绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇建筑防雷论文范文,希望它们能为您的写作提供参考和启发。
目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。
根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。
现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。
一、一类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
二、二类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用
电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
三、三类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:
1)TN-S系统过电压保护方式
2)TN-C-S系统过电压保护方式
3)TT系统过电压保护方式
综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:
1)建立联合共用接地系统,形成等电位防雷体系
将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。
2)电源系统防雷
以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。
3)等电位联结系统
国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。
作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。
参考文献
2现场检测及检查
均压环的检测工作,应分为首层均压环检测和标准层(高层建筑中空间位置布置相同的层)均压环检测。根据查阅图纸环节记录的相关内容,严格对照现场实际施工情况检查和测量。均压环起始层设置应符合GB50057-2010《建筑物防雷设计规范》中的要求,即第一类防雷建筑物不高于30m,第二类防雷建筑物不高于45m,第三类防雷建筑物不高于60m。鉴于防雷工程中的均压环实际上与土建工程中的建筑外圈梁为同一项工程,所以起始层均压环建议从建筑物的首层做起。实际检测判定结果应以符合规范及设计要求为准。标准层均压环应利用建筑物外圈梁中两根主筋通长连接,再与本层的所有引下线分别可靠连接,路径设置应符合雷电流泄放的最短路径原则,且应形成有效的闭合回路。均压环中的主筋数量及尺寸应满足规范及设计要求,要求使用不小于48mm钢筋或截面积不小于48mm2的镀锌扁钢焊接成闭合环路。利用建筑物圈梁内主筋作为均压环时,现场应主要检查主筋的焊接质量,不应有漏焊、夹渣、咬肉、焊渣未清理现象,搭接长度及转角处的跨接钢筋曲率应满足规范要求。钢筋焊接部分应做好防腐处理。实际检测判定结果应以符合规范及设计要求为准。现场还应检查均压环与金属门窗及外墙大型金属物连接的预留接地,每层设均压环的建筑物,应在上下两层均压环各自引出接地预留。隔层设均压环的,应在每个门窗洞口设置不少于2点的接地预留。本层卫生间等电位预留,应就近从本层或最近层的均压环引出,满足雷电流泄放的最短路径原则,且应根据图纸中等电位箱的实际高度,留出足够长度的预留钢筋或扁铁。均压环接地电阻应在按照规范要求的前提下满足设计要求。随工检测时应在均压环钢筋绑扎、焊接工作完成后,混凝土浇筑施工前进行。测点选择应均匀分布在均压环各个方向。均压环转角处及均压环与引下线连接处也应进行测试,并测试过渡电阻。套管连接的主钢筋,在套管两侧也应测试过渡电阻。过渡电阻的阻值应满足规范要求。
随着现代社会的发展,建筑物的规模不断扩大,其内各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。
直击雷和感应雷是雷电入侵建筑物内电气设备的两种形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于该区域的电子设备采用何种电涌保护器在何处以何种方式实现与共同接地体等电位联结。
建筑物直击雷的保护区域为LPZOA区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由遭受雷击电磁脉冲感应或静电感应而产生的,形成感应雷电压的机率很高,对建筑物内的电气设备,尤其低压电子设备威胁巨大,所以说对建筑物内部设备的防雷保护的重点是防止感应雷入侵。由感应雷产生的雷电过电压过电流主要有以下三个途径:(1)由供电电源线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或感应雷过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内计算机通信等信息线路入侵;可分为三种情况:①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的计算机防雷系统,层层防护,确保计算机特别是计算机网络系统的安全。
由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。
目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。
根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。
现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。
一、一类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
二、二类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
三、三类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:
1)TN-S系统过电压保护方式
2)TN-C-S系统过电压保护方式
3)TT系统过电压保护方式
综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:
1)建立联合共用接地系统,形成等电位防雷体系
将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。
2)电源系统防雷
以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。
3)等电位联结系统
国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。
作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。
参考文献
在建筑物施工过程中,防雷工程项目包括桩基础的焊接、柱筋引下线通长焊接及均压环、避雷网、避雷针、避雷器安装等,一直伴随着建设施工全过程。保证防雷工程项目施工质量的因素很多,如设计、材料、机械、地形、地质、水文、气象、施工工艺、操作方法、技术措施、管理制度等,环节很多,要对这些环节严格控制,才能保证最后的工程质量。
建筑物防雷包括防直击雷和防感应雷。防直击雷就是引导雷云与避雷装置之间放电,使雷电流迅速流散到大地中去,从而保护建筑物免受雷击。防雷电感应则通过建筑物内部的设备、管道、构架、钢窗等金属物的接地装置与大地作可靠的连接,将雷云放电后在建筑上残留的电荷迅速引入大地。目前建筑工程常用的防雷措施有接闪器、引下线、接地装置、避雷器、均压环及金属导体等电位连接等的施工和安装。
1防雷工程施工常见问题
通过实际检测测验和经验,施工过程防直击雷和防感应雷措施中常出现以下问题:一是避雷带、引下线、接地体、均压环搭接的连接长度不够,焊接不饱满,焊接处有夹渣、焊瘤、虚焊、咬肉和气孔,没有敲掉焊渣等缺陷。二是地钢筋网的连接点的错焊、漏焊;作为外引接地联结点或检测点预埋件的漏设。尤其是建筑结构转换层,因构造柱(墙)内主钢筋调整、防雷引下线钢筋错接错焊的情况发生。三是用结构钢材代替避雷针(网)及其引下线时,焊接破坏镀锌层不刷防锈漆;或螺栓连接的连接片未经处理,片与片接触不严密等。四是引下点间距偏大,引下线跨越变形缝处未加设补偿器,穿墙体时未加保护管。接地体安装埋设深度不够或引出线未作防腐处理。五是屋面金属物,如管道、梯子、旗杆和设备外壳等,未与屋顶防雷系统相连,或等电位联结跨接地线线径不足。六是电气设备接地(接零)的分支线未与接地干线连接,实行串联连接。多层住宅采用TN-S系统时,进线在总电表箱处没有重复接地,没有按要求在配电间作MEB。七是低压配电接地形式、电涌保护器(SPD)的设置及安装工艺状况、管线布设和屏蔽措施等与防雷设计要求不符。
2防雷工程项目施工质量控制的主要措施
加强对防雷工程关键部位和工序的质量控制,针对施工中易出现质量通病的几个环节,制定现场检测预控措施,做到预防为主,动态跟踪,保证防雷工程的施工质量。
2.1严格审查设计图纸
一是不仅要熟悉电气图,对建筑设计中的结构、设备的布置也要有初步认识,领会设计中有关说明,对有些特殊的建筑工程项目系统,如弱电系统中的智能化工程、信息通讯、计算机、监控等,因为这些地点和设置在设计平面图纸中一般都没有明确标注,是以规范要求为施工标准进行预留预埋的,要注意对照强制性标准、施工验收规范进行施工。如发现不符合现行施工规范要求或做法不妥,选用的防雷接地材料不当时,应及时与设计单位洽商确定,形成设计文件,以便依照执行及备案。二是一个建设项目,相关专业设计图纸较多,审核防雷图纸时,要对照建筑图、结构图、基础图。各项目衔接复杂,极易导致施工错误。若施工单位经验不足,易因工种(序)配合不当而造成施工错漏。对于施工中容易忽视和特别重要的问题应起草书面意见,以提醒施工单位执行。
2.2严格材料质量控制关,保证焊接质量
一是验材料三证;二是看材料规格;三是查在施工中是否使用设计和规范规定的镀锌材料。在施工监检过程中,作业人员往往随手拿普通结构用钢筋作帮条焊接,或用普通钢材代替镀锌材料,或以冷镀锌材质代替热镀锌材质,应及时纠正。防雷工程施工主要是焊接,焊接质量决定着工程质量。由焊接技术不过关的人员进行防雷接地,造成防雷工程不合格的情况时有发生,应严格审核专业防雷施工队伍的资质等级和施工人员资格证。
2.3查验地基接地焊接
地基接地焊接是接地施工中的第一环节。对于基础圈梁焊接或桩基钢筋与基础钢筋的焊接、基础钢筋与柱筋的焊接,都要严格按基础图和接地点逐一进行检查,尤其要对伸缩缝处基础钢筋是否跨接连通进行确认。当整个接地网焊接完成后,马上进行接地电阻值测试,确认是否符合设计要求。当电阻值不满足设计要求时,再次检验焊接质量或按设计要求补做人工接地装置。
2.4检查引上点和跨钢筋焊接质量
对以柱筋为引上线的接地网,要求施工人员采用每层按轴线标清每根柱子的位置及钢筋焊接根数进行施工,防止漏焊或错焊位置和焊接长度及质量不满足设计及规范要求等[1-2]。要对引上点和跨钢筋焊接质量仔细检查,并要求对焊接引上线进行定位标识,以防向上层焊错主筋造成接地中断错误。特别是对于结构的转换层,由于柱筋的调整,防雷引下线利用柱内主筋焊接引下容易错焊、漏焊,要进行反复核实。
2.5核实等电位焊接及其他接地部位
对于要进行等电位焊接、重复接地的部位,如设备间、变配电室、消防机房、空调机房、电梯机房、给水管、冷却塔、风机等部位的接地焊接要在施工日记上注明备查、核实。高层建筑45m高度以上,每向上3层在结构圈梁内敷设1条25mm×4mm的扁钢与引下线焊成一环形水平避雷带或用不少于2根圈梁主筋焊成均压环。楼内水平敷设的金属管道及金属物应与防雷接地焊接,垂直敷设的竖向金属管道,在其底部和顶部均应与防雷接地焊接。玻璃幕墙防雷等电位接地的施工,在对采用预埋铁做法时,注意在柱主筋上作可靠的焊接,如果是后增加的玻璃幕墙,要根据建筑面积、建筑物的各种特点,出具详细的防雷施工方案。屋顶上装设的防雷网和建筑物顶部的避雷针及金属物体应焊接成一个整体。
2.6按规范进行质量验收
防雷工程应按工程进度及时做好隐蔽验收。无论自然接地体还是人工接地体以及玻璃幕墙、避雷网格、避雷针等,在施工完后都要及时进行接地电阻值的测试。尤其是接地体或接地网施工完成后,应及时认定接地电阻值是否符合设计规定值。低压配电接地形式、电涌保护器(SPD)的设置及安装工艺状况、管线布设和屏蔽措施等应与防雷设计要求相符;查看设计、施工资料,检查SPD安装的位置、数量、型号规格、技术参数应与设计相符合[3-4]。
3参考文献
[1]中华人民共和国住房和城乡建设部.建筑物防雷设计规范GB50057-94[S].北京:中国计划出版社,2010.
建筑内部装修工程相对建筑工程具有工期短,施工快的特点,如不及时发现,就会出现疏漏。因此,要有效控制建筑内部装修工程违法行为的出现,就要求监督员全面、准确的掌握辖区情况,充分发挥公安派出所三级管理的职能,建立健全多警联动机制,加大监督检查的频次和范围。对发现的违法违章行为严肃处理,绝不姑息。同时,广泛发动群众对进行违法装修的场所进行举报投诉,使违法违章的工程无处藏身。
一、前言
上世纪80年代,玻璃幕墙进入我国建筑行业,很快就以其亮丽的外观和非常好的光线透射性,受到建筑师的热烈欢迎和喜爱。作为一种美观新颖的建筑墙体,玻璃幕墙在建筑设计中得到了飞速发展,在工程建筑尤其是高层建筑中得到广泛采用。各色绚丽的玻璃幕墙建筑,成为了现代建筑派的主要表现特征,为城市文化注入了新的活力,更给城市增添了一道道亮丽的风景线,是现代高层建筑时代的显著特征。然而玻璃幕墙存在的问题也不容忽视,包括防火、光污染和防雷击等,其中防雷问题的影响最严重。
二、雷电对玻璃幕墙的危害性
玻璃幕墙通常都是大面积采用,作为脆性材料,一旦遭遇雷击破裂成碎片,势必成为极大的安全威胁。高层建筑玻璃幕墙,通常离放电云层比较近,导致地表的电场分布产生畸变,其电场强度远大于一般建筑物,容易导致雷电发展条件的发生,加之高层建筑距云层较近,所以易遭受雷击。同时,高层建筑玻璃幕墙在对高层建筑物进行围护后,建筑物的防雷装置被玻璃幕墙所屏蔽,导致很难防止直接的雷击,容易造成对玻璃幕墙的直接雷击。玻璃幕墙其自身金属材质因为雷电效应,导致静电感应作用的发生,当电场形成时,幕墙的金属体很容易积聚和雷云极性相反的感应电荷,数量很大,雷云瞬间发生放电之后,电场突然消失,而幕墙的金属体感应电荷,却无法以相应的速度流散,这就会造成高达万伏以上的对地电位产生,形成静电感应电压,造成危害。
高层建筑玻璃幕墙的防雷应与一般的建筑物的防雷有异曲同工之处,普通建筑物的防雷装置有三部分,分别为:接闪器,引下线和接地装置。接闪器:根据被保护物体的不同,接闪器形状不同,主要有避雷针、避雷网、避雷带,其主要作用是直击雷起到接闪功能。在60年代,英国人提出雷击距离理论--滚球法,依据雷电闪击距离为基础用来确定接闪器的保护作用,当雷击被导达到接闪器放电距离以前,其闪击点有一定的范围要求,被保护的建筑物的接闪器有若干个上行先导,最后在容易放电击穿的路径上形成主放电,接闪器正好设置在被保护的闪电击点概率较高的点。引下线对接闪器的接闪的雷电起导流作用。接地装置主要的作用是消耗雷电产生的能量。
三、玻璃幕墙防雷设计方案
本文中以某建筑玻璃幕墙建设工程为例,具体分析其防雷设计。此工程中该建筑所处的地理位置属于雷电多发地,建筑楼内摆放有大量电子仪器设备,建筑楼长为105.6米,宽为21米,建筑面积大约1.6万平米,建筑结构采用钢筋混凝土框架――剪力墙的结构。三个主要立面都将使用玻璃幕墙,而幕墙总面积有6500平方米。玻璃幕墙在最高檐口处的高度是36.5米。
1.雷电防护的基本措施
一般情况下,建筑物防雷系统,就是由避雷针、避雷网或避雷带组成的接闪器,主体结构的柱、板钢筋或者外接引下线所组成的引下装置,和利用承台、底板钢筋等基础自然接地体或者人工接地体,形成一个接地装置合成,整个建筑呈现出法拉第笼状态,把雷电流引入到地面。
此大楼处于雷电的多发地区,而且雷电流的强度比较大,而大楼摆放很多电子仪器设备,如遭破坏,将导致无法挽回的损失,需加强防范雷电措施。
2.玻璃幕墙防雷设计的具体措施
幕墙顶部女儿墙的盖板,作用相当于引雷作用的接闪器。用镀锌圆钢沿着女儿墙的周圈进行安装,并且和防雷引下线相焊接。而在盖板内侧,则安装40ram×4ram×4ram镀锌角钢,每块铝板上都安装两段角钢,其中每段长300毫米,两段之间则用中12镀锌圆钢焊接连通,同时,用中12镀锌圆钢一端和女儿墙顶l2镀锌圆钢进行焊接,另外一端则和角钢焊接。每段角钢与铝板之间,可用四个M6×20mm不锈钢自攻螺丝压接,注意在角钢和铝板之间加垫1毫米厚不锈钢垫片,然后加上不锈钢平垫和弹簧垫。所有的竖向主龙骨的连接处,都使用40mm×4mm铝合金所制成的可伸缩的欧姆弯做压接,在连接处上下分别使用两个M8不锈钢压接穿螺栓,注意:可动的一端应避开插芯,然后加上不锈钢平垫以及弹簧垫。对于均压环的楼层,在所有竖向主龙骨与横向龙骨的连接处,通过40mm×4ram铝合金两端,分别使用两个M6不锈钢压接穿螺栓,并且加不锈钢平垫和弹簧垫。而充当防雷引下线的柱子内的对角纵向钢筋上下则采用焊接连接,使其上下相互贯通。焊接则采用双面焊接,焊缝长度大于2Od,d为钢筋直径。每三层框架梁内的两根主钢筋焊接,绕建筑物成均压环,然后将其和所有的引下线钢筋焊接。焊接使用双面焊接,焊缝长度大于2Od。
每楼层处,充当防雷引下线的柱子外皮处,应当预先埋下一根40×4镀锌扁钢,并和柱内防雷引下线钢筋焊接,焊接的长度为200mm。双面施焊,为了保持玻璃幕墙竖向铝合金主龙骨接地贯通,用40mmx4ram镀锌扁钢一端和均压环相焊接,焊接长度应当是其宽度的2倍,并且做三面施焊,另一端则用两个M8不锈钢对穿螺栓与竖向主龙骨进行压接,为了防止镀锌扁钢与铝合金的电化学腐蚀,可在其间加垫l毫米厚不锈钢垫片,并且加不锈钢平垫和弹簧垫。
用作防雷引下线的柱子内的贯通主筋与基础钢筋焊接进行连接,焊接使用双面焊接,焊缝长度大于20d,并且将与贯通主筋连接的基础钢筋与之相交的基础钢筋点焊进行连接。
四、防雷设计中应注意的事项
在玻璃幕墙的防雷过程中应注意以下三点:
一是,充分利用建筑物的接闪器、引下线、接地装置。
二是,将均压环层的幕墙横竖向龙骨联结成一个电气通路,并与建筑物防雷网联通。
三是,将首层的幕墙的横竖龙骨联结成一个电气通路,并与建筑物的防雷网联通。
通过以上,玻璃幕墙在遭受雷击的过程中,由于其玻璃幕墙的防雷与建筑物防雷联成一体,则玻璃幕墙将能获得的电能,通过建筑物的接地系统迅速地输送到地下,从而达到保护建筑物和玻璃幕墙免遭雷电的破坏。
高层玻璃幕墙的顶部为了美观,一般都采用铝板,铝板是入地较好的导体,它沿建筑物顶部分布,其电场强度很大,雷电就很容易被吸引过来,受雷击最大的部位,铝板则是很好的接闪器,可以接受雷电流,将固定铝板的主横担与建筑物避雷系统联成一体,这样就可以安全的将雷电流导入大地。高层建筑的玻璃幕墙顶部的接闪器可以有效地防雷直击,但不能防止侧雷击,在玻璃幕墙防侧雷时,其要根据建筑物防雷等级来确定其作法:一类防雷30米,二类防雷在45米,三类防雷在60米,综合建筑物的防雷等级在30米、45米或60米以上的高层玻璃部位,每层设一个均压环,并将建筑物防雷网及玻璃幕墙防雷系统联通,形成一个电气通路,为了防止球形雷,将玻璃幕墙首层的横竖龙骨联结成一个电气通路,并与建筑物的接地网联成一体。
五、结语
在玻璃幕墙设计和安装时,采取上述措施后,雷电发生时,不管是发生可能性极小的侧击雷直接击中玻璃幕墙产生的雷电流,还是因为静电感应聚集的大量电荷,两者都可以得到快速而有效的释放引导,从而对建筑物实现保护效果。
参考文献:
[1]朱贵刚 高层建筑玻璃幕墙防雷设计 [期刊论文] 《科技创新导报》 2010
[2]蒋玄 论高层建筑玻璃幕墙防雷接地技术 [期刊论文] 《江西建材》 2010
[3]王军 建筑防雷施工浅析 [期刊论文] 《浙江建筑》 2006
中图分类号:U226.8+1 文献标识码:A 文章编号:
一,前言
雷害事故是架空送电线路最频发的事故,我国历年送电事故统计中,雷害事故平均约占60%以上。在雷曝日平均40日以上的多雷地区和强雷地区,雷害事故可达送电事故的70%以上。线路防雷工作在架空线路的安全运行工作中是一项十分重要的工作,本文着重结合目前已采用的新技术谈谈防雷方面的措施
二.输配电线路遭受雷击的形式及危害
1.输配电线路容易发生雷击的原因分析
输配电线路雷击故障危害严重,我们应在了解这些故障的基础上探讨防雷措施。概括地说,输电线路雷击故障的原因有如下七点:线路绝缘水平低;带电部分对地间隙不够;避雷线布置不当;避雷线接地不良或避雷线与导线间的距离不够;线路相互交叉跨越距离不够;线路防雷薄弱环节措施未到位;线路处于雷击活动强烈区。
2. 输配电线路遭受雷击的形式
线路遭受雷击的形式主要包括感应雷、直击雷、球形雷。
(一)直击雷
直击雷在发生时候可以让巨大的雷电电流侵入地表,使得被雷击的地方接触的到的各种金属产生很高的对地电压,很容易发生触电事故的发生。同时,由于直接雷击释放出的电流巨大,冲击电压很容易让电力变压器和发电机发生烧毁,也可能造成电线烧毁,或者断裂,因而产生停电,甚至诱发火灾,因此,这种雷电的毁灭性巨大,造成的损失严重。
(二)球形雷
球形雷出现的次数少而不规则,因此取得的资料十分有限,其发生的原理现在还没有形成统一的观点。球形雷能从门、窗、烟囱等通道侵入室内,极其危险。
(三)雷电感应,也称感应雷
雷电感应分为静电感应和电磁感应两种。巨大雷电流在周围空间产生迅速变化的强大磁场;这种磁场能在附近的金属导体上感应出很高的电压,造成对人体或者设备的二次放电,从而损坏电气设备。
3. 输配电线路遭受雷击的危害
雷击对线路的危害非常大。造成绝缘子串闪络,电源开关跳闸,严重时引起绝缘子串炸裂或绝缘子串脱开,从而形成永久性的接地故障;雷击导线引起绝缘闪络,造成单相接地或相间短路,其短路电流可能把导线、金具、接地引下线烧伤甚至烧断;架空地线档中落雷时,在与放电通道相连的那部分地线上,有可能灼伤、断股、强度降低,以致断地线;当线路遭受雷击时,由于导线、地线上的电压很高,还可能把交叉跨越的间隙或者杆塔上的间隙击穿。
三.输配电线路的防雷措施分析
建筑物输配电线路系统对整个建筑物功能的正常运行有着至关重要的作用,同时,建筑物内部的各种输配电线路系统以及系统设备也是极其容易发生雷击事故的环节,因此,根据雷电的不同特点和造成损害的不同方式,科学做好防雷措施,是保证整个建筑物内部输配电线路正常运行的关键。笔者以为,有以下几个方面的措施。
1.建立健全科学合理的整体防雷系统
从整个输配电线路系统而言,要做好防雷措施,首先要从整体上做好防雷规划,从内到外,做到防雷措施的全面覆盖。整体而言,外部可以可以安装避雷针,接闪器等,避免雷电直接打击输配电线路或者是相关的线缆配电箱等基础设施,引起火灾或者事故。同时,内部要做好电磁屏蔽、等电位连接、共用接地系统和浪涌吸收保护器等一些子输配电系统,通过它们可以将引人建筑物内的浪涌电压和浪涌电流泻放到大地,并将其钳位在一定的电压范围内,以完善地保护电气设备。从整体上做好防雷规划,内外覆盖,这是采取具体防雷措施之前的基础性工作。
2.实施多级保护措施,做好配电系统的防雷
建筑物的输配电系统是保证整个建筑物功能正常运转的关键部分,而输配电系统也是容易遭受到雷电袭击的部位之一。因此,做好配电系统的防雷措施,是整个防雷系统中的重要环节。虽然目前很多建筑物都会在配电系统的进线处安装避雷器,避雷带等防雷器件,但是,经过很多次实践证明,单一的防雷措施或者是防雷器件难以真正保障配电系统的正常运转,当雷击降下时候,建筑物的自控设备的电源机盘依然会受到电击而产生损坏。在对配电系统防雷时候,要据实际情况做好多级防护措施。
首先要在变压器二次侧安装好各种防雷装置,让外线产生的电压可以迅速得到释放。其次,要在各个控制站PLC专用隔离变压器前,主要是释放外线残压,和配电线路上感应出的过电压和其他用电设备的操作过电压。同时,要科学设计安装好隔离变压器,加大对各种电磁干扰的处理力度,减少雷电波诱发的雷击事故。最后,要在PLC专用电源模板前安装好保护措施,以便用最短的时间让前面的残压得到释放,应尽可能从总配电柜开始将自控系统的电源线单独布排。各级防雷器应尽量靠近被保护设备,以避免雷电侵入波发生全反射。
3. 降低接地电阻
(一)水平外延接地,如杆塔所在的地方允许水平放射接地体时应尽量采用水平放射方式。因为水平放射施工费用低,不但可以降低工频接地电阻,还可以有效地降低冲击接地电阻。
(二)深埋式接地极,如地下较深处的土壤电阻率较低,可用深井式或深埋式接地极。
(三)填充电阻率较低的物质或降阻剂。如附近有可以利用的低电阻率物质可以因地制宜,综合利用。
(四)敷设水下接地装置,如杆塔附近有水源,可以考虑利用这些水源在水底或岸边布置接地极,可以降低接地电阻,提高泄流能力。
(五) 合理接地。合理的接地设计是整个建筑物输配电线路系统防雷措施中的重要组成部分。在建筑物输配系统中,一般会有构筑物接地、配电系统及强电设备接地、计算机自控系统接地等三种接地方式,因此,科学设计,使得这三种接地方式之间互相配合,有助于大大降低雷击通过接地网络对系统的毁坏。以计算机自控系统为例,一般采用系统工作接地、直流工作接地、安全保护接地等几种接地方式。在防雷措施中,要根据实际情况,将各种接地方式合理的组合,使得接地电阻值最小,取得最佳的效果。
4. 架设耦合地线
提高线路的反击耐雷水平,降低反击跳闸率,一般主要应用在接地电阻较高的线路。根据日本电力中央研究院对500kV同杆双回线路的计算结果表明:在对雷击性能改善效果相似情况下,采用耦合地线的总费用约为增加绝缘的4.5倍。因此在使用耦合地线时应对效果和费用做综合比较,多数情况下该方法的性价比较低。
5.耦合地埋线
沿线路在地中埋设,并可与下一基塔的杆塔接地装置相连的l~2根接地线。据本电力单位的运行经验,在一个20基杆塔的易击段埋设耦合地埋线后,10年中只发生一次雷击故障。此法可降低跳闸率40%,能显著提高线路耐雷水平
四.结束语
输电线路的防雷并不只是以上一些措施就能彻底解决的,而是一个任重而道远的任务,肯定在今后的线路维护工作中还会遇到新问题,随着运行管理经验的不断丰富,再将成熟的新方法和新技术运用到实际工作中去,相信线路防雷工作一定会提到一个更高水平。
参考文献:
[1]谢思寿 10KV输电线路雷击的防雷措施及其效果 [期刊论文] 《城市建设理论研究(电子版)》 -2012年8期
[2]高新智 仇炜 韩爱芝 李景禄 陈国盛 针对某35 kV配电线路防雷问题的探讨 [期刊论文] 《高压电器》 ISTIC PKU -2010年4期
[3]何文旭 农村电网输配电线路防雷措施 [期刊论文] 《重庆电力高等专科学校学报》 -2005年3期
[4]张日朝 浅谈输配电线路安全运行管理 [期刊论文] 《中国科技博览》 -2011年14期
[5]崔海 侯茜 李向奎 范宪铭 输配电线路运行中防雷措施的原理及应用 [会议论文] 2009 - 中国电机工程学会高电压专业委员会2009年学术年会
由于阿拉善地区防雷事业起步较晚,新建建(构)筑物的防雷设计审核工作直到2007年才正式开展,与国内其它开展此项工作的地区相比,滞后近十年之久。民众和设计人员的防雷意识和防雷技术水平较薄弱,部分房地产开发商为了尽量降低成本,往往要求设计人员只执行有关国家技术规范的强制性部分,甚至有的设计人员认为反正有审核部门把关,干脆等审核部门提出审核意见后再来修改设计。2007年,阿拉善地区防雷设计审核一次通过率还不到39%,所以近两年笔者在防雷设计审核的过程中,发现不少设计人员由于对有关法规、规范掌握理解不够,在施工设计中常出现许多未严格按照现行国家技术规范和标准执行的问题,以下笔者将就一些经常发生的问题加以分析。
一、防雷设计审核常见问题
(一)设计防雷类别不清,甚至没有防雷设计。由于阿拉善盟属于少雷区,年平均雷暴日数仅为9.6天,许多小高层以通过计算年预计雷击次数,达不到0.06次/年,设计人员认为“不属于三类防雷建筑物,不用进行防雷保护”,这是对防雷措施认识不清的结果,防雷措施不仅包括外屋面的避雷针、避雷带(网)待防直击雷的措施,还包括室内的等电位连接、电子信息系统的防雷措施等。不能简单的认为,只有楼顶的避雷针才属于防雷防雷装置。
(二)引用防雷设计依据欠缺。在电气设计说明中,有的没有将国家强制标准《建筑物防雷设计规范》GB50057-94(2000年版)和《建筑物电子信息系统防雷技术规范》GB50343-2004作为设计依据,这种情况防雷设计大多不规范。
(三)接地电阻要求不明确,或者设计说明或设计图纸存在矛盾。如设计说明中接地电阻要求不大于1Ω,而屋面防雷平面图或基础接地平面图中要求接地电阻不大于4欧姆。若采用共用接地方式,接地电阻按接入设计要求中的最小值确定。一般浅基,接地电阻应不于4欧姆,深基,接地电阻应不大于1Ω。若防雷地单独设置,接地电阻则应满足《建筑物防雷设计规范》GB50057-94规范中一、二、三类防雷接地电阻的规定。
(四)避雷带暗敷的问题。《建筑物防雷设计规范》GB50057-94没有不允许利用建筑物屋顶结构钢筋时,造成钢筋表面的小块混凝土坠地面,可能造成地面人员、设施被击中的危险。故不推荐利用建筑屋顶周边混凝土内的钢筋作为接闪器。避吉带应尽量明敷,安装在女儿墙的外侧。
(五)避雷引下线分布位置不合理,间距不符合规范等。引F线应利用外墙所有的柱内主筋,建筑物阳角位的柱子必须利用。非框架结构建筑物的引下线也应敷设在建筑物角位。
(六)对于架空入户的强、弱电管线有的没有强调穿接地的金属管入户、对管线的金属外皮没有强调接地及线路安装电源SPD。
(七)等电位措施不完善,对弱电系统配电箱、配线架未说明需要接地。设计说明中应补充:“正常不带电、而当绝缘破坏,有可能呈现电堆的一切电气设备的金属外壳应可靠接地”。建筑物内用电设备、进入建筑物的各种金属管道,电源线路、通信缆线屏蔽层、光缆接头加强芯等的等电譬连矗。电气竖井内设置接地干线、计算机、通信、消防监拧等弱点机房,设备问预留等电位磐譬扳!零兰形成等电位连接网络。建筑物室外的节日彩灯、航空障碍灯、广告牌等设施的电源线路也应穿金属管道或使用屏蔽电缆,作接地处理。大型金属构件如电梯轨道等也应与接地线作等电位连接。
(八)设计中往往缺少电源SPD的标称放电电流参数,或者第一级SPD和第二级SPD选用了相同的产品,达不到将雷电流逐级泻放的目的。在建筑物总配电箱、各楼层配电箱及重要设备前端宜安装电源SPD。不同的雷电防护区界面处对电源SPD的标称放电电流的要求是不同的。
(九)遗漏屋面用电设备配电箱的电源SPD,或配置不合理,建筑物室外的节日彩灯、航空障碍灯、广告牌等用电设施的电源线路应加装一级电源SPD,其标称放电电流应≥40KA(8/20μS)。
(十)电子信息系统的各种线路防雷措施不完善。计算机网络、程控电话、火灾自动报警及消防联动控制、楼宇自控系统、卫星接收和有线电视系统等信号线路应安装适配的信号SPD。消防控制室配电箱、有线电视前端箱应装设电源SPD。
(十一)部分设计单位以低压配电柜中的用于功率补偿的电源SPD代替进线上的电源SPD。
二、出具设计审核意见书应注意的问题
防雷装置设计审核结束后,对于设计合格的应及时出具《防雷装置设计审查意见书》,用户凭此审查合格意见书,到气象主管机构领取《防雷装置设计核准书》。对于设计不合格的,出具《防雷装置设计修改意见书》,用广到设计单位进行变更后重审。防雷技术服务机构出具审查意见时,应注意以下几点:
(一)正确填写申请单位及项目名称,名称应符合图纸中图标的内容。
(二)每条审查修改意见,应说明所依据的规范名称、条款,做到有理有据。
(三)修改意见应符合规范用词,不能将规范中的“宜”做擅自改为“必须或应”做。
(四)若设计中所提要求高于图纸设计说明上所标规范的要求,除非存在明显不合理之处,原则上评价时不对此提出修正意见。
(五)若设计中所提要求低于规范的要求,则应要求设计方修正。
(六)若经过儿方面因素综合考虑,出现可高可低两种选择均不违反原则情况时,一般应按高标准要求。
(七)对涉及规范中用词表示要求严格程度为“必须”和“应”的条文要求,均应严格按规范执行,只有在条文用词表示“允许稍有选择”时才能适度放宽,但应以建议的形式提出。
(八)尽量明确提出修改方法。
三、结束语
防雷设计是新建建筑物的防雷装置旌工的依据,必须严格按照相关防雷规范设计。不仅要做好直击雷的防护,还要做好防雷电波的侵入、防雷电感应、防地电位反击等方面全方位的防护措施。防雷设计审核应当从“接闪、分流、均压、屏蔽、接地和过电压保护”六大要素,逐个环节进行分析审核,以发现设计不合理或漏设计环节,及时提出修改设计内容,使建筑物的防雷设计做到“安全可靠、技术先进、经济合理”。
以上提到的均是防雷设计审核中常见的问题,防雷设计中存在的问题远远不止这些,由于本人理论水平有限,不足之处还望同行指正。
[参考文献]
[1]王吉进;浅析防雷装置的设计审核和竣工验收[A];第七届中国国际防雷论坛论文摘编[C];2008年
中图分类号:TU856文章标识码:A
一、概述
随着国民经济的快速发展,人们对于网络通信质量的要求越来越高,通信基站的数量不断增加,类型也区域多样化,大量车间通信机房得以建设。而信息化技术的快速发展,大量的微电子产品和设备应用在通信基站内,来调节和控制移动网络通信信号的传输[1]。微电子产品的广泛应用,提升通信设备性能的同时,也大大降低了车间通信机房的耐压能力,加大了车间通信机房在雷电防护问题上的难度,尤其是安装在电源主控室内的通信设备,受到雷击的概率更是大于其他机房。所以对雷电灾害的研究进行深入研究来了解车间通信机房收雷电击中而发生灾害的原理,对于车间通信机房的雷电防护问题具有很大的现实意义。
二、雷电灾害形成以及对车间通信机房造成的灾害
雷电是自然界中常见的带电云层放电现象。当天空中有雷雨云层时,云层会携带大量的电荷而产生静电感应作用。当地面某些特殊物体或者建筑物与带电云层形成强电场而足以让带电云层进行对地方放电时就形成了雷电现象。一般的,雷电现象对车间通信机房造成的破坏有直击雷灾害和感应雷灾害两种形式[2]。直击雷是带电云层直接放电而造成的破坏,这类雷电放电具有瞬发性,短时间内形成高电压并释放大量的电流而对车间通信机房和通信设备造成强烈破坏。感应雷是由于带电云层与车间通信机房的信号传输线、设备连接线形成强电场,强大的电磁感应对通信设备中的微电子元件间接造成破坏的灾害现象。虽然没有直击雷造成的灾害严重,但是发生的概率却很大,而且强电场形成的电磁感应对微电子产品造成的过压破坏会使通信设备产生故障而是车间通信机房瘫痪,对于整个通信网络而言,造成的破坏也是不可估量的。所以感应雷是车间通信机房主要防范的雷电灾害。
三、车间通信机房的防雷措施
车间通信机房的防雷措施主要以防止感应雷为主,直击雷主要通过安装避雷装置和浪涌保护器等保护装置来降低雷电对车间通信机房内电源和通信设备等的危害。另一方面,在建设车间通信机房时,要消灭机房内的防雷隐患等,确保将防雷工作做到最底层。
(一)安装避雷装置,减少电荷量
在车间通信机房上部安装避雷装置是车间通信机房的主动防雷,通过避雷装置,可以将车间通信机房上部的带电云层在聚集电荷足够多之前就对和带电云层运行形成通电回路而对带电云层进行放电,并将多余的电荷导入到大地,从而避免车间通信机房由于带电云层电量过多而进行放电造成的破坏。针对建筑物常见的避雷装置有避雷针、避雷线、避雷器等,在建设车间通信机房时,可以根据当地的气候条件来选择避雷装置,或者多种装置结合辅助使用以增强车间通信机房的防雷能力。此外,安装在车间通信机房内的电源避雷器的引入线不宜过长,以避免在雷击发生时由于引入线过长而抬高雷电电位,同样对通信设备造成过压伤害[3]。一般的,车间通信机房内的电源避雷器的火线引线应该尽量短,加上和接地线总长度应尽量控制在5米以内,以确保雷电不会从交流引入线进入车间通信机房。同时,针对避雷装置的安装,针对车间通信机房的建筑、电源、通信设备等独立、可靠接地,且相距一定距离,尽量避免保护地联合使用,以避免使用同一接地线致使整体的防雷能力降低,防雷效果不佳。
(二)联结机房等电位,消除电位差
针对车间通信机房防雷措施,虽然建筑、通信设备、电源等接地系统相互独立,但是同类型内部应该进行等电位联结。当车间通信机房遭受雷击时,如果通信建筑之间或者电子设备之间彼此接电线没有等电位联结,那么彼此之间就会由于接地电阻而产生电位差,当电位差足够大时,同样会破坏车间通信机房的绝缘系统,造成设备破坏。针对车间通信机房建筑之间的等电位联结,将建筑接地引下线与建筑柱内钢筋焊接在一起,从而使建筑接地形成上端与顶层混凝土钢筋相焊接,地部与地网相焊接,从而形成笼式避雷网,将雷电的高电流强电压进行分流均压。同样的,针对电子设备的等电位联结,需要将通信设备中的电气、电子设备的金属外壳、通信电缆外皮、设备机柜、各种浪涌保护器、安全保护器等接地端都应该以最短的距离联结起来,以降低甚至消除电子设备内部防雷系统的电位差。
(三)加强通信设备雷电防护
车间通信机房的雷电防护要确保通信设备的正常运作,以保证通信网络的正常运行。通信设备的保护包括电源保护和设备屏蔽两部分。针对电源的雷电防护,需将避雷器加装到车间通信机房总配电室的电缆内芯两段来进行一级保护,同时在车间通信机房每个楼层的电缆内芯两侧加装避雷器进行二级防护,最后在各种重要的通信设备以及UPS前段对地部分加装避雷器作为三级保护,最终确保侵入电源系统内的雷电流通过分流技术将其泄入大地[4]。通信设备的屏蔽的主要目的是避免雷电产生的电磁场对通信设备进行干扰而扰乱通信网络的正常运转。通信设备屏蔽包括空间屏蔽和线路屏蔽,线路屏蔽是对网络信号线和电源线进行屏蔽,此外还需对机房进行屏蔽,将其内部的金属门、窗等以及防静电专业地板进行接地,以减少雷电场对通信设备的干扰。
四、总结
车间通信机房的雷电防护措施主要从预防雷电灾害的直击雷和感应雷两方面入手,通过为车间通信机房建筑、通信设备、电源等进行避雷设备安装,以减少带电云层放电时对车间通信机房造成的危害,同时通过内部接地系统的等电位联结,降低甚至消除由于接地电阻产生的电位差,同时要加强通信设备的雷电防护工作,确保设备电源供应正常,设备运转正常。车间通信机房的防雷工作要从细处入手,做到方方面面,一点疏忽就会造成整个防雷系统失效,所以我们要不断努力,将车间通信机房的防雷工作做到细处,保证通信设备正常运转,保证通信网络正常提供服务。
参考文献:
[1] 孔照林,郝世峰.信息化实验室综合防雷工程设计[A]. 第六届中国国际防雷论坛论文摘编[C]. 2007
AbstractRurallightningprotectionsituationinZaohuangwasintroducedinthispaper.Thenthelightningprotectioncountermeasureswereputforwardinordertoproviderefereceforthesafetyofruralareas.
Keywordsrurallightningprotection;situation;countermeasure;ZaozhuangShandong
枣庄是雷电活动和雷击灾害比较频繁的地区,且具有雷电活动频繁、活动期长、季节性强等特点,雷击主要集中春季和夏季,雷暴日数一般在23.5d左右,雷暴初日一般在3月20日前后出现,终日一般在9月20日前后,属于多雷暴区。近几年,雷击灾害事故发生在农村的机率约占总雷电灾害数的3/4,雷击伤亡事故4/5以上发生在农村。因此,结合枣庄农村防雷实际,研究分析雷电灾害的成因及预防措施具有重大的意义。
1农村防雷现状
1.1农村防雷现状的调查和分析
农村防雷意识淡薄,防雷知识缺乏,房屋缺少防雷装置。有些农户在屋顶上放置了不锈钢水箱、太阳能热水器、普通电视天线、卫星天线等金属物,大部分没有作接地处理,这些金属成为雷电放电的对象,存在严重的雷击隐患。大部分房屋无防直击雷装置;电源线路、有线电视线路、电话线路等无防雷装置。
1.2农村学校防雷现状
对农村中小学校进行了一次大规模建筑物防雷设施现状调查,大部分学校没有防雷设施,特别是偏远农村小学,无任何设施的比例达95%以上,城区学校虽然有防雷设施,但防雷设施达不到要求,存在很多问题。近年来大多数学校师生的避雷意识正逐年提高,但经费不足,部分建筑物虽然有直击雷防护装置,但防雷装置倒伏、断裂、锈蚀、脱焊现象普遍存在。有避雷设施的学校,也只不过在主教学楼顶立了避雷针,大部分教学楼、图书楼、宿舍楼、食堂等都没有安装避雷设施,部分建筑物上安装的防雷装置材料规格或安装位置、引下线间距、保护范围等不符合规范要求,校内无避雷带,计算机机房未安装防静电地板,几乎全部电教设备无任何防雷电电磁脉冲措施,一旦建筑物遭受雷击或学校附近有雷击现象发生,势必在电源线路上有雷电感应发生,将会对学校整个电教设备及微机造成损坏。
2农村雷电防御措施
2.1加强农村防雷科普的宣传和雷电知识的普及教育
农村防雷宣传和雷电知识普及是农村雷电灾害防御工作的关键,其开展的好坏直接关系到农村雷电灾害防御工作的成败。只有提高群众防雷意识,增强群众安装防雷装置的自觉性和主动性,才能够真正做好农村的雷电灾害防御工作。应采取防雷宣传画、防雷公益图片、雷电灾害警示图片、防雷宣传幻灯片、防雷公益广告等形式,利用手机短信、电视、报纸、网络等媒体进行防雷宣传,以及在农村宣传车巡回宣传等方式开展大规模的防雷科普宣传,提高广大农民群众科学预防雷电灾害知识[1]。
2.2建立严密的制度体系
农村防雷减灾是一项长期性的工作,需要制定一套适应农村特点切实可行的防雷工作制度体系来保证农村防雷工作的健康发展[2]。应建立雷电灾情收集、调查和评估制度,建立农村防雷装置的检查制度,建立农村防雷工作人员定期培训制度,建立县、乡2级防雷安全联席会议制度,建立防雷装置设计审核、施工监督和竣工验收制度。
2.3加大对农村建筑物防雷建设的监管力度
对农村企业和个人新建扩建建筑物,要安装避雷设施,定期进行防雷检测。从源头上减少雷电灾害的发生,政府可以对农村避雷设施建设进行一定程度的扶植,减少农民的负担,从而减少雷电伤亡的发生[3]。
2.4规范电力、电话、电视天线等线路的防雷措施
由于农村都是架空线路,雷击到线路上和线路上感应上雷电流的时候较多,直接安装浪涌保护器,浪涌保护器难以承受。一般情况下,线路在人户前套15m长的钢管埋地引入或改15m长的屏蔽线入户,并把屏蔽线两头接地,这样可以把线路感应的雷电流的大部分通过屏蔽层和钢管传入大地。电话线路入户时应将其绝缘子(例如通信蝶式绝缘子)的铁脚接地,电话线路也不宜采用木杆架设。需要架设电视天线时,一定要在它的旁边架设金属避雷针并保持3m以上的安全距离,用避雷针来保护天线。否则当天线遭雷击时,不仅电视机将受损,还有可能伤及室内人员。
2.5做好雷电灾害的预警预报
山东省已初步建立由卫星、多普勒雷达、闪电定位仪、大气电场仪、自动气象站组成的立体雷电监测网,可以提前数小时预测到雷电的落区[4]。要加强雷电灾害的监测、预警预报工作,提高预报的准确率和提前预警时间,并借助现代化的通信手段,及时通知农民,让农民有针对性地提前作好雷电防御工作,从而有效地避免雷电灾害事故发生。
3结论
农村防雷减灾工作是一项系统工程,要引起社会各界的高度重视,只有全社会动员起来,采取多种措施,多管齐下,形成合力,加大防雷减灾的宣传力度,以预防为主,排除防雷隐患,严格按照防雷安全规范去做,才能将农村雷电灾害降低到最小。
4参考文献
[1]刘辉,郑细华,马强,等.龙川县农村防雷现状及预防对策[J].广东科技,2010(4):109.
关键词:
住宅小区;建筑;电气工程;设计技术;要点
引言
中国社会经济快速发展,人们对生活质量越来越高要求,对住宅小区的建筑质量倍加关注。电气工程属于是建筑施工中的基础性工程,随着住宅环境的不同,就需要对电气工程不断完善。面对目前住宅小区建筑的电气工程中所存在的问题,就需要对设计技术以高度重视,以提高住宅小区的建筑使用质量。
1住宅小区配电系统的设计
1.1配电系统中变压器的设计
目前的住宅小区运行中的一个明显特点就是用电负荷在不断增加,这是由于城市居民的经济水平提高,生活质量也相应地提高,各种电气设备的使用量增加,就必然会增加用电负荷。这就需要住宅小区在电气工程设计的过程中,要对小区居民的用电负荷充分考虑,对科学合理地设计变压器[1]。特别是中国在近年来倡导节约能源,促进环境保护,在对住宅小区的电气工程进行设计的时候,考虑到用电负荷问题的同时,还要考虑到节约能源问题,对变压器的型号、安装数量都要从建筑的运行实际出发进行配置,以使配电系统安全稳定地运行,同时还降低了能源消耗量,住宅小区居民的用电也不会受到影响。
1.2配电系统中的其它设计
住宅小区的配电系统设计中,需要重点解决的问题就是满足建筑用户不断增加的用电需求。面对用电负荷不断增加的问题,就需要做好节约能源的工作。在具体工作中,可以对居民的电能使用情况进行了解,对电能的使用做好分类,使得所采用的节约能源措施更具有针对性,发挥时效性,配电系统设计也更为科学合理。在为建筑配置低电压设备时,要安装继电保护装置,以使低电压设备处于良性运行状态,保证为住宅小区居民持续稳定地供电。小区的配电系统设计中,为了保证供电长时间持续供电,特别是维持机房供电的持续稳定,机房供电往往是一级消防动力负荷,居民的家庭用电会采用三级负荷。通过对负荷划定级别控制用电负荷,就可以达到节约能源的作用。
2住宅小区监控系统的设计
2.1监控系统中消防监控系统的设计
住宅小区是人口集中的区域,也是各种电气设计集中安装的区域,因此,保证消防安全是至关重要的,这也是住宅小区建设的关键。要提高消防安全质量,很多的城市住宅小区都安装了消防监控系统,对火灾发挥有效的控制作用。从目前的住宅小区消防监控系统的设计情况来看,是将系统划分为局部监控区域和中央监控区域,在消防控制模块中设置有消防指挥运行流程,如果住宅小区中有火灾发生,在消防监控系统中的警报装置就会对火灾隐患进行检测,同时发出消防警报[2]。在火灾现场,消防监控系统的控制模块还会以手动操作的方式或者自动操作的方式指挥火灾现场,对火灾起到了有效的控制作用。在对消防监控系统进行安装中,为了保证监控系统在火灾发生的过程中安全运行而不会遭到破坏,就要对系统予以电磁干扰,并做好防护工作。对于系统中的线路材料,要求具有良好的耐火性能,以使得消防监控系统的功能得以充分发挥。
2.2监控系统中消防探侧器的设计
在城市住宅小区中,消防探测器是重要的装置,不仅可以对火灾予以探测,而且还能够及时地启动报警装置,随之火灾监控模块启动。安装消防探侧器的过程中,要根据实际工作需要选择消防探侧器的型号,还要考虑到安装的位置以及运行环境,保证消防探侧器的功能得以充分发挥[3]。虽然现行的住宅小区中所安装的消防探侧器对环境具有较强的适应性,而且不会受到安装位置的局限,具有良好的火灾报警效果,但也要从其应用范围出发对其安装区域加以明确。
3住宅小区防雷设施的设计
住宅小区的建筑安装有各种电气设备,就要做好防雷涉及工作。通常而言,住宅小区会安装基础性的防雷装置,这对于建筑电气工程而言是远远不够的。要强化防雷设计,就要将电气防雷系统构建起来,保证防雷系统有效运行。这就需要在安装防雷装置的过程中,要对住宅小区的规模以及防雷装置所安装的位置充分考虑。在安装直击防雷装置的过程中,要考虑到其所发挥的作用是避免直击雷对住宅小区的配电系统以及监控系统造成破坏。这就需要从住宅小区的实际情况出发做好接地工作,之后根据需要安装各种避雷设施,诸如避雷针等等,以避免建筑被雷击。对于住宅小区的建筑,其高度国家都有明确规定。如果建筑高度超过了规定范围,就要每间隔5米至8米的高度就要设置避雷带,还要连接地下线,以防止金属构件被雷击。当雷电的强度较高,防雷装置就会对电气设备的绝缘层造成破坏,这就需要安装雷电反击设置[4]。防雷装置接闪器会影响到建筑物中的金属物,两者要保持一定的距离。另外,建筑物中的钢筋和其他的金属物之间的距离都要符合规定,还要与防雷引下线进行连接。建筑中所安装的各种电气设备都要做好接地工作,还要连接防雷接地,以避免电气设备遭到雷击。住宅小区建筑安装有大量的电气设备,有必要将综合布线系统构建起来,合理设计通讯网络,以保证各项信息有效传输而不会受到雷电的影响。
4结束语
综上所述,中国城市居民的生活水平逐渐提高,对住宅小区的建筑质量提出了更高的要求。对电气工程设计工作予以高度重视,是为小区居民塑造舒居住环境的重要条件。建筑电气工程作为建筑工程中的基础部分,直接关乎到建筑的使用功能。特别是目前各种新的电气技术在电气工程中得以应用,就更需要针对建筑电气设计工作积极探索,提高设计质量,以确保建筑电气运行稳定,更好地满足住宅小区居民的电气使用需求。
作者:余翔 单位:湖北工业大学
引用:
[1]田建红.智能小区建筑电气工程设计与实践[D].西安交通大学硕士学位论文,2012.