欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

天线技术论文大全11篇

时间:2023-03-15 15:01:11

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇天线技术论文范文,希望它们能为您的写作提供参考和启发。

天线技术论文

篇(1)

一、引言

我们知道,天线有很多种,但大体上可分为三大类:“线天线”、“面天线”及“阵列天线”。阵列天线最初用于雷达、声纳以及军事通信中,完成空间滤波和参数估计两大任务。当阵列天线应用到移动通信领域时,通信工程师喜欢用“智能天线”来称谓之。智能天线根据方向图形成(或称为波束形成)的方式又可分为两类:第一类,采用固定形状方向图的智能天线,且不需要参考信号;第二类,采用自适应算法形成方向图的智能天线,需要参考信号。

本文在以下提到的智能天线都是指第二类,即(自适应)智能天线,这也是目前智能天线研究的主流。

二、智能天线的技术现状

在分析研究智能天线技术理论的同时,国内外一些大学、公司和研究所分别建立了试验平台,用实验的方法来验证理论研究的成果,得出相应的结论。

(1)在美国

在智能天线技术方面,美国较其它国家要成熟的多,并已开始投入实用。美国ArrayComm公司将智能天线技术应用于无线本地环路(WLL)系统。ArrayComm方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同环境选用,现场实验表明在PHS基站采用该技术可以使系统容量提高4倍。

(2)在欧洲

欧洲通信委员会(CEC)在RACE(ResearchintoAdvancedCommunicationinEurope)计划中实施了第一阶段智能天线技术研究,称为TSUNAMI(TheTechnologyinSmartAntennasforUniver-salAdvancedMobileInfrastructure),由德国、英国、丹麦和西班牙合作完成。该项目是在DECT基站上构造智能天线试验模型,于1995年初开始现场试验,天线阵列由8个阵元组成,射频工作频率为1.89GHz,阵元间距可调,阵元分布有直线型、圆环型和平面型三种形式。试验模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片BDF1108完成波束形成,使用TMS320C40芯片作为中央控制。

(3)在日本

ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成,整块电路板大小为23.3cm×34.0cm。ATR研究人员提出了智能天线的软件天线的概念。

我国目前有部分单位也正进行相关的研究。信威公司将智能天线应用于TDD(时分双工)方式的WLL系统中,信威公司智能天线采用8阵元环形自适应阵列,射频工作于1785~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。

三、智能天线的优势

智能天线是第三代移动通信不可缺少的空域信号处理技术,归纳起来,智能天线具有以下几个突出的优点。

(1)具有测向和自适应调零功能,能把主波束对准入射信号并适应实时跟踪信号,同时还能把零响点对准干扰信号。

(2)提高输入信号的信干噪比。显然,采用多天线阵列将截获更多的空间信号,也即是获得阵列增益。

(3)能识别不同入射方向的直射波和反射波,具有较强的抗多径衰落和同信道干扰的能力。能减小普通均衡技术很难处理的快衰落对系统性能的影响。

(4)增强系统抗频率选择性衰落的能力,因为天线阵列本质上具有空间分集的能力。

(5)可以利用智能天线,实时监测电磁环境和用户情况来提高网络的管理能力。

(6)智能天线自适应调节天线增益,从而较好地解决远近效应问题。为移动台的进一步简化提供了条件。越区切换是根据基站接收的移动台功率的电平来判断的。由于阴影效应和多径衰落的影响常常导致错误的越区转接,从而增加了网络管理的负荷和用户的呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。

四、智能天线与若干空域处理技术的比较

为了进一步理解智能天线的概念,我们把智能天线和相关的传统空域处理技术加以比较。

(1)智能天线与自适应天线的比较

智能天线与自适应天线并没有本质上的区别,只是由于应用场合不同而具有显著的差异。自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目比天线阵列单元数少或相当。而在无线通信系统中,由于多径传播效应到达天线阵列的干扰数目远大于天线阵列单元数,入射角呈现随机分布,功率电平也有很大的动态变化范围,此时的天线叫智能天线。对自适应天线而言,只需对入射干扰信号进行抵消以获得信干噪比(SINR,SignaltoInterferenceplusNoiseRatio)的最大化。对智能天线而言,由于到达阵列的多径信号的入射角和功率电平均数是随机变化的,所以获得的是统计意义上的信干噪比(SINR)的最大化。

(2)智能天线与空间分集技术的比较

空间分集是无线通信系统中常用的抗多径衰落方案。M单元智能天线也可等效为由M个空间耦合器按优化合并准则构成的空间分集阵列。因此可以认为智能天线是传统分集接收的进一步发展。

但是智能天线与空间分集技术却是有显著的差别的。首先空间分集利用了阵列天线中不同阵元耦合得到的空间信号的弱相关性,也即是不同路径的多径信号的弱相关性。而智能天线则是对所有阵元接收的信号进行加权合并来形成空间滤波。一个根本性的区别:智能天线阵列结构的间距小于一个波长(一般取λ/2),而空间分集阵列的间距可以为数个波长。

(3)智能天线与小区扇区化的比较

小区的扇区化可以认为是一种简化的、固定的预分配智能天线系统。智能天线则是动态地、自适应优化的扇区化技术。现在,我们来讨论一个颇有争议的问题。根据IS-95建议,当采用120°扇区时系统容量将增加3倍。由此是否可以得到结论,扇区化波束越窄系统容量提高越大?考虑到实际的电磁环境,我们认为对这一问题的回答是否定的。这是因为窄波束接收到的信号往往是由许多相关性较强的多径信号构成的。一般情况下,各径信号的时延扩展小于一个chip周期。这时信号波形易于产生畸变从而降低信号的质量达不到增加系统容量的目的。同时如果采用过窄的波束接收信号,一旦该径信号受到严重的衰落,则将直接导致通信的中断。另外,过窄的接收波束在工程上是难以实现的,并将成倍地增加设备的复杂度。

五、智能天线的未来展望

(1)目前还没有一个完整的通信理论能够较全面地将智能天线的所有课题有机地联系起来,故需要建立一套较完整的智能天线理论;另一方面,高效、快速的智能算法也将是智能天线走向实用的关键。

(2)采用高速DSP技术,将原先的射频信号转移到基带进行处理。基带处理过程是数字算法的硬件实现过程。

(3)由于圆形布阵和二维任意布阵比等间隔线阵优越,同时阵列天线的数字合成算法能够用于任意形式阵列天线而形成任意图案的方向图,因而可考虑在CDMA基站中采用二维任意布阵的智能天线。

(4)在移动台中(如手机)采用智能天线技术。

(5)采用智能天线技术来改善移动通信信道中上下链路不能使用同一套权值的问题,以改善上下链路的性能。

篇(2)

现在,各行各业在发展过程中在节能环保方面都有了新的要求,因此,为了更好的适应时代的发展变化,农业在发展过程中一定要非常的稳定,这样才能更好的保证粮食供应不会出现任何问题。在农业发展过程中,水利工程对其发展有很大的保障作用。因此,在农田水利方面也要重视高效、节能以及环保方面,这样才能更好的推动农业的可持续发展。在农田水利技术方面,我国已经有了很大的发展,在水资源的利用效率方面有了很大的提高,同时,对作物的水分也需求进行信息采集,因此,能够更好的对水量进行控制。在对理论进行研究的时候,前期是比较单一的,只是对单纯的土壤水分进行了水分控制研究,因此,现在,研究理论已经向多元化方向发展了,在这种情况下,能够更好的对全方位的水分转移进行规律性研究,同时,对水分的承载体也进行了更多方面的研究。在研究对象方面不仅仅进行了水分的研究,同时对养分和水热情况也进行了分析。这样能够更好的对不同条件下的灌溉进行研究,同时,在灌溉时候也能制定出不同的方式,在制定灌溉方式的时候,要对植物的生长规律进行必要的研究,同时,对生长环境也要进行分析,这样才能更好的促进植物的生长。农田水利工程在节水方面要建立一个非常严谨的理论体系,这样能够保证研究方面更加的科学,同时也能更加的系统。农田水利在水系研究方面研究的对象非常多,其中包括地表水、农田大气水、土壤水、地下水以及植物水进行研究,在研究的过程中要对其相互之间的转化关系进行掌握,这样能够更好的对农作物的水分蒸发量和流域的蒸发量进行计算,在研究的过程中,要将农田水利工程的高效性和节能性作为工作的目标。在对节水高效模型进行研究的时候,要对相关的重点进行研究,同时对相关的方法也要进行重视。对农作物的水分研究从单一的研究领域向更广的范围进行研究,能够更好的对水分的空间性进行研究,同时也能更好的对分布规律进行研究。在对农田水利进行研究的时候,针对传统的农作物主要有小麦、水稻和玉米,这些农作物是大规模种植的,因此,在进行现代农田水利研究的时候要从这些农作物的研究中走出来,研究的方向要向经济作物转移,这样能够更好的满足现在的农业生产环境,同时,在研究过程中,对不同的作物在不同的阶段的水分情况进行研究,这样能够更好的掌握其水分需求变化,同时,对植物的生长状态要进行研究,这样能够更好的保证农田水利节水建设的实现。在经过了严谨的研究分析以后,可以对农作物的灌溉水量进行控制,同时,为了更好的实现节约和高效的目的,可以建立必要的基础保障措施,这样能够更好的做到适度的调节。

1.2设备、材料的节水研发

在节水灌溉设备方面有了很多的变化,现在,主要应用的设备有外混式自吸泵、新型金属快速接头、地面移动铝合金管道系统设备、田间闸管系统设备、调压给水栓、竖管万向座、恒压喷灌设备、绞盘式喷灌机、折射式微喷头、旋转式微喷头、微灌用压力-流量调节器、微喷连接件、水动式施肥泵、水动反冲洗沙过滤器、平面迷宫式滴头、毛管移动机具、滴灌设计CAD系统、地下滴灌专用滴头、经济型内镶式滴灌管及配套设备、波涌灌设备、U型防渗渠道施工机械、SYZW-1智能型量水仪、WIS-2智能型量水仪、长喉槽量水槽等24种节水新设备,其中16种产品实现产业化。在节水新材料研究上,提出了适合U型渠道衬砌构件的混凝土配合比,选用焦油塑料胶泥条和遇水膨胀橡胶止水条作为预制衬砌渠道伸缩缝材料,较好地解决了渠道接缝渗漏问题。

1.3农用水资源的合理开发及农业节水新技术研究

在水库灌区建立流域水资源的优化调度模型能够更好的对径流的水量进行控制,同时对储蓄的水量和灌区的农作物的种植结构进行结合,这样能够更好的保证输水的能力,进行更好的分析,能够更好的对水资源进行合理的配置,同时也能更好的实现水资源的优化调度,对提高供水效率非常有帮助。在灌溉水源非常多的地区,要将灌溉区的地表水和地下水进行联网,这样能够更好的在优化水资源方面进行配合,同时,在自动化控制技术方面也能取得很好的效果。农田在灌溉方面要实现分散水源集中控制,这样能够更好的实现统一调度,同时,也能更好的对有限的水资源进行更好的利用,这样能够更好的提高灌溉的效率。在输水和配水的环节上也要进行节水工程设计,在施工技术方面也要进行提高,这样能够更好的形成集成灌溉的模式。在膜下滴灌技术中,能够更好的通过滴灌的方式来使农作物的根系更好的吸收水、肥和农药,这样能够更好的保证农作物的生长,同时,也能更好的保证农作物生长过程中水分的充足。

2农田水利科技发展方向

2.1作物节水高效灌溉制度研究

为了以最少的灌溉水投入获取最高利益,应制定相应的灌溉方案,包括农作物播种前及全生育期内的灌水次数、灌水时间、灌溉定额。在灌区开展不同作物、不同生长条件下的耗水量研究,特别是随着作物种植结构的调整,应加大对各种经济作物的耗水量研究,寻求作物在不同生长环境条件下的节水高效规律。以此为基础,制定灌区在不同的供水、气象、农艺、管理等条件下的节水高效灌溉用水方案,采用现代化手段进行灌区实时灌溉预报,指导农民进行灌溉。

2.2农业节水设备的产业化

根据我国农业生产向高效集约化经营发展的趋势,节省劳力、生产效率高、自动化程度高的节水灌溉机具应成为今后研究、开发和产业化的重点。如机械移管的喷灌机具,地下滴灌设备,大、中、小型的渠道防渗衬砌机具,农田精细平地、开沟、打畦机具,各种自动阀门,以及灌溉自动化控制设备等。

2.3高新技术的应用研究

目前农田水利建设中突出问题就是水资源的匮乏,由于用水的减少,在农田灌溉上的供需关系就会出现矛盾,而在农田相关的排水以及灌溉上又十分的复杂,所以,自动化的智能农田水利建设成为了必然的发展趋势,通过各种先进的智能技术,将可利用技术有效的转变为提高农田灌溉和排水的技术,应用到实际的生产中,有效的消除不合理的农田灌溉对生产以及生态的影响。这才是新时代的农田灌溉所要发展的方向。

篇(3)

2工程概况

元坝气田17亿立方米/年滚动建产工程地面集输工程隧道三标建设地点位于四川省苍溪县境内。第三标段共有两条隧道:牛包山隧道和天坪梁隧道。牛包山隧道穿越地段的微地貌特征为缓坡、陡坡、陡崖、山脊、冲沟等。区内为单斜地层,其岩层产状为236°∠3°,地下水主要由南向北径流,岩体的风化裂隙及构造裂隙为地下水的主要贮存和富集空间。该隧道隧址区域内无大的地表水汇集区和流通区,只在隧道的进出洞口和洞身段发育多条小冲沟,入洞口冲沟内有地表水,水量较大,常年有水。天坪梁隧道隧址区内为单斜地层,其岩层产状为240~250°∠3~6°,地下水由西南向东北径流,其含水岩层为砂岩层,风化裂隙及基岩裂隙为地下水的主要贮存和富集空间。该隧道隧址区域地表水系主要为进洞口侧有一冲沟,进洞口侧冲沟内水流较小,由于冲沟上游有堰塘拦截,冲沟内水流在暴雨季节,洪水水位较小。

3隧道工程防排水施工技术的施工准备

在进行隧道工程防排水施工前,施工单位首先要做好施工准备工作,只有这样才能为施工的顺利进行提供保障,才能确保隧道工程的施工质量。在施工前,施工单位要安排测量人员深入施工现场,对各个桩位进行测量,确保各个桩位能满足施工需求,同时测量人员要根据施工现场的实际情况,设置好水准点和导线网,并对隧道进行测量、复测,确认无误后,进行二次衬砌放样。采购人员需要根据隧道防排水施工设计要求,购买合理的施工材料,采购人员在选购施工材料时,要对市场进行充分的调查,选择质量优越、价格便宜的施工材料。施工材料在进入施工现场前,施工单位要安排专门的质检人员对施工材料的质量进行检查,如果发现施工材料质量不合格,要及时将施工材料退回,重新选购,严禁质量不合格的施工材料进入施工现场。在正式施工前,施工单位还要对施工人员进行技术培训和安全培训,从而有效地提高施工人员的技术水平和安全意识,确保施工人员能严格的按照相关规范进行操作,只有这样才能为隧道工程的施工质量提供保障。在施工前,施工人员还要组织施工人员对施工使用的各种机械设备进行检查,确保施工机械设备能安全稳定的运行,从而为隧道工程施工的顺利进行提供保障。

4防排水施工技术的应用

4.1测量放样

在进行测量放样时,测量放样人员要利用全站仪将隧道的中心线准确的测量出来,然后沿着隧道中心线向两侧散开放样,在本工程中,每隔5m为一个放样点,水平方向放样结束后,测量放样人员要将纵向排水管道的中心线测量出来,然后每隔10m设置一个放样点,最后利用全站仪将排水管道底部的设计标高测量出来。测量人员还要将矮边墙的边线测量出来,每隔5m设置一个放样点,并将矮边墙的顶标高测量出来。

4.2进入隧道前的防排水处理

在进入隧道施工前,施工单位要对隧道内部的情况进行充分调查,了解隧道隧址区地表水、地下水的情况,并对地表水的补给方式进行分析,根据实际情况,制定相应的地表防排水工作,从而为隧道施工提供方便。在本次隧道工程施工中,施工单位采用浆砌片石截水沟、排水沟将隧址区地表水排入隧道地表外侧,并将其引入隧址区原排水系统中,从而有效地防止地表水渗漏对隧道工程施工造成影响。

4.3安装排水管

在本工程中,施工单位在安装排水管时,对于环向排水管的安装,施工单位首先沿着隧道内部,每隔1m设置一个混凝土悬挂锚钉,然后利用铁丝将排水管道固定在混凝土悬挂锚钉上,在施工过程中,施工人员要特别注意,锚钉需要牢固的地锚在混凝土表面,从而避免弹簧管坠落对隧道中的行人带来危害。弹簧管的端头需要预留出10cm,从而为弹簧管和纵向排水管的交接提供保障。在安装纵向排水管时,其安装工序与环向排水管的安装工序大致相同,施工人员首先要沿着隧道坡度,每隔1m设置一个混凝土悬挂锚钉,利用铁丝将排水管道固定在混凝土悬挂锚钉上,最后施工人员要纵向排水管道和环向排水管道交接处割破,将环向排水管道、纵向排水管道、横向排水管道连接好,最后对管道的接头进行密封处理,避免管道接头处发生漏水现象。

4.4防水板的安装

在进行防水板安装前,施工人员要对隧道初期施工的支护情况进行认真的检查,并对岩面的欠挖进行处理,避免衬砌台车进入施工现场后,因没有处理岩面欠挖,从而对隧道工程防排水施工进度造成影响。施工人员还要凿除凸出的岩石喷射混凝土,割掉凸出的钢筋头和锚杆,同时在铺设防水板前,施工人员要先将防水板拼好,然后利用装载机将防水板放在架子上。在安装塑料防水板时,施工单位可以采用无钉法,按照顺序逐环安装;在安装复合放水板时,施工人员首先要将锚钉钉入混凝土中,然后沿着纵向拉铁丝,从而对防水板进行保护。施工人员在安装复合防水板时,要从侧面开始,从上到下依次铺设,同时施工人员要在铺设过程,将吊带系在铁丝上。

篇(4)

 

引言

微带天线作为一种新型的天线,与普通天线相比,具有不可替代的优势。它具有体积小、重量轻、平面结构等特点,可以很容易地与导弹和卫星等结合。此外,微带天线也有结构紧凑,性能稳定等特性,易于使用的印刷电路技术和大批量制造技术。因此,微带天线以其独特的优势得到在无线通信系统更广泛的应用。近年来,许多研究人员通过努力研究了多种天线技术来克服或减少微带天线一些不足之处[1~3]。然而,以上这些天线定向性不能满足无线通信的要求。因此,有必要研究低成本、高增益的WiMAX阵列天线。

本文提出了一种用于WiMAX的新型微带阵列天线。天线采用独特的布局,包括两层辐射带,该天线提供了一个由5.3至5.9GHz的带宽,能很好应用于WiMAX通信系统中。

一.天线结构

蝶形微带阵列天线结构如图1所示,天线的辐射单元包括两个对称的印刷带。天线的上层辐射带包括八个辐射单元,辐射单元的长度为a=10mm,宽为b=8mm,底部辐射带结构与顶层相反。微带天线的尺寸354mm×50mm。两层辐射层均印制在teflon基体上,其介电常数为2.65,厚度为1mm。上下两层对称的辐射单元与相邻的馈线网络单元连接,结构形状如同蝶形。科技论文,微带天线。科技论文,微带天线。

图1 蝶形微带阵列天线结构

二. 仿真与实测结果分析

制作的微带阵列天线如图2所示,天线的测量结果由R3765CH网络分析仪给出。科技论文,微带天线。图3~5为微带天线仿真与实测辐射模式。科技论文,微带天线。仿真结果(虚线)与实测结果(实线)相对应。从图3~5中可以看出,仿真与实测结果一致。阵列天线在5.3GHz时,E面的最大增益达到22.14dBi。良好的定向性能。所测天线在5.9GHz时H面半波束宽度达到最大,为105.44°,增益为6.53dBi。以上辐射模式结果表明在整个频段内天线具有较好的辐射效率,同时天线具有重量轻,低剖面,易于平面电路集成等特点。

图2 阵列天线的照片

图3远场辐射模式,f=5.3GHz

图4 远场辐射模式,f=5.5GHz

图5 远场辐射模式,f=5.9GHz

三. 总结

本文提出了一种16单元的蝶形振子阵列天线,所测天线在驻波比小于1.45时带宽为5.3~5.9GHz。科技论文,微带天线。天线在5.3GHz时E面的最大增益为22.14dBi,H面在5.9GHz时最大波束宽度为105.44°。科技论文,微带天线。测量结果表明该天线能够满足WiMAX频段通信要求。

参考文献

[1]Z.Du,K.Gong,J.S.Fu.Anovelcompactwide-bandplanarantennaformobilehandsets.IEEEtransactionsonantennasandpropagation,2,2006:613~619.

[2]H.Wang.X.B.Huang,D.G.Fang.AsinglelayerwidebandU-slotmicrostrippatchantennaarray.IEEEantennasandwirelesspropagationletters,7,2008:9~12.

篇(5)

中图分类号:TN911.22 文献标识码:A 文章编号:1007-9416(2013)06-0056-01

多天线技术在广义上是指使用多根发送天线或者接收天线的技术,在铁路信号传输上得到了广泛应用。而空时码技术是多天线系统的支撑技术,应用于天线之间距离足够远,相关性足够小的情况。该技术可进一步分为基于分集(包括发射分集和接收分集)的时空码和基于空分复用的空时码。空时码技术是当前的研究热点之一,其在空间域和时间域联合处理铁路接收信号的特点可以充分利用空间信号处理技术和时间处理技术的优势,有效抵抗符号间干扰,减少多址干扰,增加分集增益一级提高整个天线阵的增益。

在铁路信号空时码和MIMO技术中,通常假设发送天线和接收天线分别是独立不相关的,然而实际系统对天线设置的限制,天线之间往往存在一定的相关性。为了更直接分析相关性的影响,本文采用平坦衰落MIMO信道进行分析,并假设发送天线和接收天线分别呈均匀直线排列。在下面的分析中,设发送端和接收端天线数分别为和,MIMO信道冲激响应矩阵为,其中,表示由第个发送天线到第个发送天线的平坦信道冲激响应。接收天线上的高斯白噪声独立不相关,均值为,方差为。下面具体分析题录信号中的空间相关性对多天线技术的影响。

1 空时分组码STBC及空间相关性影响

当发送天线之间和接收天线之间存在空间相关性时,假设相邻发送或接收天线之间的空间相关数相等,即,对上述STBC方案的性能参数进行分析:

使用上述参数仿真计算可知:空间相关性使得STBC性能恶化,并且随着空间相关性的增强,性能损失增加;当相邻发送或接收天线之间的相关系数小于0.7时,性能损失小于1dB,因此存在较小相关系数时,STBC的性能损失较小;当相关系数为0.99时,性能损失大约为3dB,因此较大相关系数会使得STBC的性能恶化。

2 分层空时码V-BLAST及空间相关性影响

3 基于特征空间的MIMO技术及空间相关性影响

根据基于特征空间的MIMO算法,可知系统的频谱效率为。由此课间,信道互相关矩阵的特征值是影响信道容量和频谱效率的重要因素,二空间相关性影响特征值的经验分布。仿真试验中假设发送天线数和接收天线数分别为4,且分别呈均匀直线排列,设发送相邻天线和接收相邻天线之间的相关数相同,即。空间相关性影响信道互相关矩阵的特征值分布。当空间相关性较强时,只存在较少的可利用的特征子信道,进而影响信道的频谱效率,信道容量随着空间相关性的增强而降低。

4 小结

上述多种多天线技术都有较为优越的性能,但是在译码复杂度、最适于何种信道、对天线的要求又有所不同。总之,多天线技术可以有效地抵抗衰落的影响,克服功率和容量极限。不同的多天线技术适用于不同的通信系统,从发展的趋势来看,可以将上述多种多天线技术有效地结合以适用多种需求。

参考文献

[1]吕波.MIMO空间相关性近似算法及性能研究[D].南京信息工程大学硕士论文,2011.

[2]张平,陶小峰,王卫东,雷鸣.空时码.电子学报,2000,28(11A):110-113.

[3]温沛霖.高速铁路移动环境下MIMO信道预测与预处理技术研究[D].西南交通大学硕士学位论文,2012年.

[4]薛辉.无线MIMO系统中空时编码技术研究[D].西安科技大学硕士学位论文,2010年.

[5]缪丹,卢晓文,谢显中.第三代移动通信中的空时编码技术[J].无线电通信技术,2004年01期.

[6]韦忠义,杨绿溪.空时编码与MIMO-OFDM系统的结合研究[J].大众科技,2005年08期.

篇(6)

中图分类号:TP391.44 文献标识码:A 文章编号:1674-7712 (2013) 24-0000-01

一、RFID标签天线

RFID是无线射频识别技术,也叫做电子标签。RFID标签天线是一种通信的感应天线,能够利用射频识别技术自动识别特定的对象[1]。电子标签目前已经被广泛应用在现代人们生活的方方面面。本论文通过对远程宠物管理系统这一项目的介绍,来简要分析对适用于多种环境的RFID标签天线的研究。

二、环境对RFID标签天线的影响

在应用的过程中,都要将RFID标签放到需要识别的物体上。在设计和使用的过程中,一定要考虑实际情况,因为读写器与标签之间还可能隔着包装等。

同时我们还应该意识到,天线的性能也会受到环境等因素的影响。天线周围有水和金属时,这种影响会十分明显。本论文设计的RFID标签天线是一个远程宠物管理系统,经实际验证,这个RFID标签天线能够适用于多种环境。

三、远程宠物管理系统总体描述

(一)主要组成部分

本论文所设计的远程宠物管理系统,采用了最新的双频识别技术,实现了对宠物的远程管理,系统主要由远程宠物电子身份证、远程宠物电子身份识别器、手持PDA读写器和中心服务器四个部分组成。四个部分的具体介绍如下:(1)远程宠物电子身份证:采用2.4~2.5GHz与13.56MHz波段,可存储大量信息,低功耗、低辐射,对宠物健康无负面影响。(2)远程宠物电子身份识别器:识别距离可在50米范围内调节,可穿透障碍物识别宠物电子身份证;(3)手持PDA读写器:基于PDA直接对宠物电子身份证进行识别,手持PDA读写器与PDA之间可通过蓝牙、串口、CF口相连;(4)中心服务器:手持PDA读写器与中心服务器通过蓝牙、无线局域网或GPRS相连。

远程宠物管理系统的产品式样主要分为两种:手持PDA识别器和远程电子身份证。

(二)主要功能

本论文的远程宠物管理系统的主要功能有:(1)宠物电子身份证的远距离识别和读写;(2)宠物定位和搜索;(3)信息公告和;(4)丢失宠物查找。

(三)主要性能指标

(1)宠物识别距离不低于50米;(2)宠物移动速度不大于80公里/小时时,对宠物识别没有影响;(3)同时识别的最大宠物数量,不小于300只;(4)电子身份证发射功率小于-3db;(5)识别器的识别速度,不低于300个/秒;(6)宠物电子身份证的功耗小于0.3mW,普通纽扣电池的使用寿命大于2年。

四、远程宠物管理系统技术原理

宠物电子身份证使用了128个频道、2.4G到2.5GHzISM的微波段,频道带宽13.56MHz以及8MHz的双频识别技术,每张宠物电子身份证的ID号全球唯一,并可存储主人、地址、电话、出生日期、防疫信息、图片等大量信息。同时宠物电子身份证可远程加密读写。

远程宠物身份识别器可远距离穿透障碍物搜寻、定位宠物,当宠物防疫过期或为失踪宠物,远程身份识别器可发出报警音和振动提醒,并锁定宠物。

手持PDA读写器可和PDA通过蓝牙、串口、CF口相联,实时读取宠物信息,并发送到PDA上显示,手持PDA读写器可通过蓝牙、无线局域网、GPRS和中心数据库联接,获取最新的宠物信息。中心服务器为数据库服务系统,可以对宠物的相应信息进行查询。

五、项目创新内容

(一)应用创新

目前,对宠物的身份识别主要通过传统犬牌、二维条码、植入式芯片这三种方式。

传统犬牌容易伪造,通过人眼近距离识别,已基本上被淘汰;二维条码较难伪造,但识别距离只有几个厘米,识别时必须抓住宠物,识别效率低;植入式芯片是目前最新出现的宠物识别技术,植入式芯片无法伪造,识别距离可达到几十厘米。但植入式芯片也存在以下两个缺陷:(1)识别距离短,无法在户外识别屋内的宠物;(2)植入方式对宠物存在一定健康影响,许多宠物主人无法接受。

采用双频识别技术的远程宠物管理系统,有很多优势:(1)无法伪造;(2)可远距离穿透障碍物识别,识别距离可在50米范围内调节,可户外对屋内宠物进行身份识别;(3)可授权读写,可根据宠物的状况对识别体进行读写,存储最新的宠物信息;(4)对宠物健康无负面影响;(5)识别速度快,每秒可识别300只宠物,无需抓住、靠近宠物;(6)产品已通过浙江省计量科学研究院检测,相关技术指标满足全部要求。

(二)结构创新

电子犬牌结构小,可悬挂于宠物上,质量轻,对宠物无负面影响,具有卡通、精灵、宠物等多种造型。

六、项目技术开发可行性

(一)项目技术发展现状

本项目涉及的核心技术包括:2.4G~2.5GHz射频识别技术,13.56MHz射频识别技术。下面对目前这些相关技术的研究、开况做如下的简要介绍。(1)2.4G~2.5GHz射频识别技术。2.4G~2.5GHzISM频段是使用最多的短距离无线通信频段,基于该频段的短距离无线通信技术已经比较成熟[2],具有公认的标准和产品,如ZigBee、Wi-Fi、蓝牙、无线USB、无线局域网等。(2)13.56MHz射频识别技术。基于13.56MHz射频识别技术的无线标准有NFC,ISO15693等。主要产品有Philips公司的RC500芯片,Melexis公司的MLX12115等。

七、结束语

本论文简要介绍了远程宠物管理系统,从中我们可以看出RFID标签天线能够适用于多种环境。RFID标签天线技术有着非常广阔的发展前景。

篇(7)

随着月球探测等深空探测工程的启动与成功实施,拉开了我国深空探测的篇章。深空远距离的通信与导航定轨对深空网天线的性能提出新的要求。美国深空网(DSN)也明确指明了研究方向:采用射频频段的多天线组阵系统,天线组阵系统的一个研究重点就是天线之间的相对时间延迟估计。在较低信噪比下,它的准确与否直接关系到输出信号的合成效率。

将多个天线划分为多个天线对,接着利用传统时延估计方法对各天线对间的时延进行估计,之后利用天线间的几何关系对各天线对估计的时延进行融合处理得到融合后的时延估计。此类多天线时延估计方法中最为典型的方法:互功率相位谱系数相加方法。

1 系统模型与基本互相关算法

在被动时间延迟估计问题中,通常假定信号在信道中是以无色散球面波传播的。为了便于分析和处理,常常将信导源和接收器考虑在同一平面内,将三维空间简化为二维空间。在二维空间中,球面波退化为平面波。接收天线阵与目标深空航天器百万千米的距离相比,则可认为目标航天器发出的遥测信号是以平面波方式传播到接收天线阵的。

考虑如图1所示的多天线系统,其中多天线系统由L+1个天线组成,所有天线的几何位置关系已知,各天线的接收信号可以表示为xl[n],l=0,1,…,L;不失一般性,以第0个天线作为时延估计的基准。

信号模型可以表示为(1)

其中,s[n]表示未知的源信号,αl表示各个天线的衰减因子,τ表示第l个天线相对于第0个天线的时延,fl(τ)表示第l个天线相对于第0个天线的时延,xl[n]表示第l个天线的接收信号,wl[n]表示第l个天线的噪声,l=0,1,…,L。

结合信号数据级融合思路,将基于双天线的时延估计方法推广到多天线信号的联合时延估计。构造除基准天线外所有天线的融合信号x[n],则

(2)

鉴于基本互相关函数思想,为了理论分析方便,假设各天线衰减系数αl=1。基准信号x0[n] 与各天线融合后信号x[n]的互相关函数。

(3)

由互相关函数特性可化简为

(4)

则由自相关函数性质可知,自相关函数 在m=τ,f2(τ),…,fl(τ)处会出现峰值点,而这些峰值点对应的就是个天线相对于基准天线的时延值。

为了提高估计精度,可以在信号互相关运算前进行加权处理,使得基本互相关法变为广义相关法,来求得多天线的相对整数时延。互功率谱法就是互相关法在频域的表现形式,两者是等价的,故亦可以用在多天线信号联合时延估计。

2 多天线互功率谱法的算法分析

因为互功率相位谱稳健,计算简洁,在时延估计中得到了广泛的应用。互功率相位谱系数可以表示为

(5)

其中,si(n)和sj(n)表示第i根天线和第 j根天线接收到的信号,n和k都为时间索引。第i根天线和第j根天线之间的相对时延估计可以表示为

(6)

互功率相位谱系数相加方法就是将所有天线对计算所得的互功率相位谱系数直接相加,得到融合后的互功率相位谱系数,可以表示为

(7)

得到融合后的互功率相位谱系数后,即可以利用它估计时延,可以表示为

(8)

3 仿真分析

仿真条件说明:N个线阵等距布置,观测信号为射电星信号(高斯白噪声),只考虑整数时延。

图2为多天线信号在基本互相关法与广义互相关法时延估计结果。仿真实验中选取了6路天线信号在信噪比为-2dB进行实验。仿真结果显示通过搜索各个谱峰,就可以得到5路天线相对于参考天线的相对时延。其中广义相关法采用最大似然函数加权,通过加权的算法可以看出主谱峰突出,旁瓣相对幅度减小,算法性能明显提升。

图3示出了互功率相位谱系数相加方法在积分符号为1000情况下正确估计时延的概率(1000次蒙特卡洛仿真实验统计得到);其中,红线表示各天线对互功率相位谱系数相加后正确估计时延的概率(35个天线对互功率相位谱系数相加),蓝线表示各个天线对正确估计时延的概率。

从图2中可以看出,融合后正确估计时延的概率明显高于单个天线对;当信噪比为-15dB时,采用35个天线对互功率相位谱系数相加方法正确估计时延的概率大于0.8,而此时单个天线对正确估计时延的概率非常小。

图3示出了互功率相位谱系数相加方法在积分符号为1000情况下时延估计的均方根误差(1000次蒙特卡洛仿真实验统计得到);其中,红线表示各天线对互功率相位谱系数相加后时延估计的均方根误差(35个天线对互功率相位谱系数相加),蓝线表示各个天线对时延估计的均方根误差。

从图2中可以看出,融合后时延估计均方根误差明显低于单个天线对。

在信噪比为-20dB情况下,各天线对互功率相位谱系数相加后时延估计的误差分布情况如图5所示(1000次蒙特卡洛仿真实验统计得到)。

从图5中可以看出,在该仿真环境下,互功率相位谱系数相加方法得到的时延估计误差(错误估计情况下)近似呈均匀分布。

4 结束语

多天线时延估计方法首先将多个天线划分为多个天线对,接着利用传统时延估计方法对各天线对间的时延进行估计,之后利用天线间的几何关系对各天线对估计的时延进行融合处理得到融合后的时延估计(可以理解为数据级融合处理)。相比于单个天线对,性能改善也较明显;另外,多天线时延估计方法能够方便地与现有天线组阵系统相融合以改善时延估计精度。

参考文献

[1]ROGSTAD D,Mileant A,Pham T.Antenna Arraying Techniques in the Deep Space Network[M].Hoboken:AJohn Wiley&Sons,lnc,2003.

[2]陈彩莲.随机分布多天线组阵的关键技术研究与实现[D].信息工程大学硕士学位论文,2009,17-23.

[3]李雪梅,陶然,王越. 时延估计技术研究[J].雷达科学与技术,2010,8(4):362-371.

[4]王宏禹,邱天爽.自适应噪声抵消与时间延迟估计[M],大连理工大学出版社,大连,1999.

[5]黎英云.微弱多径信号时延估计技术研究[D],华中科技大学博士学位论文,2009.

[6]沈智翔.多天线信号合成关键技术研究[D],信息工程大学硕士学位论文,2010.

[7]金留念.基于二次相关的时延估计方法研究[J].电子信息对抗技术,2011,26(1):39-42.

作者简介

篇(8)

1 引言

XLPE电缆线路在城市供电电网中占有极其重要的地位。X LPE 电缆的安全运行对整个电力系统的稳定至关重要,一旦发生故障,将引起所辖地区重大的停电事故,造成较大的经济和社会影响[1]。而局部放电是电缆绝缘故障早期的主要表现形式,它既是引起绝缘劣化的主要原因之一,又是表征绝缘状况的主要特征量。对电缆局部放电进行检测是定量分析绝缘劣化程度的有效方法之一[2]。

电缆局部放电检测是诊断XLPE电缆早期故障的有效方法。局部放电的检测方法主要包括声测法、温度测量法等非电气测量法和差分法、电磁耦合法、电容耦合法、方向耦合传感器及超高频法等电气测量法。超高频法是近年来发展起来的一项新技术,其原理是利用装设的天线传感器接收由电缆局放陡脉冲所激发并传播的超高频电磁波来检测局放信号。它的主要优点有:抗低频干扰能力强,能对局放源进行定位,根据所测信号的频谱,可以区分不同的缺陷类型,同时可进行长期现场监测,灵敏度能满足工程要求[3]。超高频法采用的传感器大致分为内置型和外置型两类。内置型传感器可以获得较高的灵敏度,但是对制作安装的要求较高,最常用的就是电容耦合传感器。外置型传感器的灵敏度较内置的差些,但是安装灵活,不影响设备的运行,安全性高,最常用的是天线传感器[4,5]。当电缆发生局部放电时,在超高频段有丰富的频率分量,而宽带平面螺旋天线是检测超高频局部放电信号非常有效的传感器。由此本文通过对阿基米德螺旋天线和对数螺旋天线两种平面螺旋天线进行对比,制作了一种工作频带在400MHZ~1GHZ的阿基米德螺旋天线,利用高频电磁仿真软件Ansoft HFSS对对数螺旋天线和阿基米德螺旋天线进行了仿真和分析,仿真结果表明两种天线在400MHZ~1GHZ有效工作频带内,都具有较高的灵敏度和优越的性能,满足各项性能指标的要求。

2平面螺旋天线的设计

2.1 天线的性能要求

为了使天线较准确的采集到XLPE电缆发生局部放电时所激发的电磁波信号,必须满足以下要求:

(l)可以较好的接收信号并且能抑制现场干扰信号;

(2)带宽和中心频率要合适,结构简单,尺寸小,便于使用和安装;

(3)电压驻波比小于2,并且具有较高的增益和灵敏度,易于实现阻抗匹配[6]。

2.2 天线的设计

2.2.1等角螺旋天线

等角螺旋天线是一种频率无关天线,天线的形状由具有一公共轴和相同参数的等角螺旋线构成。天线具有由平衡馈电线馈电的两个臂,螺旋线的等角臂形成在同一平面上。天线表面非导电介质部分的形状和尺寸与螺旋等角臂的形状和尺寸全等。一般情况下该天线需视其对工作带宽的要求,用 1.5~3 匝做成[7]。螺旋线的极坐标表达式为:

(1)

为螺旋线矢径;为极坐标中的旋转角;为时的起始半径;为螺旋率,它决定着螺旋张开的快慢。

天线的最低工作频率和最高工作频率可以按下式计算:

(2) 其中为螺旋臂起始点到原点的距离,为螺旋臂末端到原点的距离,为上限工作频率对应的波长,为下限工作频率对应的波长。

用Ansoft HFSS软件做出的天线辐射面如图1。对数螺旋天线的各个尺寸为:,,匝数=1.5,。

2.2.2阿基米德螺旋天线

平面阿基米德天线螺旋线的方程为:。其中为曲线上任意一点到极坐标原点的距离,为方位角,为起始角,为螺旋线起始点到原点的距离,为常数,称为螺旋增长率。该天线的参数计算方法如下:

式中为天线外径,为天线内径,为上限工作频率对应的波长,为下限工作频率对应的波长。愈小螺旋线的曲率半径愈小。在外径相同的条件下,螺旋线总长度越大,终端效应越小,波段持性较好。但太小,圈数太多,传输损耗就会加大,通常取每臂大约20圈。螺旋线宽度大一些,其输入阻抗就低一些。自补结构输入阻抗理论值,实际结构输入阻抗约为左右。若螺旋线宽度大于间隙宽度,则可降低输入阻抗[8]。

用Ansoft HFSS软件做出的天线辐射面如图2。阿基米德螺旋天线的各个尺寸为:,,匝数=22.8,。

2.2.3巴伦的设计

平面螺旋天线是平衡对称结构,其馈电方式为平衡馈电。天线传输线采用同轴电缆,然而同轴线虽然属于超宽带馈电线,并且具有良好的宽频带特性,但是其馈电方式为非平衡馈电,因此需要增加平衡馈电到非平衡馈电的转换装置即巴伦。巴伦一般分为同轴线巴伦、双面微带线巴伦、共面微带线巴伦、三线巴伦和Marchand巴伦五种。本文采用指数渐变线式的平行双线微带巴伦,以此来满足宽带平面螺旋天线对于宽带、平衡馈电的要求。所谓平行双线分别指微带线和其对应的地板,当微带线的地板同微带线本身都应用指数渐变,且变换至同样的宽度时,就由初始端的非平衡馈电变成了平衡的平行双线馈电结构,并且在此变换过程中实现了阻抗变换,因此这种指数渐变线结构巴伦就实现了阻抗匹配和非平衡到平衡的变换[9]。

该巴伦分为正反两面,双面均为微带渐变线。始端宽度不同,接同轴电缆,终端宽度渐变到相等,接天线双臂。平行双线渐变线巴伦结构图如图3所示。

由于平面阿基米德螺旋天线的输入阻抗为,所以在工作频带内由输入端的变为输出端的。其非平衡端

线宽可按微带线宽计算,[10]。根据唯一性定理和镜像原理,其特性阻抗约为同样宽度的微带线端口阻抗的2倍,根据上述计算方法,可得巴伦的各项参数为,,,[11]。

3 仿真结果

据XLPE电缆局部放电的特性,高频电磁仿真软件Ansoft HFSS对对数螺旋天线和阿基米德螺旋天线进行了仿真和分析。如下进行详细的分析。

天线的介质基板选取的是环氧树脂板,它的介电常数,介质基板的厚度。

3.1驻波比

电压驻波比系数VSWR通常用来表征天线与馈线的匹配情况,计算公式为:,其中:为反射损耗的反射系数。它与传输特性阻抗的关系为:

,式中:为天线的输入阻抗;为传输特性阻抗。对数螺旋天线电压驻波比如图4所示,阿基米德螺旋天线电压驻波比如图5所示。

3.2增益

天线增益是综合衡量天线能量和方向特性的参数,通常以天线在最大辐射方向上的增益作为天线的增益,以天线在最大辐射方向的方向系数作为这一天线的方向性系数。天线在某方向的增益G是它在该方向的

辐射强度同天线以同一输入功率向空间均

匀辐射的辐射强度之比,即:

式中:U为天线在某方向的辐射强度;为输入功率[12]。阿基米德螺旋天线的三维增益方向图如图6所示,对数螺旋天线的三维增益方向图如图7所示:

由仿真结果分析可知,阿基米德螺旋天线具有较小的尺寸、较大的增益、结构简单的优点,并且便于安装使用。因此本设计采用阿基米德螺旋结构做出了天线实物,并进行了现场测试,天线仿真图图8和实物图图9如下:

4 结语

根据XLPE电缆局部放电的特性,高频电磁仿真软件Ansoft HFSS对对数螺旋天线和阿基米德螺旋天线进行了仿真和分析,仿真结果表明两种天线在400MHZ~1GHZ有效工作频带内,都具有较高的灵敏度和优越的性能,能够满足各项性能指标的要求,并且设计了适合于XLPE电缆局放检测的超高频天线,天线中心频率为700MHZ,天线在Z轴正方向具有最大增益值。

设计采用平行双线渐变线巴伦经50同轴电缆馈电,天线具有超宽频带特性,经仿真和测量,在整个有效带400MHZ~1GHZ内电压驻波比小于2, 并且具有较高的增益和灵敏度,可以较好的接收信号并且能抑制现场干扰信号,易于实现阻抗匹配,测试达到了要求。

阿基米德螺旋天线具有较小的尺寸、较大的增益、结构简单的优点,被用来检测XLPE电缆局部放电的超高频信号,此天线具有便于对电缆局放进行非接触检测,其具有较高的灵敏度和良好的方向性,能够满足各项性能指标的要求,同时还可以隔离工频信号和避免空间电晕以及周期性脉冲信号的干扰。

参考文献:

[1] 苏文群,张丽,钱勇 等.XLPE电缆局放检测技术及其应用[J].华东电力.2011,4:0644

[2] 唐矩,李伟,杨浩 等.高压电缆附件局部放电超高频检测与分析[J].电压技术,2009, 35(7): 1571-1577.

[3] 付婷婷.电缆附件局部放电监测超高频传感器电磁特性仿真及设计:湖南大学硕士学位论文,湖南:湖南大学,2010,4-8.

[4] 邓志勇.电缆附件局放内置传感器与超高频检测的研究:重庆大学硕士论文,重庆:重庆大学,2008,3-7.

[5] 胡凯 等.高频传感器检测电缆附件局部放电的研究进展[J].传感器与微系统.2010,4:1.

[6] 丁斐.宽频带圆极化天线和锥台共形阵天线的研究:西安电子科技大学硕士论文,西安:西安电子科技大学,2012,22-25.

[7]王星.多频及宽带圆极化天线的研究与设计:北京交通大学硕士论文.北京:北京交通大学,2012,34-37.

[8] Hofer D.,TriPP V.K.,A low-Profile broadband balun feed [J] .Atenna and

篇(9)

 

0引言

随着现代多媒体技术的发展,以及笔记本电脑、掌上型、膝上型电脑等便携式终端设备的广泛使用,学校师生对无线上网需求越来越高,希望利用移动式、便携式的上网设备实现数据通信、信息资源检索、远程教学、移动办公、移动会议、移动学习等活动,校园无线局域网为之提供了可能。因此,组建校园无线局域网能更有效的促进高校现代化教学。

1高校有线局域网现状及问题分析

近年来,信息技术的发展日新月异,正以不可抗拒的力量改变着人们的生产方式、生活方式,同时也正在影响并改变着学校的管理模式、教学模式乃至师生的学习方式,校园网(有线局域网)在教学、科研和管理上发挥了巨大的作用。但是,有线网络也存在一定的局限性:

(1)网络组建受布线的限制。在校园有线网络建设、运行和维护的实践过程中,由于众多高校的校园网大多是通过光纤、网线连接起来的“有线网”,有线网络在某些场合要受到布线的限制,例如:已装修好的住宅、图书馆、校园中具有历史意义怕受破坏的古迹及年久失修的历史建筑不适合钻孔布线,不便施工的报告厅、操场、展览会馆等。

(2)不方便移动办公。诸如很多学校只在部分区域接入有线网络,而无法顾及所有区域,有线网络的接入点比较固定,网中的各节点不可移动,而且接口数量也有限,布线、改线工程量大,线路容易损坏等等。因此,移动设备接入网络很不方便,移动办公受到很大限制。免费论文,高校校园网。

(3)难以满足日益变化发展的校园格局。现阶段高校有一个显著的特点就是建立分校区,校本部与分校区之间的网络传输媒介主要依赖铜缆或光缆构成有线局域网。当要把相离较远的节点连接起来时,架设专用通信线路的布线施工难度大、费用高、耗时长,因此,对正在迅速扩大的联网需求形成了严重的瓶颈阻塞。

2无线局域网概述

无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下, 提供以太网互联功能。无线网络设备特点:

(1)无线网卡:无线局域网中无线网卡是操作系统与无线产品之间的接口,用来创建透明的网络连接,其作用与有线网卡类似。无线网卡按照其接口类型的不同,主要有三种:PCMCIA无线网卡(适用于笔记本电脑,支持热插拔)、PCI无线网卡(适用于台式机)和USB无线网卡(适用于笔记本电脑和台式机,支持热插拔),它们都用于短距离无线网络设备之间的通信。

(2)无线基站AP(Access Point):无线接入AP 是一个无线子网的基站,它在无线局域网和有线网络之间接收、缓冲、存储和传输数据,是支持一组无线用户入网的设备。免费论文,高校校园网。AP作为无线子网中的核心设备是必不可少的,同时也是WLAN 和LAN 之间的桥接设备,WLAN工作站也可漫游(Roaming)在不同的AP之间,无线访问接入AP通常通过以太网线连接到有线网络上,并通过天线与无线设备进行通信,其作用半径取决于天线的方向和增益(若不加外接天线, AP的覆盖范围理论上在视野所及之处约230m,但若在半开放性空间,或有间隔的区域,则约20~30m左右,由于微波是直线传播,所以微波都是小角度穿透几面墙体, 墙体将减弱信号, 如果墙体为钢筋混凝土,信号则会更弱。所以在实际情况下,尤其在室外还需要加上外接增益天线,使传输距离到达更远、信号更强)。

(3)无线路由器(Wireless Router):无线路由器是典型的网络层设备,是两个局域网之间传输数据包的中介系统,负责完成网络层中继或第三层中继任务。近年来,为了提高无线通信的能力和效率,不少无线路由设备整合了交换机和防火墙的功能。

(4)校园无线局域网可提供常规的Web服务、ftp服务、E-mail服务、拨号服务、服务、图书馆电子借阅等多种服务,还可以根据各高校特点,开通国际著名电子期刊浏览、移动办公系统、移动BBS讨论系统、移动答疑系统、移动新闻系统、移动教室管理系统、MIS等多种服务。学校应该进一步完善无线局域网软硬件的建设,以此来进一步推进数字化校园建设。

3校园无线网络终端配置

3.1无线接入器的配置

网络的物理连接就是一根网线接入AP作为信息的入口,在无线上网的计算机上安装好无线网卡,通过AP 和无线网卡之间的无线电信号接受信息,网络物理连接后就是具体参数的设置,也就是无线网络终端配置的关键。这主要涉及两个方面:

(1)首先要设置一台能配置AP参数的计算机,将一根网线一头接入AP ,而将另一头接入用于配置AP参数的计算机,同时还要保证这台计算机的IP地址和需要设置的AP在同一网段,以保证直接通信;

(2)进入Web 配置界面后会看到AP的运行状态、无线设置、TCP/IP设置、流量统计、软件升级、保存加载设置和修改密码等选项,因此只需要对TCP/IP的IP 地址、子网掩码、默认网关和DHCP客户端等参数进行设置,这些参数基本和有线网络的设置一样。若考虑到网络安全性,就要在无线设置中选择安全设置,使用WEP加密模式可以阻止无线网络所有非经授权的访问,AP经过这一序列设置后,就可把信号源的网线接入AP。

3.2无线网卡的配置

在安装无线网卡的计算机或笔记本电脑上安装好驱动程序后,就会出现和普通网卡一样的网络属性,如果其网络属性和有线网络状况下不一样,就可能是驱动程序安装不正确造成的,就要检查驱动程序是否正确,无线网卡的配置与当前网络的参数和AP的DHCP 配置有关,即当AP的DHCP 设为Disabled时,无线网卡的IP地址、子网掩码、默认网关和DNS都必须作相应设置。如AP设置为192.168.1.1,则无线网卡的IP 地址就为192.168.1.x(x为2-254 之间一个地址,但不能和网络中已经分配的地址重复),子网掩码就为255.255.255.0,默认网关就为192.168.1.1,DNS设置就为222.172.200.x(学校的DNS服务器)。

4校园无线局域网的构建

4.1无线校园网构建方法

一是阀值法。通过调整AP的阀值设置,控制AP接入覆盖范围,从而在相同覆盖面积条件下,通过增加AP数量,提高系统容量;

二是频率复用。学校人群主要由管理人员、教师、科研人员和大量学生构成,以上人群工作和学习主要分布在以下区域:教学楼、图书馆、办公楼、实验研究楼、学生宿舍、运动场以及校内各类休闲活动场地(草坪、广场等)。因此,在同一覆盖范围内的多个AP利用802.11g协议规定的13个可用信道中相互干扰最小信道进行设计,客户端无线网卡根据各AP信号强度,选择不同信道工作,从而提高系统容量。

4.2室内无线网

室内:指原先没有安装有线网络的教室、会议室、临时移动办公室等。

设备的选择:室内AP(WST-330)、全向天线、吸顶天线。免费论文,高校校园网。在室内部署WLAN的第一步是要确定AP的数量和位置,也就是要将多个AP形成的各自的无线信号覆盖区域进行交叉覆盖,各覆盖区域之间无缝连接。所有AP通过双绞线与有线骨干网络相连,形成以有线网络为基础,无线覆盖为延伸的大面积服务区域,所有无线终端通过就近的AP接入网络,访问整个网络资源。免费论文,高校校园网。覆盖区的间隙会导致在这些区域内无法连通,技术人员可以通过地点调查来确定AP的位置和数量。地点调查可以权衡实际环境(如教室的面积等)和用户需求,考虑到教学环境对网络带宽、网络速度的要求, 这包括覆盖频率、信道使用和吞吐量需求等。多个AP通过线缆连接在有线网络上,使无线终端能够访问网络的各个部分。免费论文,高校校园网。

通常情况下,一个AP最多可以支持多达80台计算机的接入,数量为20~30台时工作站的工作状态最佳,AP的典型室内覆盖范围是30~100m,根据教室和会议厅的大小,可配置1个或多个无线接入器。针对不同区域无线校园网覆盖方案有所不同:

①教学楼主要为教室,是学生和教师主要活动场所。教室的结构是完整的整体空间,在每个教室根据面积和容纳人数设置一个或多个AP,从而使信号覆盖教室各角落。

②图书馆内多为宽敞、高大空间,适于无线局域网实现网络的覆盖,使用设备少,覆盖率高,可根据室内面积和估计容量布置AP。

③办公楼、实验研究楼和宿舍楼通常是在走廊放置若干AP,让无线信号覆盖各房间;也可通过室外无线覆盖法,在楼外架设AP和增益天线,透过窗户让网络覆盖各宿舍,相对而言通过室外构建网络成本较低,且可以兼顾宿舍周边地带无线上网需要。免费论文,高校校园网。室内拓扑结构如图1所示:

 

图1 室内WLAN拓扑结构

4.3室外无线网

室外:指校园操场及其他室外公共场所等。

设备的选择:高功率无线AP(WST-400)、无线全向天线、无线定向天线。全向天线:在所有水平方位上信号的发射和接收都相等。定向天线:在一个方向上发射和接收大部分的信号。室外考虑因素与教室、会议室不同,在校园区室外配置无线接入点要复杂一些,要把各自成一个局域网而又有一定距离的各栋楼房连接起来。在网络的每一端接入AP,并在距离远或信号弱的地方同时外接高增益天线,就可以实现有效距离内两个网段之间的互连。例如:在图书馆楼顶架设一个全向室外天线和一个室外定向天线。全向天线覆盖校园各教学楼和操场;在教学楼上架设定向天线,将信号传递给理学楼A;理学楼A上也要架设定向天线,将信号传递给理学楼B;在理学楼B上架设全向天线可以将无线信号覆盖草坪, 同时也可以将信号传递给理学楼C。其他实验楼、体教楼依此类推。具体操作时,要根据实际情况(如各栋楼之间的实际距离以及障碍物等)来考虑选择设备(如设备型号、是否要加用全向、定向天线, 以及增减设备数量等)。在楼房上架设无线网络设备还需加装避雷器、防潮箱等辅助设备,以防止无线网络设备的损坏。

针对校园湖、体育场以及各类休闲区域一般多为室外空旷地带,可使用室外型AP配合功率放大器和大功率天线,以取得大面积网络覆盖。由于目前802.11g无线局域网自身的局限性,建筑的布局和结构基本决定了每个AP的覆盖范围。因此,在进行无线网络规划时,必须先对每个建筑物进行详细的信号强度测试,同时根据在AP间无线覆盖缝隙最小的条件下,尽量扩大AP间距的设计原则定位每个AP的位置。室外网络拓扑结构如图2所示:

 

图2 室外网络拓扑结构

4.4校园无线局域网安全设计

在安全方面,由于无线局域网中数据是以广播的形式传播的,容易被非法用户截获,给无线局域网用户带来损失。因此,就必须使用无线加密功能,对传输的数据进行加密。在无线局域网安全设计上,WLAN 技术提供了与有线网络等价的标准——专用(WEP)安全体系结构,并提供了128位的加密密钥。Cisco1100或1240系列无线AP采用了基于IEEE802.11g标准的集中安全体系结构。这种新安全体系结构利用Cisco Secure Access Control Server 2000 EAP型RADIUS(远程授权拨号接入用户服务)服务器软件,提供与网络登录集成的集中用户认证,用户提供学校授权的用户名和密码后,客户机将通过AP与放置于网络中心的RADIUS服务器交互确认信息,RADIUS 服务器对客户机进行认证后,将密钥发送给AP,借助这种基于标准的集中管理体系结构,无线网络安全才能够得到保证,并且可以满足不同等级信息安全的要求。

5结束语

校园无线局域网具有灵活性、低成本、移动方便、易安装等特点,随着无线技术的快速发展,无线局域网在技术上已经日渐成熟,应用日趋广泛,无线网络虽然还不能完全脱离有线网络,但无线网络已经成功服务于某些高校,以它的高速传输能力和灵活性日益发挥重要的作用,但无线局域网也存在数据可靠性、安全性、网络传输距离有限等问题,大学校园应大力进行校园无线局域网技术研究和实用化工作,有效弥补校园有线网络的不足,应用无线局域网技术最大限度地扩展延伸校园有线网络。

参考文献

[1]黎连夜.网络综合布线系统与施工[J].机械工业出版社,2003(1):42-44.

[2]吕兴军.高校无线局域网的规划与设计[J].徐州工程学院学报,2007(12):10-12.

[3]贾青,刘乃安.无线局域网中AP互通性的研究[J].电力系统通信,2005(4):16-17.

[4]王友贵,张春梅.无线局域网技术在校园中的应用[J].安庆师范学院学报(自然科学版),2003(1):17-19.

[5]王传喜.无线局域网技术在校园网中的应用[J].中国教育网络,2006(3):63-64.

[6]王执毅.校园无线局域网的建设[J].理工科研,2007(1):24-36.

[7]荣曼生,郭兆宏.校园无线网络的构建及其在教学中的应用[J].中国电化教育,2005(10):56-69.

[8]汤金松,安宝生.无线网络在教育系统中应用分析[J].中国远程教育,2003(19):60-62.

篇(10)

摘 要:文章以矿井瞬变电磁法的扇形观测系统在钱营孜煤矿西风井掘进巷道中的应用为例,分析了矿井瞬变电磁法在煤矿水文地质方面工作的作用,也阐述了扇形观测系统与常规的观测系统相比的优点。为矿井瞬变电磁方法的发展及在矿井水文地质工作中的推广做出了一定的贡献。

关键词 :矿井瞬变电磁;扇形观测系统;水文地质;数据采集

中图分类号:TD6文献标志码:A文章编号:1000-8772(2014)13-0203-01

1 矿井瞬变电磁法的基本原理

瞬变电磁法属时间域电磁感应方法。其探测原理是:在发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向回线法线方向传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程,该过渡过程又产生一个衰减的二次磁场向掌子面传播,由接收回线接收二次磁场,该二次磁场的变化将反映地质体的电性分布情况。如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。如果没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现导体的存在。瞬变电磁场在大地中主要以“烟圈“扩散形式传播,在这一过程中,电磁能量直接在导电介质中传播而消耗,由于趋肤效应,高频部分主要集中在地表附近,且其分布范围是源下面,较低频部分传播到深处,且分布范围逐渐扩大[1-8]。

2 井下观测系统布置

本次探测主要是探测巷道顺层前方、顶板、底板的富水性,所以在测点上共布置三个探测方向,一个是线圈平面方向是平行巷道掌子面朝法线方向探测,一个方向是斜上45°方向探测巷道倾顶板方向,一个是斜下45°方向探测巷道倾底板方向。西三轨道山上山巷道迎头立面较小,矿井瞬变电磁法的发射和接收线圈的几何尺寸受到的一定的制约。现场观测系统布置时只能采用多匝小回线的发射和接收装置形式,即边长为2m。测点布置在巷道迎头里面附近,从巷道迎头左侧开始,左右两侧各布置了3个测点,每个测点处在竖直方向上采集3组数据,依此为超前顶板、超前顺层、超前底板,其中顶板和顺层方向数据采集时天线法线方向约与迎头立面成45°,顺层方向天线与迎头立面垂直。本次探测是轨道迎头前方的电阻率变化情况,巷道设计在停头位置做相应的变化,即在水平面内旋转天线,使天线的法线方向与巷道的左侧分别成60°、30°、45°和90°的夹角进行探测。当天线的法线方向与巷道迎头界而垂直时,根据其主迎头断面的宽度布置4个测点;到巷道迎头右侧时类似左侧方法分别成90°、30°、45°和60°的夹角进行探测、右帮布置3个测点,从而实现从多个角度采集数据,称之为“扇形”测深系统技术。

3 结果解析及结论

由图1可见迎头前方的视电阻率剖面,从观测系统中可以看出,本次探测的所有测点均分布在巷道平面上,为重点解释区域;本次实际探测掘进巷道迎头前方100m,解释迎头前方80m,盲区20 m。针对前方探测结果解释如下:

(1)掌子面前方20-40m段范围内顶板、顺层与底板的视电阻率值较高,相对较高,该段岩性变化不大,不存在低阻异常;

(2)掌子面前方40-60m段范围内顶板、顺层与底板的视电阻率值均有所降低,与迎头相比电阻率存在变化,相比岩性有所变化,注意支护;

(3)60m-100m左右,视电阻率的结果跳跃较大,特别是巷道的左上方及前方,推测是存在构造或者是破碎带,掘进到此处时请注意支护与超前钻孔探放水,以探查引起视电阻率变化的地质原因;

参考文献:

[1] 武军杰.瞬变电磁新技术在隧道超前地质预报中的应用研究.[硕士论文] 长安大学,2005.

[2] 李志聃.煤田电法勘探.徐州:中国矿业大学出版社,1990.

[3] 郑永祥,郗金栋.矿井无线电透视法试验研究.煤田地质与勘探.1978.03:22-31.

[4] 何峰,蒋维庆.矿井音频电透视的应用.中国煤炭学会第六届青年科技学术研讨会论文集.2000.

[5] 于景邨.矿井瞬变电磁理论与应用技术研究.[博士学位论文] 中国矿业大学.1999.

[6] 岳建华,姜志海.矿井瞬变电磁探测与应用.能源技术与管理.2006(5).

篇(11)

1 MIMO技术的发展

多输入多输出技术的核心在于空间复用编码,空间复用系统中独立的数据流是由不同的天线在同一时间发送,信道容量直接因为发送天线的增加而线性增加。本论文主要讨论空间复用编码及其相关检波技术,具体比较了线性检测、非线性检测和树查找三种检波算法。

2 系统模型

通常的MIMO系统2×2、2×4或4×4的天线系统,一般设定Nr大于或等于Ns。这样做的目的是第i个数据流xi在第i根天线上发送时,接收到的信号向量r=Hx+n,这样Ns×1的发送数据流列向量右乘Nr×NS的信道传输矩阵H,加上Ns×1的信道噪音列向量。设定传送的数据系列x服从(0,σ2)的高斯分布,为了简化系统仿真中直接在接收端导入信道传输矩阵H,噪音为高斯白噪。

3 空间复用和检波技术

OFDM系统发展到今天,加入时空编码成为在不增加现有带宽基础上稳定提高传输速率的最好手段。包括线性递推法和树查找法的接收器检波技术实践中用来移除信道的干扰,恢复被频选信道干扰的信号的正交性等,但是其计算太繁琐。因此陆续的出现球形译码算法和QRD-M算法既继承了最大相似性算法的优势又减少了计算量,节约了处理芯片功耗。

3.1 ZF接收器

ZERO-FORCING接收器在接收天线数大于或等于发送天线数的条件下,使信号传输方程:

成立的向量解并不唯一,因此需要找最小方差的发送信号向量,利用微分找到最小方差值为:

从上面公式可以看出,在信号的解调基本是信道传输函数的线性运算,因此ZF接收器在信道情况良好的情况下就会非常方便和快捷,利用线性矩阵运算可以很简单地建立运算函数,如图1所示。

3.2 V-BLAST译码

虽然线性的接收器非常容易实现,但是因为增加了信道传输函数阶数且需要的信道良好条件在实际高楼密集的城市中很难实现,贝尔实验室在1996年提出了一种无线通信中多天线的空间结构,称为D-BLAST,进而在1998年,P. Wolniansky联合Goschini和 Golden在D-BLAST的时空编码中实现高传输率的垂直-BLAST,即V-BLAST,V-BLAST在信元调制中使其时空编码先正交,这样每次减少一个发送的信元的同时减少信道传输函数的阶数,即将最初的r×t,依次减少到r×1,也就是SIC算法。利用ZF或是MMSE矩阵来调制信元xi,从而使得接收信号在接收端通过ZF或是MMSE相同的矩阵运算后只留下xi的信号成分,从而提取出发送的信元xi,再将提取出的成分反馈回接收器线性元素之后,再重复步骤提取xi+1。

3.3 利用QR分解法分解信道矩阵

利用QR分解法将r×t的信道传输函数矩阵H分解为与转秩相逆的矩阵Q和上对角矩阵R,即QTQ=E,接收到的信号为:

基本所有的多输入多输出正交频分多路复用都会在检测算法中或多或少使用到QR分解法,当QR分解之后的信道响应不仅能保证信号的正交而且还能够简化信号的解调处理。因为信道的传输函数H分解为了上三角矩阵R,各信号分量矩阵间的相互关联也被简化为上三角矩阵中各信号单独的向量调制,从而简化接收端同步检测器的设计复杂度,如图2所示。

3.4 树搜索同步技术

最大似然法利用已知的模型来推导未知的参数,在MIMO-OFDM系统中使用的最大似然法利用树搜索,每一个搜索树节点作为信元的可能解码。下面将对两类常用的搜索树的优缺点继续比对

3.4.1 球形解码

MIMO接收端天线数量的增加会使算法的复杂度成指数增加,很难在大阵列和高调制数的情况下物理实现解码器。球形解码算法利用合理的译码半径R从而判定接收好译码的路径d,约束搜索半径R的公式一般写为:

球型解码器由前端运算部件和后面的树搜索部件构成。

5 结论

该论文中讨论了多输入多输出信道模型下的多个解码算法,通过MATLAB仿真软件讨论各算法下不同的信噪比和算法复杂度。通过MATLAB所生成的图形,我们可以明显看到因为零点逼近算法采用的放大滤波器在放大有效信号的同时也相应地放大了噪音信号,因此其在信噪比一定的情况下比其他算法所产生的误码率高。采用递推算法的垂直-BLAST解码算法对比零点逼近算法来说其误码率有所改进,但是其改进的地方在于采用了QR算法来分解信道矩阵,因此其对于零点逼近算法的改进基本取决于QR分解算法的阶数。最接近于最大近似算法的误码率,且比最大近似算法更为简单的球型算法作为现代MIMO-OFDM信道解码的主流算法存在很高的可操作性和理想的低误码率。

参考文献

[1]Bohnke,R.,D.Wubben,“BLAST结构的时空编码”,IEEE Tran.Vol.50,2003.

[2]G.Foschini,“多天线衰减环境下无线通信的时空结构层结构”,Bell Labs, Technical Journal 2,1996.

[3]P.Wolniansky,G.J.Foschini,G “V-BLAST”,URSI Inter-national Symposium on Signals,Systems and Electronics,1998.

[4]Gentle,J.E.,“QR分子”,1998.

[5]Vikalo,H.,B.Hassibi,“球型约束下频选信道的最大似然检波器”,IEEE vol.54 2006.

作者简介

推荐精选