欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

数学思维论文大全11篇

时间:2023-03-17 18:00:50

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数学思维论文范文,希望它们能为您的写作提供参考和启发。

数学思维论文

篇(1)

小学数学教学中,学生的认知对象主要是经过前人无数次实践总结出来的认识成果——概括化的知识体系,抽象性是它的一个重要特征。这就大大提高了认识的起点,增强了认知的难度。小学生注意力集中的时间短,如果让学生从教师的语言——黑板——教师的动作中去接受知识,模仿思维,时间稍长,他们便因单调感到乏味。因此,让学生操作学具,一方面可使学生手、口、脑、眼、耳多种感官并用,扩大信息源,创设良好的思维情境;另一方面也满足了小学生好动、好奇的特性。利用学具操作的直观具体性集中学生的注意力,营造出一个符合儿童认知规律的思维氛围,有利于学生思维主动性与创造性的发挥。

二、学具操作有利于培养学生思维的层次性与逻辑性

如何处理抽象的数学问题,比如数学基本概念,应用题等,常规的教学方法主要是从一些“关键”的字、词入手引导学生分析。由于这样的方法本身就是抽象的,运用时相当一部分思维能力不够强的学生就只能作机械地模仿,甚至无从下手,因而不易达到应有的教学效果。如果教学中充分发挥学生的主动性,让学生摆一摆、做一做,把抽象的内容形象化,这能在“思维过渡”中起到“船”和“桥”的作用。例如:在教学“正方形的认识”时,我发给学生六张纸片(图略),让学生先数数六个图形边的条数和角的个数;归纳出它们的共同点(都是四边形)。再用直尺量量每条边的长度,看谁先指出四条边都相等的图形(菱形和正方形)。接下来再让学生用三角板比一比这两个图形的角,找出四个角都是直角的图形来。这时,再告诉他们,这就是我们今天要学习的“正方形”。之后,我又发给学生几张大小不等的正方形纸片,让学生数一数(边数),量一量(边长),比一比(角)。在此基础上引导学生说出正方形的特征。这样,把“正方形”放到“四边形”的整体中去认识,分层揭示正方形的特征,让学生参与了概念形成的思维过程,学生概括起来言之有物,思路清晰,逻辑性强。

三、学具操作有利于促进学生思维的内化与外化

无论是思维的内化还是外化,都必须在丰富“表象”的基础上进行。而表象的建立,往往又离不开演示与操作。因此,应适当地加强操作教学,让学生在操作实践中充分感知,建立起丰富的表象基础。

例如,为了帮助学生掌握能被3整除的数的特征,课上,我让学生用小棒在千以内的数位顺序表上摆数:先是用3根小棒摆出300、210、201、120、102、30、21……都能被3整除;然后用4根小棒摆出400、310、301、220、202、211……都不能被3整除;接着再用5根、6根……9根小棒去摆,引导学生发现摆出的数是否能被3整除与小棒的根数有关。引导学生比较得出:当小棒的根数是3的倍数时,摆出的数都能被3整除。在此基础上再引导学生理解各位上数字和能被3整除的数能被3整除就水到渠成了。这样,在操作中归纳,再把外部操作内化为思维的条件,通过表象进行思维,可顺利地实现思维的内化。

与上例不同,在教学“20以内的进位加法”时,我则让学生先把解题的过程在心里默想一遍,答题时一边操作学具,一边结合操作说出思考步骤。这样手、口、脑并用,有利于学生将内部语言转化为外部语言,促进思维的外化。

四、学具操作有利于提高学生思维品质和效率

培养学生思维的品质和效率,是发展思维能力的突破点,是提高教学质量的重要途径。操作教学利于发挥学生的主体作用,课堂上学情浓,探索性强;学生互相交流,互相协作,为创造性地运用所学知识去发现新事物、提出新见解创设了良好的情境。

如教学平面图形面积计算时,有不少题目的解法不唯一,对此,可让学生利用学具画、折、剪、拼,把条件间隐蔽的关系明朗化,从而开拓思路,得以多解。

附图{图}

如上图(1),已知平行四边形面积为30平方厘米,求阴影部分面积。(单位:厘米)

我们可先求阴影部分三角形的底,再求出面积,或者用总面积减去梯形的面积求得。但在解题时,有不少学生在图上添加了辅助线,思路就不同了:

如图(1):总面积÷2-直角三角形面积

如图(2):(总面积-长方形面积)÷2

如图(3):(总面积-平行四边形面积)÷2

篇(2)

简单的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。

对于直觉作以下说明:

(1)直觉与直观、直感的区别

直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。而直觉的研究对象则是抽象的数学结构及其关系。庞加莱说:"直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把千角形作为一个特例包括进来。"由此可见直觉是一种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景。正如迪瓦多内所说:"这些富有创造性的科学家与众不同的地方,在于他们对研究的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓''''直觉''''……,因为它适用的对象,一般说来,在我们的感官世界中是看不见的。"

(2)直觉与逻辑的关系

从思维方式上来看,思维可以分为逻辑思维和直觉思维。长期以来人们刻意的把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是割离的。有一种观点认为逻辑重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念都是基于直觉,数学在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。

一个数学证明可以分解为许多基本运算或许多"演绎推理元素",一个成功的数学证明是这些基本运算或"演绎推理元素"的一个成功的组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和"演绎推理元素"就是这条通道的一个个路段,当一个成功的证明摆在我们面前开始,逻辑可以帮助我们确信沿着这条路必定能顺利的到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道。事实上,出发不久就会遇上叉路口,也就是遇上了正确选择构成通道的路段的问题。庞加莱认为,即使能复写出一个成功的数学证明,但不知道是什么东西造成了证明的一致性,……,这些元素安置的顺序比元素本身更加重要。笛卡尔认为在数学推理中的每一步,直觉力都是不可缺少的。就好似我们平时打篮球,要靠球感一样,在快速运动中来不及去作逻辑判断,动作只是下意识的,而下意识的动作正是在平时训练产生的一种直觉。

在教育过程中,老师由于把证明过程过分的严格化、程序化。学生只是见到一具僵硬的逻辑外壳,直觉的光环被掩盖住了,而把成功往往归功于逻辑的功劳,对自己的直觉反而不觉得。学生的内在潜能没有被激发出来,学习的兴趣没有被调动起来,得不到思维的真正乐趣。《中国青年报》曾报道,"约30%的初中生学习了平面几何推理之后,丧失了对数学学习的兴趣",这种现象应该引起数学教育者的重视与反思。

二、直觉思维的主要特点

直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点,从培养直觉思维的必要性来看,笔者以为直觉思维有以下三个主要特点:

(1)简约性

直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了"跳跃式"的形式。它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的"本质"。

(2)创造性

现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。

伊恩.斯图加特说:"直觉是真正的数学家赖以生存的东西",许多重大的发现都是基于直觉。欧几里得几何学的五个公设都是基于直觉,从而建立起欧几里得几何学这栋辉煌的大厦;哈密顿在散步的路上进发了构造四元素的火花;阿基米德在浴室里找到了辨别王冠真假的方法;凯库勒发现苯分了环状结构更是一个直觉思维的成功典范。

(3)自信力

学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。不可否认情感的重要作用,但笔者的观点是,兴趣更多来自数学本身。成功可以培养一个人的自信,直觉发现伴随着很强的"自信心"。相比其它的物资奖励和情感激励,这种自信更稳定、更持久。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。

高斯在小学时就能解决问题"12……99100=?",这是基于他对数的敏感性的超常把握,这对他一生的成功产生了不可磨灭的影响。而现在的中学生极少具有直觉意识,对有限的直觉也半信半疑,不能从整体上驾驭问题,也就无法形成自信。

中学数学教学大纲(试验修订本)将培养学生的三大能力之一"逻辑思维能力"改为"思维能力",虽然只是去掉两个字,

本篇论文是由3COME文档频道的网友为您在网络上收集整理饼投稿至本站的,论文版权属原作者,请不要用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系我们。

三、直觉思维的培养

一个人的数学思维,判断能力的高低主要取决于直觉思维能力的高低。徐利治教授指出:"数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的。"数学直觉是可以通过训练提高的。

(!)扎实的基础是产生直觉的源泉

直觉不是靠"机遇",直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会进发出思维的火花的。阿提雅说:"一旦你真正感到弄懂一样东西,而且你通过大量例子以及通过与其它东两的联系取得了处理那个问题的足够多的经验.对此你就会产生一种关于正在发展的过程是怎么回事以及什么结论应该是正确的直觉。"阿达玛曾风趣的说:"难道一只猴了也能应机遇而打印成整部美国宪法吗?"

(2)渗透数学的哲学观点及审美观念

直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。例如(ab)2=a22ab-b2,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。

美感和美的意识是数学直觉的本质,提高审美能力有利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则数学直觉能力也越强。狄拉克于1931年从数学对称的角度考虑,大胆的提出了反物质的假说,他认为真空中的反电子就是正电子。他还对麦克斯韦方程组提出质疑,他曾经说,如果一个物理方程在数学上看上去不美,那么这个方程的正确性是可疑的。

(3)重视解题教学

教学中选择适当的题目类型,有利于培养,考察学生的直觉思维。

例如选择题,由于只要求从四个选择支中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。实施开放性问题教学,也是培养直觉思维的有效方法。开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养。

(4)设置直觉思维的意境和动机诱导

这就要求教师转变教学观念,把主动权还给学生。对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。

篇(3)

1.定势思维的内涵及在教学中的表现定势是有机体的一种暂时状态。定势思维是指人们按习惯的、比较固定的思路去考虑问题、分析问题,表现为在解决问题过程中作特定方式的加工准备。具体地,定势思维主要有3种特性及表现方式。

①趋向性。思维者具有力求将各种各样问题情境归结为熟悉的问题情境的趋向,表现为思维空间的收缩。带有集中性思维的痕迹。如学习立体几何,应强调其解题的基本思路:即空间问题转化为平面问题。

②常规性。要求学生掌握常规的解题思想方法,重视基础知识与基本技能的训练。如学因式分解,必须掌握提取公因式法、十字相乘法、公式法、分组分解法等常规的方法。

③程序性。是指解决问题的步骤要符合规范化要求。如证几何题,怎样画图、怎样叙述、如何讨论、格式摆布,甚至如何使用“因为、所以、那么、则、即、故”等符号,都要求清清楚楚、步步有据、格式合理,否则就乱套。

定势思维通常有两种形式:适合定势思维和错觉定势思维。前者是指人们在思维过程中形成了某种定势,在条件不变时,能迅速地感知现实环境中的事物并作出正确的反应,可促进人们更好地适应环境。后者是指人们由于意识不清或精神活动障碍,对现实环境中的事物感知错误,作出错误解释。在教学过程中,教师要有目的、有计划、有步骤地帮助学生形成适合定势思维,防止学生形成错觉定势思维。

2.创造思维的形成过程

创造思维是指个人在头脑中发现事物之间的新关系、新联系或新答案,用以组织某种活动或解决某种问题的思维过程。它要求个人在已有知识经验的基础上,重新组合产生新的前所未有的思维结果,并创造出新颖的具有社会价值的产物。创造思维的产生因人而异,没有固定的模式。一般经历4个阶段。①准备阶段。这一阶段的主要任务是搜集资料和有关信息、储存经验,以便为创造做准备。②酝酿阶段。这一阶段的任务是消化、传换信息,在头脑里反复进行象征性的尝试,重新组合概念。③大悟阶段。这时头脑中事物各部分仿佛突然接通了,发现了新关系、新联系,构成了新形象、新假设,得出了新结论。④验证阶段。将产生的思维结果付诸实施。

集中思维和发散思维是构成创造思维的必要成份,逻辑思维是创造思维的基础,灵感的形成是创造性思维的关键。定势思维是夹杂在各种形式的思维活动中起奠基的作用。教师在教学中要认真把握,注意培养。

二、定势思维与创造思维

1.定势思维是集中思维活动的重要形式

课本内容是学生学习的根本所在,它是前人经验、智慧的结晶,从内容到方法,都有严格的规定,它需要利用固有经验,按一定模式去解决问题,而这正是完成基础知识和基本技能教学任务的需要。

2.定势思维是逻辑思维活动的前提

逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。数学教学中主要的思维活动是逻辑思维。如明确定义、推导法则、公式、证明定理、运用知识解决问题等活动,时时刻刻都在运用逻辑思维。在进行逻辑思维时,要经过一步一步的分析,多环节、多步骤地逐步将条件转化为结论,每一步都要“言必有据”并遵循推理的法则。这正是定势思维所要求的。

3.定势思维是创造思维的基础

定势思维一方面表现为思维空间的收缩,另一方面,思维者力求扩充已有经验、观念认识的应用范围,表现为思维空间的扩散。因此,定势思维又成为推动思维展开的动力。从这个意义上讲,定势思维可以成为类比、归纳、联想等发现手段的基础。

4.定势思维与创造思维可以相互转化

定势思维与创造思维是相辅相成的两个概念,而非对立。它们总是互相依赖,互相促进,并在一定条件下可以相互转化。当定势思维积蓄到一定程度时,就会由量变引起质变,转化为创造思维。每一次转化都使二者同时进入一个新的更高水平阶段,如此进行,人们的思维能力才能得到不断发展和提高。

5.定势思维对形成创造思维的消极作用

在强调定势思维积极作用的同时,我们也应该看到它的消极作用,错觉定势思维在数学教学中的影响是客观存在的。不少学生总是习惯于搬用已有的经验,被动记忆、机械模仿、生搬硬套,表现出思维的依赖性、呆板性,这些均是产生错觉定势思维的温床。如用6根火柴搭成4个三角形,这些三角形的每边都是一根火柴那么长。学生解决此问题感到棘手,怎么摆弄也摆不出4个三角形,其原因正是“平面错觉定势”的影响。

三、几个应该重视的问题

1.要重视定势思维自身形成的过程

数学教学的目的在于建立符合数学思维自身要求的具有哲学方法意义的定势思维。这种定势不仅是数学观念系统的重要组成部分,而且也是数学思维能力的具体体现。定势思维的作用不在于定势思维本身,而在于定势思维如何形成。例如,概念的教学,如果就概念讲概念,草率地把概念硬灌给学生,那么只能形成僵硬的概念定势;如果充分调动学生学习的积极性,从实际事例和学生已有知识出发,通过分析比较,引导学生步步深入地揭示概念的内涵和外延,抓住事物的本质,那么学生头脑中建立起来的就是积极的、活跃的“概念定势”,形成适合定势思维。上述两种教法,均是建立“概念定势”,究其过程是有本质区别的,我们在教学中应加以重视。

2.要淡化所谓的“解题规律”

在数学教学活动中,配备适量及适当的习题进行训练是必要的,但是过分地强调并不基本的解题技巧、方法和观点,突出所谓的“解题规律”是不科学的,无疑会使学生形成呆板思维。更有甚者,在学生未能理解的情况下,让他们死记一些解题的诀窍、程序或口诀,这是造成错觉定势思维的重要原因。有一位初中数学教师,将几何题分成几种类型,让学生死记硬背其规律,应付考试,效果不错,得到了部分家长的“称赞”,某种程度上助长了这种错误做法,这也是题海战术长盛不衰的一个重要因素。这种教学方法尽管在某些场合可以暂时取得良好的成绩(分数),但从长远来看,不利于学生思维能力的发展。难怪爱因斯坦曾说过:“现在的教学方法扼杀了人们研究问题的神圣好奇心,在学校里,甚至觉得自己象头野兽一样,被人用鞭子强迫着吃食!”这种状况确实是我们教育的悲哀,这不是在培养和发展人的创造思维能力,而是在“铸造”机器人。

3.正确处理好定势思维与创造思维之间的关系

创造是定势的突破,同时又是定势的产物,并非某些文章中所归纳的,定势思维是制造错误的发源地。消除定势思维的消极作用的关键在于克服错觉定势思维,发展适合定势思维。众多文章过多渲染定势思维的消极作用,无形中给中学数学教学带来了某些不良影响。如有的教师只重视创造思维能力的提高,不重视打好基础,导致学生成绩严重两极分化;有的脱离《大纲》和课本的要求,违背学生的认知发展规律,追求“高难度、高技巧、妙方法”,造成多数学生如入迷雾,不知所措,非但没有形成创造能力,而且必须学的知识也没能掌握。因此,创造思维的训练要有度,教师要注意把握学生掌握知识的阶段性、连贯性和贯力性,合理处理定势思维与创造思维之间的关系。促进定势思维的形成——突破——形成的良性循环,达到提高学生创造思维能力的目的。

参考文献:

篇(4)

关键词:激发兴趣、运用类比、巧设问题

思维能力是一切能力的核心,它是通过对事物的感知、表象进行分析、概括、归纳而获得事物本质的能力。一个人的思维能力强弱,不仅与知识理论、水平有关,而且与思维方式有关。在数学教学中,学生思维能力的培养至关重要,我在数学教学的实践中,从以下几方面加强了培养学生数学的思维能力,并收到了较好成效。

一、激发学生的学习兴趣,启迪学生的思维

兴趣是学生学习的直接动力,它是求知欲的外在表现,它能促进学生积极思考,勇于探索。

1、用实践操作唤起学生的兴趣

教师在教学实践中动手操作或让学生自己动手操作,最能唤起学生的兴趣,保持学生稳定的注意力。如在推导圆柱体的体积公式时,我通过让学生自己推导将一个圆柱体拼割成一个近似的长方体,并让学生掌握了圆柱体的体积公式后,我要求学生认真观察教师的推导过程,并让学生观察将一个圆柱体拼割成一个近似的长方体后,这个近似的长方体的体积、表面积同原来的圆柱体的体积及表面积相比是否发生变化。在学生掌握了圆柱体的体积公式后,我出示了这样一道题目:“将一个圆柱体拼割成一个近似的长方体后,这个近似的长方体的表面积比原来增加了40平方厘米,已知这个长方体的高为1分米,求这个圆柱体的体积是多少立方厘米?”学生由于刚刚自己动手推导圆柱体的体积公式,因此很快可以求出这个圆柱体的底面半径为:40÷2÷10=2(厘米),这个圆柱体的体积为:3.14×2×2×10=125.6(立方厘米)。

2、让学生在实践中提高学习兴趣并获得知识

在小学数学教学中让学生进行实践是有效提高课堂教学的一种重要手段。如教学了行程问题后,我出示了这样一题:“已知客车每小时行60千米,货车每小时行50千米。现在两车同时从相距200千米的甲、乙两地同时出发,经过2小时两车相距多少千米?”

由于题中未说明行驶方向,所以两车出发2小时,两车相距的路程应是多少并无一个标准,因此,我组织两个学生在教室中按四种情况进行了演示:1、两个学生同时相向而行;2、两个同学同时相背而行;3、两个学生同时向同一方向而行,走得快的同学在前;4、两个学生同时向同一方向而行,走得慢的同学在前。因此我再启发学生,这道题应该如何进行解答。这样,学生很快到,这道题应分以下四种情况进行讨论

(1)、两车同时相对而行,相遇后又拉开距离:(60+50)×2-200=20(千米)。

(2)、两车同时相背而行:(60+50)×2+200=420(千米)

(3)、两车同向而行,客车在前面货车在后面:60×2+200-50×2=220(千米)

(4)、两车同向而行,货车在前面客车在后面:50×2+200-60×2=180(千米)。

二、运用类比方法,培养学生创新思维

类比方法是根据两类物质之间一些相似性质从而推导出其它方面也类似的推理方法,在数学教学中运用类比是一种非常重要的方法。

1、运用比较辨别,启迪学生思维想象

如在教学了数的整除的知识后,我出示了这样一道例题:“一个大于10的数,被6除余4,被8除余2,被9除余1,这个最小是几?”应该说这道题是有一定的难度的,学生求解会感到无从下手,这时,我出示了这样一题比较题:“一个数被6除余10,被8除余10,被9除余10,这个数最小是几?”这道题学生很快能求出答案:这个数即是6、8和9的最小公倍数多10,6、8和9的最小公倍数为72,因此这个数为:72+10=82;然后我引导学生将上面一道例题与这道比较题进行比较和思考,学生很快知道,上道题只要假设被6除少商1余数即为10,被8除少商1余数也为10、被9除时少商1余数也为10,因此可迅速求得这个数只要减去10,就同时能被6、8和9整除,而6、8和9的最小公倍数为72,因此这个数为:72+10=82。这样通过让学生展开联想和比较,不但可以提高学生的想象能力,同时也能提高学生的创新思维能力。

2、通过分析归纳,培养学生创新思维

又如在教学完了平面图形的面积计算公式后,我要求学生归纳出一个能概括各个平面图形面积计算的公式,我让学生进行讨论,经过讨论,学生们归纳出,在小学阶段学过的面积公式都可以用梯形的面积计算公式来进行概括,因为梯形的面积计算公式是:(上底+下底)×高÷2。而长方形、正方形、平行四边形的上底和下底相等,即可将这公式变成:底(长、边长)×高(宽、边长)×2÷2=底(长、边长)×高(宽、边长);又因为将圆面积公式是根据长方形的面积公式推导出来的,因此,梯形的面积公式对圆也同样适用;当梯形的上底是零时,即梯形成了一个三角形,这时梯形的面积公式成了:底×高÷2。这即成了三角形的面积公式。这样,不仅使学生能熟练掌握已学过的平面图形的面积公式,同时,也培养和提高了学生的创新能力。

三、巧设探索性问题,培养学生创新思维

现代心理学认为:为教学时应设法为学生创设逼真的问题情境,唤起学生思考的欲望。在教学实践中,我们如能让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。因此,在教学实践中,我尽量做到在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。

1、设计开放性习题,让学生在实践中提高创新思维。

如在教学了百分数应用题后,我出示了这样一题:张教老师欲购买一台笔记本电脑,为了尽可能少花钱,他考察了A、B、C三个商场,他想购买的笔记本电脑三个商场都有,且标价都有是9980元,不过三个商场的优惠方法各不相同,具体如下:

A商场:全场九折。

B商场:购物满1000元送100元。

C商场:购物满1000元九折,满10000元八八折。

张老师应该到哪个商场去购买电脑?请说明理由。

这道题显然不同于一般的应用题,因此我启发学生,应该充分考虑如何才能做到尽可能少花钱这一个特定的条件去进行分析与解答。学生进行了认真的分析和讨论,最后得出如下的结论:

因为每台电脑的价格均为9980元,而去A商场是全场九折,因此张老师如果去A商场购电脑,那么张老师应该付:9980×90%=8982(元)。

因为B商场是购物满1000元送100元,张老师如果只买电脑,需付:9980-900=9080(元);张老师如果再买其它的物品凑满10000元,需付:10000-1000=9000(元)。

因为C商场是购物满1000元九折,满10000元八八折,张老师在C商场购买电脑时,只要再多买20元物品,即凑满10000元,最多需付:10000×88%=8800(元)。

因此,张老师去C商场购电脑花钱最少。

2、培养学生打破传统的思维模式,开启学生创新思维大门

创新思维的培养,要让学生敢于打破传统的思维模式,对一些问题提出具有独特的的、富有说服力的新观点和新境界,开启学生的创新思维大门。

如教学了“长方体和正方体的体积”后,我出示了这样一题:“一个长方体水箱,从里面量,长40厘米,宽25厘米,高20厘米,箱中水面高10厘米。如果在长方体水箱中放进一个长和高都为20厘米,宽为10厘米的长方体铁块,那么水面将上升多少厘米?

这道题大部分同学都只想到将以20×20作为底面放进水箱中这一种情况,这时铁块全部浸没在水中,这时候水面上升的高度即为:20×20×10÷(40×25)=4(厘米)。但还有另一种情况,即不是将20×20作为底面,而是以20×10作为底面放进水箱中的这一种情况,同学们却忽略了。这时我向学生进行了演示:我将一块铁块按未曾全部浸没在水中的情况进行了演示,并启发学生除了将以20×20作为底面放进水箱中这一种情况,还有没有其它的情况,学生通过观察并进行了讨论,认识到还要考虑到另一种情况,即以20×10作为底面放入水中,因此很快得出结论,如果以20×10作为底面放进水箱中,这时候铁块没有全部浸没在水中,这时水面上升的高度应该为:

40×25×10÷(40×25-20×10)-10=2.5(厘米)。

或者用方程进行求解。设水面上升X厘米,则可得方程:

篇(5)

数学教学就是指数学思维活动的教学,对数学思维的研究,是数学教学研究的核心。在数学教学中如何发展学生的数学思维,培养学生的数学思维能力是高中数学新课程标准的基本理念,也是数学教育的基本目标之一。数学教学过程的基本目标是促进学生的发展,按照新课标的基本理念,它不只是让学生获得必要的数学知识、技能,还应当包括在启迪、解决问题、情感与态度等方面的发展。数学思维在学生数学学习中具有重要作用,没有数学思维,就没有真正的数学学习,数学教学的一个首要任务是培养学生的思维能力。

把教材知识系统与学生已有认知经验能够很好的融合在一起。教学过程中思维严谨,逻辑性强,善于启发诱导。在教学中,教师应有意识地通过知识的传授,去培养学生深刻的思维能力。比如,讲定义、定理时,不仅注意准确解释词句的内含外延,而更要注意通过一些实例来指引学生参加结论的导出,以培养学生的概括能力。

数学思维是一个人的优秀品质。一个人有好的数学思维品质是难能可贵的。

1.教师在学生解题训练中培养学生的数学思维

数学题是数学教学内容的重要组成部分,教师用这些题目去加深学生对所学知识的了解、掌握和运用,也用它们衡量学生对知识掌握的程度,检验教学效果。解题过程包括弄清问题、寻求解题思路、写出解题过程、解答回顾等四个重要环节,第一个环节是解题的起始,第四个环节是解题的归宿和升华;这四个环节对于培养学生数学思维的严谨性、广阔性、深刻性等优良品质有着重要的意义。

2.教师通过在教学中挖掘知识的内在思想来培养学生的数学思维要有意识的激发学生思维成长

在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如在高一年级讲述函数求值域的问题时,我们先从学生初中已学过的()入手,逐步引导学生,值域,值域,值域,值域,让其自己发现结论,经过每一步学生自己参与自己总结很自然的他们会总结出这种形式函数的值域问题。这就是解题过程中激发学生的兴趣,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。

3.教学过程中让学生体会独立思考,认真思维带来的乐趣

在教学过程中,让学生主动参与到学习过程中来,培养其学习的兴趣。这对于学生主动思考,独立思考是有很大帮助的。可以极大的锻炼学生的数学思维能力。如:椭圆的定义,传统的教学主要是教师自己拿一段细绳和两枚图订在黑板上演示椭圆的形成过程,然后给出椭圆的定义。这样的教学方法直接呆板,学生参与少、思考少,而且这样直接了解椭圆的定义,会造成单纯的记忆性,缺少探索性。因而记忆的印象不够深刻,运用其解决实际问题更难,实际上没有真正培养到学生的数学思维能力。假如换个角色,由教师为主角演练,换成把数学学习的主动权交给学生,让学生亲自实践,大胆探索:先让学生拿出课前准备好的一块纸板,一段细绳和两枚图订,自己动手画图,然后同桌相互评价;其次在两枚图订之间的距离发生变化而绳长不变的条件下对所画图形自主进行探索;最后对概念的归纳进行讨论,学生试着说出椭圆的定义,教师补充。这样通过学生自己的体验,用自己的思维方式,通过独立思考、合作交流、归纳整理,形成新的知识结构,而且学生之间在讨论中相互补充,这样使他们的直观感知、观察发现、归纳类比等数学思维能力在课堂教学活动中得到锻炼和提高,同时又能真正体现数学课堂教学的本质,实现教学双长。

另外当学生真正独立思考,独立解决问题以后,教师在设置相应的纵向的知识联系就更能激发学生想象,如在学生掌握椭圆的定义之后。我们可以马上设置双曲线的定义问题由距离的和很顺利的过渡到距离的差,以激发同学对知识的渴望,形成良性循环。先思考,然后参与,再总结。

4.数形结合的思想的重要性

数形结合的思想是数学中的重要思想,它可极大的锻炼学生的感官与理性认识的结合。因此利用数形结合,培养学生的数学思维能力是很有必要的。数形结合就是将抽象的数学语言、符号与其所反映的图形有机的结合起来,从而促进抽象思维与形象思维的有机结合,通过对直观图形的观察与分析,化抽象为直观,化直观为精确,从而使问题得以解决。例如在介绍绝对值不等式恒成立的问题时:恒成立,求的取值范围。就可引导学生去考虑绝对值的几何意义即是距离问题。那么该题即考察数轴上到2与5距离的和的最小值问题,画出数轴即可解决只需即可。另外在二次函数相关问题的解决时,如在讲述二次函数在闭区间上根的分布以及取值问题时,引导同学画图像,发现特点,在从理论上去说明,就是将解决问题的所有方法先呈现给学生,让其自己去发现,去总结如何整合这些资源以利己用。再如,讲述函数性质的内容时,单调性与奇偶性的发现就是充分利用了数形结合的思想;解析几何中的这种应用更为普遍。所有这些都能极大的锻炼学生的思维能力。

总之,在数学教学中多进行有目的的思维训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高学生数学思维能力,又达到发展智力的目的。

参考文献

篇(6)

教师作为教育工作的直接参与者,对提高学校的教学质量发挥着重要的作用,这就需要教师具有实践教学的教育理念,既要精通理论知识和实践能力,又要亲自指导学生实践,培养学生实践能力。在教学模式上,打破传统的讲授教学模式,突出教学内容的实用性,让实践教学模式渗透到学生的财经学习过程中,使学生能够充分利用所学知识提升自己的职业技能。

(二)创新实践教学手段

学校应该紧跟时展,引进新的教学手段,把传统的讲授教学方式逐步转变为运用多媒体、电子教程、投影仪等现代化教学方式上来,摆脱以往学习的枯燥乏味,活跃课堂气氛,提高学生对于所学课程的学习兴趣。师生之间加强交流沟通,促进教学质量的改进。再者,中职院校应充分利用已有的教学资源,提高教学效率。建立财经类综合实践实训基地,不断进行实训基地各种教学制度的完善,明确自身管理职责,进行综合实训基地的统一规划和管理,实现规范、科学的教学管理[3]。

(三)强化教师团队建设,培养学生综合实践能力

在学校教学过程中,教师是教学活动的组织者和领导者,强化教师团队建设是提高学生实践能力的关键。在日常实践教学过程中,应设立专业对口的实训项目或是与校企单位进行合作,经过专业教师的指导,实现学生真正上岗实践,通过所学理论在实际工作过程中的运用,能够加快学生理论知识与实践能力的整合,增强学生自身对财经类工作岗位的认识,树立积极的职业观和价值观。实践上岗教学模式,能够培养学生的探索实践能力,能够在实际的实践工作过程中,按照企业规定严格约束自己的行为,培养更多符合社会需要的实践型人才。通过上岗实践教学使学生在学习态度上有了重大的转变,体验到在企业中生存的基本法则,这种压力激励着他们不断进取,使得学生的探究、分析问题、解决问题的能力得到了很大程度的提升[4]。

篇(7)

学生在学习数学时,都有一个共同的感受,那就是:知识点多、公式多、难以记忆,在做题时不知道用哪个知识点和哪个公式,即使想到应该使用哪些公式和知识点,也记不住公式的具体内容和知识点间的联系。这让许多同学都觉得数学知识是零散的、杂乱无章的。

众所周知,数学学习注重基础性和连续性,教学中如果教师能够有意识的进行培养和训练,把零散的数学知识点,按其内部的联系分类,再把它们连成线、结成网。使所学的数学知识系统化、网络化,就可以大大的减轻学生学习过程中的记忆负担,激发和培养学生学习数学的兴趣,强化学生思维的敏捷性,从而提高解决问题的能力,以至达到提高教学成绩的目的。鄙人从事中学数学教学十余年,有些不成熟的做法和拙见,在此与各位同仁探讨,以达到共同促进之目的。

1.教学过程要认真“描点”。作好“连线”的准备。描点,即强化知识点,具体到每课时、每章节、每单元[1]。所涉及到的每个知识点都要认真对待,使学生掌握知识的内容、重点、难点、步骤等。以至把“点描实、做大,使以后的连线“有路可走”。同时要注重知识点的前后延伸,作好“连线”前的准备。在强化知识点的内容、重点、难点的同时,要有意识地把该内容向前后延伸。总结强调该内容是哪些知识的延续和应用,同时又是以后的哪些知识的准备和基础。

例如,在对“直线的斜率”的教学时,首当其冲的任务是让学生掌握斜率的定义、范围、作用、计算方法、性质等。但同时应该研究斜率的基础、计算方法的根源,即斜率与以前的知识的联系;研究和探索斜率对以后学习的作用,斜率在直线的点斜式方程、斜截式方程、两点式方程中的作用,以及两直线的位置关系、两直线的夹角等知识中的作用。以便为知识的归类、连线作准备。

2.在知识的复习和应用时要尽力“连线”,使“点”成为“线”的元素。在最初的教学中,学生学习到的知识点是零散的、不连惯的。学生记忆这些零乱的知识非常困难,可能记住甲忘记乙、记住东模糊西。这将让学业负担本来就繁重的学生雪上加霜。为了减轻学生的记忆负担,教学时要力求把知识归类、连线,使知识类别化、系统化。让学生在学习中掌握一点知道一串、抓住线头把握一线。

例如在上例中,只要引导学生把直线的倾斜角一一正切——斜率——斜率计算公式——直线方程的形式——直线的位置关系——直线的交角⋯⋯,通过知识的内在联系把它们连成一条线。这样,学生在复习时只需掌握线上的任意一个概念,就可以把所有的有关知识回忆起来,再现全部知识。即可“以点带线”。

篇(8)

(1)为了提高学生的逻辑活动的能力,则必从概念入手。在教学中教师要引导学生充分认识构成概念的基本条件,揭示概念中各个条件的内在联系,掌握概念的内涵和外延,在此基础上建立概念的结构联系。

(2)引导学生正确使用归纳法,善于分析、总结和归纳。由归纳法推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能对于科学的发现是十分有用的。

(3)引导学生正确使用类比法,善于在一系列的结果中找出事物的共同性质或相似处之后,推测在其它方面也可能存在的相同或相似之处。

2.发散思维的培养

发散思维有助于克服那种单一、刻板和封闭的思维方式,使学生学会从不同的角度解决问题的方法。在课堂教学中,进行发散思维训练常用的方法主要有以下两点:

(1)采用“变式”的方法。变式教学应用于解题,就是通常所说的“一题多解”。一题多解或一题多变,能引导学生进行发散思考,扩展思维的空间。

(2)提供错误的反例。为了帮助学生从事物变化的表象中去揭示变化的实质,从多方面进行思考,教师在从正面讲清概念后,可适当举出一些相反的错误实例,供学生进行辨析,以加深对概念的理解,引导学生进行多向思维活动。

3.形象思维的培养

形象思维能力集中体现为联想和猜想的能力。它是创造性思维的重要品质之一,主要从下面几点来进行培养:

(1)要想增强学生的联想能力,关键在于让学生把知识经验以信息的方式井然有序地储存在大脑里。

(2)在教学活动中,教师应当努力设置情景触发学生的联想。在学生的学习中,思维活动常以联想的形式出现,学生的联想力越强,思路就越广阔,思维效果就越好。

(3)为了使学生的学习获得最佳效果,让联想导致创造,教师应指导学生经常有意识地对输入大脑的信息进行加工编码,使信息纳入已有的知识网络,或组成新的网络,在头脑中构成无数信息的链。

4.直觉思维的培养

在数学教学过程我们应当主动创造条件,自觉地运用灵感激发规律,实施激疑顿悟的启发教育,坚持以创造为目标的定向学习,特别要注意对灵感的线形分析,以及联想和猜想能力的训练,以期达到有效地培养学生数学直觉思维能力之目的。

(1)应当加强整体思维意识,提高直觉判断能力。扎实的基础是产生直觉的源泉,阿提雅说过:“一旦你真正感到弄懂一样东西,而且你通过大量例子,以及与其他东西的联系取得了处理那个问题的足够多的经验,对此你就会产生一种正在发展的过程是怎么回事,以及什么结论应该是正确的直觉。”

(2)要注重中介思维能力训练,提高直觉想象能力。例如,通过类比,迅速建立数学模型,或培养联想能力,促进思维迅速迁移,都可以启发直觉。我们还应当注意猜想能力的科学训练,提高直觉推理能力。

(3)教学中应当渗透数形结合的思想,帮助学生建立直觉观念。

(4)可以通过提高数学审美意识,促进学生数学直觉思维的形成。美感和美的意识是数学直觉的本质,提高审美能力有利于培养学生对数学事物间所有存在着的和谐关系及秩序的直觉意识。

5.辩证思维的培养

辩证思维的实质是辩证法对立统一规律在思维中的反映。教学中教师应有意识地从以下几个方面进行培养:

(1)辩证地认识已知和未知。在数学问题未知里面有许多重要信息,所以未知实际上也是已知,数学上的综合法强调从已知导向未知,分析法则强调从未知去探求已知。

(2)辩证地认识定性和定量。定性分析着重抽象的逻辑推理;定量分析着重具体的运算比较,虽然定量分析比定性分析更加真实可信,但定性分析对定量分析常常具有指导作用(3)辩证地认识模型和原型。模型方法是现代科学的核心方法,所谓模型方法就是通过对所建立的模型的研究来推知原型的某种性质和规律。这种方法需要我们注意观念上的转变和更新。

6.各种思维的协同培养

当然,任何思维方式都不是孤立的。教师应该激励学生大胆假设小心求证,并在例题的讲解中穿插多种思维方法,注意培养学生的观察力、记忆力、想象力等,以达到提高学生创造性思维能力的目的。我们来看下面这些例子:

例1:观察下列算式:

作用的结果。

再进一步观察,可以发现3=5-2,4=7-3,4=9-5,…,D=A-B。能发现这样的规律,正是我们的逻辑思维作用的结果。

何一个创造性思维的产生都是这些思维互相作用的结果。

例2:如图:在RtABC中,∠ACB=90°,CDAB,垂足为D,求AC的长。请补充题目的条件,每次给出两条边。

本题是一个条件发散的题目,条件的发散导致多种解法的产生。事实上,至少存在如下10种解法:

(1)AD,CD;(2)AB,CB;

(3)AD,AB;(4)AD,DB;

(5)AB,DB;(6)CD,DB;

(7)CB,DB;(8)AB,CD;

(9)CB,CD;(10)AD,CB。

已知(1)(2)时,直接应用勾股定理;已知(3)(4)(5)时,直接应用射影定理。只用一次定理即可求出AC,可见已知和结论距离较近。

已知(6)(7)(8)(9)(10)时,需要应用两次定理才能求解,这五种情况比较,已知与结论的距离远些。

通过对此题的研究,“穷举法”在列举各种已知条件的可能性时得到应用,并体现了发散思维一题多解的思想,更重要的是,学生在观察中了解了自己的思维层次,在总结、选择中提高了思维水平,由发散到集中(非逻辑思维到逻辑思维),学生的创造性思维就会逐步形成。

总之,我们要利用各种思维相互促进的关系,把学生的思维习惯逐渐由“再现”导向“创造”,用已掌握的知识去研究新知识,引导他们总结规律,展示想象,大胆创新。

总而言之,我们可以看到,创造性思维既有别于传统教育所注重的逻辑思维,又并非单纯意义上的发散思维,它是由逻辑思维、非逻辑思维、直觉思维和辩证思维所构成的有机的整体,并且是一个人创造力的核心。数学教学应该尽快地转变思想,从传统的教育模式向培养创造性人才的教育模式转变,从传统教育所强调的逻辑思维向现代社会所需要的创造性思维转变。这个过程将是漫长的,我们将继续探索下去。

论文关键词:创造性思维培养协同培养

论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造性思维教学模式,随后论述创造性思维的本质及构造,讨论了创造性思维方法的培养。

著名的未来学家伊萨克·阿西莫夫说过:“二十一世纪可能是创造的伟大时代。那时,机器将最终取代人去完成所有单调的任务,计算机将保障世界的运转。而人类则最终得以自由地做非他莫属的事情——创造。”从某种意义上说,人类社会的发展进步,取决于人类饱含生机的创造力。

创造性思维正是探求和创造新知识的思维形式和思维方法。创造性思维由于对于认识世界和改造世界具有极其重要的意义,因此引起了人们越来越多的兴趣,成为理论界关注的课题。

教育在培养创新精神和培养创造性人才方面肩负着特殊的使命。要有效地培养出大批具有创新能力的人才,教师首先要先转变教育思想、教学观念和教学模式。所谓具有创新能力的人才是指具有创造意识、创造性思维和创造能力的人才,而其核心是创造性思维。所以,创新人才培养理论的核心就是如何培养创造性思维。

根据当代心理学和神经生理学最新研究成果而提出的关于创造性思维的“内外双循环理论模型”(DC模型)认为,创造性思维结构应当由逻辑思维、发散思维、形象思维、直觉思维、辩证思维和横纵思维等六个要素组成。而横纵思维的观点由于现在仍比较模糊和富于争议,因此,我们在这里不予论述。

参考文献:

[1]仇保燕.教学思维方法.武汉:湖北教育出版社,1994:221-235.

[2]张楚庭.数学与创造.武汉:湖南教育出版社,1989:8-10.

[3]王仲春,李元中,顾莉蕾,孙名符.数学思维与数学方法论北京:高等教育出版社,1988:97-101.

篇(9)

有了背景材料的质、量保证,就为学生科学地概括提供了充分条件。

其次,要恰当变换问题的具体情境。面对一种思维情境,没有显而易见的解决方法,这样的情境就是问题,问题解决就是从已知状态到目标状态的运动过程。

小学生概括的肤浅性,往往表现为从问题次要的、表面的形式上去观察和比较,而对问题主要的、本质的东西视而不见。针对这种现象,教学的,教师应当先显示标准的常式,再出示非标准的变式,即先揭示概念的内涵后揭示概念的外延。

提供的变式材料,一定要注意改变事物的非本质属性和非特定情形,不要改变事物的本质属性,这样能使学生的概括集中指向事物的本质要素,不致于干扰和阻碍概括的过程。

第三,发挥解题模式的诱发功能。目前,小学数学界对题型分类和解题模式一直争论不休。现行统编教材编排更是十分忌讳模式或类型。然而无论怎么改变,模式却是客观存在的。事实上,一个公式、一条定律、一道范例,都自然成了学生思维的模式。就连最简单的20以内的进位加法中的“凑十法”也是地道的模式。

模式就是可供模仿的原型。在思考问题的,任何人总要把新问题归结成记忆力已知的认知图式或解题模式。因此,在解数学问题时,在学生进行数学概括时,教师应适时引导学生联想相关的解题模式及其要素、在模式的指导下进行有的放矢的思维,这样可以缩短概括的过程,提高概括水平。

第四,教会学生概括的主要方法。简单地讲有以下4种:

1.从观察和比较中概括。

要让学生养成耐心、全面地观察,精细、认真地比较的良好习惯,特别是要能从相同中发现不同点,或从相异处找出相同点。让学生经常自问:有哪些相同的地方?不同处在哪里?

2.从类比和归纳中概括。

类比是从特殊到特殊的推理,归纳是从特殊到一般的推理,这两种推理的结论,都必须进行概括。类比实质上是从提供的原型中找到模式,再利用模式获得新的概括,如把比例尺的关系式同百分数应用题的数量关系式类比,可以发现它们的相同点:比例尺相当于百分率,图上距离相当于标准量,实际距离相当于比较量,这样可合二为一获得新的概括--比例尺应用题实质上可归结为百分数应用题的解题思路。并且这样解题更加简捷明快。归纳是建构模式中不可能少的环节,演绎则是对模式的具体应用,由于教材封闭性的特点,大多数内容只能以演绎体系呈现,实质上就减少了概括的过程,通过归纳,不仅可以复原结论的形成过程,而目可以在归纳中学会概括一类事物的本质属性,提高概括能力,扇形面积公式就是通过旧纳而概括成的。

3.从直观和抽象中概括。

直观的板书、演示、操作等,为小学生的概括减少了难度,定律、法则等内容较多的结论,可借助板书帮助概括。在抽象中概括,主要指联合各独立的数学条文,形成包摄程度更高更为一般的概括、如从分数乘以整数、一个数乘以分数以及带分数乘法中概括出分数乘法的统一法则就属这一情形。

篇(10)

二、高中数学复习课教学中思维导图的应用原则

在高中数学复习课教学中应用思维导图应当遵循:a.循序渐进的原则.学生完全适应思维导图的应用需要一定的时间和过程,教师要详尽地指导学生如何应用思维导图进行复习,并细心解答学生产生的疑问,随后加强对学生绘制思维导图的实用、简洁、美观等的要求.b.归纳整理的原则.利用思维导图对数学知识里的基本概念、法则、公式和定理等进行整理,将一些零散的、孤立的知识点整合起来,在新旧知识间建立联系,优化知识结构体系.c.重点突出的原则.高中数学知识纷繁复杂,这就需要能够找到重点突出的知识点,在绘制思维导图的时候一定要明确重点、难点和考点.d.主体性的原则.高中教学中思维导图的应用是以学生为主体的,教师要鼓励学生积极参与,提高学生学习积极性.e.系统化的原则.数学是一个整体,数学知识间存在重要的联系,教师需要引导学生在复杂的数学知识体系中梳理知识之间的联系,形成良好的知识系统.

三、思维导图在高中数学复习课教学中的应用

篇(11)

1.1引导学生抓住思维起始点

数学知识网络是环环相扣的,学生思维能力的提升也是环环相扣的,教师要从学生的思维起始点出发,抓住思维发展的过程,逐步深入直至完成思维训练。如果教师没有引导学生抓住思维起始点,那么学生对问题就会感觉无从下手,其思维发展也不会按照特有的轨迹进行发展。例如教师在讲按比例分配时,从学生已经学过的平均分配知识开始讲解,帮助学生理解平均分配和按比例分配的关系,将学生的思维引入按比例分配中,从而扫清学生学习按比例分配的知识障碍。最后教师引导学生解决按比例分配的实际问题,这样能让学生从思维的起始点出发,培养思维的流畅性。对于不同的知识点,其思维起始点是不同的,教师在进行小学数学教学时,必须把握住学生的思维起始点,以旧知识为起点,通过引导、转化,使得学生的思维逐渐清晰、条理。

1.2引导学生抓住思维的转折点

学生在学习知识的过程中,有时会出现思维障碍的现象,这时教师要充分发挥自身的引导作用,帮助学生引导、梳理思维障碍,促使学生进行思维转折,从而促进学生的思维发展。例如学生在解决这样的问题时:王师傅和张师傅同时加工一批零件,原计划王师傅加工的另加数量是张师傅加工数量的2/5,但在实际加工中,王师傅多加工了34个,结果王师傅加工的零件数是张师傅加工的7/9,问这批零件共有多少个?学生在解决这道题目时,会清楚的判断出2/5、7/9这两个数值都是以张师傅加工的零件数量为标准进行衡量的,但这两个数值并不相等,这就会对学生的思维造成障碍。这时教师就要引导学生开拓思维,原计划王师傅加工的零件数是张师傅的2/5,那么王师傅和张师傅计划加工零件的个数是几比几?而王师傅实际加工零件数是张师傅的7/9,那么王师傅和张师傅的实际加工零件数是几比几?这样将张师傅加工的零件数为衡量标准的关系转换为以总零件数为衡量标准,就能帮助学生快速的解决这个题目。通过思维转换能帮助学生解决四维障碍的问题,有利于培养学生的发散性思维。

二.采用合理思维培训方法

教师在进行小学数学教学时,可以采用综合分析、具体抽象、求同求异等思维方法培养学生的思维能力。综合分析方法是从已知条件入手,逐层分析,然后解决实际问题,小学生的思维特点是从具体形象思维逐步过渡到抽象逻辑思维,因此,教师在培养学生思维时,要注重学生的思维过渡。例如教师在向学生讲解圆柱体侧面积的相关内容时,可以引导学生将圆柱模型的侧面剪开,观察圆柱侧面剪开后与正方形、长方形等部分之间的关系,从而演化出圆柱体侧面积的计算公式。通过这一系列的操作、观察、演化,能极大地培养学生的具体抽象思维。在小学数学教学中,很多知识都有千丝万缕的联系,这时教师可以采用求同求异的思维方法,让学生对比教材中的相关知识,能帮助学生构建完整的知识体系,促进学生的多元化思维发展,提高学生克服思维障碍的能力,从而有效地促进学生思维发展。