计算机和信息学科的飞速发展,“数字信号处理”已成为一门重要的高新技术学科,是理论与实践、原理与应用紧密结合的课程。目前数字信号处理课程已成为大多数电子、计算机、通信等相关专业的主干课程。但是该课程内容多、学时少,偏重理论与公式的推导,缺乏可视化的直观表现,学生从纯数学的角度学习,理解抽象,普遍反映课程难学、内容枯燥、不会应用。如何在有限的时间内提高教学质量,使实践和理论两个方面的教学和谐统一,是值得探索的。因此,为了提高教学质量,我们注重对其物理意义和实际应用的讲解,并适当使用多媒体与具有计算功能和绘图功能的Matlab相结合的教学方式,将抽象的数学以可视化的形式展示给学生,让学生更易理解抽象的概念。
二、教学方法与实践改革的探讨
针对数字信号处理的学科特点和教学现状,在现有教学工作的基础上,提出以下教学方案:
1.合理选择教材,尝试双语教学。
选择一本内容和形式都好的教材是进行课程改革的基础和关键。我们采用清华大学程佩青编著的《数字信号处理教程》。在教授过程中,尝试采用双语教学模式,以帮助学生更多的了解英语专业词汇,为阅读英文资料奠定基础。
2.合理安排教学内容
该课程经过多次修订教学大纲,逐步完善教学内容体系,加强基础能力和实践动手能力的培养,把与该课程相关的新技术及热点研究课程及时充实到教学中,同时加强教学内容与工程实际的联系,使学生更好地掌握技术原理,提高自主学习的热情。
深入研究符合现代教育理念的教学方法,采用多元化的教学手段,丰富教学过程。注重以学生为主体的参与式教学,结合多媒体教学图像对感官的刺激,运动互动式、讨论式等多种教学方式,充分调动学生参与课堂教学活动的热情。引导学生进行研究式学习,培养创新意识和能力。利用网络电子资源、网上答疑等信息化教学手段,提高学习效率。
3.实践环节改革
数字信号处理课程与实践密切相关,只通过理论教学难以使学生理解数字信号处理的原理。实践教学环节可以弥补学生对理论知识的感性认识不足的缺陷,建立理论联系实际的概念,是培养学生分析解决问题能力、创新意识、实践技能和提高综合素质最有效的途径。通过实践教学,可以锻炼学生的动手能力,培养学生的研究方法和钻研精神。
Matlab是美国Math Works公司开发的用于概念设计、算法开发、建模仿真、实时实现的理想的集成环境。特别是它具有数字信号处理软件包,可很方便地进行数字信号处理方面的有关运算和系统设计、仿真,极大地提高了设计的效率。将其用于数字信号处理课程当中,通过加入一些综合性、设计性实验,不仅把理论知识与实际应用联系起来,更有利于培养独立思考、综合运用知识的能力,还可以锻炼协作意识。
在实验教学任务的制定和实施上,在加强基础实验的同时,增设综合性、设计性实验项目或课程设计,用以训练学生综合分析问题和解决问题的能力。以信号频谱分析及IIR数字滤波器的设计这一综合实验为例,实验指导书给出基本步骤:首先采集语音信号,对采集的语音信号进行采样并混进加性噪声,然后用FFT进行频谱分析,根据含噪信号的频谱,用双线性变换法设计相应的IIR数字滤波器进行滤波,得出滤波前后的频谱,分析信号的变化。具体实施和调试由学生借助Matlab实现。
另外,在设置设计内容时,鼓励学生自拟设计题目。如将数字信号处理课程中的FIR滤波器设计、音频信号处理课程中的音频信号采集与回收通过DSP硬件平台实现,对软件实验利用Matlab语言和DSP汇编语言实现算法仿真或设计,硬件实验通过实验平成。这些课程设计培养了学生的工程实践能力。总之,在教学过程强调理论与实践并重,促进理论与实践紧密结合。
4.创新作业形式、考核方法和手段
目前的考核方式只是对课堂教学的“检查”,缺乏实践和创造性的内容,不能适应素质教育的要求。我们将卷面考试与实验情况以及撰写有关课程内容的小论文相结合,将传统的单一考试方式改为多种模式相结合的形式。考核内容除保留原来基本概念和知识点的问答计算外,增加一些对实践问题的分析、判断及解决方法,加强对实验结果分析的考察,促使学生深入思考和分析问题。这样既可以更好的检验学生的综合能力和创新能力,又能将学生的学习重点从应试转移到应用上。
5.建立和完善教学网站
学校在网络建设上的投入使得数字信号处理基础课程的网络资源建设取得了跨越式的发展。在学校的网页上,提供了本门课程的所有教学资源,包括教学大纲、教学日历、教案、课件、学习指导与习题解答、实验内容等,供学生自主学习参考。此外,还设置网上测试、在线答疑和在线交流等,利于与学生的互动和沟通。
三、评价与思考
经过近两年的教改探索,基本已形成理论与实践并重的教学新体系,在提升实践教学地位的同时,激发了学生探索的积极性,学生的综合素质和专业应用能力得到较大提升。
但是由于受到课时数的限制,一些较多的、较大的实践教学内容无法实施,学生的应用能力培养受到一定影响。因此,应根据具体需要,适当的增加课时数,以便能更好的达到预期目标。
四、结束语
本文结合我校应用型人才培养的教学目标,依托河南工业大学《测控技术与仪器专业信号类课程的多元化实践教学改革》项目,针对信号类课程教学面临的共性问题,从理论、实践与考核方式等方面探讨了教学方法的改革。经过几年的探索,这种教学模式取得了较好的教学效果,提升了学生综合应用素质和核心竞争力。
参考文献
1 金海红等.“数字信号处理课程”的改革探索与实践[J].科技资讯,2010(33)
2 李灯熬、张海燕、王华奎.“数字信号处理”课程教学改革与实践[J].研究与探讨,2010(8)
“数字信号处理”课程是工科信息类专业的一门专业基础课,我院电子信息科学技术专业和电子信息工程专业以及特色试验班开设了这门专业基础课.我们选用的是丁玉美主编的《数字信号处理》教材.由于这门课程,理论内容比较多,概念比较抽象[1,2],因此对于学生来说理解和掌握起来比较困难,此课程是在“信号与系统”课程的基础上进行的,数学概念多,如果学生在“信号与系统”课程中掌握和理解的知识不牢靠,对本课程的学习将会更加吃力,需要我们积极的探索更加有利于学生的科学教学方法和实践方法.本文结合我院电子信息专业特色实验班的“数字信号处理”课程教学和教改工作,分析了本课程存在的一些问题,探索更加有益于教学的教学方法,并通过对比采用本文的教学方法前后特色试验班学生的成绩,实践表明采用本文提出的教学方法,可以提高特色试验班“数字信号处理”课程的教学质量,取得了比较好的效果,为其他专业课程的教学研究提供了有意义的研究方向.
1“数字信号处理”课程教学存在的问题
随着信息化技术的发展,数字信号处理的发展也日新月异,理论和技术方面不断创新,成为多学科相互连接的桥梁和纽带[3-5].要使“数字信号处理”课程的知识内容跟上时代的发展,必须克服在当前的教学教改中存在的一些问题.根据当前教学实际,我校特色试验班主要存在以下一些基本的问题,急需探索新方法进行解决.(1)数学知识的基础不牢靠影响学生对本课程的学习和运用,需要学生对数学的基础知识熟练掌握.由于本课程的许多内容和实际的工程应用直接相关,充分运用好信号处理的知识,需要使用数学工具对实际工程中的一些采集的数据进行分析和处理.(2)特色试验班学生许多是从其他的非电子类专业中招收的学生,甚至是招收其他学院的学生,因此特色实验班中的学生对电子信息方面的基础专业课程的基础知识掌握参差不齐,比如“信号与系统”,这门课程是“数字信号处理”的前置课程,使“数字信号处理”课程的教学难度加大.(3)“数字信号处理”课程的部分内容和其他课程的内容有一定的重复,比如“信号与系统”课程等,存在重复浪费教学资源以及教师之间缺乏沟通等问题,需要对特色实验班的课程进行整合优化,提高不同专业背景的特色实验班学生的学习效率.(4)“数字信号处理”课程的概念抽象,难于理解,需要探索比较形象化的教学方法来提高教学质量.(5)“数字信号处理”的教学内容比较多,但是特色实验班安排的课时有限,需要探索合理的进行主要教学内容的教学方法.
2“数字信号处理”课程教学方法研究
针对我校特色试验班学生存在的一些基本问题,本文探索了一些教学方法,并在特色试验班中进行了相关的教学,主要体现在以下几个方面:(1)加强数学基础知识的引导,采用形象化的教学方法.针对特色试验班学生的数学基础参差不齐的问题,我们在教学的过程中,进行相关基础知识的引导,补充了相关的知识点,给学生提醒一些参考内容,使这部分学生能够课前学习相关的数学基础,不至于使学生因本课程涉及的数学基础知识不足而不能掌握本课程的内容.同时,我们针对课程中的数学公式多而且概念抽象的特征,提出了采用形象化的教学方法,将复杂的数学公式形象化,将抽象的概念形象化,我们通常考虑运用波形图或者框图的方法来实现形象化.例如在涉及到数学公式:f1(t)=a0+∑∞n=1(ancosw1t+bnsinw1t)的讲解过程中,就采用框图标定其中的分量的方法来加强理解,如图1所示.又比如我们在“数字信号处理”课程教学过程中由于FFT变换的理解比较困难,可运用相关软件,演示将一正弦信号进行FFT变换前后的波形图进行对比,让学生更加清晰的理解FFT变换的内涵和物理意义.(2)整合优化两课程的教学内容,避免重复教学,优化教学资源.对于特色实验班学生的这两门课程可考虑合并为一门课程,安排好教学内容,提高教学质量.由于两课程之间存在一定的重复,不仅理论教学方面存在重复,而且实践教学也存在相关问题,本文提出了优化两课程的整合方案,节约了大量的教学时间.优化整合两课程后的教学内容如表1所示.(3)注重理论联系实践,结合科研,注重电信专业的专业需求.“数字信号处理”课程的内容学习,要充分考虑特色试验班学生专业的知识结构特点,重点讲授在电子信息领域实用性强的内容.着重培养特色试验班学生理论联系实践的动手能力和创新能力.我们在针对特色试验班的教学过程中加入了适当的实践环节,主要运用Matlab软件以及origin软件进行相关信号的处理与分析.比如我们在实验环节加入了横向项目:中石化武汉分公司水力除焦监测系统研究的内容,对采集信号进行分析处理,可以用MAT-LAB编写相关程序进行FFT变换,提取信号的特征,分析信号的频谱特性,如图2所示,通过运用MATLAB得到的采集的声信号频谱图.通过实际项目,让学生深刻体会本课程的工程应用,加深对理论知识的理解,也可培养学生的学习热情,从而提高教学质量.(4)加强对“数字信号处理”课程虚拟网络实验室的建设,充分利用网络资源.为提高特色试验班学生的数字信号处理课程的教学质量,充分利用网络资源,建立了数字信号处理网络虚拟实验室.了数字信号处理课程虚拟实验室主要由身份验证、网络课堂、网络测试以及实验方案几个模块构成,提供登陆管理、作业管理、作业提交、远程实验、实验范例、实验论坛等栏目和功能,供学生网络学习使用.(5)加强我校特色试验班“数字信号处理”课程的双语教学,提高学生综合竞争力.
3结语
我校特色试验班的“数字信号处理”课程虽然存在一些问题,但是运用本文探索和研究的教学方法,极大提高了学生学习的积极性和主动性,提高了学生实践分析能力,培养了创新能力,使“数字信号处理”课程的教学质量明显得到提高.
作者:钟东 陈春 单位:湖北科技学院电子与信息工程学院 湖北科技学院体育学院
参考文献:
[1]OppenheimAV,SchaferRW,BuckJR.Discrete-TimeSignalProcessing[M].SecondEdition.Prentice-Hall,Inc,1999.
[2]SanjitKMitra.DigitalSignalProcessing-AComputer-BasedApproach[M].ThirdEdition.TheMcGraw-HillCompanies,Inc,2005.
人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。
数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2015)06-0023-02
“数字信号处理”课程是电子类学科和专业的一门重要专业基础课,涉及知识面广泛,如信号与系统、信号处理、通信等,课程内容抽象,理论性强,概念多,学习难度较大,加上先修课程的学习的好坏也影响到本课程的学习。这些因素导致学生难以在有限的教学时间内掌握好本门课程的内容,学习的畏难情绪增加,学习效果随之下降,导致逐渐丧失学习信心和学习热情[2]。如何培养并保持学生的学习兴趣,充分发挥学生的学习主动性是数字信号处理课程教学中需要面对的一个重要问题。因此对传统的教学方法进行改进,采用多种教学方式激发学生的学习兴趣,取得了较好的教学效果。
一、多种教学手段结合激发学习兴趣
传统的课堂教学方式采用黑板板书方式,其优点是师生互动直接,可以自由控制时间,学生在老师板书的过程中有足够的时间理解和思考,跟进老师思路的压力较小,适合公式推导、例题讲解等内容的教学。但是板书方式形式单调,不适合对抽象的概念和复杂的过程的讲解,而且,数字信号处理课程本来每堂课内容多,全采用板书讲授方式将很难完成教学任务,加快速度则有些重要难以讲到,久之影响教学效果。同时,本课程涉及信号流图(如FFT流程图等)、滤波器设计内容中的频谱图及设计的结果,如果板书出来将占用珍贵的课堂时间。因此仅用黑板板书的方式显然并不合适。投影教学方式的优点是形象生动,尤其是有的复杂过程可采用动画形式展现,学生容易理解,且传递的信息量丰富。但长久的盯着亮的屏幕容易造成视觉疲劳,快速的翻页也会造成部分学生跟不上进度,一堂课下来感觉很累。因此,在课堂教学中,宜采用板书、多媒体教学相结合的授课方式,充分发挥各自教学方式的优点。公式推导、例题讲解等可采用板书方式,抽象的概念和理论、复杂的处理过程等则采用MATLAB仿真进行演示或采用动画形式展现。多媒体课件宜做得精炼,防止出现大幅的内容叙述。由于抽象概念的形象解释有助于学生的理解,学习兴趣也随之提高。比如在讲解长信号的线性卷积时,牵涉到重叠相加法、重叠保留法两种方法,可采用板书和投影教学相结合的方式进行讲解。先提出问题:两个长度相当的信号的线性卷积可以利用FFT进行快速卷积,但若一个信号很长甚至是无限长时如何实现快速卷积?让学生进行讨论。再使用板书方式推导出长信号的分段卷积式,对分段卷积结果如何处理则采用MATLAB仿真来演示和验证这一过程。通过MATLAB仿真,长信号的快速卷积就形象的展现出来,学生易于理解了,枯燥的定义和概念也变得生动起来,原本复杂的过程变得简单而容易接受,有利于知识的理解和掌握,也激发了学生的学习兴趣。
二、改进教学方法,激发学生学习兴趣
“数字信号处理”理论知识多,学习起来枯燥。但是,如果学生认识到所学的知识有用会激发他们的学习兴趣。因此,应加大应用性内容的教学,让学生参与到相关的实践活动中有助于提高学生的学习热情。
1.课程设计提升学习兴趣
课程设计是综合性实践教学环节,完成课程设计需要综合应用所学知识,包括查阅资料、方案设计、方案实施、结果分析、方案改进等。实施计划过程中遇到的困难和障碍构成了学生渴望以挑战的问题,正是这些问题激励学生积极思考并寻找解决问题的办法,在此过程中学习的积极性得以充分发挥。一般而言,学生在接到课程设计的任务后,需要对设计课题进行分析,确定完成此设计需要用到的知识,这些知识可能是已经学习过的,也有未学习过的。学生通过查阅相关资料后,综合所学的知识、技能,明确需解决的问题和达到的目标,并形成解决问题的技术方法。
比如在FFT的教学中,给定课程设计要求“语音信号的频谱分析”,要求综合运用数字信号处理的理论知识对语音信号进行频谱分析并对语音信号进行处理。在此课程设计中,要求学生掌握Windows 环境下语音信号采集方法,掌握用 MATLAB对信号进行分析和处理的编程方法,设计算法和应用程序,对结果进行分析,撰写总结和报告等。学生通过理论推导得出相应结论,利用MATLAB作为编程工具实现语音信号的谱分析和滤波。在设计的完成过程中互相交流学习心得,共同探讨出现的新问题,培养获取知识与解决问题的能力。与此同时,学习过程中获得的成就感激发了他们的学习热情,并培养了勇于探索开拓进取的学习精神。
在教学中,课程设计的题目可以由教师指定,由学生选择,如语音信号卷积的实现、图像信号的滤波等;也可以在教师指导下学生自己选择。学生通过参与数字信号处理的课程设计,加深了对“数字信号处理”理论的理解,提高了学习的热情,巩固了学生数字信号处理的基础知识,增强了学习兴趣。
2.探索性实验激发学习兴趣
探索性实验是指人们从事开创性的研究工作时,为探寻未知事物或现象的性质以及规律所进行的实践活动。它对培养学生的观察能力、思维能力、探索精神以及良好的学习方法具有重要意义。
目前数字信号处理课程配备的实验大多是验证性实验,旨在对所学知识进行验证,如快速傅里叶变换(FFT)、RIR滤波器设计、IIR滤波器设计等,学生只是使用MATLAB 对教材或实验指导书上的实验进行验证,对实验结论也是验证与所学的知识是否一致,遇到不一致的往往知其然不知其所以然,难以结合教材内容进行深入分析。实验过程中遇到的问题也很难独立思考和解决。因此,实验设计仅让学生懂得实验的基本过程及仅仅验证教材上的内容是不够的,更重要的是培养学生的分析和思考问题能力。探索性实验将使得学生在实验过程中通过自己的观察、思考得出结论,不仅能启迪思维,培养科学精神和创新能力,更能激发学习兴趣。探索性实验内容可由教师提出,学生依据实验课题内容查阅资料,设计实验方案,最终完成实验并撰写实验报告。如卷积在信号去噪处理中的应用,就可以采用高斯模板对被污染的图像进行卷积以去除噪声(二维卷积),或对一段被噪声污染的歌曲进行卷积运算去除噪声(一维卷积)。通过探索性实验的开展,改变了传统实验的单调性,调动了学生的主动性,提高学生的学习热情。将验证性实验与探索性相结合,不仅有助于知识的掌握和能力的培养,还培养了学生科学素养,对激发学生的学习兴趣具有积极意义。
3.建立有利于激发学习热情的考核方法
作为一门重要的专业基础课,学生很在乎自己学习成绩,设计一套好的评价考核方法能最大限度的激发学生的学习热情,变被动学习为主动学习。为全面考查学生课堂学习、课外学习、课程设计及探索性实验效果,需设计闭卷考试、实验考核、课程设计考核及平时综合考核的全面考核方式。闭卷考试主要考核基本概念、基本原理等理论知识,实验考核主要考查学生的实验技能及分析和解决问题的能力;课程设计考核主要考察获取知识与解决问题的能力,同时鼓励学生依据学习内容撰写小论文,并建立相应的加分制度。
三、结语
“数字信号处理”的特点是理论性强,公式多,比较枯燥难学,学生容易提不起兴趣。兴趣是最好的老师,是构成学习心理的最活跃的因素。为了达到较好的教学效果,教学实践中,我们改进传统的教学方法,在课堂教学中采用多种教学手段结合激发学习兴趣,并从课程设计、探索性实验及建立有利于激发学生学习热情的考核方法几个方面着手, 激发学习热情,促进学生以研究的态度进行学习,在学习中获得的成就感激发了学生求知欲和学习兴趣,这些措施的实施取得了良好的教学效果。
参考文献:
[1]程佩青.数字信号处理教程(第三版)[M].北京:清华大学出版社,2012.
[2]任淑萍,王欣峰.“数字信号处理”的优化教学研究[J].电力学报,2008,23(3):255-257.
[3]刘永红,王娜,刘琚.“数字信号处理”课程学习兴趣的培养[J].电气电子教学学报,2014,36(2):9-11.
[4]马永奎,高玉龙,张佳岩,张中兆.“数字信号处理”课程设计导向型教学初探[J].电气电子教学学报,2012,34(4):96-97.
[5]郭建涛.“数字信号处理”课程的Matlab教学研究[J].电气电子教学学报,2010,32(3):117-119.
数字信号处理是一门面向各大专院校电子信息学科的专业基础课,它的基本概念、基本分析方法已经渗透到了信息与通信工程,生物医学工程,导航、制导与控制,动力工程,航空工程等领域。学生应采取主动的方式获取本课程所讲述的基本概念和基本分析方法,并可利用其分析、解释和计算信号、系统及其相互之间约束关系的问题。但多年来,我们的课程教学中仍然普遍采用教师主动、学生被动的满堂灌输的教学理念和方法,看似传递给学生的信息容量大,实质上学生接受质量和效率并不高。鉴于此,本课题组从理论教学和实践教学环节入手[1],经过多年的研究、实践和探索,对该课程的教学进行了改革,并取得了较好的成效。
二、课程现状分析
当前的课堂教学存在着以下弊端。
1.学生缺乏对本学科整个课程体系的全貌了解,各门专业课程之间缺乏整体联系。这使得学生对该课程的前续知识准备不够,对后续知识认识不足。
2.数字信号处理课程理论性强,内容抽象,涉及的数学知识较多,学习难度较大。传统的教学模式下,学生会感到内容枯燥难懂,学习兴趣不足,学习的积极性、主动性不高。
3.实验内容中设计性实验偏少,验证性内容偏多,缺乏综合性课程设计内容。致使很多学生没有兴趣在课前搜集整理相关资料,了解相关内容,还是依赖教师课堂讲授,被动等待教师解惑。
4.随着高校不断扩招,学生人数不断增加,导致学生整体平均水平相对下降,大班授课教学效果不佳。
三、课程改革思路
课程改革是指教师教学方式及学生学习方式的改变,是教师和学生双向的改变,是教与学的相互沟通[2]。对于教师来说,要与时俱进,不断更新教学观念、教学思想、教学模式,变灌输式、单向式为启发式、讨论式、研究式教学;对于学生来说,要形成积极主动的学习态度,使获得知识与技能的过程成为学会学习和形成正确价值观的过程,由传统学习方式的被动性、依赖性、统一性、虚拟性、认同性转变为现代学习方式的主动性、独立性、独特性、体验性与问题性。针对当前国内高等教育中教师过分主动、学生过分被动,理论学习相对过多、实践动手机会相对太少的特点,应该想办法调动学生学习主动性、积极性,鼓励学生充分发挥自己的个性和特长,不断自主学习、独立思考、自由创新,努力增加学生动手实践机会,提高他们的综合素质和解决实际问题的能力。针对课程现状,提出以下具体改革措施。
1.针对课程内容之间的联系问题,学院即将在各专业新生中课程中开设专业导论课程。在这门课中,会粗略讲解本专业各课程内容之间的联系。要想透彻理解数字信号处理课程内容,尤其要先深入理解前续课程信号与系统的精髓内容,即信号的三大变换以及线性时不变系统常用的各种表征方式之间相互联系。由于信号与系统的内容较之数字信号处理更加抽象难懂,数学公式较多,使很多同学产生畏难情绪,学得一知半解,囫囵吞枣。这导致了相对容易的数字信号处理学起来也有些晦涩难懂了。因此在讲述信号与系统课程时就要告知学生课程的重要性及与数字信号处理课程之间的联系,而在讲解数字信号处理课程时则要讲述清楚和后续课程之间的联系及对后续课程学习的影响。
2.针对数字信号处理课程理论性强、内容较为抽象的问题,教师应注重基本概念及其物理意义的讲解,加强课程内容与学生生活及现代社会科技发展的联系,教师应时刻关注本学科前沿动态,提升自身理论水平,将和本门课程有关的先进技术知识引入课堂,将学生感兴趣的内容引入课堂,比如数字信号处理在短波通信、数字图像处理、仪器仪表、汽车系统等领域的最新应用介绍给学生,可大大激发学生的学习兴趣,也可让学生初步了解自己毕业以后可能的就业方向。另外,教师应精选终身学习必备的基础知识和技能,重点让学生掌握核心理论、初步信号仿真能力及工程应用,适当减少复杂公式的计算和推导,避免学生陷入到复杂的计算中去。
针对学生学习主动性、积极性不强的问题,教师应改变课程实施过于强调接受学习、死记硬背、机械训练的现状,积极引导学生,善于提问学生,善于培养学生提问,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、交流与合作的能力。采取翻转课堂的形式,让学生到讲台上讲解,还可适当给予学分奖励,这样既提高了学生学习积极性,又锻炼了学生的思考及演讲能力。本人在课程教学中采用课堂互动、讨论、学生讲授、分组论文写作等新的教学方法和教学手段,取得了比较满意的教学效果。
3.针对缺乏设计性及综合设计性实验的问题,由于课时较少,本课程只有4次8个小时的实验,这种现状下,课内设置50%的设计性实验,一些综合性的设计实验只能作为学生的课后大作业来完成。将学生分为3―5人一组,每组选一个课题完成,课题内容尽可能接近实际项目。每个小组成员根据自身特点领取相应任务和资源,这样既可锻炼自身能力,又可培养团队意识。在课题实施过程中,教师起引导作用,可以帮助学生分析所遇到的问题,鼓励学生自己探索、思考解决问题的方法,培养学生发现问题、分析问题、解决问题的能力。
4.针对班型较大问题,在师资力量允许的情况下尽量小班授课,以保证授课质量。若师资力量薄弱,则采取理论课大班授课,而实验课小班教学的方式,便于教师及时发现问题,学生能及时得到指?А2捎?MOOC教学也是不错的解决办法,MOOC教学突破了传统课程时间、空间的限制,突破了传统课程人数限制,便于学生学习,也便于和学生互动。我们已经着手录制教学视频,放到网络平台,作为课堂教学的有力补充,进一步提升学生的学习质量和学习效率。
四、?n程考核
作者简介:卢迪(1971-),女,天津人,哈尔滨理工大学电气与电子工程学院,教授;兰朝凤(1981-),女,黑龙江哈尔滨人,哈尔滨理工大学电气与电子工程学院,讲师。(黑龙江 哈尔滨 150080)
基金项目:本文系黑龙江省新世纪高等教育教学改革工程项目(项目编号:66996)、哈尔滨理工大学教育教学研究项目(项目编号:C201200011)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)16-0086-02
自大学扩招以来,各高校普遍存在学生多教师少现象,因此本科生的公共课、专业课的讲授常采用大班额配课制度,学生数在百名左右。大班教学带来的问题主要有两个方面:一方面是大班教学对学生学习积极性的影响。在大班教学中,师生之间的交流较小班教学减少,学生的个性差异和独特性被忽视,学生往往学习动机较低、学习积极性较差、学习被动、注意力不集中,师生之间和生生之间互不认识、互动很少。[1-3]另一方面,从教师的角度来说,由于大班教学导致学生发言、表达自己的意见机会大大减少,课堂气氛比较沉闷,教师往往采用“一言堂”的教授模式,教学方法单一,而且由于课堂教学时间有限、学生数多,教师很难从学生那里得到有效反馈,不能全面了解学生对课程内容的接受、理解程度。
针对这些问题,越来越多的高校教师关注于大班教学方法的研究,从中国知网的统计来看,2010年发表的相关研究论文有123篇,2011年有203篇,2012年有155篇。这些论文中,80%左右的研究集中于大学英语等公共课程,而对专业课程的大班教学方法研究较少,因此本文针对“数字信号处理”这门专业课的大班教学方法进行了一些探讨。“数字信号处理”课程是通信工程、电子信息工程、信息工程、自动控制、测控仪器等专业的重要专业基础课。该课程理论性强、数学知识应用较多、物理意义不明显,公式推导多,是学生普遍认为较难学懂、理解的课程之一。本文针对大班教学环境特点,从激发学生学习主动性,构建学习共同体方面出发,通过改善课堂效果,提高课堂上的学习效率,达到提升“数字信号处理”课程大班教学质量的目的。
一、建立“学习共同体”教学模式
“学习共同体”是指由学习者及助学者(包括教师、专家、辅导员等)共同构成的团体。团体成员在学习过程中经常进行沟通、交流,并分享各种学习资源,共同完成一定学习任务,形成相互影响、相互促进的人际联系。学习是学习者主动构建内部心理表征的过程,学习过程需要与物和教材对话、与他人对话、与自己对话。为此,教师要在教学过程中给学生“自主学习的空间”,使学生针对任务或问题去思考、分析、理解、探究,和学生构建“学习共同体”,增进师生之间、学生之间的协作和互动,[4]将学习的主动权归还给学习者,激发学生内在学习动力,将传统课堂教学活动中教师负责“教”、学生负责“学”的单向活动回归到师生互教、互学的双向活动,师生关系不再是“管理者—被管理者”的关系,而是“民主平等”的关系。课堂上,教师不再是知识的主讲者,而应像主持人一样,是知识的介绍者和串联者,学生应作为知识的“主讲者”阐述其对知识的理解。只有理解“知识”,而不是死记硬背“知识”,才能应用“知识”。譬如在讲授傅里叶变换时,教师在课堂上可以先从周期信号的分解历史开始介绍,从18世纪Euler、Lagrange等科学家对弦振动的分析(此内容物理中有相应实验),19世纪Fourier给出了周期信号级数的展开和积分、Parseval关于时域和变域的能量守恒原理、Dirichlet给出的级数和积分条件、Gibbs阐述的吉布斯现象,到20世纪无线电的产生、Nyquist采样定理、Wiener功率谱、Cooley&Tukey给出的FFT算法等。通过对傅里叶变换演变历史的介绍,学生很容易接受将任意信号分解为三角函数或指数函数形式的必然性,进而理解傅里叶变换的重要意义,掌握信号从时域到频域的转换过程。鼓励学生利用强大的网络资源,对教师介绍的有关历史进行深一步的挖掘。在这个过程中,学生会对相关知识进行初步学习,当课堂上教师讲解到相关知识点时,学生可以进一步补充自己了解的内容和对该知识点的理解。
大学工科专业课所讲内容本质上是数学、物理、化学等基础知识在工程实践中的应用,如何将这些基础知识与工程实践相结合是工程类本科学生必须掌握的技能,而只有理解这些基础知识才能很好地应用它们。英国著名哲学家和物理学家波兰尼将人类的知识分为显性知识和默会知识,其中默会知识本质就是理解力,是一种领会进而把握经验、重组经验,从而达到对它的理解和控制能力。相同的教师给同一批学生授课,但是每个学生的理解程度不一样,这就是默会知识掌握程度不同。默会知识的获得是与特定的问题或任务情景联系在一起的,由于每个学生的理解方式都受其独特的生活和文化环境影响,因此对相同问题的理解也是不一样的。掌握默会知识的最好方法就是让学生置身于知识所在的日常实践情景和科学实践情景中,通过参与专家、同伴的思考和行动过程而获得那些不能明确表达的规范、准则等。
为加强“数字信号处理”这门课的实践性,尝试将学生分为Flash课件制作组、MATLAB课件制作组,DSP程序编写组等,让学生将比较抽象的数字信号理论知识用自己的方式形象化表达出来,以判断其对默会知识的掌握。通过小组合作,学生可以充分阐述自己的学术观点,在观点的碰撞中,触发灵感,加强批判性思维,提升对所学知识的理解程度。
二、课堂效果的掌控
“学习共同体”的建立是要激发学生内在的学习动力,调动学习主动性,而课堂学习效率的提高可以达到事半功倍的效果。首先要建立统一、规范的课堂秩序,如上课不迟到、不早退,上课时不准许使用手机、笔记本电脑等电子设备,不能无故大声喧哗,发言前要举手示意教师等基本行为准则。没有规矩不成方圆,在确保课堂教学秩序的前提下,才能保证教学效果,要使学生清楚了解、理解这些行为规范,并自觉遵守执行。其次,教师要利用语言表达能力和肢体语言吸引学生的注意力。教师的语言要简洁、准确、生动、富有逻辑性,可以通过声调的变化强调所讲知识点的重要性。由于采用多媒体教学,教师不用一直站在讲台上,可以到学生座位附近边走边讲,这样,不仅可以缩短师生之间的空间距离,还可以缩短师生之间的心理距离。当教师走到学生身边时,学生必定会将注意力转移到教师身上,提高了其听课的专注度。教师在教室内的走动,还有利于随时维护课堂秩序,并随时得到课堂信息的反馈。
课堂秩序的规范不是要求学生沉默地听,而是要保证正常的教学秩序,学生如果想要发表自己的见解,可以随时举手示意教师。教师鼓励学生之间进行讨论,而教师则处于一种裁判的地位,负责给出结论和维持课堂秩序。这样,在课堂教学中,教师不再始终处于主讲地位,而是将学习的主动权交给学生,激发学生主动学习的能力。
三、“数字信号处理”课程的形象化教学
在文献[5]、[6]中都提到了“数字信号处理”课程形象化教学方法,目的是更好地帮助学生建立起数学描述与物理概念、物理过程之间的联系。因此在课堂上,教师要鼓励学生将数学描述用图形的方式表达出来。譬如在学完DFT的定义后,可以启发学生将拉氏变换,连续时间信号傅里叶变换(FT)、序列傅里叶变换(DTFT)与离散傅里叶变换(DFT)在s平面、z平面上画出来。虽然教材上有相关图形,但是可以让学生将这几个图形及模拟滤波器的频率响应、数字滤波器的频率响应绘制在一张纸上,如图1所示。在图1(a)中,虚轴上的拉氏变换对应连续时间非周期信号的FT;当时间信号为非周期序列时,进行DTFT变换,那么z平面上(如图1(b)所示)的单位圆对应的是序列的FT,此时学生可以清晰地看出数字频率仍然是连续的,但是具有了周期性质,这种频率连续的信号仍然不能用数字处理芯片进行处理,因此要在单位圆上进一步将连续的进行离散,如图1(c)所示,将单位圆N等分,即,可清楚表明DFT的概念。在解释图1(d)(e)时,重点强调模拟滤波器的角频率范围是,而数字滤波器的数字角频率是周期性的,只研究这一个周期就可以。
在课堂讲授中,多媒体教学能将抽象、生涩的知识形象化、直观化,改变了传统教学中粉笔加黑板的单一、呆板的表现形式。在多媒体教学上,可以将PPT、flash和MATLAB综合在一起应用。例如,在讲解卷积、圆周卷积等概念时,由PPT给出相应概念与公式,用flash展现2个序列做卷积、圆周卷积的过程。将圆周卷积中的移动序列做成一条贪吃蛇的形状,学生们看了之后,对圆周卷积有了一种直观的认识,对其原理的理解也更透彻。此外,多媒体教学信息量大,可以提高课堂的教学效率。但是,对于“数字信号处理”这类理论较强的课程,单纯使用多媒体教学,效果往往不佳,譬如在推导一些定理、公式时,推导过程直接呈现在PPT上,学生一眼扫过,导致思路跟不上(或也不愿意思考),理解不透彻,此时还是传统的板书效果更佳。在授课中,将知识的重点、难点及重要公式的推导由板书的形式呈现出来,方便学生记笔记,有利于学生日后对资料的整理和复习工作。
四、小结
“数字信号处理”是一门理论强、公式多、难理解的课程,在大班教学环境学下,如果学生不积极参与到教学活动中,则教学效果不佳。通过推行“学习共同体”思想,激发学生学习的内在主动性,通过形象化教学,提高学生学习的外在兴趣点,以达到学好、学透“数字信号处理”这门课的目的。
参考文献:
[1]陈艳莲.高校大班教学存在的问题及教学方法的优化[J].教育与职业,2011,(12):164-165.
[2]刘晓利.“特朗普制”教学模式与大班课堂教学的控制[J].计算机教育,2011,(12):59-61.
[3]于化新,刘慧慧,谢鑫.大班教学问题与策略的探讨[J].当代教育论坛,2011,(6).
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)22-0212-02
字信号处理是一门基础性很强的课程,信号与系统是它的先修课程,通信原理是它的拓展课程,该课程集数学、计算机和电子学为一体,是一门交叉学科。在数字信号处理课程中,既涉及基础理论和算法,还涉及硬件电路,覆盖面很广。对该课程的讲授也不能仅仅采用理论教学的方法,尤其是在工程教育的背景下,对学生的要求越来越高。基于工程教育背景,本论文以创新人才培养为目标,探索数字信号处理有效的教学方法和教学手段,培养学生分析问题和解决问题的能力。通过对教学方法的改革,将教学的指导思想变为以学生为主,改变学生传统的学习方式,充分调动学生学习的积极性,激发学生的学习兴趣,提高工程设计能力,为数字信号处理及其相关课程的改革提供参考和借鉴。
1.调整课程教学目标,强调工程素养及创新精神和实践能力的培养。根据学校本科生培目标的要求,在教学中要以加强基础、重视实践、增强能力、提高素质为目标,课程体系要分层次、多模块,即涉及基本技能培养有包含创新能力的培养。
2.调整教学理念。数字信号处理课程的教学理念应该是针对不同的教学内容,采用多种教学方式相结合,通过启发的方式,调动学生学习的积极性和主动性,激发学生学习的兴趣和能力,逐步提高学生独立分析、解决问题的能力,为今后的学习和工作打下基础。
3.改革教学方法。多种教学手段相融合,构建多元化、立体化教学模式。因为数字信号处理课程内容很抽象,理论性很强,传统的教学方式是教师的讲授式教学,学生往往处于被动接受的地位,这样就抑制了学生的学习主动性。为了改变这一现状,需要针对不同的教学内容,采用多种教学方式相结合的多元式教学模式,引导学生参与教学活动,变学生的被动学习为主动学习。①讲授式教学,对于课程中那些基础性较强,理论性较强的内容,学生难以理解,需要老师进行透彻的分析和细致的讲解。在教学过程中,教师要注意启发和引导学生,而不是全盘灌输,要注意教学的生动性,用生动的案例来吸引学生。②研讨式教学,采用研讨式教学方法,教师需要针对不同的教学内容和教学目标要求,精心思考,提出难度适中符合逻辑的问题,使学生能和同伴之间通过积极的讨论交流,达到自主学习的目的。研讨的内容以教材为主,辅以周围的生活实际,教学环境轻松自由,充分调动学生的学习积极性,鼓励他们自由表达,提出问题,对问题进行探讨,让学生通过这种研讨式的方式将所学的知识应用于解决实际的问题。③启发式教学,在教师主持下,为学生创设一个良好的学习氛围,调动其学习知识的积极性、主动性和创造性,引导学生对学习能够举一反三,激励学生的学习兴趣,促进学生的自学能力、分析和解决问题的能力、创新和组织能力的发展。④网络环境下的自主学习与协作学习,充分利用网络的信息开放性,构建多媒体化的协作、自主学习情境。数字信号处理课程网站主要有下面几个特点:一是较为丰富的教学资源,选编和收集国内外与课程内容有关的多媒体素材等,向学习者提供丰富的学习资源。二是相对灵活的网络交流,网站不仅实现了本课程的各个方面资源的表达共享,还通过服务器端程序的编制,实现一个的交流平台BBS。通过在线交流,学生老师实现远程交互,反馈信息。三是灵活的信息呈现,网站综合运用图片、多格式文本FTP系统等各种技术,把课程的资料以丰富多彩的形式呈现给学生。
4.完善教学文件。在教材建设方面,密切联系本学科和交叉学科的国内外最新发展动态,在参考国内外优秀教材的基础上编写适合本专业培养方案的《数字信号处理》教材,辅之以MIT大学等一些在数字信号处理教学中有重要影响的高校教材,并在现代信号处理、MATLAB辅助信号处理、DSP原理与应用等方面配合指定了大量教学参考书,使学生学习目的和发展方向明确化。同时提供相应的CAI课件、网络课程,以逐步形成立体化多媒体化的教材体系。
5.教学手段改革。教学手段上改变传统的粉笔式教学,逐步辅以图片、幻灯、录像、投影、CAI课件等多媒体信息,让抽象的原理能够以形象实用的方式高效地展现。
6.考试改革。启发式、探究式、讨论式、参与式等多元化教学的同时,也要改革考试方式。考试方法从某种意义上来说,是引导学生学习的指挥棒,这根指挥棒的运用是否得当,对学生学习能力的培养将产生很大的影响。在考核方式上,可以采用开卷、闭卷等多种形式。注重学生的日常知识积累、检测学生的综合设计能力。在考核内容上,注重学生的分析和综合能力,在强调考核知识的综合应用、基本概念以及基本内容的同时加大分析与综合型试题的比重,并有10%的拓展、创新题。这样,可以在保证试卷适用于大部分学生的同时,也拉开了成绩的分布,能够较为客观地考核学生的学习状况。评价形式多元化,既有分数,也有评语;既有课内,也有课外。可以让学生参与课程考核的评价方案,让他们及时了解自己在自我构建知识体系的过程中取得的成绩和进展,使考核评价成为一个继续学习的过程,充分体现学生在自主学习中的主题地位。
7.提高教师素质,打造教学和科研团队。多元化教学方法的改革需要教师有充足的知识储备,以应对学生可能提出的很多问题,所以教师要加强理论知识学习,增加理论知识储备与应用能力,不断完善自己的知识结构与智力结构。需要建立一支在素质上具备良好的职业道德和高尚的思想境界、具备现代教育理念、掌握现代教育技术、具备较强创新精神的教学科研能力的教师队伍。
通过工程教育背景下实施数字信号处理多元化教学方法的改革与实践,构建了新的课程体系,从整体上对“数字信号处理”课程内容进行了整合和优化,初步建立信号处理多元化教学新模式,将多种教学手段和方式相结合,取得良好的教学效果。
参考文献:
[1]赵春晖,董宇艳.“差异化教育与人才竞争优势”[J].黑龙江高教研究,2008,(7):92-94.
[2]赵春晖,张朝柱,杨莘元.多媒体教学课件的设计与制作[J].哈尔滨工程大学学报(教育科学版),2006,(3):26-31.
[3][美]奥本海姆,著.信号与系统[M].刘树棠,译.西安交通大学出版社,2000.
[4]程佩青.数字信号处理(第二版)[M].北京:清华大学出版社,2001.
中短波电台在历史上为保证航行安全做出了重要贡献,至今仍承担海上通信安全、遇险、救助等任务。目前在我国沿海有上海、广州、天津、大连等电台,它们的工作方式基本上是VHF,SSB,NBDP,Morse,覆盖的频段为400KHz到30MHz。由于各种通信技术的发展和应用,中短波通信受到越来越大的冲击。不但它的应用范围上有很大的局限性,而且更是由于中短波电台系统大多采用模拟方式,它的抗干扰性差,不稳定性而产生的噪声使它的通信质量难以得到保证。目前,通信数字化技术已相当成熟,基于这个技术本论文提出了中短波通信数字化的观点。数字系统与模拟系统不同,它的特性不易随使用条件的变化而变化,数字信号可以存储,可以按照理论算法运算,可以获得较高的指标。这些特点决定了中短波通信的噪声可以通过数字化来解决。
1.2中短波电台的发展方向
在我国不同区域、不同级别、不同用途、不同波段的无线电台很多,无线电台的这些特点,不但使相互间的联合通信很困难,也给电台的功能扩展增加了难度,同时更为重要的是,它使电台无法适应新技术的飞速发展而及时更新换代。因此采用数字化技术,对来自天线射频的信号直接进行采样,以通用的数字信号处理器为硬件平台,用软件来完成无线电台的所有功能,是无线电台的发展方向。
根据我国的目前的情况,改造现有的模拟电台具有非常重要的意义,因为它是使通信设备向小型化、模块化、数字化和软件化过度的一种切实可行的方法。对于短波无线电台而言,随着数字信号处理技术的发展和数字器件越来越多的应用到HF收发信机设备中,现有的HF收发信设备普遍采用微处理器作为电台控制,有的采用了数字式频率合成器,采用了数字式天线匹配器,有的还采用了数字信号处理器以实现自适应链路建立和抗干扰通信。
进入九十年代,国外的通信厂家推出的新型HF收发信设备,出现了数字化接收机,数字化发射激励器、数字化电台等设备。这类设备同以往设备的最大区别是采用数字信号处理技术代替了以往设备中与各种工作方式有关的模拟器件,这样可以利用数字信号处理方面的许多优点,例如在模拟设备中的边带滤波器的群迟延特性在通带范围内是U型的,不是常数,而在数字信号处理中用FIR滤波器很容易实现群迟延特性为常数。
HF收发信设备数字化的实质是收发信设备中信道部分的数字化,它采用数字信号处理技术实现音频与中频之间的频潜变换,涉及的内容主要有音频处理,各种工作方式的调制/解调,中频及射频的自动增益控制/自动电平控制。
HF收发信设备信道数字化后,由于采用了大规模集成电路取代分立元件,用软件实现滤波器等功能,简化了硬件电路,同时提高了性能指标和可*性,也增加了电台灵活性,为软件无线电打下了基础。
现有的模拟式HF收发信机设备均采用2至3个中频,否则无法实现高的性能指标。理想的数字化方案应是*近天线的数字化,考虑到HF波段的特点和现有的技术,现在取消中频直接在射频上数字化在技术上是非常困难的,在目前是难以实现的,较好的数字化方案是应该在较适中的频率上数字化。
收发信机普遍采用高中频的方案:第一中频在40MHz到100MHz之间,受到硬件技术发展水平的限制,在一中频实现数字化是非常困难的,因此HF收发信机的数字化主要集中在9MHz、2.5MHz、500KHz、200KHz。
高于200KHz中频的数字化通常只采用两个中频,而低于200KMz中频的数字化往往要采用三个中频。采用三个中频的HF收发信设备较采用两个中频的HF收发信设备的硬件电路要复杂。在较低的中频上数字化是采用三个中频的主要原因,目前的技术在二中频上实现数字化己经成熟,且在三中频上数字化也没有明显的好处,所以新的数字化方案中避免在较低的中频上数字化。
综上所述,目前的HF收发信设备的数字化方案应采用双中频方案,在二中频上实现数字化,二中频的频率应高于200KHz。在较高的中频上实现数字化可以获得较高的处理增益,达到较高的性能指标。
2.多级抽取数据处理原理
对于数字电视广播信号反射回波的频谱分布,我们只对其中心频率附近可能出现的运动目标的一段频谱感兴趣,例如:由传输速率决定的数字电视广播信号的频谱宽度为432MHz,而实际目标可能覆盖的频段不会超过20kHz。如果对所有采样点计算FFT,计算量非常大,且这样的计算效率很低。如果采用信号抽取方法就可以做局部的谱分析,提高计算效率。实现局部频谱分析的工作原理,如图1所示。信号经过复调制,把要进行分析的一段频谱(例如X0附近)搬移到零频附近,然后进行MB1的抽取,这样在较少的点数下做信号频谱分析,达到细化频谱的目的。
但是当抽取因子M很大时,一次抽取对滤波器的特性要求很高,为滤波器的设计带来困难。如果采用多级采样率变换来实现抽取,不但可以简化滤波器的设计,而且可以进一步减少计算量和系统的存储量。
3.多抽样率数字信号处理技术
在一个信号处理系统中有时需要不同的抽样率。这样做的目的有时是为了系统中各处需要不同的抽样率,以利于信号的处理、编码、传输和存储,有时是为了节省计算工作量。使抽样率降低的抽样率转换称为抽取;使抽样率升高的抽样率转换称为内插,抽取和内插是多抽样率信号处理的基木环节。
3.1多抽样率数字信号处理
实现多抽样率变换的基本方法包括:整数抽取、整数内插、抽样速率的有理数变换等。
(1)整数抽取
如图2所示为整数抽取器的结构,其中为抗混叠低通滤波器,其理想频域响应为:
(1)
设输入信号的频域响应为,通过计算可得输出信号的频域响应为
(2)
若满足(1)式,则有。即整数抽取序列的数字谱是M个输入序列经频谱扩展(M倍)和周期移位后的迭加谱,提高了信号的频域分辨率。
图2整数抽取器的结构
(2)整数内插
如图3所示为整数内插器的结构,其中为平滑低通滤波器,其理想频域响应为:
(3)
图3整数内插器的结构
设输入信号的频域响应为,通过计算可得输出信号的频域响应为
(4)
即整数内插序列的数字谱是输入序列经L倍压缩后的谱提高了信号的时域分辨率。
(3)抽样速率的有理数变换
以上介绍的整数内插与抽取都属于采样速率的整数变换,将其推广可得抽样速率的有理数变换。有理数(L/M)倍的速率变换可以这样来实现:首先通过L倍内插然后进行M倍抽取。其中为内插低通滤波器与抽取低通滤波器合二为一,满足下式,式中
(5)
3.2滤波器设计及实现
在多抽样率系统中我们总是设法把乘法运算安排在低抽样率的一侧以使每秒钟内的乘法次数(MPS)最少。但在抽取器和内插器中滤波的卷积运算都是在抽样率较高的一侧,例如实现抽取器的运算,如果先做抗混迭滤波的卷积计算然后抽取,则必然有很多计算工作是徒劳的,而且一个卷积运算又必须再在输入信号的抽样时间间隔内完成,这样就使得每秒钟的乘法次数很高。在实现多抽样率系统时,FIR结构具有很大的优越性。一方面它绝对稳定的,并具有很容易做成线性相位的优点,另一方面也容易实现高效结构。
多抽样率系统的实现一般有3种结构:直接实现、多相结构的实现、时变网络的高效实现。在实际中应用广泛的是多相结构的实现,同时在HSP50215、HSP50214中也主要使用这种方式。多抽样率系统中的多相表示和整数倍内插器表示两种方式。其中多相表示又称为多相分解,是指将数字滤波器的转移函数H(z)分解成若干个相位不同的组。通常,对于简单整系数滤波器,在抽取系统中,当抽取因子D不恰好是2的幂,但包含多个二倍抽取器的级连,我们常常在抽取系统的第一级(或内插系统的最后一级)采用运算极为简单的整系数滤波器,因为这种简单的整系数滤波器的的低通滤波性能并不很好,所以它只用于抽取系统的第一级或内插系统的最后一级,其余各级则仍使用半带滤波器。这是HSP502I4中CIC滤波器和半带滤波器级连这种结构设计的依据。
(1)数字高通滤波器的设计
设采样频率为F=250Hz,为了减少孔径误差,其频率稳定度远远高于电网频率稳定度(由需要的处理精度确定)。其中对于孔径误差,它指因采样频率不稳定造成采样脉冲未在预定时刻t0出现,而是在t0之前或之后出现,所采样的值与实际t0时刻的值之差。其频率稳定度为max[|f-f0|]/f0,式中f0为标准频率,f为实际出现或允许出现的频率,且N=125,其中:
|Gd(k)|=[0,a1,a2,1,…,1,a2,a1](6)
Gd(k)=exp(-jkpi(N-1)/N)k=0,1,2,…,N-1(7)
式中N为Gd(k)的长度,在计算机上调整a1和a2,可改变高通滤波器的频率特性。由傅里叶反变换可求得其N点单位抽样响应g(n)=IDFT(Gd(k)),且g(n)对称。
(2)由数字高通滤波器到多带阻带通滤波器
根据多抽样率思想,对g(n)进行插值,每一个g(n)后面插入K-1个0,令h(n)=g(n/K),n=0,K,2K,3K,…,(N-1)K;h(n)=0,n=其他。并取h(n)的长度为KN,K=F/50=5。
由多抽样率理论很容易推导出h(n)的频谱将是g(n)的频谱的K倍压缩。在matlab上仿真,由h(n)的频谱图可以看出,其阻带中心频率在0Hz,50Hz,100Hz,150Hz,200Hz处。
调整a1和a2的值,可达到阻带宽度为0.36Hz时,衰减超过60dB;阻带宽度为0.4Hz时,衰减超过52dB;通带下限频率(或上限频率)与阻带中心频率的差为2(F/N)/(F/50)=2×50/N=0.8Hz,通带减不超过3dB。在直流附近,低于0.18Hz的信号将被滤掉,衰减大于60dB,大于0.8Hz的信号将得到保留,其衰减不超过3dB,在通带内的纹波系数小于1.2%。
参考文献:
1.宗孔德,《多抽样信号处理》,清华大学出版社,2004
2.玉美、高西全、彭学愚,《数字信号处理》,西安电子科技大学出版社,2006
3.姚天任、孙洪,《现代数字信号处理》,华中科技大学出版社,2005