欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

机械与电子论文大全11篇

时间:2023-03-17 17:59:56

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇机械与电子论文范文,希望它们能为您的写作提供参考和启发。

机械与电子论文

篇(1)

2基于CDIO的机电专业实验教学改革与实践

2.1培养目标的确定

CDIO的12条标准之一即为以CDIO工程教育为基本环境,强调技术知识和能力的教学实践要以产品、过程或系统的构思、设计、实施和运行作为工程教育的框架,使学生的基本个人能力、人际交往能力和对产品、过程和系统的构建能力达到专业设定的目标,并且满足企业对人才的需求。机械电子工程专业培养的是具有机械电子工程专业基础知识与专业技能,且能在生产一线从事机械电子工程专业产品的设计制造、控制开发、应用研究和生产管理等工作的应用型专门人才。结合CDIO教育理念及机械电子工程专业的培养目标,机电实验室将以应用型工程师的人才培养目标为主线、以企业对应用型工程师的能力需求为导向、以企业生产一线创新意识和能力的培养为提升来定位实验教学的能力培养目标。

2.2实验教学内容

CDIO教学理念注重一体化教学,强调能力培养,同时要求培养计划的设计做到各学科之间相互支撑。随着科学技术的发展,机械电子工程专业越来越多的与电气、控制、通信、材料及系统学等学科进行交叉。因此,实验教学特别重视基础训练、拓宽专业,重视综合实践性以及系统设计开发能力和创新能力的培养,合理构建实验教学内容。

1)加强原有的专业基础类实验,开设课程三级项目。

机械电子工程专业方向的课程设置主要包括三大知识模块:机械设计及制造知识模块、强电知识模块、弱电知识模块,所涉及专业课程繁多,倘若侧重理论教学而忽视学生的实际动手操作,则容易出现理论知识与实际应用脱离、学生感到学习枯燥的现象。所以,需要加强原有的专业基础类实验教学的同时,针对一门或两门课程设计三级项目,将实验融入到三级项目中,学生可以根据项目需要自行设计实验方案,这种基于项目的学习,改革了枯燥无味的呆板实验,给学生创造了更多动手动脑的机会,加深了对课堂理论知识的理解应用。

2)结合工程实际设计实验内容。

随着现代化工业的发展,产品设计技术趋于数字化、信息化和网络化,生产自动化和智能化程度相当高,机、电、控已成为一个不可分割的有机整体,企业对机电类专业人才的工程能力和创新能力培养提出了更高的要求,培养适应性强且符合市场需求的创新型人才迫在眉睫。因此,机电实验教学对机电专业工程应用型创新人才的业界需求进行分析,从市场需求出发来培养学生。打破各门课程的界限,拓宽实验内容范围,按照对学生综合创新能力培养的基本要求设计实验内容,为学生提供一种全新的工程应用教学环境。如结合工程实际,增设机、电、控综合实验,使学生学会综合应用流体传动、电气控制、PLC、机械工程测试、传感技术、嵌入式技术等多门课程的知识,并会使用各种实验设备仪器。

3)完善机械工程研究实验平台,加强理论研究能力的培养。

引入CDIO教育理念后,机电实验室不断完善机械工程研究实验平台,为学生提供充足的实验设备和计算机,制定具有综合性、设计性、应用性及研究性的实验教学内容,使学生在实验过程中能够结合相关技术进行系列理论研究,开发学生创新思维,激发学生探索新的理论知识,锻炼学生的自学能力、增强学生综合运用知识的能力,从而培养出具有机械电子工程领域较强实践操作能力及扎实的理论分析能力的综合性人才。

2.3实验教学方法及考核方式

CDIO教育理念提倡基于项目教育和学习的新型教学模式,注重培养学生的工程能力、职业道德、学术知识、运用知识解决问题的能力、终生学习能力、团队协作能力、交流能力和大系统掌控能力,从而培养既有过硬的专业技能,又有良好的职业道德的国际化工程师。为此,机电实验室采取以学生为主体,以教师为主导,知识、能力、素质协调发展的教学方法,发动学生参与实验教学和管理,培养学生的主人翁精神和意识;采用多方面、多样化的综合考核方式,不仅对学生进行考核,还要对实验教学人员进行考核,各个环节的考核结果相互融合,不仅能够实现对学生的技术能力、工程素质、交流与沟通能力、团队协作能力和创新能力的全面考核,也能够提升教师的技术应用能力,提高技能操作水平,积累工程应用经验。

2.4实验教学案例

实验教学是高校培养人才战略方案中不可或缺的教学环节,也是培养学生综合能力的重要环节,以上从培养目标、实验教学内容、实验教学方法及考核方式等方面论述了机电实验室引入CDIO教育理念后所采取的改革措施,下面以机电一体化专业核心项目体系的实施为例,谈谈机电实验室引入CDIO教学模式后的教学实践。该项目以《机电一体化系统设计》、《单片机原理及应用》和《机器人》三门课程为核心设立,包括两个实施阶段,其中在三级项目阶段,学生以团队的方式自主完成以嵌入式计算机(单片机)控制系统为核心的机电一体化产品—智能小车的构思-设计-制作-调试运行;在二级项目阶段,学生运用四周时间,进行自主创新研发,自主设计集成一个取料手爪或运料的自动翻转车厢,将智能小车升级成为移动式的抓取机器人和移动式搬运机器人,通过进行机器人运动控制规划,控制机器人完成一系列复杂的动作,如手爪张合、车体回转、智能循迹和避障、协同作业等任务,最终由两个机器人协作配合完成一次物料的抓取和运送任务。学生自主完成从方案设计、详细设计、加工制作到集成调试的全过程,最后以分组比赛的方式验收。

篇(2)

摘要随着电子技术的发展,相敏轨道电路接收信号处理装置已逐步实現电子化,以电子接收器代替以前的机械式二元二位继电器,彻底解决了原继电器接点卡阻、抗电气化干扰能力不强、返还系数低等问题。目前广泛使用的微电子接收器都是使用单片机来处理信息,对输入信号采用升压方式进行采样处理,虽提高了信号强度,但是不利于防止输入高压损坏接收器;且每个接收器仅采用单一信号处理通道进行信号分析处理,并由其输出信号驱动轨道继电器动作,接收器的安全性、可靠性和抗干扰能力有待提高;另外,现有接收器故障后相关电气参数不能实时监测;前述不足以影响到轨道电路的整体可靠性和可用性。因此,本文提出了一种基于DSP的新型微电子接收器,以提高微电子接收器的可用性、可靠性及安全性。

关键词电子技术;25Hz轨道电路;接收器

1系统原理

1.1接收器冗余结构

图1新型微电子接收器(0.5+0.5方案)的冗余结构图

接收器的冗余结构图,每台接收器同时进行两个轨道区段(区段A和区段B)的轨道电路信号和局部电源信号的处理,相邻两个轨道区段可共用两台接收器,这两台接收器中的任一正常工作,均可正常处理这两个轨道区段信号,并驱动这两个轨道区段的后级轨道继电器动作。如图1所示,相对于目前的接收器冗余方案,新型微电子接收器的冗余方案可使每个轨道区段节省一个接收器,从而降低建设成本。在接收器冗余结构图中,当接收器1和接收器2中的某一个发生故障时,若另一个接收器能够正常工作即可确保轨道区段信号的正常处理;同时可以通过接收器的自检功能发出报警,提醒维护人员及时更换故障接收器,从而提高轨道电路的整体可用性。

1.2接收器二取二原理

接收器系统内部采用独立的双套硬件和双套软件,实现一路信号,两路处理,最终通过安全与门判决,输出判决结果。当无论是接收器哪一套硬件或软件出现问题,两路处理结果不一致时,系统输出判决都是导向安全的结果。且仅当两路信号处理的结果完全一致时,安全与门输出相同结果。

2系统构成

如图2所示,新型接收器核心处理部分采用双DSP芯片构成二取二安全结构。主从DSP同时处理轨道电路信号和局部电源信号,分别输出判决信号;将主从DSP的判决结果进行与运算,如果主从DSP的判决信号不一致,接收器输出信号将保持轨道继电器处在落下状态;只有当主从DSP的判决信号一致且满足轨道区段空闲条件时,接收器才会输出驱动轨道继电器吸起的信号,显示轨道区段处于空闲状态;主从DSP任一故障,接收器均不能输出驱动轨道继电器吸起的信号,从而提高接收器安全性。

新型接收器电路模块包括:局部输入隔离电路、轨道输入防雷电路、输入信号采集电路、数据处理电路(DSP芯片)、安全与门电路、输出控制电路、电源电路、通信电路和显示与告警电路。

输入隔离:采用电流互感器将轨道信号和局部信号与后级信号处理模块进行电磁隔离,隔离变压器采用降压方式,当输入的信号出现大的冲击或干扰时,通过变压器进行衰减,加载在后级信号处理电路上的信号将被衰减,对后级信号处理电路起到防护作用。

轨道输入防雷电路:采取大功率双向瞬态防雷管,实现对输入雷电和浪涌的防护。

输入采集电路:将输入交流信号的负半周信号抬高到零电平以上,满足后级单电源工作运放的输入要求,单电源工作可减小器件功耗。

数据处理电路:把输入的25Hz轨道和局部模拟信号通过芯片自带的A/D模数转换器转换为数字信号,对转换后的数字信号进行分析处理,测出轨道输入的25Hz信号幅值及轨道信号与局部信号的相位差,在主处理器采集从处理器的输出信号和后级输出控制电路的输出信号并经其判断接收器正常后,再由主处理器控制显示告警电路,并由主处理器将相关数据通过接收器的通讯电路送监测分机。

安全与门电路:比较主从DSP输出信号,经安全与门判决二者一致方能向后级输出控制电路送出有效信号。

输出控制电路:采用开关电源方式输出驱动轨道继电器的直流电压信号。

通信电路:采用总线方式,向集中监测分机传送25Hz相敏轨道电路接收器采集到的轨道交流电压值、相位角和接收器的工作状态等信息。

显示与告警电路:显示接收器自身工作状态及接收器所处理轨道区段的占用与空闲状态,显示接收器DC24V工作电源及局部电源的正常或故障状态。

3结束语

新型接收器将实现接收器工作状态和轨道电路电气参数的实时在线监测,提高运营维护效率,降低维护人员劳动强度,同时,根据新型25Hz相敏轨道电路接收器的功能和特点,可减少现有接收器和轨道架的数量,大量地减少室内配线,初步分析可节约建设成本约20%。

微电子毕业论文范文模板(二):微电子控制机电设备在工业中的具体应用论文

摘要:在科学技术快速进步的背景下,工业自动化水平取得了比较明显的提升,在机械制造方面表现的更加明显,基于各种因素的影响,微电子技术得到了相对广泛的应用。基于此,本文详细分析了微电子控制机电设备在工业中的应用,希望能够为实际提供良好的借鉴意义,以供参考。

关键词:微电子;机电设备;工业;应用探讨

信息技术的发展以及先进电子设备的产生催生了机电一体化时代的到来,所谓的机电一体化技术是把电工电子技术、机械技术、信息技术、微电子技术、接口技术、传感器技术、信号变换技术等一系列技术结合,再综合应用于实际的综合技术,现代化自动生产设备可以说为机电一体化的设备。微型计算机在机电一体化系统的作用能够总结成如下三点:第一,直接控制机械工业生产过程;第二,机械工业生产期间加强各物理参数的自动测试,进行测试结果的显示记录,在计算、存储、分析判定并处理测量参数或指标;第三,进行机械生产过程的管理与监督。机电一体化系统里微电子控制机电设备怎样进行适宜计算机选择,怎样设计硬件系统,怎样组织软件开发,怎样对现有计算机系统等进行维护与使用是相当关键的,也是值得探索的

课题。

1微电子控制机电设备系统的组成和原理

在某微电子控制机电系统当中,主要是由PLC、管路压力变送器、变频器等多种设备组成的。在控制系统当中,管路压力变送器主要是检测控制辅助冲量、管路水压、蒸发量等三个变量,接着将数据信号向PLC当中传送,并且通过PLC进行分析和计算,将信号发送信号控制器,通过信号控制器来控制水泵运转,在设计系统的過程中需要与实际情况合理的进行结合,并且对变频器的输出频率进行确认,输出频率在整个系统设计过程中具有非常重要的意义,和系统的控制息息相关,在确定系统输出频率是需要综合性的分析和考虑用水量以及扬程参数等。在整个系统当中控制流程的用水量变化,主要是通过压力变送器向PLC传送的通过PLC进行分析和计算,可以有效的调节循环泵的频率,合理的分配能源,让工作的效率提高,起到节约资源的作用。

2微电子控制机电设备在工业中的具体应用

1)可编程序控制器(PLC)的应用。从PLC的角度进行分析,其主要优势在于具有很强的控制能力,而且稳定性较高,机身体积相对较小,可以有效的和其他的配件进行组合。在工业生产的过程中,因为机电设备往往会占据一定的面积,如果想让其厂房中的占比较高,就一定要注意让厂房的空余面积加大,尽量让控制器的数量减少,让机电设备的数量增多,与此同时还需要注意PLC的节能性较高相比,其他的控制系统可以节约资源,让工业生产的成本支出降低,让企业的经济效益增加,由于PLC设备可以有效的和其他设备之间进行组合,可以灵活方便的在厂房当中进行布设,让一机多用。可以实现让厂房的设备结构进一步得到简化,对设备维护中耗费的人力物力进行控制,减少人力输出,可以将人力有效的分配到工业生产当中,让生产资料的利用效率提高。PLC的另一大优势在于可以通过现场总线和生产设备之间

进行连接,有效的监控工业生产,可以动态化的监控生产的全过程,确保在生产过程中,第一时间解决生产时产生的故障,避免由于机械故障而导致生产进度停滞,让设备的维护开支得到控制,PLC的计算速度很快,可以轻松的对生产时的任何变动进行管理和控制,有效的防止由于设备变化控制器无法及时应对而产生的问题,PLC还可以进行相关的升级,伴随当前经济快速发展,就算生产线当中的产品产生了变动,只需要正确的调整,控制程序也可以符合新产品生产的具体需求。

相比于其他编程操作,PLC控制器在编程的过程中较为方便,员工通过短时间的训练就可以熟练的掌握编程的技巧,在实际操作的过程中工作步骤相对较为简单,可以很容易的掌握设备的维修安装以及操作,由于PLC自带程序编辑器只需要工作人员了解梯形语言,就可以对其进行熟练的掌握。对控制器的工作语言进行了解,当出现故障的时候可以及时的调整和处理控制器。

2)变频器调速器的作用。变频器工作状态分作自动与手动两类,手动工作状态即在PLC结束工作后展开的人工操作行为,经电位器调节能对变频器输出频率进行给定。自动工作状态实质是PLC输出信号为变频器输出频率展开控制。和传统调节阀控制方式相比,PLC控制可节电,更好进行水泵磨损控制,在延长设备寿命与实现系统自动化水平提升中发挥了重要作用。

第一,和传统正弦波控制技术相比,因变频器用到了电压空间矢量控制技术,先进性和独特性在性能上得到充分凸显,同时因其特有的低速转矩大、运行稳定性强、谐波成分小等特征,这对我国电网而言输出电压自动调整功能能充分进行优势发挥。第二,变频器具备外部端子、键盘电位器与多功能段子等一系列操作方式,功能完善,可输入多种模拟信号(如电流、电压、频率等效范围检测,转速追踪等);并且变频器可实现摆频运行与程序运行等一系列模式。第三,因变频器全系列元件应用的是西门子产品,有极强的保护性能,可靠稳定,能很好的避免过流、短路、过压等问题,确保本机能正常运行。并且变频器有良好的绝缘耐压性,产品质量好,设定简单等使得其有更强的适用性。

3)电路发挥的作用。在安装PLC和变频器的时候,保证电路的稳定是保障工作的必要。电路在安装过程中,应该采取边安装边测电的方式,这样更能使电流稳定,这同样属于工作期间需引起重视的关键环节。在电路安装完毕之后,不要急着通电,应该先再次检查电路是否安装正确,查看是否有少安装或者多安装的情况。另外,测量一下接触元器件的连接点,这样可以发现一些接触不良的地方,若有漏电情况应该及时对此进行维修。电路在工业中也是起到了很大的作用,在安装电路的时候,一定要小心谨慎,综合考虑多方面因素,不要遗漏一些小问题,有时一些小问题也可能出大错,保证电路的稳定才能更好地协调其他设备的安装稳定。应认真复查电路,查看电路有无正确安装,或存在设备多安装或少安装的现象,同时应认真检测每个接触元器件连接点,明确有无接触不良或短路现象,若发生漏电务必要及时维修与处理。电路调试的具体流程总结如下:

篇(3)

摘要:在科学技术快速进步的背景下,工业自动化水平取得了比较明显的提升,在机械制造方面表现的更加明显,基于各种因素的影响,微电子技术得到了相对广泛的应用。基于此,本文详细分析了微电子控制机电设备在工业中的应用,希望能够为实际提供良好的借鉴意义,以供参考。

关键词:微电子;机电设备;工业;应用探讨

信息技术的发展以及先进电子设备的产生催生了机电一体化时代的到来,所谓的机电一体化技术是把电工电子技术、机械技术、信息技术、微电子技术、接口技术、传感器技术、信号变换技术等一系列技术结合,再综合应用于实际的综合技术,现代化自动生产设备可以说为机电一体化的设备。微型计算机在机电一体化系统的作用能够总结成如下三点:第一,直接控制机械工业生产过程;第二,机械工业生产期间加强各物理参数的自动测试,进行测试结果的显示记录,在计算、存储、分析判定并处理测量参数或指标;第三,进行机械生产过程的管理与监督。机电一体化系统里微电子控制机电设备怎样进行适宜计算机选择,怎样设计硬件系统,怎样组织软件开发,怎样对现有计算机系统等进行维护与使用是相当关键的,也是值得探索的

课题。

1微电子控制机电设备系统的组成和原理

在某微电子控制机电系统当中,主要是由PLC、管路压力变送器、变频器等多种设备组成的。在控制系统当中,管路压力变送器主要是检测控制辅助冲量、管路水压、蒸发量等三个变量,接着将数据信号向PLC当中传送,并且通过PLC进行分析和计算,将信号发送信号控制器,通过信号控制器来控制水泵运转,在设计系统的過程中需要与实际情况合理的进行结合,并且对变频器的输出频率进行确认,输出频率在整个系统设计过程中具有非常重要的意义,和系统的控制息息相关,在确定系统输出频率是需要综合性的分析和考虑用水量以及扬程参数等。在整个系统当中控制流程的用水量变化,主要是通过压力变送器向PLC传送的通过PLC进行分析和计算,可以有效的调节循环泵的频率,合理的分配能源,让工作的效率提高,起到节约资源的

作用。

2微电子控制机电设备在工业中的具体应用

1)可编程序控制器(PLC)的应用。从PLC的角度进行分析,其主要优势在于具有很强的控制能力,而且稳定性较高,机身体积相对较小,可以有效的和其他的配件进行组合。在工业生产的过程中,因为机电设备往往会占据一定的面积,如果想让其厂房中的占比较高,就一定要注意让厂房的空余面积加大,尽量让控制器的数量减少,让机电设备的数量增多,与此同时还需要注意PLC的节能性较高相比,其他的控制系统可以节约资源,让工业生产的成本支出降低,让企业的经济效益增加,由于PLC设备可以有效的和其他设备之间进行组合,可以灵活方便的在厂房当中进行布设,让一机多用。可以实现让厂房的设备结构进一步得到简化,对设备维护中耗费的人力物力进行控制,减少人力输出,可以将人力有效的分配到工业生产当中,让生产资料的利用效率提高。PLC的另一大优势在于可以通过现场总线和生产设备之间

进行连接,有效的监控工业生产,可以动态化的监控生产的全过程,确保在生产过程中,第一时间解决生产时产生的故障,避免由于机械故障而导致生产进度停滞,让设备的维护开支得到控制,PLC的计算速度很快,可以轻松的对生产时的任何变动进行管理和控制,有效的防止由于设备变化控制器无法及时应对而产生的问题,PLC还可以进行相关的升级,伴随当前经济快速发展,就算生产线当中的产品产生了变动,只需要正确的调整,控制程序也可以符合新产品生产的具体需求。

相比于其他编程操作,PLC控制器在编程的过程中较为方便,员工通过短时间的训练就可以熟练的掌握编程的技巧,在实际操作的过程中工作步骤相对较为简单,可以很容易的掌握设备的维修安装以及操作,由于PLC自带程序编辑器只需要工作人员了解梯形语言,就可以对其进行熟练的掌握。对控制器的工作语言进行了解,当出现故障的时候可以及时的调整和处理控制器。

2)变频器调速器的作用。变频器工作状态分作自动与手动两类,手动工作状态即在PLC结束工作后展开的人工操作行为,经电位器调节能对变频器输出频率进行给定。自动工作状态实质是PLC输出信号为变频器输出频率展开控制。和传统调节阀控制方式相比,PLC控制可节电,更好进行水泵磨损控制,在延长设备寿命与实现系统自动化水平提升中发挥了重要作用。

第一,和传统正弦波控制技术相比,因变频器用到了电压空间矢量控制技术,先进性和独特性在性能上得到充分凸显,同时因其特有的低速转矩大、运行稳定性强、谐波成分小等特征,这对我国电网而言输出电压自动调整功能能充分进行优势发挥。第二,变频器具备外部端子、键盘电位器与多功能段子等一系列操作方式,功能完善,可输入多种模拟信号(如电流、电压、频率等效范围检测,转速追踪等);并且变频器可实现摆频运行与程序运行等一系列模式。第三,因变频器全系列元件应用的是西门子产品,有极强的保护性能,可靠稳定,能很好的避免过流、短路、过压等问题,确保本机能正常运行。并且变频器有良好的绝缘耐压性,产品质量好,设定简单等使得其有更强的适用性。

3)电路发挥的作用。在安装PLC和变频器的时候,保证电路的稳定是保障工作的必要。电路在安装过程中,应该采取边安装边测电的方式,这样更能使电流稳定,这同样属于工作期间需引起重视的关键环节。在电路安装完毕之后,不要急着通电,应该先再次检查电路是否安装正确,查看是否有少安装或者多安装的情况。另外,测量一下接触元器件的连接点,这样可以发现一些接触不良的地方,若有漏电情况应该及时对此进行维修。电路在工业中也是起到了很大的作用,在安装电路的时候,一定要小心谨慎,综合考虑多方面因素,不要遗漏一些小问题,有时一些小问题也可能出大错,保证电路的稳定才能更好地协调其他设备的安装稳定。应认真复查电路,查看电路有无正确安装,或存在设备多安装或少安装的现象,同时应认真检测每个接触元器件连接点,明确有无接触不良或短路现象,若发生漏电务必要及时维修与处理。电路调试的具体流程总结如下:

第一,应认真查看明确电路整体状况,了解电路面板线有无准确连接,有无看似连接实际并未连接的线,或易短路的线;是否存在两条或多条线混淆的情况;此后,使用最小量程档的万用表对电路面板进行检查,查看开路处和闭路处有无正确开路与闭路,地线是否漏接,电源连线连接的安全性等,同时需测量电源有无短路现象。测量期间可直接进行元器件连接点测量,如此可明确有无以上情况的同时又弄清楚是否存在接触点不良现象。第二,电路调试过程的关键环节之一即硬件电路调试。调试期间务必要注意细小环节的把控,根据电路功能原理做好各个单元电路的调试,再作整体调试,后进行整个电路的调试。电路在工业生产里发挥的作用是相当大的,电路安装过程里务必要综合考量多方因素,认真谨慎,切不可遗漏或放过存在的小问题,确保电路稳定性得到保障。

3结束语

微电子控制机电设备的组成包括变频调速器、可程序控制器等,由于操作相对简便、效果好,在工业中发挥了不可忽视的作用。微电子控制机电设备在实践中不断完善,将理论与实践相互结合,明确各个方面的要点,有效提升生产效率,在工业领域发挥出最大化价值,推动社会进步和发展。推动电子设备的可持续发展也是当今社会经济发展所提出的必然要走的道路,顺应经济发展的趋势,才能不落后于其他国家的工业化改革。

微电子毕业论文范文模板(二):关于现阶段国家示范性微电子学院建设的几点思考论文

[摘要]文章浅述了国家示范性微电子学院的建设背景及历程。借鉴示范性软件学院建设经验并结合现阶段浙江大学示范性微电子学院建设经验,从学科划分、考核体系、校企合作、平台建設和国家支持等方面进行思考和总结,阐述如何围绕“以人才培养为中心”和“产学协同育人”这两个核心问题,进行国家示范性微电子学院建设。

[关键词]示范性微电子学院;集成电路;人才培养;产学协同

[中图分类号]G64[文献标识码]A[文章编号]2095-3437(2020)07-0001-04

回顾整个中国特色社会主义建设历程,作为高等教育中至关重要的一部分,工程教育在国家现代化进程中发挥着不可替代的作用。在国家经济改革和世界范围产业变革的过程中,我国的工程教育也在不断改革创新。从工程教育专业认证制度的建立,到PBL和CDIO理念的引入,实施卓越工程师计划和建立国家示范性软件学院、微电子学院,再到加入《华盛顿协议》和新工科的提出,中国的工程教育一直在实践中发展。在中国工程教育改革中,2001年开始的国家示范性软件学院建设作为教育改革的“示范区”,发挥着重要的作用。本文在借鉴示范性软件学院十多年建设经验的基础上,结合现阶段示范性微电子学院的建设情况,对2015年开始实施的国家示范性微电子学院建设进行思考与总结。

一、示范性微电子学院成立背景

21世纪初,信息化在世界范围内开始普及,软件产业在世界社会发展中的地位和重要性开始显现。软件产业作为当时的新兴产业,呈现出向发展中国家大规模转移的趋势,国内外巨大的软件市场导致对软件从业人员需求量的剧增。国家从当时国内外行业背景及国家发展战略出发,于2001年由教育部正式设立国家示范性软件学院,首批试点35所(后增加至37所),均由国家重点高校负责建设;2004年教育部针对高职类学校又设立了36所高职示范性软件学院。其后,各省、市结合自身地方产业成立了省级示范性软件学院50多所,对软件人才进行储备。从2001年至今,示范性软件学院经历了十多年的建设与发展,在人才培养和产业促进上都取得令人瞩目的成就。在此期间,我国的软件产业获得了长足的发展,其中尤以华为、阿里巴巴、百度、腾讯等互联网企业为代表。

经过十多年的积累和追赶后,我国不但解决了软件产业发展初期规模弱小、产业单一、人才技术短缺等诸多问题,而且在部分领域超过了发达国家,并形成了中国特色的“互联网+”新型经济模式。接下来,国家开始效仿软件产业发展模式,对信息领域更基础、更关键但更薄弱的“卡脖子”短板——集成电路产业发起冲锋。特别是近年来,在国际贸易保护主义抬头和美国对华贸易战的背景下,从晋华、中兴到华为、大疆,以集成电路为代表的高科技产业形势尤为严峻,发展变得刻不容缓。

2014年国务院印发《国家集成电路产业发展推进纲要》(以下简称《纲要》),指出“集成电路产业是信息技术产业的核心,是支撑经济社会发展和保障国家安全的战略性、基础性和先导性产业”。现阶段我国集成电路产业主要面临核心技术缺乏、产业链不完善、资金投入不足、创新人才短缺4个核心问题。参考软件产业发展模式,为解决集成电路产业4个核心问题中的人才短缺问题,示范性微电子学院应运而生。

二、示范性微电子学院的成立

《纲要》从组织领导、资金政策、金融税收、人才保障等8个方面采取了保障措施,指出“加大人才培养和引进力度,建立健全集成电路人才培养体系,支持微电子学科发展,通过高校与集成电路企业联合培养人才等方式,加快建设和发展示范性微电子学院和微电子职业培训机构”。这是继2011年国务院《进一步鼓励软件产业和集成电路产业发展若干政策》后,国家再次对高校示范性微电子学院建设提出的明确要求。

2014年教育部《关于试办示范性微电子学院的预通知》。2015年六部委《关于支持有关高校支持建设示范性微电子学院的通知》(以下简称《通知》),明确支持清华、北大、浙江大学等9所高校建设示范性微电子学院,支持北京航空航天大学、南京大学等17所高校筹备建设示范性微电子学院,示范性微电子学院建设序幕自此开启。

三、示范性微电子学院定位及现状

《通知》指出:示范性微电子学院的建设要以人才培养为中心,深入开展产学合作协同育人,加快培养集成电路产业急需的工程型人才。可以看出,“以人才培养为中心”和“产学协同育人”是示范性微电子学院建设的两个核心要求,“工程型”人才是示范性微电子学院培养人才的根本目标。

自2015年第一批示范性微电子学院成立至今,各个示范性微电子学院的建设历程和办学模式各不相同,有的是在原有信息学院或微电子学院的基础上进行建设,有的是新设立微电子学院挂靠其他成熟学院运行,有的是整体新建并单独运行。由于处于建设初期,不同学校都因地制宜、因时制宜地进行摸索,或大刀阔斧,或小步慢跑。目前,各个学校的微电子学院都在人才培养、师资规模、校企合作等方面都取得了一定的阶段性成果。

与此同时,示范性微电子学院在建设的过程中,也都面临一些共性的难题,如示范性微电子学院与一般学院的定位区别、如何进行“工程型”人才培养、如何扩大招生规模与影响、如何更好地与企业结合,以及如何对示范性微电子学院建设进行评价等,这些都是示范性微电子学院面临或将要面临的问题。

四、对示范性微电子学院建设的几点思考

当然,示范性微电子学院建设也并非无样板可以参考,2001年开始建设的示范性软件学院就是很好的借鉴,特别是在办学模式、人才培养、师资管理等诸多具体、常规问题上。然而,软件行业和集成电路行业相差较大,而且当今的时代背景和2000年也完全不同,如何围绕“人才培养为中心”“产学协同育人”这两个核心来建设微电子学院,需要全体高等教育工作者进行与时俱进地思考和探索。本文从浙江大学(以下简称“浙大”)示范性微电子学院建设的实践出发,分享一些经验与思考。

(一)学科划分与评估体系

学科划分和评价问题是微电子学院建设能否成功的核心问题,关乎微电子学院的建设方向和结果。单独的学科设置及评估体系,不仅能加强微电子学院的独立性办学,也能更有效地促进微电子学院建设的展开。

1.设置微电子一级学科

人才作为第一资源以及集成电路产业的核心,微电子学院成立的根本目的就是为产业培养急需的“工程型”人才。然而受招生名额等条件的限制,现阶段我国高校每年培养的集成电路高级专业型人才不足万人,而且缺口仍在扩大,可见,扩大集成电路招生名额势在必行。以浙江大学为例,2014年以前学校集成电路每年硕士、博士的招生人数在30人左右,即使示范性微电子学院成立以后,新增了微电子本科专业,微电子学院每年本硕博招生也不足200人,以如此培养速度,根本不足以填补产业人才需求的缺口。由于我国大学招生名额是与学科划分挂钩的,这就涉及一级学科设置的问题。

目前,浙大微电子所在的一级学科是电子科学与技术,其下含有电路与系统、微电子学与固体电子学、电磁场与波、物理电子学四个二级学科,其中与微电子学院直接对应的两个二级学科是:电路与系统、微电子学与固体电子学。研究领域分别对应集成电路的软件部分和硬件部分,前者主要包括集成电路设计,后者主要涉及集成电路产业中的制造、封装测试。

此外,微电子一级学科问题,除了与扩大招生名额相关外,也和微电子学院的建设成败有关,因为这涉及微电子学院与高校原有信息学院的定位问题,以及在学校的学科地位问题。其实在建设示范性软件学院时,由于学科划分的问题,就存在着软件学院与原有传统计算机学院的“瑜亮之争”,学科资源配置之争。最终,2011年教育部将软件工程提升为一级学科,这才在一定程度上解决了上述问题。从软件学院的建设经验来看,将微电子学与固定电子学、电路与系统等二级学科重整、提升为一级学科十分必要,且宜早不宜迟。

2.修订学科评估体系

微电子学院建设要求以“人才培养为中心”,而传统学科评估体系以“学科建设为中心”。因为“中心”的不一样,在进行微电子学院建设时,学校在资源配置时就必须考虑效益比问题。如果微电子学院建设的投入无法对学校的学科发展形成促进作用,甚至因为分流限制了已有学科的建设,学校不仅不会支持微电子学院的建设,甚至可能还会限制其发展。因此,在现有学科评估体系下,示范性微电子学院很难做到完全以“教学”为中心,只能“教学科研”兼顾,最终微电子学院在很大概率上将会和传统的信息学院同质化。上述情况在软件学院建设时出现过,且仍未得到有效解决,这也是很多软件学院选择异地发展的原因,其目的是避免与本校原有的计算机学院分流资源。

在现有学科评估体系下,即使能做到以“教学”为中心,也很难满足微电子学院“产学协同”的人才培养要求。因为现有学科评估体系偏向于理科化,重理论而轻实践,无论是“教学”还是“科研”,学生注重“卷面”,教师注重“文章”。而微电子学院的建立要求緊贴产业,注重实践,产学协同,因此培养“工程型”人才在现有体系下很难做到。

其实,2016年教育部提出新工科建设,其本质也是针对现有“理科化”学科评估体系与工科建设要求不相匹配的问题。可以大胆设想对现有学科评估体系进行必要的改革,如对基础性学科依旧使用现有“理科性”评估体系;对应用性学科,如新工科,则在原有的体系上建立新的“工科性”评估体系。这样或许能从根本上改变我国“写论文的太多,做应用的太少”、应用研究和理论研究比例失衡的现状。为体现示范性,上述设想甚至可以率先在示范性微电子学院进行试点,实践可行后再逐步推广到新工科乃至其他工程性学科。

(二)师生考核体系

示范性微电子学院要求“坚持人才培养为中心”,在国家层面需要解决的是学科问题,具体到学校和学院操作时,就要考虑内部的考核与评价问题,其中主要涉及两个方面,一是教师的考核,二是学生的考核。

1.教师考核体系

以人才培养为中心,要求教师的工作重心应该是教学,因此微电子学院教师在考核上应该与传统学院有明显区别,比如加大教学在考核中的比重。微电子学院培养的人才要强调工程性,所以在教学考核中,要突出工程实践的教学内容。另外,在引进师资时,可以效仿软件学院偏向引进有企业经验或者工程项目经验的教师,形成本校专职教师、企业兼职教师、适当比例外教的格局,这一点浙江大学微电子学院在人才引进时就尤为注重教师的行业或工程背景。

为了保证公平性,调动教师的积极性,可以实行聘岗制和聘期制,不同岗位考核不一样、聘期不一样,如在浙江大学,对不同类别的教师设置有:教学科研并重岗、工程教育创新岗、社会服务与技术推广岗等,其中工程教育创新岗就是浙江大学针对工程教育改革新设置的岗位。

2.学生考核体系

微电子学院要培养“工程型”人才,因此针对学生的培养过程、考核过程、评价过程要紧紧围绕“工程”来设置。微电子学院学生与传统学生培养最本质的区别是“工程实践”能力。在此之前,要提前区别一下其与动手能力的差别。“工程实践”能力与传统工科学生在实验室环境下的动手能力不同,是要在工业生产的背景下,通过“做中学”和“基于项目学习”,进而培养学生的“工程师式思维和行为”。这要求学校必须为学生提供企业的工程环境而非简单的高校实验室环境,两者有着本质的区别。

正是因为微电子学院培养的人才需要工业生产背景,这就要求企业参与培养,这从源头上保证了学生培养会紧贴产业。通过设置新的学生评价体系来保证和监督学生“工程实践”能力的获得,这一点至关重要。也只有这样,学生毕业后进入企业才能立即上手,无须企业的再熏陶和培训。

浙江大学微电子学院对于学生“工程实践”能力的培养是根据学生的不同阶段分步进行的。首先,针对低年级的本科生,加大培养方案中实验课程的比例和学分,以此来培养学生的“动手操作”能力。其次,对于高年级的本科生,则是通过到企业实习、参与导师企业课题(学业导师制)、科创实验(SRTP)、参加创新创业竞赛等来初步熏陶学生的“工程实践”能力。最后,到研究生阶段,通过企业、导师联合制定课题,学生选题并到企业培养或参与企业横向课题等方法来完成“工程能力”的塑造。

(三)校企合作

校企合作是微电子学院建设的重点也是难点之一。传统高校教学以学校为主,这在一定程度上导致了高校研究与产业发展脱节、高校培养的学生与企业需求脱节。高等工程教育改革的目的之一就是如何将高校与企业联系紧密,互相促进,“如何引入企业参与到高校的人才培养”,从而达到“产学协同”。

校企合作的目的是互利共赢。中国高校以育人为宗旨,具有一定的公益性,而企业以利益为根本,公益性只是其附带属性,只投入不计回报的企业少之又少。如何让两个不同的主体做到有机结合,使得“企业愿意参与,高校愿意放开”是困难所在。从需求来看,高校育人,企业用人,高校和企业合作的纽带在人——学生,解决好“如何以学生为纽带将企业和高校紧密联系在一起”是校企合作的关键所在。

从软件学院的经验看,多是通过校企理事会、共建实验室和实践基地、共建师资队伍、共设课程等方式来开展校企合作。无论是以何种合作方式,想要长久有效就必须做到互惠互利,纯粹的一方投入不可持续。从浙江大学专业学位研究生的培养经验来看,比较有效的手段之一是:通过导师与企业的横向合作为依托,以项目的形式将学生的培养参与其中。这是一种“基于项目的培养模式”,企业提出技术需求和课题资金,学校再给予学生名额、教学工作量等支持。通过一个个的具体项目,将学校、学生、企业串联起来,形成规模效应后再以创建联合实验室、研发中心、实践基地等方式进行深化。浙江大学成立工程师学院就是希望从学校层面来推进和引导校企合作。此外,不同地区的微电子学院在专业设置上也应针对当地企业需求开设专业,面向企业培养人,甚至可以对重点企业进行定向培养,吸引企业深度参与学院建设。

校企合作不仅仅是学校和企业的问题,政府的作用也尤为重要,因为政府掌握着核心的生产资料和分配政策。比如政府在审批、税收减免、经济补助、教育资金、就业引导等各方面都能非常有效调动企业和高校的积极性,促进双方的结合。日本20世纪70年代半导体产业的兴起,就是通过高校(实验室)、企业、政府三方的共同发力,成立“VLSI技术研究组合”,从而打破美国的垄断。20世纪80年代韩国三星的崛起也与韩国政府的大力扶持密不可分,所以在这一点上值得我们国家借鉴和学习。

(四)硬件建设及平台共享

集成电路产业人才培养对硬件设施要求极高,这是其与软件产业最大的不同之一。如小型工艺操作、流片、实训等都需要高昂硬件和财力的支撑,因此微电子学院建设要格外重视大型共享平台建设,并以共享平台建设为契机将校企合作、校地合作、学生实践培养进行有机连接。然而一般平台投资都十分巨大,很难靠一己之力来进行建设,如浙江大学微纳加工中心一期投入6000万、工程师学院微电子实训平台投入近3500万,绍兴微电子研究中心投资近1亿。微电子学院建设更应注重开放式办学,尝试通过国家出资、政府出地、企业出技術、学校出人等多重模式,把握本地发展机遇以产业园、孵化器、共享平台的形式来共赢发展。

(五)国家和学校支持

篇(4)

关键字:高校档案室;数字化建设 ;档案

随着经济社会的发展、技术的进步,高校正迈入数字化管理时代。档案数字化是指将不同载体形式、不同记录方式的档案信息通过计算机录入转化成计算机可以识别的数字形式,形成可供保管与利用的数字信息资源库。[1]对档案室档案进行数字化建设,有利于保护档案实体、方便档案借阅查询。笔者认为高校的档案室数字化迫在眉睫。

一、 高校档案室档案数字化的必要性和意义

1.高校档案室档案数字化是国家信息化建设的必然要求

国家档案局于1996年把电子文件研究项目列入科技计划,1999年完成了《电子文件归档与归档电子文件管理规范》,同时要求各级档案部门积极地开展档案数字化建设的研究和实践。[2]因此,高校档案室必须做好档案数字化建设的工作,以迎合国家信息化建设的方针政策。

2.高校档案室档案数字化有利于推动高校档案事业现代化发展

在传统的档案文件管理时代,档案室的工作主要以接收、保管、查阅纸质档案为主。这一工作方式有极大的封闭性,容易产生“重保管、轻利用”的工作思想。随着数字化时代的到来,通过利用计算机和档案管理软件对文件进行收发、归档、鉴定、销毁、利用,使整个过程快捷、准确,节省了大量的人力物力财力,大大提高了档案室的工作效率,从而推动档案事业的进一步发展。[3]

3.高校档案室档案数字化有利于提高档案工作者的社会地位

传统的档案工作者,大多从事于比较机械的手工劳动,档案工作者的效率比较底下,这在一定程度上影响了公众对档案工作人员的评价。档案部门要想提高自己的社会地位,必须提高自身的数字化水平。此外,档案工作者必须更新利用档案管理理念,有效利用和共享技术手段和方法,发挥其增值作用,从而提高档案工作者的社会地位、实现档案事业的跨越式发展。

二、高校档案室档案数字化的条件

1.信息时代的发展为档案室档案数字化奠定了坚实的基础

随着经济技术的发展、计算机网络的普遍使用,我们已生活在信息时代。这一时代为人们的生活、工作等各个方面提供了便利,在一定程度上打破了时空的限制,提高了人们的生活水平。正是由于计算机和扫描仪、复印机等各种软硬件的使用,才使档案室档案数字化成为可能。同时,在社会信息化的背景下,对档案室档案进行数字化的改革,正是顺应时代的潮流而必须实现的转变。

2.高校档案室档案的增多使其数字化迫在眉睫

近年来,各高校为培养更多的人才都在实施扩招政策。一方面,它使更多的学生能够迈入高等学府享受更高的教育;另一方面,它给学校各方面带来了竞争压力。原有的档案库房已不能满足逐年增多的档案文件,这促使档案室工作人员作出相应的更改。档案室档案数字化通过对档案内容的数字化扫描,在提供利用时,以查找电子档案为主,这样可以改变原有档案的存放方式,能够节省档案存放空间,容纳更多的档案文件。

3.档案室纸质档案的存在是数字化的必要准备

档案室纸质档案的存在是数字化的前提,任何需要进行数字化处理的信息都要以传统文件为载体。在数字化处理过程中,对文字、图片等用扫描仪将其转化成BPM图像文件格式存储于计算机中,然后制作成可永久保存的光盘,建立数字档案管理体系,也就是“双套制”管理的模式。这样既保证了原始档案的原始生态和永久保存,又方便了科研人员的查阅与研究的需求,也为今后的资源共享打下了基础。[4]

三、高校档案室档案数字化建设的内容

1.完善相应的软硬件设施

建立档案室档案数字化,首先需要完善相应的软硬件设施。这主要包括三类:一类是数字档案信息采集设备,实现纸质档案、图纸档案等的数字化转换工作,包括扫描仪和计算机等设备;一类是数字档案信息存储设备,实现数字档案信息的存储与管理,包括服务器、磁盘阵列、关盘等设备;一类是档案综合管理系统软件,实现数字档案信息的管理与利用功能,包括档案著录、档案统计、档案检索、档案信息等功能。[5]其中,在数字化信息采集过程中,要根据不同信息载体形式,选择通用性好、存储容量大、存储质量好的存储格式,这有利于信息的流通,同时减少信息的流失。在数字档案信息存储过程中,制作成可永久保存的CD-R光盘,便于对档案文件的长久查阅利用。在实现档案信息的管理与利用时,应选择合适的档案综合管理系统软件。在服务器软件领域,存在着以各种版本的UNIX 和LINUX为代表的优秀者,它们既有稳定性、安全性的特点,又具有价格低廉的特点,因此可以作为档案综合管理系统软件的首选。

2.档案数据库建设

在数字化过程中,对档案室档案进行分类,整理成学籍、成绩、论文、科研成果等数据库,更方便用户的查阅利用。

学生学籍档案数据库。档案室工作人员可以根据网上招生的录取数据,收录每届学生的基本情况,形成学生学籍档案数据库。这一数据库的建设,有利于高校和用人单位鉴别学生的毕业证和学位证。

学位论文和科研成果档案数据库。结合每年毕业生提交学位论文电子版机会,将纸质论文和电子论文数据库一并归档,并及时采用扫描等方式补录以往学位论文全文,建立齐全的学位论文数据库。

学生成绩档案数据库。学生在每学期都有期末考试,待学校收录期末考试成绩时,档案室可借机汇总建立学生成绩档案库。

3.提高档案室工作人员的专业素质

为提高档案室工作人员的专业素质,可定期对档案室工作人员进行培训,并实施定期考核适度。另外,可有计划地分期分批选送档案业务骨干到高等院校进修。同时,在招聘档案人才时,除考虑档案文书知识外,更要注重具备软件开发能力的人才,调整档案人员专业知识结构组成,更好地为高校档案数字化服务。

四、结语

高校档案室档案数字化已成为高校档案发展的必然趋势。面对这一机遇,我们必须不断改革和创新,遵循合理的原则、设立科学的目标、采取正确的方法、逐步走向完善,尽早实现档案室档案管理的现代化,使档案室工作的各个环节以更高的效率为学校的教学、科研管理和其它各项工作服务。

参考文献:

[1]沙敏.高校档案数字化建设的认识与思考[J].科教导刊,2011,(2):171-172.

[2]饶永.简论高校档案数字化建设[J].电子科技大学学报社科版,2004,(6):88-91.

[3]林丽群.高校档案数字化建设的思考[J].数字兰台,2008,(2):12-13.

篇(5)

 

人类社会迈入新的世纪,全球展开了信息技术革命,并且正以前所未有的方式对社会变革的方向起着决定作用。随着信息化的深入,信息的数量以惊人的速度急剧地爆炸性增加。论文参考网。除了广播、电视、书籍、报纸等各种传统的信息传播媒介之外,又出现了国际互联网、无线上网、手机上网等新的信息传递手段,使信息获取变得更加多样复杂,同样使农业信息获取的渠道增多。面对“信息爆炸”的时代,如何快速高效的进行网络中的农业信息获取成了农业信息工作的首要任务。

在新的环境下,作为农业信息从业人员,应掌握更多的从当前网络中获取农业信息的手段,下面从六个方面说明如何在当前网络中进行农业信息获取。

1、使用专业的农业信息搜索引擎,是农业信息化发展的方向。

要在海量信息中找到所需农业信息,就必须用到专业级的搜索引擎。我国目前现状,农业信息的获取还很困难,特别是急需农业科技信息和市场信息的企业、部门、农户,他们通过综合搜索引擎,并不能迅速找到自己想要的信息。据不完全统计,在农业领域现有各种网站近十万多个,涉及农、林、牧、渔、水利、气象、农垦、乡镇企业及其它农业部门。在这些海量的信息中,如何搜索一个准确的农业信息是农业人员非常关注的问题。因此,针对于中文农业网络资源研发专业化的搜索引擎,实现农业信息的精确搜索是农业信息搜索引擎发展方向。

在专业农业搜索引擎方面,有些网站已经走在前列:

世界范围:(1)农业冲浪(agrisurf.com)。世界上最大的农业专业搜索引擎,提供分类检索和关键词检索,提供大约20 000多个农业相关网站和95个国家与地区的有效链接。

(2) Ceres Online

ceresgroup.com/col/

专门提供农业信息。其搜索功能连接到了农业产业的其它专业人员。日历数据库列出了几百个即将到来的农业活动,气象图提供了世界各地天气情况以及热点信息。论文参考网。

(3)AgEconSearch

agecon.lib.umn.edu/

AgEcon搜索收集,索引包括诸如农业,食品供应,自然资源经济学,环境经济学,农产品贸易及广义的农业经济领域的学术研究全文。

国内相关搜索引擎:

(1)农搜sdd.net.cn/

农搜农业专业搜索引擎的研发得到了中国农业科学院“杰出人才工程”经费的资助。

(2)搜农sounong.net/

中国搜农是在国家科技支撑计划项目和现代农村信息化关键技术研究与示范项目资助下取得的一项重大创新成果,也是第一个面向我国农业企业、农民大户、农业专业技术协会以及广大农业科技人员提供农业通用搜索与农产品供求、农业实用技术、政策新闻等专题的搜索服务。

(3)so.ag365.com/365农业搜索

(4)chinanong.com/华农在线-中国农业信息搜索引擎

(5)086ny.com/soso/超农网农业搜索

(6)3nss.com/Portal/Default.aspx三农搜索网

2、除了农业搜索引擎外,网络中农业信息获取还要有相应的专业智能浏览器。

使用专门开发的面向农业信息获取方面的智能浏览器,可以借助智能浏览器的功能,方便快捷地进行快速搜索、精确搜索,过滤无关信息,提取农业信息,为广大农民用户方便快捷地获取农业信息提供服务。

3、使用在线农业专家系统。

农业专家系统是运用人工智能的专家系统技术,汇集农业领域知识、模型和专家经验等,采用合宜的知识表示技术和推理策略,以信息网络为载体,为农业生产管理者提供咨询服务。传统的农业专家系统在现今的网络条件下变的不适用。现在农业专家系统的发展方向为:在线农业专家系统及实时智能专家系统。

目前国内许多专家系统已经上线并且在使用过程中起到了良好效果。

(1)esa.org.cn/index.asp

广西智能农业信息网,提供作物类、瓜果类、蔬菜类、畜牧类、兽医类和水产类等六类十九种在线专家系统。

(2)nbnky.gov.cn:4000

宁波农经网农业专家系统,提供了蔬菜病虫害专家系统、河蟹养殖专家系统、家兔养殖专家系统、海水养殖系列专家系统、网箱养鱼专家系统等二十八种在线专家系统。

(3)hebaic.com.cn/index.do?templet=er_zjxt

河北农业技术推广网、河北农业智能信息网专家系统,提供金丝小枣栽培专家系统、养牛管理专家系统、无公害番茄专家系统等三十余种在线专家系统。

(4)zjxt.hzagro.com/

农业专家系统.net,杭州市科技局、杭州市农办主办提供了水果干果、蔬菜种植、花卉苗木、中药材、水产养殖、畜禽养殖等类七十余种在线农业专家系统。

(5)202.107.249.147/

丽水市农业专家知识系统,提供了花卉苗木、食用菌、笋竹、蔬菜、水产、中药材、其它等十类八十五种在线农业专家系统。

4、进行农业信息智能分析。

农业信息智能分析是应用智能化技术代替传统方法进行农业信息分析的新的研究领域。它主要是围绕农业生产、农产品市场、农业经营管理、农业科技中的分析对象, 进行智能化地信息自动采集、存储、管理、计算、判别等的过程,可模仿、代替专家,解决农业中波动分析、风险识别、早期预测、效果评价等诸多问题。目前农业智能分析技术在我国已投入实际使用。

(1)农业部的“农作物遥感监测系统”,通过采用遥感和地理信息系统手段,及时动态地监测农作物生长状况,解决了依赖实地调查、手工记录、数据上报等传统信息获取方式的不足。针对数据和信息源不足、渠道不畅等问题,农业系统开展了“农产品市场监测预警系统”的开发与应用,定期对粮、油、果、菜、畜产品等主要农产品的生产、需求、进出口、市场行情,进行动态监测、分析,为政府部门、生产者和经营者提供了决策参考。

(2)中国农科院智能化农业预警技术与系统重点开放实验室,构建了全国农产品供求平衡分析预测模型体系框架,开展了12种主要农产品的市场供求分析预测。利用网络抓取技术、数据挖掘技术,已经能从海量的信息中获取市场波动的隐性信息。论文参考网。并建立了主要农产品供求信息库,能对12种主要农产品的市场行情进行趋势分析与展望。

5、使用专业农业网站、专业农业论坛、专业农业交流圈。

传统的专业农业网站及专业农业论坛仍然是广大农民互联网上获取农业信息的主要渠道。另外基于新兴的WEB2.0技术组建的专业农业交流圈能大大增强访问者之间的互动也迅速发展,大有前途。

国内专业农业网站及农业论坛:

(1)202.127.45.50/

中华人民共和国农业部,中国农业信息网。

(2)zgny.com.cn/

中国农业网,农业企业的商务信息平台。

(3)chinabreed.com/

中国养殖网,最大畜牧行业门户网站,提供养殖、饲料、养猪、养鸡、养牛、 养羊、家禽、兽药、特种养殖及畜牧机械相关信息。

(4)aweb.com.cn/

农博网,国家农村信息服务示范项目,以“服务农业,E化农业”的宗旨,为涉农人群提供农业资讯、农产品电子商务、农业论坛以及农业人才服务。

(5)12582.com/

农信通农村信息网,涉农生活服务移动互联网平台,提供最新农业信息,化肥、饲料、农机等价格行情,农民工招聘、就业信息;食品、水果、蔬菜等农产品交易信息,是城乡互动、乡村旅游、农家乐的综合展示窗口。

(6)feedtrade.com.cn/

中国饲料行业信息网,为饲料生产加工、饲料原料贸易、饲料添加剂及畜牧养殖企业提供全面的新闻、行情、价格和分析预测等信息资讯服务。

(7)yuanlin.com/

中国园林网,提供园林绿化苗木资讯,园林绿化景观,园林绿化苗木工程,园林绿化设计 ,等方面信息,为相关园林绿化苗圃企业提供商铺,是园林绿化,苗木园艺的专业园林绿化门户。

(8)bbs.aweb.com.cn/

中国三农论坛,博览天下农事,关注农村、关心农业、关爱农民。

6、除了以上信息资源外,专题讨论组、电子论坛等也可以方便地为相同科学领域的农业专家提供交流空间,这也是当前网络获取农业信息资源的重要方式之一。

参考文献:

[1]《不同搜索引擎在农业领域的应用效果对比》,刘艳华、徐勇。《农业网络信息》2009年08期.

[2]《互联网上农业信息资源的整合、利用与管理研究》,严方。《华中农业大学》,硕士论文.

篇(6)

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkx.2016.01.031

Solid State Physics Teaching Reform and Practice Adapt to Materials

Physics and Electronic Science and Technology Needs

LI Zijiong, SU Yuling, WANG Yongqiang, GONG Gaoshang

(School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, He'nan 450002)

Abstract Solid State Physics is physics and electronic material science and technology important professional courses, according to the needs of both professional features in the teaching content, teaching methods and capacity-building and improving other aspects of solid state physics curriculum reform and practice.

Key words solid state physics; teaching reform; teaching methods

0 引言

随着人才需求的不断变化和学科的发展,不同专业的课程体系和人才培养模式应与时俱进地作相应的调整和优化,不断完善和发展以适应专业特点和新形势下需求的培养目标。①②固体物理学课程主要研究固体(晶体)的微观结构特征、相互作用及其运动规律,并阐述其用途的学科。固体物理学课程是物理、材料、化学和电子等专业的基础课程。③但受传统教学内容、教学手段和有限课时等的影响,不少学生缺少对该课程在专业培养中的重要作用的认识,学习重视程度不够,缺乏学习积极性。因此,有必要根据不同专业方向特点,在教学内容、教学方法和考核体系等方面对固体物理学课程进行教学改革。

材料物理和电子科学技术是郑州轻工业学院物理与电子工程学院的两个专业,我们在这两个专业开设了固体物理学课程,分别制定了课程标准和课程教学目标。针对固体物理教学课程自身的特点,结合材料物理和电子科学与技术专业学生的培养模式和需要,根据多年对固体物理学在两个专业的教学实践,提出了关于固体物理课程教学根据专业不同需求的优化与调整方案,并在教学中进行了实践,取得了一定的效果。

1 根据专业特点,进行教学内容的调整和优化

固体物理学是一门综合性很强的课程,除了需要量子力学和统计物理、大学物理等方面的基础知识外,在传统的内容上也是增加了很多现代科技前沿的内容。由于不同专业学生的背景和培养目标的差异,在授课内容方面首先要进行一定的调整和优化。

材料物理专业是我校较早开设的传统专业,其目的是培养较系统地掌握材料科学的基本理论与方法,具备材料物理相关的基本技能和基本知识,能在材料科学与工程及与其相关的领域从事教学、研究、教学科技开发教学及相关管理工作的材料物理高级专门人才。由于学生的材料和物理背景较好,考虑到该专业与固体物理学联系较紧密的特点,需要对传统固体物理学课程教学内容进行强化和延伸。

如在讲解晶体结构一章时,在让学生深刻理解晶体结构平移性和对称性特点的基础上,我们适当增加了材料结构分析方面的内容,除了晶体结构详细讲解外,对非晶体、准晶等也要做一定的介绍,并结合科研工作中常见的晶体缺陷问题,对相关材料进行分析,增加了如何利用X射线衍射分析晶体结构,并安排学生动手制备一些新材料,学习应用扫描电子显微镜、投射电子显微镜、XRD等工具对所制备材料的微观结构进行表征分析,从而加深学生对所学知识的理解,提高解决实际问题的能力,获得了对固体物理课程学习的主动性和针对性。

在讲述晶体结合一章,增加了氢键结合形成不同晶体的特点及规律,将共价性结合和金属结合的特点和规律采用第一性原理进行计算,并将结果进行课堂视频展示;在讲述金属、半导体电子结构章节中,有意识地增加了态密度、掺杂、能带调控等概念,在此基础上,适当分析一下半导体材料的电子结构对其电学和光学性质的影响,有意识地加强材料物理专业学生的分析和解决问题的能力。结合当前材料科学研究的新材料如石墨烯、二硫化钼等纳米材料、金属氧化物量子点等,进行了结构和潜在应用的分析,对拓宽学生的知识结构、开阔视野和提高学习兴趣起到了积极作用。

在讲解能带理论一章时,注重问题提出和解决的思路方法,将复杂的材料问题运用合理的物理近似处理方法,使材料物理专业能够把所学的物理知识和材料有机结合起来,并能够运用所学知识解决实际问题,通过实践,收到较好效果。

针对电子科学与技术专业主要培养学生从事与光电子器件应用与光电工程技术等工作,需要实际与理论相结合,并且能够把理论知识能够运用在生产与工作当中的要求,在讲述固体物理传统内容时,抓住物理过程的主要方面,构造简化的模型,进行有效的数学处理。教学过程紧扣物理模型和思想,适当降低知识难度,而且还要适当减少传统固体物理内容与电子科学和技术专业关联不大的问题。将与电子科学技术专业密切相关的能带理论、晶体缺陷、半导体电子伦和金属电子论等章节作为重点讲授的内容,同时也尽量保持知识的连惯性和系统性。

科技发展日新月异,不断出现的新技术和新发现为固体物理学课程内容的延伸不断开拓出新的研究领域。在教学实践中,我们将传统的固体物理学教学内容与日新月异的物理前沿内容间的关联有机结合起来,例如,与能带理论有关的LED、与晶体结构有关的C60、太阳能光伏电池的研究进展和应用、以及固体激光器等与光电技术相关的前言知识穿插在教学当中,强化学生的基础知识学习,提高学生的学习兴趣、明确学生的专业方向,拓宽学生的视野。

2 根据专业特色调整和优化教学方法

针对材料物理和电子科学与技术专业的不同特点,除了进行固体物理教学内容的优化调整外,在教学方法也要进行改革,以适应这两个专业的培养目标需要。

首先改变传统教师课堂一言堂的教学方法,将课堂主体交给学生,增加师生互动环节。课堂上老师把要讲授的内容以提出问题的形式展出,鼓励学生解答这些问题,充分发挥了学生的积极主动性。对于学生普遍不好理解和难懂的问题,教师再进行细致讲解,这样做到重点突出,有的放矢,充分实现教师和学生的课题互动,极大地提高了学生的积极性。同时加强习题课环节,任课教师事先将要讲的习题给学生,并安排学生分组讨论。课堂上,学生积极主动上台讲解习题的不同解答方法,并可对不同解答提出质议,这样既增强了学生理解和解决问题的能力,又极大提高了课堂效率。对不同专业学生,除了教学内容的侧重点不同以外,在教学方式方法上也体现出差别。如对材料物理专业学生,教学时要注重课堂教学内容的逻辑关系,强化对概念和规律的理解、记忆,对于与专业相关的理论,要求学生能够理论推导。而对电子科学与技术专业学生,提出“联想式教学法”,例如,从大学物理中的光和机械波传播的干涉和衍射现象引入倒格矢的概念,把抽象难懂的倒格子与光的波动性联系起来,从而联想到对微观粒子波动性的空间描述;从大学物理中声波和电磁场的耦合激化现象引领学生学习声学波和光学波的异同点;从光伏太阳能电池的原理入手联想到能带理论等等,从而加深对固体物理图像及物理本质认识,而不是仅仅停留在对概念和规律的推导和理解上。

其次是将生动直观的物理演示模型引入课堂教学实践中,提高课堂效率。我们将固体物理学课程中的相关难懂知识点,做成一系列教学模型,通过课堂演示,加深对学生对固体物理知识的理解和掌握。如讲解不同晶体结构时,我们分别演示了Si、Cu和NaCl等的不同晶体结构的原子排列模型;讲解晶体的对称性时,我们分别演示立方体、圆柱体、锥体等的模型,引导学生分析不同模型的对称特点,同时采用3D MAX 动画制作软件,将不同晶体结构制作成三维图像及视频,既形象又生动,充分调动学生的学习积极性。对于固体物理的能带理论一章,推导复杂,学生理解有一定的困难,针对理论推导不作重点要求的电子科学与技术专业学生,我们重点通过讲解模型建立和合理简化处理问题的物理思想,通过引入不同能带结构的半导体材料在LED、太阳能电池的应用,讲解晶体能带的特点和调控方法,加深了学生对这部分的重视和理解。

最后是重视课后反馈,增强学生的知识运用能力的提高。对学有余力的学生,我们结合院系的科研条件,安排一部分学生到实验室,协助老师做些科研工作,结合课堂所学知识进行应用指导。我们将MS、CASTEP等计算软件对电子科学与技术专业学生进行了培训使用指导,使学生能够利用计算软件建立基本模型,并进行能带、光电性质的计算, 进一步加深了学生对该相关知识的理解和应用能力的提高。利用课下时间,我们还引导学生运用不同数据库查阅相关外文文献,教会学生如何快速阅读文献,找到自己想要知道的信息,促进学生了解前沿课题研究的概况,对培养学生的创新和解决问题的能力起到了积极作用。

3 根据专业特色调整和优化考核体系

针对固体物理学课程在材料物理和电子科学与技术专业教学内容和教学方式的不同,对这两个专业的学生制定出相应的考核体系。平时成绩的计算上,除了传统的考勤、作业分以外还设置课堂奖励分,主要是对于课堂上任课教师提出的问题和安排的课题能够认真、积极准备,完成或回答较好的,可给予一定的分数奖励,以鼓励学生积极参与课程学习,充分发挥学生的创造性和主动性。

对于电子科学与技术专业的学生,主要采用平时成绩与期末考查相结合的评价形式,平时成绩和期末考查各占50%。平时成绩主要包含学生的考勤、作业、课堂回答问题、课下参加课题研究的情况,各部分所占比例也进行了细分,这有助于客观公正地评价学生对固体物理学课程学习的积极性和主动性。期末考查一般采用小论文的形式,小论文的题目涉及到本课程相关的前沿内容和本课程基础知识的应用,引导学生主动探索分析学科前沿动态和应用领域,提高学生的综合分析问题和解决问题的能力,有利于学生充分发表自己的见解,展现自己的能力,发挥自己的水平。

总之,随着科技发展的日新月异,传统固体物理学课程的教学已经不能很好地适应材料物理和电子科学与技术专业等不同专业学生的需要,在教学内容、教学方法和考核体系针对不同专业进行优化和调整,对培养不同专业的创新型人才具有非常重要的作用。

注释

篇(7)

探索性的演绎法是理论物理学的重要方法。在爱因斯坦看来,理论物理学的完整体系是由概念,被认为对这些概念是有效的基本原理(亦称基本假设、基本公设、基本定律等),以及用逻辑推理得到的结论这三者所构成的。因此,理论物理学家所运用的方法,就在于那些作为基础的基本原理,从而导出结论;于是,他的工作可分为两部分:他首先必须发现原理,然后从这些原理推导出结论。对于其中第二步工作,他在学生已得到很好的训练和准备。因此,如果在某一领域中或者某一组相互联系的现象中,他的第一个已经得到解决,他就一定能够成功。可是第一步工作,即建立一些可用来作为演绎的出发点的原理,却具有完全不同的性质。这里并没有可以的和可以系统地用来达到的的方法。科学家必须在庞杂的经验事实中间抓住某些可精密公式来表示的普遍特征,由此探求界的普遍原理。

爱因斯坦指出,一旦找到了作为逻辑推理前提的基本理,那么通过逻辑演绎,推理就一个接着一个地涌现出来它们往往显示出一些预料不到的关系,远远超出这些原理依据的实在的范围。但是,只要这些用来作为演绎出发点原理尚未得出,个别经验事实对理论家是毫无用处的。实际上,单靠一些从经验中抽象出来的孤立的普遍定律,他甚至么也做不出来。在他没有揭示出那些能作为演绎推理基础原理之前,他在经验的个别结果面前总是无能为力。

爱因斯坦把物理学理论分为两种不同的类型,其中之一是“原理理论”。建立这种理论使用的是方法,而不综合方法。形成它们的基础和出发点的元素,不是用假设造出来的,而是在经验中发现到的,它们是自然过程的普遍特征,即原理。这些原理给出了各个过程或者它们的理论表述所必须满足的数学形式的判据。热力学就是这样力图用分析的方法,从永动机不可能这一普遍经验得到的事实出发,推导出一些为各个事件都必须满足的必然条件。用探索的演绎法建立起来的相对论,就属于“原理理论”。但是物理学理论大多数是构造性的。它们企图从比较简单的式体系出发,并以此为材料,对比较复杂的现象构造出一幅图像。气体分子运动论就是这样力图把机械的、热的和扩散的过程都归结为分子运动——即用分子假设来构造这些过程。当我们说,我们已经成功地了解一群自然过程,我们的思想必然是指,概括这些过程的构造性的理论已经建立起来了。爱因斯坦认为,构造性理论的优点是完备,有适应性和明确,原理理论的优点则是逻辑上完整和基础巩固。([1],pp.109~110)

相对论就是爱因斯坦自觉地运用探索性演绎法的杰作。它不仅以其革命性的新观念和卓有成效的理论结果为人津津乐道,而且它所体现出的科学方法的新颖、精湛以及理论的逻辑结构的严谨,也令人叹为观止。爱因斯坦在创立狭义相对论(1905)时,他依据的仅仅是光行差现象和斐索实验这两个并不充分的实验材料,著名的二阶以太漂移实验即迈克耳孙-莫雷实验,对他并没有直接。他主要通过对16岁时想到的“追光”思想实验的沉思,对经典力学和经典电动力学基础的深入考察,发挥了思维的自由创造,提出了两个基本假设——相对性原理和光速不变原理(美国著名科学史家霍耳顿认为,在狭义相对论中,除了被提高为公设的两个基本原理外,爱因斯坦还作了另外四个假定:一是关于空间的各向同性和均匀性,另外三个是定义钟的同步的三个逻辑性质。霍耳顿的学生米勒后来指出,另外的四个假定也是两个基本原理的必然结果,他们不是独立的假设。参见[3],p.196)。然后,他以此为逻辑前提,接二连三地推导出了关于运动学和电动力学的结论,著名的质能关系式是他先前根本没有料想到的,这些结论大大超出了两个原理所依据的实在的范围。广义相对论(1915)的建立也是这样。作为广义相对论的两个基本原理,即广义相对性原理和等效原理,前者是爱因斯坦基于把相对性原理贯彻到底的信念(从惯性系推广到加速系)提出的,后者是依据厄缶实验(惯性质量等于引力质量)和升降机思想实验提出的。

在1905年,由于爱因斯坦采用了探索性的演绎法,从而使他能够高屋建瓴、势如破竹,一举砍断了哥尔提阿斯死结(哥尔提阿斯是古代夫利基阿国王,相传他曾把自己的车乘的辕与轭用绳结系住,死得无法解开,声言能解开此死结者,得以结治亚细亚。这个死结后来被亚历山大大帝用剑砍断),开拓了一个奇妙的新世界。那些恼人的以太漂移实验,那些使人迷惑不解的单极电机电动势的“位置”问题,在爱因斯坦的理论体系中已根本不成其为问题。但是,同时代的博大精深的科学大师,诸如洛伦兹、彭加勒,却热衷于同迈克耳孙-莫雷实验等以太漂移实验打交道,迷恋于做出种种构造性假设,建立他们的构造性理论——论和电子动力学。例如,洛伦兹1904年的著名论文尽管声称是以“基本假设”而不是以“特殊假设”为基础的论文,但事实上却包含有11个假设:假设有静止以太,假设静止电子是球形的,假设电子的电荷分布是均匀的,假设电子的全部质量都是电磁质量,假设运动电子收缩,假设电子之间的作用力与分子力相同等等。洛伦兹和彭加勒虽说走到了狭义相对论的大门口,但他们并没有打开这扇大门,其原因固然是多方面的。从方法论上讲,就在于他们运用的是传统的经验归纳法,而没有采用探索性的演绎法。在当时的科学的形势下,仅靠个别的经验事实进行归纳,是建立不起什么崭新的理论的。洛伦兹、彭加勒的电子论和电子动力学固然富丽堂皇,但毕竟只是经典物理学的最后的建筑物。它们虽然包罗万象,可是由于不适应科学发展的总趋势,最终还是被人们遗忘了,仅有的价值。

二、采用探索性的演绎法是科学发展的必然趋势

从文艺复兴到19世纪的经典科学,一般称为近代科学。在科学史上,这个漫长的时期主要是积累材料和归纳材料的时期。与这一科学发展状况相适应,产生了经典的科学哲学,它始于弗兰西斯•培根的归纳主义。培根认为,科学的发展是从个别上升到一般,从经验归纳出理论。他比喻说,只要及时采摘成熟的葡萄,科学的酒浆就会源源不断。到19世纪,整个科学一般说来还没有摆脱这种“原始”状态,因而经典科学哲学能够得以通过穆勒之手发展成为更完备的经验论形态,经验归纳法依然是正统的科学方法。

在物理学领域,这个时期的最大成就是牛顿力学和麦克斯韦的电动力学。牛顿力学虽则是超越了狭隘经验论的人类理智的伟大成就,但它又同人们的日常经验密切相关。力学中的许多概念都比较直观,可以直接在现实生活中找到某种原型。这种状况掩盖了基本概念和基本原理的思辨性质,甚至牛顿本人也深深陷入这一幻觉之中。他一再声称他“不作假设”,实际上却作了许多假设,他要求人们“必须把那些从各种现象中运用一般归纳法导出的命题看作是完全正确的”。19世纪的经典物理学也具有现象论和经验论的特征:它尽量使用那些接近经验的概念,因而在很大程度上必须放弃基础的统一性。热、电、光都用那些不同于力学量的各个状态的变数和物质常数来描述,至于要在它们的相互关系以及同时间的相互关系中去决定全部变数的任务,主要只能由经验来解决。麦克斯韦及其同代人,在这种表示方式中看到了物理学的终极目的,他们想像这个目的只能纯粹归纳地从经验得出,因为这样所使用的概念同经验比较接近。从认识论上看,穆勒和马赫大概就是根据这个理由来决定他们的立场的。总而言之,这个时期的科学家和科学哲学家大都以为,“理论应当用纯粹归纳法的方法来建立,而避免自由地创造性地创造概念;科学的状况愈原始,研究者要保留这种幻想就愈容易,因为他似乎是个经验论者。直至19世纪,许多人还相信牛顿的原则——“我不作假设''''——应当是任何健全的自然科学的基础。”([1],p.309)

但是,在某些个别的科学部门,已经悄悄地透进了新时代的曙光;尤其是非欧几何学,它仿佛故意向经验论示威一样,以毋庸置辩的方式显示了理性思维的强大威力和奇妙作用。彭加勒正是在《科学与假设》中通过对非欧几何学的深入研究以及对经典力学和经典物理学的慎密考察揭示出,科学的基本概念和原理不是经验的直接归纳,而只能以经验事实为指导,通过精神的自由活动(其产品即约定)来创造。通过研读彭加勒的科学哲学著作,尤其是通过创立狭义和广义相对论的科学实践,使爱因斯坦清楚地看到,人们可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式,来考虑范围更广泛的经验事实。但是,完全撇开这种理论还是那种理论优越的问题不谈,基本原理的虚构特征却是完全明显的,因为我们能够指出两条根本不同的原理,而两者在很大程度上都同经验相符合。这—点同时又证明,要在逻辑上从经验推出力学的基本概念和基本假设的任何企图,都是要失败的。爱因斯坦还清楚地看到,相对论是说明理论科学在发展的基本特征的一个良好的例子。初始假设变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假设或者公理出发,通过逻辑的演绎,概括尽可能多的事实。同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。正是科学发展的这种理论化趋势,使爱因斯坦认识到:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导。研究者宁愿提出一种思想体系,它——般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。”([1],p.115),他进而指出:“适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。”([1],p.262)

三、爱因斯坦大胆运用探索性的演绎法的直接动因

只是在广义相对论建立之后,爱因斯坦才把探索性的演绎法作为一个论原则从上加以论述。可是,早在创立狭义相对论时,他就在中大胆运用这一方法了,并在思想上对它已有比较深刻的认识。促使爱因斯坦大胆运用探索性的演绎法的直接原因有两个:其一是赫兹、玻耳兹曼、彭加勒等人的思想,其二是当时的物现状使得他不能不那样做。

在联邦大学期间(1896~1900),爱因斯坦自学了赫兹、玻耳兹曼等科学大师们的著作。赫兹在他的名著《力学原理》(1894)中试图重构力学,为此他仅利用空间、时间和质量三个原始概念。赫兹的力学体系建立在通过科学家个人的“内在直觉”从经验引出的公理之上,它能够导出经验预言。赫兹认为“内在直觉规律”的功能像“康德意义上的先验判断”一样,并且声称他的力学重构是演绎系统,与牛顿的《原理》(全称《的数学原理》)有许多相同的风格。在这个公理体系中,我们可以推演出与我们的观察记录相对照的可检验的结论,依据该结论与可观察的世界一致还是不一致,来决定这个体系是否正确。尽管爱因斯坦不赞同赫兹的隐质量概念和“把自然现象追溯到力学的主要定律”的长远目标,但是赫兹强调公理描述的威力却给他留下了深刻的印象。这种公理描述与其说在经验材料上预言理论结构,倒不如说在公理和直觉上预言理论结构。

爱因斯坦也自学了玻耳兹曼的《力学讲义》(1897)。在该书中,玻耳兹曼把力学作为物理学的核心,爱因斯坦当然不会同意这种看法的。但是,玻耳兹曼重构力学的方法的下述特点,一定会强烈地震撼爱因斯坦敏感的心弦:“恰恰是力学原理的不明晰性,在我看来不是同时以假设的智力图像为起点而得到的,而是从一开始就以与外部经验相联系的尝试而得到的。”([2],p.127)玻耳兹曼的意思很清楚:力学原理的不明晰,在于经验归纳,而不在于智力图像。玻耳兹曼的“智力图像”概念比赫兹的“外部对象的图像或符号”更自由,爱因斯坦可能山此注意到,力学的已使原理凌驾于经验材料之上。

彭加勒在《科学与假设》(1902)中对约定主义的论述,对爱因斯坦的探索性的演绎法的形成必定大有裨益,爱因斯坦在“奥林比亚科学院”时期(1902~1904)曾和他的同伴索洛文、哈比希特一起研读过这本脍炙人口的畅销名著。彭加勒通过对数理科学的基础进行了敏锐的、批判性的审查和后得出:几何学的公理既非先验综合判断,亦非经验事实,它们原来都是约定。物理学尽管比较直接地以经验为基础,但它的一些基本原理也具有几何学公理那样的约定特征。例如惯性原理,它不是先验地支配我们的真理,否则希腊学者早就知道它了,它也不是经验的事实,因为人们从来也不能用不受外力的物体做实验,因而无法用实验证实或否证它。经过最终分析,它们化归为约定或隐蔽的定义。因此,彭加勒得出结论说:在数学及其相关的学科中,“可以看出自由约定的特征”;他进而指出:“约定是我们的精神的自由活动的产品”,“我们在所有可能的约定中进行选择时,要受实验事实的引导;但它仍是自由的,只是为了避免一切矛盾起见,才有所限制。”

彭加勒在考察了物理学的理论后认为,物理学有两类陈述——原理和定律。定律是实验的概括,它们相对于孤立的系统而言可以近似地被证实,原理是约定而成的公设,它们是十分普遍的、严格真实的,超越了实验所及的范围。彭加勒还阐述了约定主义的方法论意义。他说,当一个定律被认为由实验充分证实时,我们可以采取两种态度。我们可以把这个定律提交讨论,于是,它依然要受到持续不断的修正,毋庸置疑,这将仅仅以证明它是近似的而终结。或者,我们也可以通过选择这样一个约定使命题为真,从而把定律提升为原理。在彭加勒看来,经典力学和经典物理学的六大基本原理(迈尔原理即能量守恒原理、卡诺原理即能量退降原理、牛顿原理即作用与反作用原理、相对性原理、拉瓦锡原理即质量守恒原理、最小作用原理)就是这样形成的。

彭加勒提出约定主义并不是无缘无故的。在近代科学发展的早期,弗兰西斯•培根提出了经验归纳的新方法,这种方法对促进近代科学的发展起了巨大的作用,但后来却助长了狭隘经验事义的盛行。到19世纪,以惠威尔、穆勒为代表的“全归纳派”和以孔德、斯宾塞为代表的实证主义广为流行,把经验和归纳视为唯一可能的认识方法。到19世纪末,第二代的实证主义的代表人物马赫更是扬言要把一切“形而上学的东西”从科学中“排除掉”。另一方面,康德不满意经验论的归纳主义的阶梯,他把梯子颠倒过来,不是从经验上升到理论,而是以先天的“感性直观的纯形式”(时间和空间)和先天的“知性的纯粹概念或纯粹范畴(因果关系、必然性、可能性等十二个范畴)去组织后天经验,以构成绝对可靠的“先验综合知识”。彭加勒看到,无论是经验论还是先验论,都不能圆满地说明科学理论体系的特征。为了强调在从事实过渡到原理时,科学家应充分有发挥能动性的自由,他于是提出了约定主义。约定主义既要求摆脱狭隘的经验论,又要求摆脱经验论,它顺应了科学发展的潮流,反映了当时科学界自由创造、大胆假设的要求,在科学和哲学上都有其积极意义。

《科学与假设》一书对爱因斯坦的印象极深,他和同伴们花了好几个星期紧张地读完了它。爱因斯坦坦率地承认彭加勒对他的直接影响。他赞同“敏锐的深刻的思想家”彭加勒的约定主义观点,认为概念和公理是思维的自由创造,是理智的自由发明。他这样说过:“一切概念,甚至那些最接近经验韵概念,从逻辑观点看来,……都是一些自由选择的约定,……([1],p.6)

一开始,爱因斯坦也对洛伦兹的论(是1895年的论文,而不是1904年的电子论的最终形式)发生过兴趣,这是一种构造性的理论。可是不久,他从普朗克的量子论中看到,辐射具有一种分子结构。这是同麦克斯韦理论相矛盾的,而且麦克斯韦理论也不能导致出正确的辐射压涨落。爱因斯坦在“自述”中谈到了他当时的转变:“早在1900年以后不久,即在普朗克的首创性工作以后不久,这类思考已使我清楚地看到:不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加绝望,也就愈加确信,只有发现一个普遍的形式原理,才能使我们得到可靠的结果。”([1],p.23)从此时起,爱因斯坦就断然决定用探索性的演绎法来解决。

四、爱因斯坦的探索性的演绎法的特色

作为科学推理的演绎法,可以说是源远流长了。早在古希腊,著名的哲学家、形式逻辑的创始人亚里士多德就提出了归纳和演绎这两种逻辑方法,并认为演绎推理的价值高于归纳推理。而古希腊名声最大的数学家欧几里得,在《几何原本》中把几何学系统化了,这部流传千古的名著就是逻辑演绎法的典范。牛顿在建立他的力学理论体系时虽然运用了归纳法,但其集大成著作《原理》的叙述方法却采用的是演绎法。爱因斯坦的探索性的演绎法绝不是这种古老的演绎法的简单照搬。他根据自己的科学研究实践,顺应当时理论科学发展的潮流,对演绎法作了重大发展,赋予了新的。也许是为了强调他的演绎法与传统的演绎法的不同,他在“演绎法”前面加上了限制性的定语——“探索性的”,这个定语也恰当地表明了他的演绎法的主要特征。与传统的演绎法相比,爱因斯坦的探索性的演绎法是颇有特色的。这主要表现在以下三个方面。

第一,明确地阐述了科学理论体系的结构,恰当地指明了思维同经验的联系问题,充分肯定了约定在建造理论体系时的重要作用。爱因斯坦把科学理论体系分为两大部分,其一是作为理论的基础的基本概念和基本原理,其二是由此推导出的具体结论。在爱因斯坦看来,那些不能在逻辑上进一步简化的基本概念和基本假设,是理论体系的根本部分,是整个理论体系的公理基础或逻辑前提。它们实际上“都是一些自由选择的约定”;它们“不能从经验中抽取出米,而必须自由地发明出来”([1],pp.6,315)。谈到思维同经验的联系问题时,爱因斯坦说:直接经验ε是已知的,A是假设或公理,由它们可以通过逻辑道路推导出各个个别的结论S;S然后可以同ε联系起来(用实验验明)。从心理状态方面来说,A是以ε为基础的。但是在A和ε之间不存在任何必然的逻辑联系,而只有通过非逻辑的方法——“思维的自由创造”(或约定)——才能找到理论体系的基础A。爱因斯坦明确指出:“物理学构成一种处在不断进化过程中的思想的逻辑体系。它的基础可以说是不能用归纳法从经验中提取出来的。而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相联系的导出命题的思想路线,也不断地变得愈来愈艰难、愈来愈漫长了。”([1],p.372)

第二,大胆地提出了“概念是思维的自由创造”、“范畴是自由的约定”([1],pp.407,471)的命题,详细地阐述了从感觉经验到基本概念和基本原理的非逻辑途径。爱因斯坦指出,象马赫和奥斯特瓦尔德这样的具有勇敢精神和敏锐本能的学者,也因为哲学上的偏见而妨碍他们对事实做出正确的解释(指他们反对原子论)。这种偏见——至今还没有灭绝——就在于相信毋须自由的构造概念,事实本身能够而且应该为我们提供科学知识。这种误解之所以可能,是因为人们不容易认识到,经过验证和长期使用而显得似乎同经验材料直接相联系的那些概念,其实都是自由选择出来的。爱因斯坦认为,物理学家的最高使命就是要得到那些普遍的基本定律,由此世界体系就能用单纯的演绎法建立起来。要通向这些定律,并没有逻辑的道路,只有通过那种以对经验的共鸣的理解为依据的直觉,才能得到这些定律。”([1],p,102)

为了从经验材料中得到基本原理。除了通过“以对经验的共鸣的理解为依据的直觉”外,爱因斯坦还指出可以通过“假设”、“猜测”、“大胆思辨”、“创造性的想像”、“灵感”、“幻想”、“思维的自由创造”、“理智的自由发明”、“自由选择的约定”等等。不管方法如何变化,它们都有—个共同点,即基本概念和基本原理只能通过非逻辑的途径自由创造出来。这样一来,基本概念和基本原理对于感觉经验而言在逻辑上是独立的。爱因斯坦认为二者的关系并不像肉汤同肉的关系,而倒有点像衣帽间牌子上的号码同大衣的关系。也正由于如此,从感觉经验得到基本概念和原理就是一项十分艰巨的工作,这也是探索性的演绎法的关键一步。因此,爱因斯坦要求人们“对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开'''';相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。”([1],pp.262~263)

关于爱因斯坦所说的“概念是思维的自由创造”和“范畴是自由的约定”,其中的“自由”并非任意之谓,即不是随心所欲的杜撰.爱因斯坦认为,基本概念和基本原理的选择自由是一种特殊的自由。它完全不同作家写小说时的自由,它倒多少有点像一个人在猜一个设计得很巧妙的字谜时的那种自由。他固然可以猜想以无论什么字作为谜底,但是只有一个字才真正完全解决了这个字谜。显然,爱因斯坦所谓的“自由”,主要是指建立基本概念和基本原理时思维方式的自由、它们的表达方式的自由以及概括程度高低的自由,—般说来,它们包含的客观实在的内容则不能是任意的。这就是作为反映客观实在的人类理智结晶的科学之客观性和主观性的统一。诚如爱因斯坦所说:“科学作为一种现存的和完成的东西,是人们所知道的最客观的,同人无关的东西。但是,科学作为一种尚在制定中的东西,作为一种被迫求的目的,却同人类其他一切事业一样,是主观的,受心理状态制约的。”([1],p.298)

第三,明确地把“内在的完备”作为评判理论体系的合法性和正确性的标准之一。在爱因斯坦看来,探索性的演绎法就是在实验事实的引导下,通过思维的自由创造,发明出公理基础,然后以此为出发点,通过逻辑演绎导出各个具体结论,从而构成完整的理论体系。但是,评判这个理论体系的合法性和正确性的标准是什么呢?爱因斯坦晚年在“自述”中对这个问题作了纲领性的回答([1],pp.10~11)。他认为,第一个标准是“外部的证实”,也就是说,理论不应当同经验事实相矛盾。这个要求初看起来似乎十分明显,但起来却非常伤脑筋。因为人们常常,甚至总是可以用人为的补充假设来使理论同事实相适应,从而坚持一种普遍的理论基础。但是,无论如何,这种观点所涉及的是用现成的经验事实采证实理论基础。这个标准是众所周知的,也是经常运用的。有趣的是爱因斯坦提出的第二个标准——“内在的完备”。它涉及的不是理论同观察材料的关系问题,而是关于理论本身的前提,关于人们可以简单地、但比较含糊地称之为前提(基本概念和基本原理)的“自然性”或者“逻辑简单性”。也就是说,这些不能在逻辑上进一步简化的元素要尽可能简单,并且在数目上尽可能少,同时不至于放弃对任何经验内容的适当表示。这个观点从来都在选择和评价各种理论时起着重大的作用,但是确切地把它表达出来却有很大困难。这里的问题不单是一种列举逻辑上独立的前提问题(如果这种列举是毫不含糊地可能的话),而是一种在不可通约的质之间作相互权衡的问题。其次,在几种基础同样“简单”的理论中,那种对理论体系的可能性质限制最严格的理论(即含有最确定论点的理论)被认为是比较优越的。理论的“内在的完备”还表现在:从逻辑的观点来看,如果一种理论并不是从那些等价的和以类似方式构造起来的理论中任意选出的,那么我们就给予这种理论以较高的评价。

爱因斯坦看到了“内在的完备”这一标准不容忽视、不可替代的特殊作用。他指出,当基本概念和基本原理距离直接可观察的东西愈来愈远,以致用事实来验证理论的含义就变得愈来愈困难和更费时日的时候,“内在的完备”标准对于理论的选择和评价就一定会起更大的作用。他还指出,只要数学上暂时还存在着难以克服的困难,而不能确立这个理论的经验内涵:逻辑的简单性就是衡量这个理论的价值的唯一准则,即使是一个当然还不充分的准则([1],pp.12、501)。爱因斯坦的“内在完备”标准在某种程度上是不可言传的,但是它在像爱因斯坦这样的具有“以对经验的共鸣的理解为依据的直觉”的人的手中,却能够有效地加以运用,而且预言家们在判断理论的内在完备时,它们之间的意见往往是一致的。

在爱因斯坦创立狭义相对论和广义相对论的过程中,充分地体现了探索性的演绎法的这三个特色。前面我们已简单地涉及到这一点,这里我们只谈谈爱因斯坦从“内在的完备”这一标准的角度是如何对自己理论进行评价的。1906年,当德国实验物理学家宣称,他在1905年完成的关于高速电子(β射线)质量和速度关系的数据支持亚伯拉罕和布赫尔的“刚性球”电子论,而同洛伦兹-爱因斯坦的理论(电子在运动方向的直径会随速度的增加而收缩)不相容,彭加勒立即发生了动摇,认为相对性原理不再具有我们先前赋予它的那种重要的价值。洛伦兹表现得更是十分悲观,他在1906年3月8日致彭加勒的信中说:“不幸的是,我的电子扁缩假设同考夫曼的新结果发生了矛盾,因此我必须放弃它,我已到了山穷水尽的地步。在我看来,似乎不可能建立起一种要求平移对电学和光学现象完全不产生影响的理论。”([2],p.334)爱因斯坦的态度则截然相反,他对自己的理论的“内在的完备”抱有信心。他在1907年发表的长篇论文中指出:考大曼的实验结果同狭义相对论的“这种系统的偏离,究竟是由于没有考虑到的误差,还是由于相对论的基础不符合事实,这个问题只有在有了多方面的观测资料以后,才能足够可靠地解决。”他认为“刚性球”电子论在“颇大程度上是由于偶然碰巧与实验结果相符,因为它们关于运动电子质量的基本假设不是从了大量现象的理论体系得出来的。”正由于狭义相对论的理论前提的简单性大,它涉及的事物的种类多,它的应用范围广,它给人的印象深,所以爱因斯坦才对自己的理论坚信不疑,要知道当时还没有确凿的实验事实证实这种具有思辨性的理论。谈到广义相对论的“内在的完备”,爱因斯坦说:“这理论主要吸引人的地方在于逻辑上的完整性。从它推出的许多结论中,只要有一个被证明是错误的,它就必须被抛弃,要对它进行修改而不摧毁其整个结构,那似乎是不可能的。”([1],p.113)他甚至说过这样的话:当1919年的日蚀观测证明了他关于光线弯曲的推论时,他一点也不惊奇。要是这件事没有发生,他倒会是非常惊讶的。

探索性的演绎法是爱因斯坦的主导哲学思想——唯物论的唯理论——的一个重要组成部分。可贵的是,爱因斯坦在这里并没有排斥或漠视经验归纳法在科学中的地位。一方面,他认为纯粹思维可以把握实在;另一方面,又认为从来也没有一种理论是靠纯粹思辨发现的,他对构造性的理论也给予了较高的评价。爱因斯坦敢于正视矛盾的两极,在唯理论和经验论之间保持了一种微妙的、恰如其分的平衡,这正是他的高明之处。他提出的探索性的演绎法,只是强调“要大胆思辨,不要经验堆积”罢了,这是理论科学在20世纪发展的必然趋势,爱因斯坦则是率先表达了这一时代要求。

《爱因斯坦文集》第一卷,许良英等编译,商务印书馆,1978年第1版,第75~76页。

ArthurI.Miller,AlbertEinstein''''sSpecisloryofRelativity:Emergence(1905)andEarlyInterpretation,(1905~1911),Adison-WesleyPubiishingCompany,Inc.,1981,p.196.

H.S.塞耶编:《牛顿著作选》,上海人民出版社,1971年第1版,第6页。

篇(8)

AbstractDiscussestherequirementsformonitoringandmanagementofthescopesfromboilerhousesforheating,steam-waterandwater-waterheatexchangers,smallscaleheatingnetworkstolargescaledistrictheating,therelatedhardwareconfigurationandtheapproachestorealisetherequiredfunctions.

Keywordscomputercontrol,heating,boiler

5.1供暖热水锅炉房内监测与控制的主要目的应为:

·提高系统的安全性,保证系统能够正常运行;

·全面监测并记录各运行参数,降低运行人员工作量,提高管理水平;

·对燃烧过程和热水循环过程进行有效的控制调节,提高锅炉效率,节省运行能耗,并减少大气污染。

对于热水锅炉,可将被监测控制对象分为燃烧系统和水系统两部分分别进行讨论。整个计算机监测控制管理系统可按图5-1形式由若干台现场控制机(DCU)和一台中央管理机构成。各DCU分别对燃烧系统、水系统进行监测控制,中央管理机则显示并记录这两个系统的在线状态参数,根据供热状态况确定锅炉、循环泵的开启台数,设定供水温度及循环流量,协调各台DCU完成各监测控制管理功能。

5.1.1燃烧系统监测与控制

图5-1锅炉房计算机的监控系统

对于链条式热水锅炉,燃烧过程的控制主要是根据对产热量的要求控制链条速度及进煤挡板高度,根据炉膛内燃烧状况及排烟的含氧量及炉膛内的负压度控制鼓风机、引风机的风量,从而既根据供暖的要求产生热量,又获得较高的燃烧效率。为此需要监测的参数有:

·排烟温度:一般使用铜电阻或热电偶来测量;再配之以相应的温度变送器,即可产生4~20mA或0~10mA的电流信号,通过DCU的模拟量输入通道AI即接入计算机。

·排烟含氧量:目前较多采用氧化锆传感器,可以对0.1%~21%范围内的高温气体的含氧量实现较精确的测量,其输出通过变送器后亦可转换为4~20mA或0~10mA电流信号。

·空气预热器出口热风温度:同上述测温方法。

·炉膛、对流受热面进出口、省煤器出口、空气预热器出口、除尘器出口烟气压力:测点可根据具体要求增减,一般采用膜盒式或波纹管式微压差传感器,再通过相应的变送器变为4~20mA或0~10mA电流信号,接入DCU的AI通道。

·一次风、二次风风压,空气预热器前后压差:测量方法同上。

·挡煤板高度测量:通过专门的机械装置将其转换为电阻信号,再变成标准电流信号,送入DCU的AI通道。

·供水温度及产热量:由水系统的DCU测出后通过通讯系统送来。

燃烧系统需要控制调节的装置为:

·炉排速度:由可控硅调压,改变直流电机转速

·挡煤板高度:控制电机正反转,通过机械装置带动挡板运动

·鼓风机风量:调鼓风机各风室风阀或通过变频器调风机转速

·引风机风量:调引风机风阀或通过变频器高风机转速

为了监测上述调节装置是否正常动作,还应配置适当的手段测试上述调节装置的实际状态。炉排速度和挡煤板高度可通过适当的机械机构结合霍尔元件等位置探测传感器来实现,风机风量的调节则可以通过风阀的阀位反馈信号或变频器的频率输出信号得到。

燃烧过程的控制调节主要包括事故下的保护,启停过程控制,正常的燃烧过程调节三部分。

·事故保护:这主要是由于某种原因造成循环水停止或循环量过小,以及锅炉内水温太高,出现汽化。此时最重要的是恢复水的循环,同时制止炉膛内的燃烧。这就需要停止给煤,停止炉排运行。停止鼓风机,引风机。DCU接收水温超高的信号后,就应立即进入事故处理程序,按照上述顺序停止锅炉运行,并响铃报警,通知运行管理人员,必要时还可通过手动补入冷水排除热水,进行锅炉降温。

启停控制:启动点火一般都是人工手动进行,但对于间歇运行的锅炉,封火暂停机和再次启动的过程则可以由DCU控制自动进行。封火过程为逐渐停止炉排运动,停掉鼓风机,然后停止引风机。重新启动的过程则是开启引风机,慢慢开大鼓风机,随炉温升高慢慢加大炉排进行速度。

正常运行调节:正常运行时的调节主要是使锅炉出口水温度维持在要求的设定值,同时达到高燃烧效率,低排烟温度,并使炉膛内保持负压。这时作为参照的测量参数有炉膛内的温度分布、压力分布、排烟含水量氧量等。锅炉的给煤量可以通过炉排速度和挡煤板高度(即煤层厚度)确定,鼓风机则可以根据空气预热器进出口空气的压差判断其相对的变化,此时可以调整控制量有炉排速度、煤层厚度(调整挡煤矿板高度)、鼓风机转速、各风室风阀、引风机转速或风阀。上述各调节手段与各可参照的测量参数都不是单一的对应关系,因此很难用如PID算法之类的简单控制调节算法。目前,控制调节效果较好的大都采用"模糊控制"方法或"规则控制"法,都是根据大量的人工调节运行经验而总结出的调节运行方法。

当燃烧充分时,锅炉的出力主要取决于燃煤量,因此锅炉出口水温的控制主要靠炉排速度及煤层厚度来调节,煤层厚度与煤种有很大关系,炉膛内燃烧状况可以通过炉膛内温度分布及煤层风阻来确定。燃烧充分时炉膛内中部温度最高,炉排尾部距挡渣器前煤已燃尽,温度降低。鼓风机则应根据进煤量的增减而增减送风量,同时通过观测排烟的含氧量最终确定风量是否适宜。引风机则可根据炉膛内负压状态决定运行状态,维持炉内微负压,从而既保证煤的充分燃烧,又不会使烟气和火焰外溢。根据如上分析,可采用如下调节规则:

每h一次,根据炉膛内温度分布调整煤层厚度及炉排速度,最高温度点后移,则将炉排速度降低5%,同时将挡煤板提高5%,当最高温度点前移时,则将炉排速度提高5%,同时将挡煤板降低5%。

每2h一次:若出水温度高于设定值2℃以上,则将炉排速度降低5%,若出水温度低于设定值2℃以上,则将炉排速度加大5%,加大和减小炉排速度的同时,还要相应地将鼓风机转速开大或减小。当采用风阀调整鼓风量时,则调阀,观察空气预热器前后压差使此压差增大或减少10%。

每15min一次:若排烟含氧量高于高定值,则适当减少鼓风同风量(降低转速或关小风阀),若低于高定值,则增加鼓风机风量。

每15min一次:若炉膛负压值偏小(或变为正压),加大引风机转速或开大风阀,若负压值偏大,则降低引风机风量。

以上调节规则中,所谓"合理的炉膛温度分布"取决于锅炉形式及测温传感器安装位置,需通过具体运行实测分析后,给出"合理","最高温度前移","最高温度后移"的判据,然后将其再写入DCU控制逻辑中。同样,排烟含氧量的设定值,含氧量出现偏差时对鼓风机风量的修正等参数也需要在锅炉试运行后,根据实际情况摸索,逐步确定。当然这几个修正量参数也可以在运行过程中通过所谓"自学习"的方法得到,在这里不做过多的讨论。

5.1.2锅炉房水系统的监测控制

锅炉房水系统的计算机监测控制系统的主要任务是保证系统的安全性;对运行参数进行计量和统计;根据要求调整运行工况。

·安全性保证:保证主循环泵的正常运行和补水泵的及时补水,使锅炉中循环水不会中断,也不会由于欠压缺水而放空。这是锅炉房安全运行的最主要的保证。

·计量和统计:测定供回水温度和循环水量,以得到实际的供热量;测定补水流量,以得到累计补水量。供热量及补水量是考查锅炉房运行效果的主要参数。

·运行工况调整:根据要求改变循环水泵运行台数或改变循环水泵转速,调整循环流量,以适应供暖负荷的变化,节省运行电费。

图5-2为由2台热水锅炉、4台循环水泵构成的锅炉房水系统示意图。图中还给出建议的测量元件和控制元件。

2台锅炉的热水出口均安装测温点,从而可了解锅炉出力状况。为了了解每台锅炉的流量,最好在每台锅炉入口或出口安装流量计,一般可采用涡街式流量计。涡街式流量计投资较高,可以按照图5-2那样在锅炉入口调节阀后面安装压力传感器,根据测出的压力p3,p4与锅炉出口压力p1之压差,也可以间接得到2台锅炉间的流量比例。2台锅炉入口分别安装电动调节阀来调整流量,可以使在2台锅炉都运行时,流量分配基本一致,而当低负荷工况下1台锅炉停止或封火,循环水泵运行台数也减少时,自动调节流量分配,使运行的锅炉通过总流量的90%以上,封火的锅炉仅通过总流量的5%~10%,仅维持其不至于过热。

图5-2锅炉房水系统原理及其测控点

温度传感器t3,t4,t5和流量传感器F1一起构成对热量的计量。用户侧供暖热量为,GF1cp(t3-t4),其中GF1为用流量F1测出的流量。锅炉提供的热量则为GF1cp(t3-t5),二者之差是用于加热补水所需要的热量。长期记录此热量并经常对其作统计分析,与煤耗量比较,既可检查锅炉效率的变化,及时发现锅炉可能出现的问题,与外温变化情况相比较,则又可以了解管网系统的变化及供热系统的变化,从而为科学地管理供暖系统的运行提供依据。

泵1~4为主循环泵。压力传感器p1,p2则观测网路的供回水压力。安装4台泵时的一般视负荷变化情况同时运行2台或3台水泵,留1台或2台备用。用DCU控制和管理这些循环水泵时,如前几讲所述,不仅要能够控制各台泵的启停,同时还应通过测量主接触器的辅助触点状态测出每台泵的开停状态。这样,当发现某台泵由于故障而突然停止运行时,DCU即可立即启动备用泵,避免出现因循环泵故障而使锅炉中循环水停止流动的事故。流量传感器F1也是观察循环水是否正常的重要手段。当外网由于某种原因关闭,尽管循环水泵运行,但流量可以为零或非常小,此时也应立即报警,通过计算机使锅炉自动停止,同时由运行值班人员立即手动开启锅炉的旁通阀V4,恢复锅炉内的水循环。

泵5,6与压力测量装置p2,流量测量装置F2及旁通阀V3构成补水定压系统,当p2压力降低时,开启一台补水泵向系统中补水,待p2升至设定的压力值时,停止补水。为防止管网系统中压力波动太大,当未设膨胀水箱时,还可设置旁通阀V3来维持压力的稳定。长期使一台补水泵运行,通过调整阀门V3来维持压力p2不变。补水泵5,6也是互为备用,因此DCU要测出每台泵的实际启停状态,当发现运行的泵突然停止或需要启动的泵不能启动时,立即启动另一台泵,防止系统因缺水而放空。流量计F2用来计算累计的补水量,它可以是涡街流量计,也可以采用通常的冷水水表,或有电信号输出的水表。

5.1.3锅炉房的中央管理机

如图5-1所示,可采用一台中央管理计算机与各台DCU连接,协调整个锅炉房及热网的运行调节与管理。中央机主要工作任务为:

·通过图形方式显示燃烧系统、水系统及外网系统的运行参数,记录和显示这些参数的长期变化过程,统计分析耗热量、补水量、外温及供回水温度的变化。

·根据外温变化情况,预测负荷的变化,从而确定供热参数,即循环水量及泵的开启台数、供水温度、锅炉运行台数。将这些决定通知相应的DCU产生相应原操作或修改相应的设定值。负荷的预测可以根据测出的以往24h的平均外温w来确定:

(5-1)

式中为Q0设计负荷,t0为设计状态下的室外温度,Q为预测出的负荷。考虑到建筑物和管网系统的热惯性,采用时间序列的方法来预测实际需要的负荷,可能要更准确些。

式(5-1)中的负荷尽管每h计算一次,但由于是取前24h的平均外温,因此它随时间变化很缓慢。每hQ的变化ΔQ仅为:

(5-2)

其中tw,τ-tw,τ-24为两天间同一时刻温度之差,一般不会超过5℃,因此ΔQ的变化总是小于Q的1%,所以不会引起系统的频繁调节。

根据预测的负荷可以确定锅炉的开启台数Nb:Nb≥Q/q0,其中q0为每台锅炉的最大出力。由此还可确定循环水泵的开启台数。

要求的总循环量G=max(Q/(Δt·cp)Cmin),其中Gmin为不产生垂直失调时要求的最小系统流量,Δt为设定的供回水温差。由于多台泵并联时,总流量并非与开启台数成正比,因此可预先在计算机中预置一个开启台数成正比,因此可预先在计算机中预置一个开启台数与流量的关系对应表,由此可求出要求的运行台数。

·分析判断系统出现的故障并报警。锅炉及锅炉房可能出现的故障及由计算机进行判断的方法为:

--水冷壁管或对流管爆管事故此时补水量迅速增加,炉膛内温度迅速下降,排烟温度下降,炉膛内温度迅速下降,排烟温度下降,炉膛内压力迅速由负压变为正压。

--水侧升温汽化事故此时锅炉热水出口温度迅速提高,接近达到或超过出口压力对应的饱和温度。

--锅炉内压力超压事故测出水侧压力突然升高,超过允许的工作压力;

--管网漏水严重测了水侧压力降低,补水量增大;

--锅炉内水系统循环不良测出总循环水量GF1减少很多,压差p3-p1或p4-p1加大;

--除污器堵塞测出总循环水量GF1减少,当阀门V1、V2全开时压差p3-p2、p4-p2仍偏小,说明压力传感器p2的测点至循环水泵入口间的除污器的堵塞。

--炉排故障测出的炉排运动速度与设定值有较大差别;

--引风机、鼓风机、水泵故障相应的主接触器跳闸,或所测出的空气压差或水循环流量与风机、水泵的设计状况有较大出入。

利用计算机根据上述规则及实测运行参数不断进行分析判断,即可及时发现上述事故或故障,并立即采取报警和停炉等相应的措施,从而防止事故的进一步扩大或故障转化为事故,提高运行管理的安全性。

5.2蒸汽-水和水-水换热站的监测与控制

对于利用大型集中锅炉房或热电厂作为热源,通过换热站向小区供热的系统来说,换热站的作用就同上一节的供暖锅炉房一样,只是用热交换器代替了热水锅炉。

图5-3为蒸汽-水换热站的流程及相应的测控制元件。水侧与图5-2一样,控制泵5、6及阀V2根据p2的压力值补水和定压;启停泵1~4来调整循环水量;由t2,t3及流量测量装置F1来确定实际的供热量。与锅炉房不同的是增加了换热器、凝水泵的控制以及蒸汽的计量。

图5-3蒸汽-水换热站的测量与控制

蒸汽计量可以通过测量蒸汽温度t1、压力p3和流量F3实现,F3可以选取用涡街流量计测量,它测出的为体积流量,通过t1和p3由水蒸气性质表可查出相应状态下水蒸气的比体积ρ,从而由体积流量换算出质量流量。为了能由t和p查出比体积,要求水蒸气为过热蒸汽。为此将减压调节阀移至测量元件的前面,如图5-3中所示,这样即使输送来的蒸汽为饱和蒸汽,经调节阀等焓减压后,也可成为过热蒸汽。

实际上还可以通过测量凝水量来确定蒸汽流量。如果凝水箱中两个液位传感器L1、L2灵敏度较高,则可在L2输出无水信号后,停止凝水排水泵,当L2再次输出有水信号时,计算机开始计时,直到L1发出有水信号时,计时停止,同时启动凝水泵开始排水。从L2输出有水信号至L1开始输出有水信号间的流量可以用重量法准确标定出,从而即可通过DCU对这两个水位计的输出信号得到一段时间内的蒸汽平均质量流量,代替流量计F3,并获得更精确的测量。当然此处要求液位传感器L1、L2具有较高灵敏度。一般如浮球式等机械式液位传感器误差较大,而应采取如电容式等非直接接触的电子类液位传感器。

加热量由蒸汽侧调节阀V1控制。此时V1实际上是控制进入换热器的蒸汽压力,从而决定了冷凝温度,也就确定了传热量。为改善换热器的调节特性,可以根据要求的加热量或出口水温确定进入加热器的蒸汽压力的设定值。调整阀门V1使出口蒸汽压力p3达到这一设定值。与直接根据出口水温调整阀门的方式相比,这种串级调节的方式可获得更好的调节效果。

供水温度t3的设定值,循环泵的开启台数或要求的循环水量的确定,可以同上一节一样,根据前24h的外温平均值查算供热曲线得到要求的供热量,并算出要求的循环水量。供水温度的设定值t3,set可由调整后测出的循环水量G、要求的热量Q及实测回水温度t2确定:

t3,set=t2+Q/(cp·G)

随着供水温度t3的改变,t2也会缓慢变化,从而使要求的供水温度同时相应地改变,以保证供出的热量与要求的热量设定值一致。

对于一次网为热水的水-水换热站,原则上可以按照完全相同的方式进行,如图5-4。取消二次供水侧的流量计F1,仅测量高温热水侧的流量F3,再通过即可和到二次侧的循环水量,一般高温水温差大,流量小,因此将流量计装在高温侧可降低成本。测量高温水侧供回水压力p3、p4可了解高温侧水网的压力分布状况,以指导高温侧水网的调节。

图5-4水-水换热站的测量与控制

调整电动阀门V1改变高温水进入换热器的流量,即可改变换热量。可以按照前述方法确定二次侧供水温设定值,由V1按此设定值进行调节。在实际工程中,高温水网侧的主要问题是水力失调,由于各支路通过干管彼此相连,一个热力站的调整往往会导致邻近热力站流量的变化。另外,高温水侧管网总的循环水量也很难与各换热站所要求的流量变化相匹配,于是往往造成外温降低时各换热站都将高温侧水阀V1开大,试图增大流量,结果距热源近的换热站流量得到满足,而距热源远的换热站流量反而减少,造成系统严重的区域失调。解决这种问题的方法就是采用全网的集中控制,由管理整个高温水网的中央控制管理计算机统一指定各热力站调节阀V1的阀位或流量,各换热站的DCU则仅是接收通过通讯网送来的关于调整阀门V1的命令,并按此命令进行相应的调整。高温水侧面管网的集中控制调节。将在一下节中详细介绍。

5.3小区热网的监测与调节

小区热网指供暖锅炉房或换热站至各供暖建筑间的管网的监测调节。小区热网的主要问题也是冷热不均,有些建筑或建筑某部分流量偏大,室内过热,而另一些建筑或建筑的另一部分却由于流量不足而偏冷。这样,计算机系统的中心任务就是掌握小区各建筑物的实际供暖状况,并帮助维护人员解决冷热不均问题。

测量各户室温是对供暖效果最直接的观测,但实际系统中尤其是对住宅来说,很难在各房间安装温度传感器。比较现实的方法就是测量回水温度,根据各支路回水温度的差别,就可以估计出各支路所负责建筑平均室温的差别。如果各支路回水温度调整到相同值,就意味着各支路所带散热器的平均温度彼此相同,因此可以认为室温也基本相同。一般住宅的回水温度测点可选在建筑热入口中的回水管上。对于大型建筑,可选在设备夹层中几个主要支路的回水干管上。

要解决冷热不均问题就需要对系统的流量分配进行调整,在各支路上都安装由计算机进行自动调节的电动调节阀成本会很高,同时一旦各支路流量调节均匀,在无局部的特殊变化时,系统应保持冷热均匀的状态,不需要经常调整。因此可以在各支路上安装手动调节阀,通过计算机监测和指导与人工手动调节相配合的方法实现小区供暖系统的调节和管理。为便于人工手动调节,希望各支路的调节阀有较准确的开度指示。目前国内推广建研院空调所等几个单位研究开发流量调配阀,有准确的阀位指示,阀位可锁定,并提供较准确的阀位-阻力特性曲线,采用这种阀门将更易于计算机指导下的人工调节。

根据上述讨论,计算机系统要测出各支路的回水温度,并将其统一送到供暖小区的中央管理计算机中进行显示、记录和分析。测出这些回水温度的方法有如下两种方式:

集中十余个回水温度测点设置1台DCU。此DCU仅需要温度测量输入通道。再通过专门铺设的局部网或通过调制解调器经过电话线与小区的中央管理联接。当这十几个温度相互距离较远时,温度传感器至DCU之间的电缆的铺设有时就有较大困难,温度信号的长线传输亦会有一些干扰等影响。这种方式仅在建筑物较集中、每一组联至一台DCU的测温点相距不太远时适用。

采用内部装有单片机的智能式温度传感器,可以连接通讯网通讯或通过调制解调器搭用电话线连至中央管理计算机。这样,可以在距测点最近的楼道墙壁上挂上一台带有调制解调器的温度变送器,通过一根电缆接至回水管上的温度传感器,再通过一根电缆搭接邻近电话线。目前这类设备每套价格可在1000~1500元人民币之间。如果每1000~3000m2建筑安装一个回水温度测点,则平均每m2供暖建筑投资在0.50~1元间。

小区的中央管理计算机采集到各点的回水温度后,可在屏幕上通过图形方式显示,使运行管理人员对当时的供热状况一目了然。还可根据各支路间回水温度的差别计算各支路阀门需要的调整量。对于一般的带有阀位指示的调节阀,这种分析只能采用某种基于经验的规则判断法,下面为其一例:

找出温度最高的10%支路的平均温度max,温度最低的10%支路和的平均温度min,全网平均回水温度。

若max-min<3℃,不需要再做调节。

若max->2℃,将温度最高的10%支路阀门都关小,与相比温度每高1℃关小3%5~%;

若max-<-2℃,将温度最低的10%支路阀门都开大,与相比温度每高1℃开大3%~5%;

根据上面的分析结果,计算机显示并打印出需要调节的支路及其调节量。运行管理人员根据计算机的输出结果到现场进行手动调节。在供暖初期每3天左右进行一次这种调节。一般经过6~8次即可使一个小区基本实现均匀供热。

采用流量调配阀时可以使调节效率更高,效果更好。此时需要将现场各流量调配阀的实际开度、流量调配阀的开度-阻力特性性能曲线及小区管网的连接关系图输入中央管理计算机,有专门的算法可以根据调整阀门后回水温度的变化情况识别出管网的阻力特性及热用户的热力特性,从而可较准确地给出各流量调本阀需要调整的开度[4],每次调整后,调整人员需将实际上各调节阀的调整程度输入计算机。计算机进而计算了下一次需要的调整量,像这样一次高速可间隔2~5d。模拟分析与实验结果表明,一般只要进行3~4次调节,即可使各支路的回水温度调整到相互间差值都在3℃以内,实现较好的均匀供热[8]。

目前,许多供热公司和有关管理部门开始提出装设热量计,以按照实际供热量收供暖费,各种采用单片计算机的热量计相应出台。这种热量计多是由一台转子式流量计和两台温度传感器配一台单片计算机构成。转子式流量计每流过一个单元流量即发出一个脉冲,由单片机测出此脉冲,得到流量,再乘以当时测出的供回水温差,即可行到相应的热量,由单片要对此热量值进行累计和其它统计分析就成为热量计。目前的单片机稍加扩充就可以具有通讯功能,通过调制解调器将它与电话线连接,就能实现热量计与小区供暖的中央管理机通讯。这样,不但各用户的用热量能够及时在中央管理机中反映,各用户的回水温度状况还能随时送到中央管理计算机中,从而可以对网的不平衡发问进行分析,给出热网的调节方案。这样,将热量计、通讯网与小区中央管理计算机三者结合,就可以全面实施小区热网的热量计量、统计与管理、运行调节分析三部分功能,较好地解决小区热网的运行、管理与调节。

5.4热电联产的集中供热网的计算机监控管理

热电联产的集中供热网可以分成两部分:热源至各热力站间的一次网,热力站至各用户建筑的二次网。后者的控制调节已在前几节讨论,本节讨论热源至各热力站间的一次网的监控管理。

一次网有蒸汽网和热水网两种形式,对于蒸汽网,各热力站为前面讨论过的蒸汽-热水换热站,一次网的管理主要是各热力站蒸汽用量的准确计量,这在前面也已讨论。下面主要研究热水网的监测控制调节。

若忽略热网本身的惯性,则系统各时刻和热力站换热量之和总是等于热源供出的总热量,此外各热力站一次网循环水量之和又总是等于热源循环泵的流量,不论是冷凝式、抽汽式还是背压式热电厂,其输出到热网的热量都不是完全由各热力站的调节决定,而是由热电厂本身的调节来决定,取决于进入蒸汽-水换热器的蒸汽量。由于热电厂控制调节输出热量时很难准确了解各热力站对热量的需求,同时还要兼顾发电的要求,不能完全根据各热力站需要的热量调整,于是热源供出的热量就很难与各热力站实际需求的热量之和一致,这样,就导致控制调节上的一些矛盾。

为简单起见,假设热电厂向蒸汽-水加热器送入固定的蒸汽量Q0,如图5-5,若此热量大于各热力站需要的热量,则各热力站二次侧调节纷纷关小。以减小流量。由此使总流量相应减少,导致供回水温差加大。如果电厂维持蒸汽量Q0不变则各热力站调节阀的关小并不能使总热量减少,而只是根据网的特性及各热力站调节特性的不同,有的热力产流量减少的多,使得供热量有所减少;有的热力站流量减少的幅度小,则供热量反而电动阀加。同样,如果Q0小于各热力站需要的总热量时,各热力站的调节阀纷纷开大,使流量增加,由此导致供回水温差减小。热力站1,2可能由于热量增大的幅度大于水温降低的幅度,供热量的需求得以满足,但由于流量增大,泵的压力降低,干管压降又减小,导致3,4的资用压头大幅度下降,阀门开大后,流量也增加不多,甚至还要下降,这样,供热量反而减少。由此可见在这种情况下各热力站对一次侧阀门的调节实际是对各热力站之间的热量分配比例的调节,而不是对热量的调节,如果各热力站都是这样独立地根据自己小区的供热需求进行调节,而热电厂又不做相应的配合,则整个热网不可能调整控制好。实际上热电厂也会进行一些相应的调节,例如发现t供升高时会减少蒸汽量,t供降低时会增加蒸汽量,但Q0总是不可能时刻与各热力站总的需求量一致,上述矛盾是永远存在的。

图5-5热电厂与各热力站之间的平衡

因此,就不宜对各个热力站按照第5.1、5.2节中的讨论的,根据外温独立调节。既然各热力站一次侧阀门的调节只解决热量的分配比例,那么对它们的调节亦应该根据对热量的分配比例来调节。一种方式是如果认为供热量应与供热面积成正比,则测出每个热力站的瞬时供热量,根据各热力站的供热面积,计算每个热力站的单位面积q。对q偏大的热力站关小调节阀,对q偏小的则开大调节阀,这样不断修正,直至各热力站的q相同为止。再一种方式则是认为各散热器内的平均温度相同,房间的供热效果就相同。由于散热器的平均温度等于二次侧的供回水平均温度,因此可以各热力站二次侧供回水平均温度调整成一致目标,统一确定热力站二次侧供回水平均温度的设定值,根据此设定值与实测供回水平均温度确定开大或关小一次侧调节阀。按照这一思路,对各热力站的调节以达到热量的平均分配为目的,以实现均匀供热。热电厂再根据外温变化,统一对总的供热量进行调整,以保证供热效果并且不浪费热量。由于整个热网所供应的建筑物效果并不浪费热量。由于整个热网所供应的建筑物均处在同一外温下,因此,一旦系统调整均匀,对各热和站调节阀的调整很少,热源的总的供热以数随外温改变,各热力站的调节阀则不需要随外温而变化,只当小区二次系统发生一些变化时才需要进行相应的调节。

要实现这种调节方式,就必须对全网各热力站的调节阀实行集中统一的控制调节。可以在每个热力站设一台DCU现场控制机,测量一、二次侧的水温、压力、流量及二次侧循环泵状态,并可控制一次侧电动调节阀。通过通讯网将各热力站连至中央管理计算机。由于热力站分布范围很大,通讯距离较过远,这时的通讯可通过调制解调器搭用电话线,也可以随着供热干管同时埋设通讯电缆,使用双绞线按照电流环方式通讯。中央管理机不断采集各热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度的设定值与和各热力站实测值的比较,直接命令各热力站DCU开大/关小电动调节阀。各热力站二次侧回水温度的变化是一惯性很大且缓慢的过程,因此应采有0.5~1h以上的时间步长进行调节,以防止振荡。

除对热网工况进行高速外,计算机控制系统还应为保证系统的安全运行做出贡献。当热力站采用直连的方式,不使用热交换器时,最常见的事故就是管道内超压导致散热器胀裂,DCU可直接监视用户的供回水管压力,发现超压立即关闭供水阀,起到保护作用。无论直连还是间连网,另一类严重的事故就是一次网漏水。严重的管道漏水如不能及时发现并切断和修复,将严重影响供热系统和热电厂的运行。根据各热力站DCU监测的一次网供回水压力分布,还可以从其中的突然变化判断漏水事故及其位置,这对提高热网的安全运行有十分重要的意义,这类系统压力分析与事故判断的工作应属于中央管理机的工作内容。

5.5参考文献

1温丽,锅炉供暖运行技术与管理,北京:清华大学出版社,1995。

2陆耀庆主编,实用供热空调设计手册,北京:中国建筑工业出版社,1993。

3李祚启,集中供热管理微机自控优化系统,建设电子论文选编,北京:中国建筑工业出版社,1994。

4江亿,集中供热网控制调节策略探讨,区域供热,1997,(2)。

5江亿,城市集中供热网的计算机控制和管理,区域供热,1995(5)。

篇(9)

Abstract  Discusses the requirements for monitoring and management of the scopes from boiler houses for heating, steam-water and water-water heat exchangers, small scale heating networks to large scale district heating, the related hardware configuration and the approaches to realise the required functions.

Keywords  computer control, heating, boiler

5.1 供暖热水锅炉房内监测与控制的主要目的应为:

·提高系统的安全性,保证系统能够正常运行;

·全面监测并记录各运行参数,降低运行人员工作量,提高管理水平;

·对燃烧过程和热水循环过程进行有效的控制调节,提高锅炉效率,节省运行能耗,并减少大气污染。

对于热水锅炉,可将被监测控制对象分为燃烧系统和水系统两部分分别进行讨论。整个计算机监测控制管理系统可按图5-1形式由若干台现场控制机(DCU)和一台中央管理机构成。各DCU分别对燃烧系统、水系统进行监测控制,中央管理机则显示并记录这两个系统的在线状态参数,根据供热状态况确定锅炉、循环泵的开启台数,设定供水温度及循环流量,协调各台DCU完成各监测控制管理功能。

5.1.1 燃烧系统监测与控制

图5-1 锅炉房计算机的监控系统

对于链条式热水锅炉,燃烧过程的控制主要是根据对产热量的要求控制链条速度及进煤挡板高度,根据炉膛内燃烧状况及排烟的含氧量及炉膛内的负压度控制鼓风机、引风机的风量,从而既根据供暖的要求产生热量,又获得较高的燃烧效率。为此需要监测的参数有:

·排烟温度:一般使用铜电阻或热电偶来测量;再配之以相应的温度变送器,即可产生4~20mA或0~10 mA的电流信号,通过DCU的模拟量输入通道AI即接入计算机。

·排烟含氧量:目前较多采用氧化锆传感器,可以对0.1%~21%范围内的高温气体的含氧量实现较精确的测量,其输出通过变送器后亦可转换为4~20mA或0~10 mA电流信号。

·空气预热器出口热风温度:同上述测温方法。

·炉膛、对流受热面进出口、省煤器出口、空气预热器出口、除尘器出口烟气压力:测点可根据具体要求增减,一般采用膜盒式或波纹管式微压差传感器,再通过相应的变送器变为4~20mA或0~10 mA电流信号,接入DCU的AI通道。

·一次风、二次风风压,空气预热器前后压差:测量方法同上。

·挡煤板高度测量:通过专门的机械装置将其转换为电阻信号,再变成标准电流信号,送入DCU的AI通道。

·供水温度及产热量:由水系统的DCU测出后通过通讯系统送来。

燃烧系统需要控制调节的装置为:

·炉排速度:由可控硅调压,改变直流电机转速

·挡煤板高度:控制电机正反转,通过机械装置带动挡板运动

·鼓风机风量:调鼓风机各风室风阀或通过变频器调风机转速

·引风机风量:调引风机风阀或通过变频器高风机转速

为了监测上述调节装置是否正常动作,还应配置适当的手段测试上述调节装置的实际状态。炉排速度和挡煤板高度可通过适当的机械机构结合霍尔元件等位置探测传感器来实现,风机风量的调节则可以通过风阀的阀位反馈信号或变频器的频率输出信号得到。

燃烧过程的控制调节主要包括事故下的保护,启停过程控制,正常的燃烧过程调节三部分。

·事故保护:这主要是由于某种原因造成循环水停止或循环量过小,以及锅炉内水温太高,出现汽化。此时最重要的是恢复水的循环,同时制止炉膛内的燃烧。这就需要停止给煤,停止炉排运行。停止鼓风机,引风机。DCU接收水温超高的信号后,就应立即进入事故处理程序,按照上述顺序停止锅炉运行,并响铃报警,通知运行管理人员,必要时还可通过手动补入冷水排除热水,进行锅炉降温。

启停控制:启动点火一般都是人工手动进行,但对于间歇运行的锅炉,封火暂停机和再次启动的过程则可以由DCU控制自动进行。封火过程为逐渐停止炉排运动,停掉鼓风机,然后停止引风机。重新启动的过程则是开启引风机,慢慢开大鼓风机,随炉温升高慢慢加大炉排进行速度。

正常运行调节:正常运行时的调节主要是使锅炉出口水温度维持在要求的设定值,同时达到高燃烧效率,低排烟温度,并使炉膛内保持负压。这时作为参照的测量参数有炉膛内的温度分布、压力分布、排烟含水量氧量等。锅炉的给煤量可以通过炉排速度和挡煤板高度(即煤层厚度)确定,鼓风机则可以根据空气预热器进出口空气的压差判断其相对的变化,此时可以调整控制量有炉排速度、煤层厚度(调整挡煤矿板高度)、鼓风机转速、各风室风阀、引风机转速或风阀。上述各调节手段与各可参照的测量参数都不是单一的对应关系,因此很难用如PID算法之类的简单控制调节算法。目前,控制调节效果较好的大都采用"模糊控制"方法或"规则控制"法,都是根据大量的人工调节运行经验而总结出的调节运行方法。

当燃烧充分时,锅炉的出力主要取决于燃煤量,因此锅炉出口水温的控制主要靠炉排速度及煤层厚度来调节,煤层厚度与煤种有很大关系,炉膛内燃烧状况可以通过炉膛内温度分布及煤层风阻来确定。燃烧充分时炉膛内中部温度最高,炉排尾部距挡渣器前煤已燃尽,温度降低。鼓风机则应根据进煤量的增减而增减送风量,同时通过观测排烟的含氧量最终确定风量是否适宜。引风机则可根据炉膛内负压状态决定运行状态,维持炉内微负压,从而既保证煤的充分燃烧,又不会使烟气和火焰外溢。根据如上分析,可采用如下调节规则:

每h一次,根据炉膛内温度分布调整煤层厚度及炉排速度,最高温度点后移,则将炉排速度降低5%,同时将挡煤板提高5%,当最高温度点前移时,则将炉排速度提高5%,同时将挡煤板降低5%。

每2h一次:若出水温度高于设定值2℃以上,则将炉排速度降低5%,若出水温度低于设定值2℃以上,则将炉排速度加大5%,加大和减小炉排速度的同时,还要相应地将鼓风机转速开大或减小。当采用风阀调整鼓风量时,则调阀,观察空气预热器前后压差使此压差增大或减少10%。

每15min一次:若排烟含氧量高于高定值,则适当减少鼓风同风量(降低转速或关小风阀),若低于高定值,则增加鼓风机风量。

每15min一次:若炉膛负压值偏小(或变为正压),加大引风机转速或开大风阀,若负压值偏大,则降低引风机风量。

以上调节规则中,所谓"合理的炉膛温度分布"取决于锅炉形式及测温传感器安装位置,需通过具体运行实测分析后,给出"合理","最高温度前移","最高温度后移"的判据,然后将其再写入DCU控制逻辑中。同样,排烟含氧量的设定值,含氧量出现偏差时对鼓风机风量的修正等参数也需要在锅炉试运行后,根据实际情况摸索,逐步确定。当然这几个修正量参数也可以在运行过程中通过所谓"自学习"的方法得到,在这里不做过多的讨论。

5.1.2 锅炉房水系统的监测控制

锅炉房水系统的计算机监测控制系统的主要任务是保证系统的安全性;对运行参数进行计量和统计;根据要求调整运行工况。

·安全性保证:保证主循环泵的正常运行和补水泵的及时补水,使锅炉中循环水不会中断,也不会由于欠压缺水而放空。这是锅炉房安全运行的最主要的保证。

·计量和统计:测定供回水温度和循环水量,以得到实际的供热量;测定补水流量,以得到累计补水量。供热量及补水量是考查锅炉房运行效果的主要参数。

·运行工况调整:根据要求改变循环水泵运行台数或改变循环水泵转速,调整循环流量,以适应供暖负荷的变化,节省运行电费。

图5-2为由2台热水锅炉、4台循环水泵构成的锅炉房水系统示意图。图中还给出建议的测量元件和控制元件。

2台锅炉的热水出口均安装测温点,从而可了解锅炉出力状况。为了了解每台锅炉的流量,最好在每台锅炉入口或出口安装流量计,一般可采用涡街式流量计。涡街式流量计投资较高,可以按照图5-2那样在锅炉入口调节阀后面安装压力传感器,根据测出的压力p3,p4与锅炉出口压力p1之压差,也可以间接得到2台锅炉间的流量比例。2台锅炉入口分别安装电动调节阀来调整流量,可以使在2台锅炉都运行时,流量分配基本一致,而当低负荷工况下1台锅炉停止或封火,循环水泵运行台数也减少时,自动调节流量分配,使运行的锅炉通过总流量的90%以上,封火的锅炉仅通过总流量的5%~10%,仅维持其不至于过热。

图5-2 锅炉房水系统原理及其测控点

温度传感器t3,t4,t5和流量传感器F1一起构成对热量的计量。用户侧供暖热量为,GF1cp(t3-t4),其中GF1为用流量F1测出的流量。锅炉提供的热量则为GF1cp(t3-t5),二者之差是用于加热补水所需要的热量。长期记录此热量并经常对其作统计分析,与煤耗量比较,既可检查锅炉效率的变化,及时发现锅炉可能出现的问题,与外温变化情况相比较,则又可以了解管网系统的变化及供热系统的变化,从而为科学地管理供暖系统的运行提供依据。

泵1~4为主循环泵。压力传感器p1,p2则观测网路的供回水压力。安装4台泵时的一般视负荷变化情况同时运行2台或3台水泵,留1台或2台备用。用DCU控制和管理这些循环水泵时,如前几讲所述,不仅要能够控制各台泵的启停,同时还应通过测量主接触器的辅助触点状态测出每台泵的开停状态。这样,当发现某台泵由于故障而突然停止运行时,DCU即可立即启动备用泵,避免出现因循环泵故障而使锅炉中循环水停止流动的事故。流量传感器F1也是观察循环水是否正常的重要手段。当外网由于某种原因关闭,尽管循环水泵运行,但流量可以为零或非常小,此时也应立即报警,通过计算机使锅炉自动停止,同时由运行值班人员立即手动开启锅炉的旁通阀V4,恢复锅炉内的水循环。

泵5,6与压力测量装置p2,流量测量装置F2及旁通阀V3构成补水定压系统,当p2压力降低时,开启一台补水泵向系统中补水,待p2升至设定的压力值时,停止补水。为防止管网系统中压力波动太大,当未设膨胀水箱时,还可设置旁通阀V3来维持压力的稳定。长期使一台补水泵运行,通过调整阀门V3来维持压力p2不变。补水泵5,6也是互为备用,因此DCU要测出每台泵的实际启停状态,当发现运行的泵突然停止或需要启动的泵不能启动时,立即启动另一台泵,防止系统因缺水而放空。流量计F2用来计算累计的补水量,它可以是涡街流量计,也可以采用通常的冷水水表,或有电信号输出的水表。

5.1.3 锅炉房的中央管理机

如图5-1所示,可采用一台中央管理计算机与各台DCU连接,协调整个锅炉房及热网的运行调节与管理。中央机主要工作任务为:

·通过图形方式显示燃烧系统、水系统及外网系统的运行参数,记录和显示这些参数的长期变化过程,统计分析耗热量、补水量、外温及供回水温度的变化。

·根据外温变化情况,预测负荷的变化,从而确定供热参数,即循环水量及泵的开启台数、供水温度、锅炉运行台数。将这些决定通知相应的DCU产生相应原操作或修改相应的设定值。负荷的预测可以根据测出的以往24h的平均外温

w来确定:

(5-1)

式中为Q0设计负荷,t0为设计状态下的室外温度,Q为预测出的负荷。考虑到建筑物和管网系统的热惯性,采用时间序列的方法来预测实际需要的负荷,可能要更准确些。

式(5-1)中的负荷尽管每h计算一次,但由于是取前24h的平均外温,因此它随时间变化很缓慢。每hQ的变化ΔQ仅为:

(5-2)

其中t w,τ - tw,τ-24为两天间同一时刻温度之差,一般不会超过5℃,因此ΔQ的变化总是小于Q的1%,所以不会引起系统的频繁调节。

根据预测的负荷可以确定锅炉的开启台数Nb:Nb≥Q/ q0,其中q0为每台锅炉的最大出力。由此还可确定循环水泵的开启台数。

要求的总循环量G=max(Q/(Δt·cp)Cmin),其中Gmin为不产生垂直失调时要求的最小系统流量,Δt为设定的供回水温差。由于多台泵并联时,总流量并非与开启台数成正比,因此可预先在计算机中预置一个开启台数成正比,因此可预先在计算机中预置一个开启台数与流量的关系对应表,由此可求出要求的运行台数。

·分析判断系统出现的故障并报警。锅炉及锅炉房可能出现的故障及由计算机进行判断的方法为:

--水冷壁管或对流管爆管事故 此时补水量迅速增加,炉膛内温度迅速下降,排烟温度下降,炉膛内温度迅速下降,排烟温度下降,炉膛内压力迅速由负压变为正压。

--水侧升温汽化事故 此时锅炉热水出口温度迅速提高,接近达到或超过出口压力对应的饱和温度。

--锅炉内压力超压事故测出水侧压力突然升高,超过允许的工作压力;

--管网漏水严重 测了水侧压力降低,补水量增大;

--锅炉内水系统循环不良 测出总循环水量GF1减少很多,压差p3-p1或p4-p1加大;

--除污器堵塞 测出总循环水量GF1减少,当阀门V1、V2全开时压差p3-p2、p4-p2仍偏小,说明压力传感器p2的测点至循环水泵入口间的除污器的堵塞。

--炉排故障 测出的炉排运动速度与设定值有较大差别;

--引风机、鼓风机、水泵故障 相应的主接触器跳闸,或所测出的空气压差或水循环流量与风机、水泵的设计状况有较大出入。

利用计算机根据上述规则及实测运行参数不断进行分析判断,即可及时发现上述事故或故障,并立即采取报警和停炉等相应的措施,从而防止事故的进一步扩大或故障转化为事故,提高运行管理的安全性。

5.2 蒸汽-水和水-水换热站的监测与控制

对于利用大型集中锅炉房或热电厂作为热源,通过换热站向小区供热的系统来说,换热站的作用就同上一节的供暖锅炉房一样,只是用热交换器代替了热水锅炉。

图5-3为蒸汽-水换热站的流程及相应的测控制元件。水侧与图5-2一样,控制泵5、6及阀V2根据p2的压力值补水和定压;启停泵1~4来调整循环水量;由t2,t3及流量测量装置F1来确定实际的供热量。与锅炉房不同的是增加了换热器、凝水泵的控制以及蒸汽的计量。

图5-3 蒸汽-水换热站的测量与控制

蒸汽计量可以通过测量蒸汽温度t1、压力p3和流量F3实现,F3可以选取用涡街流量计测量,它测出的为体积流量,通过t1和p3由水蒸气性质表可查出相应状态下水蒸气的比体积ρ,从而由体积流量换算出质量流量。为了能由t和p查出比体积,要求水蒸气为过热蒸汽。为此将减压调节阀移至测量元件的前面,如图5-3中所示,这样即使输送来的蒸汽为饱和蒸汽,经调节阀等焓减压后,也可成为过热蒸汽。

实际上还可以通过测量凝水量来确定蒸汽流量。如果凝水箱中两个液位传感器L1、L2灵敏度较高,则可在L2输出无水信号后,停止凝水排水泵,当L2再次输出有水信号时,计算机开始计时,直到L1发出有水信号时,计时停止,同时启动凝水泵开始排水。从L2输出有水信号至L1开始输出有水信号间的流量可以用重量法准确标定出,从而即可通过DCU对这两个水位计的输出信号得到一段时间内的蒸汽平均质量流量,代替流量计F3,并获得更精确的测量。当然此处要求液位传感器L1、L2具有较高灵敏度。一般如浮球式等机械式液位传感器误差较大,而应采取如电容式等非直接接触的电子类液位传感器。

加热量由蒸汽侧调节阀V1控制。此时V1实际上是控制进入换热器的蒸汽压力,从而决定了冷凝温度,也就确定了传热量。为改善换热器的调节特性,可以根据要求的加热量或出口水温确定进入加热器的蒸汽压力的设定值。调整阀门V1使出口蒸汽压力p3达到这一设定值。与直接根据出口水温调整阀门的方式相比,这种串级调节的方式可获得更好的调节效果。

供水温度t3的设定值,循环泵的开启台数或要求的循环水量的确定,可以同上一节一样,根据前24h的外温平均值查算供热曲线得到要求的供热量,并算出要求的循环水量。供水温度的设定值t3,set可由调整后测出的循环水量G、要求的热量Q及实测回水温度t2确定:

t3,set = t2+Q/(cp·G)

随着供水温度t3的改变,t2也会缓慢变化,从而使要求的供水温度同时相应地改变,以保证供出的热量与要求的热量设定值一致。

对于一次网为热水的水-水换热站,原则上可以按照完全相同的方式进行,如图5-4。取消二次供水侧的流量计F1,仅测量高温热水侧的流量F3,再通过即可和到二次侧的循环水量,一般高温水温差大,流量小,因此将流量计装在高温侧可降低成本。测量高温水侧供回水压力p3、p4可了解高温侧水网的压力分布状况,以指导高温侧水网的调节。

图5-4 水-水换热站的测量与控制

调整电动阀门V1改变高温水进入换热器的流量,即可改变换热量。可以按照前述方法确定二次侧供水温设定值,由V1按此设定值进行调节。在实际工程中,高温水网侧的主要问题是水力失调,由于各支路通过干管彼此相连,一个热力站的调整往往会导致邻近热力站流量的变化。另外,高温水侧管网总的循环水量也很难与各换热站所要求的流量变化相匹配,于是往往造成外温降低时各换热站都将高温侧水阀V1开大,试图增大流量,结果距热源近的换热站流量得到满足,而距热源远的换热站流量反而减少,造成系统严重的区域失调。解决这种问题的方法就是采用全网的集中控制,由管理整个高温水网的中央控制管理计算机统一指定各热力站调节阀V1的阀位或流量,各换热站的DCU则仅是接收通过通讯网送来的关于调整阀门V1的命令,并按此命令进行相应的调整。高温水侧面管网的集中控制调节。将在一下节中详细介绍。

5.3 小区热网的监测与调节

小区热网指供暖锅炉房或换热站至各供暖建筑间的管网的监测调节。小区热网的主要问题也是冷热不均,有些建筑或建筑某部分流量偏大,室内过热,而另一些建筑或建筑的另一部分却由于流量不足而偏冷。这样,计算机系统的中心任务就是掌握小区各建筑物的实际供暖状况,并帮助维护人员解决冷热不均问题。

测量各户室温是对供暖效果最直接的观测,但实际系统中尤其是对住宅来说,很难在各房间安装温度传感器。比较现实的方法就是测量回水温度,根据各支路回水温度的差别,就可以估计出各支路所负责建筑平均室温的差别。如果各支路回水温度调整到相同值,就意味着各支路所带散热器的平均温度彼此相同,因此可以认为室温也基本相同。一般住宅的回水温度测点可选在建筑热入口中的回水管上。对于大型建筑,可选在设备夹层中几个主要支路的回水干管上。

要解决冷热不均问题就需要对系统的流量分配进行调整,在各支路上都安装由计算机进行自动调节的电动调节阀成本会很高,同时一旦各支路流量调节均匀,在无局部的特殊变化时,系统应保持冷热均匀的状态,不需要经常调整。因此可以在各支路上安装手动调节阀,通过计算机监测和指导与人工手动调节相配合的方法实现小区供暖系统的调节和管理。为便于人工手动调节,希望各支路的调节阀有较准确的开度指示。目前国内推广建研院空调所等几个单位研究开发流量调配阀,有准确的阀位指示,阀位可锁定,并提供较准确的阀位-阻力特性曲线,采用这种阀门将更易于计算机指导下的人工调节。

根据上述讨论,计算机系统要测出各支路的回水温度,并将其统一送到供暖小区的中央管理计算机中进行显示、记录和分析。测出这些回水温度的方法有如下两种方式:

集中十余个回水温度测点设置1台DCU。此DCU仅需要温度测量输入通道。再通过专门铺设的局部网或通过调制解调器经过电话线与小区的中央管理联接。当这十几个温度相互距离较远时,温度传感器至DCU之间的电缆的铺设有时就有较大困难,温度信号的长线传输亦会有一些干扰等影响。这种方式仅在建筑物较集中、每一组联至一台DCU的测温点相距不太远时适用。

采用内部装有单片机的智能式温度传感器,可以连接通讯网通讯或通过调制解调器搭用电话线连至中央管理计算机。这样,可以在距测点最近的楼道墙壁上挂上一台带有调制解调器的温度变送器,通过一根电缆接至回水管上的温度传感器,再通过一根电缆搭接邻近电话线。目前这类设备每套价格可在1000~1500元人民币之间。如果每1000~3000m2建筑安装一个回水温度测点,则平均每m2供暖建筑投资在0.50~1元间。

小区的中央管理计算机采集到各点的回水温度后,可在屏幕上通过图形方式显示,使运行管理人员对当时的供热状况一目了然。还可根据各支路间回水温度的差别计算各支路阀门需要的调整量。对于一般的带有阀位指示的调节阀,这种分析只能采用某种基于经验的规则判断法,下面为其一例:

找出温度最高的10%支路的平均温度max,温度最低的10%支路和的平均温度min,全网平均回水温度。

若max - min

若max - >2℃,将温度最高的10%支路阀门都关小,与相比温度每高1℃关小3%5~%;

若max -

根据上面的分析结果,计算机显示并打印出需要调节的支路及其调节量。运行管理人员根据计算机的输出结果到现场进行手动调节。在供暖初期每3天左右进行一次这种调节。一般经过6~8次即可使一个小区基本实现均匀供热。

采用流量调配阀时可以使调节效率更高,效果更好。此时需要将现场各流量调配阀的实际开度、流量调配阀的开度-阻力特性性能曲线及小区管网的连接关系图输入中央管理计算机,有专门的算法可以根据调整阀门后回水温度的变化情况识别出管网的阻力特性及热用户的热力特性,从而可较准确地给出各流量调本阀需要调整的开度[4] ,每次调整后,调整人员需将实际上各调节阀的调整程度输入计算机。计算机进而计算了下一次需要的调整量,像这样一次高速可间隔2~5d。模拟分析与实验结果表明,一般只要进行3~4次调节,即可使各支路的回水温度调整到相互间差值都在3℃以内,实现较好的均匀供热[8] 。

目前,许多供热公司和有关管理部门开始提出装设热量计,以按照实际供热量收供暖费,各种采用单片计算机的热量计相应出台。这种热量计多是由一台转子式流量计和两台温度传感器配一台单片计算机构成。转子式流量计每流过一个单元流量即发出一个脉冲,由单片机测出此脉冲,得到流量,再乘以当时测出的供回水温差,即可行到相应的热量,由单片要对此热量值进行累计和其它统计分析就成为热量计。目前的单片机稍加扩充就可以具有通讯功能,通过调制解调器将它与电话线连接,就能实现热量计与小区供暖的中央管理机通讯。这样,不但各用户的用热量能够及时在中央管理机中反映,各用户的回水温度状况还能随时送到中央管理计算机中,从而可以对网的不平衡发问进行分析,给出热网的调节方案。这样,将热量计、通讯网与小区中央管理计算机三者结合,就可以全面实施小区热网的热量计量、统计与管理、运行调节分析三部分功能,较好地解决小区热网的运行、管理与调节。

5.4 热电联产的集中供热网的计算机监控管理

热电联产的集中供热网可以分成两部分:热源至各热力站间的一次网,热力站至各用户建筑的二次网。后者的控制调节已在前几节讨论,本节讨论热源至各热力站间的一次网的监控管理。

一次网有蒸汽网和热水网两种形式,对于蒸汽网,各热力站为前面讨论过的蒸汽-热水换热站,一次网的管理主要是各热力站蒸汽用量的准确计量,这在前面也已讨论。下面主要研究热水网的监测控制调节。

若忽略热网本身的惯性,则系统各时刻和热力站换热量之和总是等于热源供出的总热量,此外各热力站一次网循环水量之和又总是等于热源循环泵的流量,不论是冷凝式、抽汽式还是背压式热电厂,其输出到热网的热量都不是完全由各热力站的调节决定,而是由热电厂本身的调节来决定,取决于进入蒸汽-水换热器的蒸汽量。由于热电厂控制调节输出热量时很难准确了解各热力站对热量的需求,同时还要兼顾发电的要求,不能完全根据各热力站需要的热量调整,于是热源供出的热量就很难与各热力站实际需求的热量之和一致,这样,就导致控制调节上的一些矛盾。

为简单起见,假设热电厂向蒸汽-水加热器送入固定的蒸汽量Q0,如图5-5,若此热量大于各热力站需要的热量,则各热力站二次侧调节纷纷关小。以减小流量。由此使总流量相应减少,导致供回水温差加大。如果电厂维持蒸汽量Q0不变则各热力站调节阀的关小并不能使总热量减少,而只是根据网的特性及各热力站调节特性的不同,有的热力产流量减少的多,使得供热量有所减少;有的热力站流量减少的幅度小,则供热量反而电动阀加。同样,如果Q0小于各热力站需要的总热量时,各热力站的调节阀纷纷开大,使流量增加,由此导致供回水温差减小。热力站1,2可能由于热量增大的幅度大于水温降低的幅度,供热量的需求得以满足,但由于流量增大,泵的压力降低,干管压降又减小,导致3,4的资用压头大幅度下降,阀门开大后,流量也增加不多,甚至还要下降,这样,供热量反而减少。由此可见在这种情况下各热力站对一次侧阀门的调节实际是对各热力站之间的热量分配比例的调节,而不是对热量的调节,如果各热力站都是这样独立地根据自己小区的供热需求进行调节,而热电厂又不做相应的配合,则整个热网不可能调整控制好。实际上热电厂也会进行一些相应的调节,例如发现t供升高时会减少蒸汽量,t供降低时会增加蒸汽量,但Q0总是不可能时刻与各热力站总的需求量一致,上述矛盾是永远存在的。

图5-5 热电厂与各热力站之间的平衡

因此,就不宜对各个热力站按照第5.1、5.2节中的讨论的,根据外温独立调节。既然各热力站一次侧阀门的调节只解决热量的分配比例,那么对它们的调节亦应该根据对热量的分配比例来调节。一种方式是如果认为供热量应与供热面积成正比,则测出每个热力站的瞬时供热量,根据各热力站的供热面积,计算每个热力站的单位面积q。对q偏大的热力站关小调节阀,对q偏小的则开大调节阀,这样不断修正,直至各热力站的 q相同为止。再一种方式则是认为各散热器内的平均温度相同,房间的供热效果就相同。由于散热器的平均温度等于二次侧的供回水平均温度,因此可以各热力站二次侧供回水平均温度调整成一致目标,统一确定热力站二次侧供回水平均温度的设定值,根据此设定值与实测供回水平均温度确定开大或关小一次侧调节阀。按照这一思路,对各热力站的调节以达到热量的平均分配为目的,以实现均匀供热。热电厂再根据外温变化,统一对总的供热量进行调整,以保证供热效果并且不浪费热量。由于整个热网所供应的建筑物效果并不浪费热量。由于整个热网所供应的建筑物均处在同一外温下,因此,一旦系统调整均匀,对各热和站调节阀的调整很少,热源的总的供热以数随外温改变,各热力站的调节阀则不需要随外温而变化,只当小区二次系统发生一些变化时才需要进行相应的调节。

要实现这种调节方式,就必须对全网各热力站的调节阀实行集中统一的控制调节。可以在每个热力站设一台DCU现场控制机,测量一、二次侧的水温、压力、流量及二次侧循环泵状态,并可控制一次侧电动调节阀。通过通讯网将各热力站连至中央管理计算机。由于热力站分布范围很大,通讯距离较过远,这时的通讯可通过调制解调器搭用电话线,也可以随着供热干管同时埋设通讯电缆,使用双绞线按照电流环方式通讯。中央管理机不断采集各热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度的设定值与和各热力站实测值的比较,直接命令各热力站DCU开大/关小电动调节阀。各热力站二次侧回水温度的变化是一惯性很大且缓慢的过程,因此应采有0.5~1h以上的时间步长进行调节,以防止振荡。

除对热网工况进行高速外,计算机控制系统还应为保证系统的安全运行做出贡献。当热力站采用直连的方式,不使用热交换器时,最常见的事故就是管道内超压导致散热器胀裂,DCU可直接监视用户的供回水管压力,发现超压立即关闭供水阀,起到保护作用。无论直连还是间连网,另一类严重的事故就是一次网漏水。严重的管道漏水如不能及时发现并切断和修复,将严重影响供热系统和热电厂的运行。根据各热力站DCU监测的一次网供回水压力分布,还可以从其中的突然变化判断漏水事故及其位置,这对提高热网的安全运行有十分重要的意义,这类系统压力分析与事故判断的工作应属于中央管理机的工作内容。

5.5 参考文献

1 温丽,锅炉供暖运行技术与管理,北京:清华大学出版社,1995。

2 陆耀庆主编,实用供热空调设计手册,北京:中国建筑工业出版社,1993。

3 李祚启,集中供热管理微机自控优化系统,建设电子论文选编,北京:中国建筑工业出版社,1994。

4 江亿,集中供热网控制调节策略探讨,区域供热,1997,(2)。

5 江亿,城市集中供热网的计算机控制和管理,区域供热,1995(5)。