绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇化学职称论文范文,希望它们能为您的写作提供参考和启发。
2板书与多媒体结合
我校制药工程专业生物化学课程在大学二年级上学期开设。此阶段专业基础课程多,知识量大,因此老师的授课方法和学生的学习效率显得尤为重要。生物化学课程知识比较庞杂,每节课的信息量非常大,加上课堂教学课时的减少,学生课下需要花费大量时间消化。因此,如何让学生高效地掌握每节课所讲内容显得至关重要,而框架式的板书配合多媒体教学可以较好地缓解这个矛盾,提高学生学习生物化学的效率。目前,生物化学课程多采用多媒体教学,这可在很大程度上提高教师的授课效率,使其在有限的时间讲解更多的内容,同时可借助插图和动画的生动性、直观性和形象性来帮助学生理解教学中的重点和难点[6]。我们在现有教材课件的基础上,利用平时积累的教学素材对课件内容、图表和动画进行了完善,使之更加条理清晰、有趣易懂。即使这样,学生仍反映生物化学课程内容庞杂,在有限的课堂和课外时间内学习起来还是有一定的困难。基于此,在课堂的教学过程中我都会运用板书把每章知识点框架式的总结出来,便于学生从宏观水平理解所学内容,知识点之间的逻辑关系一目了然,而不是零散的一个知识点一个知识点的来记忆。这样,庞杂的生物化学知识点对学生来说就会简洁明了不少,学习效率和学习兴趣会明显提高。此外,在多媒体教学过程中,为突出重点和难点,我都会在黑板上写出关键反应的步骤,这会引起学生特别的关注,督促他们做好笔记,更好地提高教学效果。
3理论与实践相结合
生物化学是一门专业基础课程,也是一门实践性很强的课程。为加深学生对生物化学知识点的理解,提高其动手实践能力,培养其在实践中分析问题和解决问题的能力,根据我校制药工程培养方案和学生的就业方向,编写了适合我校制药工程专业学生使用的实验指导手册。实验内容包括验证性的基础生化实验和综合性实验。此外,我们还开设了设计性实验,让学生通过查阅资料,自己设计实验方案,根据方案解决实际问题。这样的教学安排可激发学生的学习兴趣,进而提高他们解决实践问题的能力,为学生以后的进一步发展奠定坚实的基础。此外,在指导学生做生物化学实验的过程中,根据实验内容我通常会提出一些与专业有关的小问题,供他们思考。这样会促使他们边做实验边思考,有利于加深其对理论知识的理解和掌握[7]。为拓宽学生的视野,经学校同意,我们还向学生开放了生物化学和分子生物学实验室。结合教师承担的科研项目,鼓励学生按自己的兴趣选择导师,跟随导师做一些研究工作。优秀的学生可申请市教委或学校下达的针对本科生的一些科研项目,在导师的指导下进行科研实践工作。这样的政策在我院实行多年,生物化学和分子生物学实验室每年都会接收多名本科生进入实验室开展科研立项,这不但提高了学生的动手能力,培养了学生的创新意识,更重要的是提高了他们独立分析和解决问题的能力,进而激发了他们对生物医药的极大热情[8]。
4总结归纳,突出重点
生物化学课程知识点非常多,以重要的知识点为中心进行总结归纳既可帮助学生抓住重点,凝炼内容,提高其学习效率。如讲授完遗传信息传递及其调节相关内容后,从模板、原料、产物、合成方向、合成方式及参与反应有关的酶等方面列表比较复制、转录、翻译和逆转录的异同点。物质代谢调控部分,生化反应式太多,且各代谢途径相互交叉,学生学习起来往往感觉无从下手。讲授完该部分内容后总结归纳三羧酸循环、磷酸戊糖循环、柠檬酸-丙酮酸循环、鸟氨酸循环等代谢过程的相互联系和生理意义,使这部分内容更加清晰易学,利于沟通各部分知识点间的相互关系并引导学生系统地整理、掌握所学知识。笔者多年的教学效果显示总结归纳可显著提高学生的学习效率。总结归纳的意义在于把所学的知识系统化、条理化,便于理解记忆,更好地发挥学生的主体作用,并可有效克服传统平铺直叙讲授方式带来的枯燥乏味,有利于学习兴趣的培养。另外,为达到温故而知新的目的,在每次上课开始简短地回顾上次课的内容,然后开始讲述新内容,注意内容的自然过渡,每次课结束前将本节课的内容串联一遍,这样更益于学生巩固新学的内容。
花锚属植物全球约有八十余种,分布在北半球及南美,其中已进行有关植化研究的只有4种:Haleniacorniculata,H.elliptica,H.campanulata和H.asclepiadea。我国有该属植物两种,为花锚H.corniculata和椭圆叶花锚H.ellipiticaD.Don[1,2]。椭圆叶花锚(又名黑及草;藏语称“去合斗拉果玛”;蒙名为希赫日-地格达),是一年生或两年生草本植物[2],为龙胆科Gentianaceae花锚属HaleniaBorkh植物。主要分布于我国的、青海、四川、甘肃等地,生于海拔2500~4400m的林下或草原[3]。它性味苦寒,全草入药,为藏蒙药系统中治疗肝胆系统疾病的常用药物,现代医学验证其对治疗肝炎有疗效。以花锚为主药材研制、开发的治疗肝胆系统疾病的成品藏药,具有疗效稳定,效率高等特点,市场前景广阔。随着我国藏药事业的迅速发展,椭圆叶花锚的药用资源需求量快速增加,由于过度采挖,导致其野生植物资源日益枯竭。为了扩大花锚资源的有效利用,笔者对其近年来国内外研究者分离到的化学成分、有效活性成分及其药理活性和人工引种栽培技术、组织培养等方面的研究成果作一综述,为该植物的进一步研究和合理开发利用提供参考。
1化学成分
现代医学研究表明,花锚属植物的主要化学成分为(口山)酮及(口山)酮苷类、裂环烯醚萜类、三萜类、黄酮类以及一些生物碱类化合物等。
1.1(口山)酮及(口山)酮苷孙洪发等[4]从椭圆叶花锚中得到五种(口山)酮成分,分别为1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,5-二羟基-2,3,7-三甲氧基(口山)酮,1,2-二羟基-3,4,5-三甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮和1,7-二羟基-2,3-二甲氧基(口山)酮。
孙洪发等[5]又从椭圆叶花锚中得到3种(口山)酮苷成分,分别为1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮,1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5-三甲氧基(口山)酮和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,4,5-四甲氧基(口山)酮。其中1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮(花锚苷)和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,5-三甲氧基(口山)酮(去甲氧基花锚苷)为该属植物抗肝炎的两种有效成分。
张德等[6]采用元素分析(EA)、核磁共振波谱(NMR)、质谱(MS)、红外光谱(IR)、紫外光谱(UV)、差示扫描量热(DSC)等分析方法首次从藏药花锚中分离得到两种针状结晶化合物,分别为1-羟基-3,7,8-三甲氧基(口山)酮(1-hydroxy-3,7,8-trimethoxyxanthone)和1,7-二羟基-3,8-二甲氧基((口山))酮(1,7-dihydroxy-3,8-dimethoxyxanthone)。
高洁等[7]从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,分别为1,7-二羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,7-四甲氧基(口山)酮,1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,7-二羟基-2,3-二甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮,1-羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,5-四甲氧基(口山)酮和1-羟基-2,3,5,7-四甲氧基(口山)酮。
1.2其它成分Rodrigaez等[8]从花锚中分离得到了一种的黄酮类葡萄糖苷;高光跃等[9]从椭圆叶花锚全草中测出含有獐牙菜苦苷和当药苷;Dhasmana等[10]从椭圆叶花锚全草中分离得到齐墩果酸和谷甾醇葡萄糖苷;Rodrigaez等[11]从花锚中分离得到了一种二糖酯裂环烯醚萜。
2药理活性
花锚为藏蒙药中治疗肝胆系统疾病的常用药物,其主要分布于我国的、青海、四川、甘肃等地藏民族地区,目前对花锚药理活性的研究报道较少,有待进一步深入研究。
2.1保肝降酶作用张经明等[12]采用花锚煎剂(含花锚苷)对CCl4造成的肝损伤模型的研究表明,花锚苷可明显增加核糖核酸;药理实验证明,花锚中的花锚苷和去甲氧基花锚苷具有明显的保肝作用,可增加核糖核酸,增加肝糖元,促进蛋白质的合成,促进肝细胞的再生,加速坏死组织的修复,是该植物抗肝炎的主要有效成分。周富强[13]通过不同剂量西宁花锚对CCl4实验性肝损伤后肝糖元的含量的研究,发现西宁花锚对CCl4损伤后小鼠肝糖元的储存的恢复有一定的药效,可显著提高肝糖元的含量。
马学惠等[14]在齐墩果酸防治CCl4引起的大鼠急性肝损伤作用的研究中,发现该药物能使血清GPT明显下降,肝内甘油三酯积累量减少;同时,能使肝细胞变性、坏死明显减轻,糖原蓄积增加,具有明显的保肝降酶作用。宫新江等[15]的齐墩果酸对环磷酰胺所致大鼠肝细胞损伤的保护作用的研究表明,齐墩果酸能抑制环磷酰胺所致的肝细胞上清液ALT,AST及LDH活力升高,肝细胞MTT值减小,说明齐墩果酸可抗环磷酰胺所致肝细胞损伤。
王晓峰等[16]采用原代培养的小鼠肝细胞,以3H-胸腺嘧啶和3H-亮氨酸掺入的方法,研究经齐墩果酸预处理后的小鼠的肝细胞DNA和蛋白质合成速率的变化,结果发现齐墩果酸能促进肝细胞DNA及蛋白质合成,且合成速率明显增高,具有保肝作用。另外王晓峰等[17]报道齐墩果酸在对小鼠肝内谷丙转氨酶及谷草转氨酶的直接作用时,小鼠血清样品与不同浓度的齐墩果酸分别作用后,谷丙转氨酶活性则显著降低,说明齐墩果酸对谷丙转氨酶活性具有明显抑制作用。
2.2降血糖作用苗德田等[18]研究了齐墩果酸对大鼠血糖的影响,结果显示,齐墩果酸对化学性高血糖模型大鼠有显著的降血糖作用。柳占彪等[19]用齐墩果酸对高血糖大鼠治疗,结果发现单一的齐墩果酸具有降低高血糖的作用,同时在血糖降低时肝糖原和血清胰岛素均有明显升高。
2.3抗炎作用戴岳等[20]采用多种实验性炎症模型证实齐墩果酸对二甲苯与乙酸引起的小鼠皮肤和腹腔毛细血管通透性增高及对角叉菜胶等多种致炎物引起的大量足垫肿胀都具有明显抑制作用。
2.4抗氧化活性肝细胞膜的脂质过氧化是造成肝损伤的重要原因之一,高洁等[7]在研究藏药花锚中(口山)酮类成分及其抗氧化活性时,从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,且该类化合物在一定程度上能显著抑制Fe2+-Cys诱导大鼠肝微粒体丙二醛的生成,有效降低肝微粒体膜的氧化损伤。因此,具有一定的抗氧化活性。
2.5其他作用椭圆叶花锚的干浸膏可提高单核-巨噬细胞吞噬功能,具有调节体液免疫的作用,使降低的血清溶血素及脾细胞免疫溶血活性提高到正常水平[21]。另有报道椭圆叶花锚全草的氯仿可溶部分(富含口山酮葡萄糖苷)具有抗阿米巴作用[22]。
3人工栽培
高原野生重要植物资源的持续发展必须建立在生物资源可持续利用和生态环境保护的基础上,培育地道地产中藏药材是实现高原地区中藏药资源可持续利用的主要途径之一,也是保证中藏药产业持续发展的必然选择。
3.1人工栽培的重要意义花锚属与獐牙菜属植物等同属于藏茵陈类药物,被称为“藏药中的奇葩”,是治疗肝中毒、肝炎的最佳药物之一。但是这种药物资源一般生长在人迹罕至的高寒缺氧环境中,其再生周期较长甚至不能再生,藏茵陈供需矛盾也由此变得越来越突出。
尽管野生椭圆叶花锚在青藏高原地区分布广泛,资源较为丰富。但是近十多年来,随着我国民族医药特别是藏药事业的迅速发展,越来越多的企业开始投资藏医药领域,椭圆叶花锚的药用资源需求量快速增加。但是,藏药产业一度出现重成品生产轻药材来源、重开发轻保护的问题,造成过度的采挖及收购现象,特别是在植物生长阶段的花期大量采收导致资源量锐减,野生植物资源日益枯竭。因此,对作为原料植物药的椭圆叶花锚进行人工栽培的研究具有十分重要的意义。
3.2人工引种栽培为了解决藏茵陈类药材资源严重短缺的实际问题,中国科学院西北高原生物研究所经过3年的栽培与试验,成功地解决了以往藏茵陈种子萌发率低、出苗率低、人工栽培难以成活等关键技术问题。3种藏茵陈类药用植物——川西獐牙菜、抱茎獐牙菜和花锚人工种植成功,并通过鉴定。经过专家的监测和对比分析,这次人工栽培的3种植物,其主要有效成分齐墩果酸和芒果苷的含量基本接近于天然野生资源,川西獐牙菜的有效成分含量甚至显著高于野生资源,人工条件下栽培藏茵陈类药用植物的质量及其本身的药用价值完全可以得到保证。随着青海省产业结构的调整,椭圆叶花锚人工引种栽培技术的开发研究,青海省椭圆叶花锚人工种植规模逐渐扩大。椭圆叶花锚人工引种栽培试验在该省也初见成效。陈桂琛等[23]对椭圆叶花锚的引种栽培的研究表明,栽培的椭圆叶花锚植株在植株高度、分枝数量、单株生物量等生长状况指标明显高于野生植株,其有效化学成分接近野生状态的水平,说明野生椭圆叶花锚的人工栽培是可行的。吉文鹤等[24]运用RP-HPLC建立了花锚中青兰苷、去甲氧基花锚苷和花锚苷的含量分析方法,为栽培花锚替代野生花锚入药提供一定的科学依据。研究表明,栽培花锚中花锚苷和去甲氧基花锚苷的含量和在野生花锚中的含量相比无明显差别,可以初步证明栽培花锚可以替代野生花锚入药。纪兰菊等[25]在研究栽培花锚的品质能否代替野生花锚入药时,通过指纹图谱的相似度分析,得出结论:同一产地的野生与栽培花锚药材色谱分离图叠加比较,显示了良好的相似度。证明栽培花锚中的主要化学成分及数量符合花锚药材的指纹特征,可以代替野生花锚药材入药。
3.3组织培养随着对花锚属植物药用成分不断深入的研究,药用潜力的挖掘,该属植物的需求量大大增加,造成了该属植物野生资源的日益匮乏且面临枯竭。该属植物的人工引种栽培技术在一定程度上已经可行,但是,还需要通过多种途径来提高对其的培育效率。
药用植物的组织培养技术及应用已有多年的发展历史,但还有相当多的植物目前尚没有相应的离体培养技术。目前,花锚属植物的组织培养技术至今尚未见成功的报道,仍然是个空缺。因此,建立该属药用植物的离体快繁技术的需求日渐增加,它也是实现高原地区中藏药资源可持续利用的主要途径之一。
4最佳采集时期
从生物量的角度考虑,花期的生物量高于果期,更高于其他时期。杨慧玲等[26]在研究不同地区和生长物候期藏药花锚有效成分齐墩果酸的含量变化实验中,比较了野生状态下不同海拔、栽培条件下不同生长时期花锚的齐墩果酸含量,为确定该药材的采收时期、不同地区药材的质量以及栽培地点的选择提供理论依据。该研究发现花锚花期齐墩果酸含量最高,而幼苗期、蕾期和果期都低于花期的含量。因此,花期得到的药材最多质量也最好。
吉文鹤等[24]研究了花锚中去甲氧基花锚苷和花锚苷的含量随着不同生长期的变化趋势,为药材的合理栽培和采收提供科学依据。该研究表明,去甲氧基花锚苷和花锚苷含量在营养期含量最高,从6~9月逐渐降低,从抗肝炎活性成分的含量角度考虑,6月份(营养期)为花锚的最佳采收期。
5结语
花锚属植物是藏蒙药中治疗肝炎类疾病的常用药物,全草入药,具有重要的药用价值。该属植物的主要有效成分为(口山)酮及(口山)酮苷、裂环烯醚萜类、三萜类化合物及其它黄酮苷等,具有抗肝炎、抗氧化活性和降血糖等功效。在我国,该属植物药用历史较长,故具有很高的药理研究价值,特别是有关抗肝炎方面的研究显示出较大的市场潜力,值得进一步深入研究;其降血糖作用、抗氧化活性和调节体液免疫的药理活性研究报道较少,这些研究工作都亟待进一步的深入;另外对野生植物的过度采挖造成资源贫乏,采用人工的方法达到该药物资源的可持续利用也已成为目前及今后对该属植物重点研究的目标。
【参考文献】
[1]包保全,孙启时,包巴根那.花锚属植物化学成分及生物活性研究进展[J].中药材,2003,26(5):382.
[2]何廷农,刘尚武,吴庆如.中国植物志(第62卷)[M].北京:科学出版社,1988:291.
[3]黄燕,郁韶明.16种药用植物种子发芽的研究[J].山东中医杂志,2006,25(2):124.
[4]孙洪发,胡柏林,樊淑芬,等.花锚的三个新口山酮[J].植物学报,1983,25(5):460.
[5]孙洪发,胡柏林,等.花锚的三个新口山酮苷[J].植物学报,1987,29(4):422.
[6]张德,祝亚非,林少琨.藏药花锚中新化学成分的鉴定[J].中草药,2003,34(1):9.
[7]高洁,王素娟,方芳,等.藏药花锚中的(口山)酮类成分及其抗氧化活性[J].中国医学科学院学报,2004,August:364.
[8]SylvainRodriguez.Xanthones,secoiridoidsandflavonoidsfromHaleniacorniculata[J].Phytochemistry,1995,40(4):1265.
[9]高光跃,李鸣,冯毓秀,等.11种獐芽菜及近缘植物中有效成分的高效液相色谱测定[J].药学学报,1994,29(12):911.
[10]H.Dhasmana.XanthonesofHaleniaelliptica[J].Phytochemistry,1990,29(3):961.
[11]SylvainRodriguez,etal.Corniculoside,anewbiosidicestersecoiridoidfromHaleniacorniculata[J].HelveticaChimicaActa,1996,79:363.
[12]张经明,鲍文莲,高海平,等.花锚及其(口山)酮苷抗肝损伤和毒性的研究[J].中草药,1984,15(10):34.
[13]周富强,西宁花锚(HaleniaSibiricaBorn)对小鼠肝糖原含量的影响[J].青海师范大学学报·自然科学版,2006,(3):84.
[14]马学惠,赵元昌,尹镭,等.齐墩果酸防治实验性肝损伤作用的研究[J].药学学报,1982,17(2):96.
[15]宫新江,丁虹,邱银生,等.齐墩果酸抗环磷酰胺所致大鼠肝细胞损伤作用[J].医药导报,2006,25(11):1114.
[16]王晓峰,李继尧,于吉人.齐墩果酸对肝DNA和蛋白质合成速率的影响[J].贵阳医学院学报,1999,24(2):117.
[17]王晓峰,李继尧,于吉人.齐墩果酸对肝损伤小鼠血清及肝细胞培养液转氨酶作用的研究[J].中国药学杂志,1999,34(6):378.
[18]苗德田,吴小凤,蔡德海.齐墩果酸对大鼠血糖的影响[J].武警医学院学报,1998,7(3):149.
[19]柳占彪,王鼎,王淑珍,等.齐墩果酸的降糖作用[J].中国药学杂志,1994,29(12):726.
[20]戴岳.齐墩果酸的抗炎作用[J].中国药理学与毒理学杂志,1989,3(2):98.
[21]张杰.花锚及复方花锚免疫药理实验研究[J].青海医药杂志,1986,(3):17.
[22]H.Dhasmana.XanthonesofHaleniaelliptica[J].Phytochemistry,1990,29(3):961.
[23]陈桂琛,卢学峰.椭圆叶花锚的引种栽培[J].云南植物研究,2004,26(6):678.
一枝黄花Solidagodecurrens系菊科一枝黄花属植物中的一个品种,主要生长于我国的华东、中南、西南及陕西、台湾等地。其生长地不同有不同的异名,如野黄菊(《南宁市药物志》),山边半枝香、洒金花(《江西民间草药》),黄花细辛、黄花一枝香(《广西中药志》),黄花一条香(《福州中草药》)……[1]。一枝黄花作为一种药材,在我国民间应用十分广泛,具有疏风清热、解毒消肿的功能。主要用于治疗风热感冒、头痛、咽喉肿痛、肺热咳嗽、黄疸、泄泻、热淋、痈肿疮疖、毒蛇咬伤以及跌打损伤、鹅掌风等[1,2]。现代药理学表明,一枝黄花具有抗菌、利尿、祛痰平喘等作用,近年的研究还发现一枝黄花有降压、对胃黏膜的保护及促进肠平滑肌运动的作用。笔者对一枝黄花Solidagodecurrens的化学成分和药理活性的研究做一概述。
1化学成分
一枝黄花属植物品种多,有120多个种类,主要生长在北美洲,其中中国有4个品种:毛果一枝黄花Solidagovirgaurea,一枝黄花Solidagodecurrens,钝苞一枝黄花SolidagoPacifica和加拿大一枝黄花Solidagocanadensis[3]。对一枝黄花属植物化学成分的研究在西欧国家比较多,不同品种的化学成分也有差异,一枝黄花(Solidagodecurrens)主要含黄酮、皂苷、苯甲酸苄酯、当归酸桂皮酯、炔属化合物、苯丙酸等。
1.1黄酮类芦丁(Rutin)、山柰酚-3-芦丁糖苷、异槲皮苷、山萘酚-葡萄糖苷[2]。
1.2皂苷类一枝黄花酚苷(leiocarposide)[4,5]。
1.3苯甲酸苄酯类2,3,6-三甲氧基苯甲酸-(2-甲氧基苄基)酯、2,6-二甲氧基苯甲酸-(2-甲氧基苄基)酯、2-羟基-6-甲氧基苯甲酸苄酯、2,6-二甲氧基苯甲酸苄酯[5]。
1.4当归酸桂皮酯类当归酸-3,5-二甲氧基-4-乙酰氧基桂皮酯、当归酸-3-甲氧基-4-乙酰氧基桂皮酯[5]。
1.5炔属化合物(2E-8Z)-癸-二烯-4,6-二炔酸甲酯、(2Z-8Z)-癸-二烯-4,6-二炔酸甲酯[5]。
1.6苯丙酸类咖啡酸(Caffeicacid)、绿原酸(Chlorogenicacid)[6]。
1.7其他谷甾醇(sitosterol)[5]、δ-杜松帖烯(δ-cadinene)[7],以及多种微量元素,其中Ca2+,Mg2+含量较多[8]。
2药理活性
对一枝黄花Solidagodecurrens药理活性的研究,国外未见报道,国外对同属的毛果一枝黄花Solidagovirgaurea研究比较深入,报道较多,药理活性有抗炎、抗菌、利尿、抗肿瘤活性等作用[9]。在国内,早期对一枝黄花Solidagodecurrens药理活性的研究报道有如下记载:
2.1抗菌作用煎剂对金黄色葡萄球菌、伤寒杆菌有不同程度抑制作用。对红色癣菌及禽类癣菌有极强的杀菌作用。一枝黄花水煎醇提液有抗白色念珠菌作用,其疗效与制霉菌素相当[1]。
2.2平喘祛痰作用对家兔实验性支气管炎(吸入氨蒸气法),内服煎剂,可解除喘息症状,亦有祛痰作用[1]。
2.3其他作用动物实验证明能促进白细胞吞噬功能。对急性(出血性)肾炎有止血作用,提取物经小鼠皮下注射有利尿作用,但大剂量反可使尿量减少[10]。
近年来研究还发现有以下药理活性:
2.4降压作用一枝黄花煎剂能显著降低麻醉兔血压,抑制蟾蜍心收缩力,降低蟾蜍心率和心输出量,其降压幅度和降压持续时间与异丙肾上腺素相当[11]。
2.5胃黏膜保护作用给消炎痛前2h腹腔注射一枝黄花煎剂,6h后处死动物,发现和对照组比较,溃疡得分显著低于对照组[12]。
2.6能明显增强动物平滑肌的运动一枝黄花煎剂对炭末在小鼠小肠内的推进率有明显增强作用;用不同浓度的一枝黄花煎剂均能提高大鼠回肠平滑肌的活动,且随浓度增加,活动也增加[13]
3临床应用
《中华本草》记载有早期的临床应用报道:
3.1治疗流行性感冒,上呼吸道感染。
3.2治疗急性扁桃体炎。
3.3治疗真菌性阴道炎。
3.4其他应用早期报道还有治疗手足癣、带状疱疹、口腔溃疡等皮肤黏膜真菌感染;近年来对一枝黄花在临床应用的报道也有不少,如黄飞翔等[14]对心衰并发肺部感染患者用一枝黄花煎液预防口腔霉菌感染有效;马国精[15]用一枝黄花汤治疗乳腺小叶增生128例;余志波[16]用一枝黄花治食管癌等。
4结语
一枝黄花资源丰富,临床应用广泛,而对一枝黄花化学成分、药理活性的研究,国内外报道却不多。近年来国内对一枝黄花的药理活性研究开始重视,并有了新的发现,但要利用药理活性开发出新的产品,以用于临床疾病的治疗,还必须不断深入研究和探索,提取有效成分,阐明其与药理活性之间的关系才行,这是我们所期待的。
【参考文献】
[1]国家中医药管理局中华本草编委会.中华本草,第7册[M].上海:上海科学技术出版社,1999:965.
[2]中国医学科学院药用植物资源开发研究所.中药志,第4册[M].北京:人民卫生出版社,1988:145.
[3]江涛,黄保康,秦路平.一枝黄花属植物化学成分和药理活性研究[J].中西医结合学报,2006,4(4):430.
[4]HillerK,Gil-RjongR,FrankeP.AsaponinfromSolidagodecurrens[J].Pharmazie,1979,34(5-6):360.
[5]BohlmannF,ChenZL,SchusterA.AromaticestersfromSolidagodecurrens[J].Phytocheminstry,1981.20(11):2601.
[6]LiuQH,DaiJZ,YangPM,etal.AdiposeinjectionandpreparationmethodofSolidagodecurrnsLour[J].CN:02136369,2003-02-12.
[7]Fijita,Shinichi.FComponentsoftheessentialoilsofSolidagovirgaureaLin.ssp[J].NipponNogeiKagakuKaishi,1990,64(11):1729.
[8]刘临,邓琴,肖道安,等.中药一枝黄花、黄连、天麻、蛇床子中8种微量元素的测定[J].广东微量元素科学,2006,13(6):30.
[9]薛晓霞,姚庆强,仲浩.毛果一枝黄花的化学成分与药理活性研究进展[J].齐鲁药事,2006,25(3):163.
[10]郭晓庄.有毒中药大辞典,第1版[M].天津:天津科技翻译出版公司,1992:3.
[11]裘名宜,李晓岚,刘素鹏,等.一枝黄花对心血管系统部分指标的影响[J].医学信息,2005,18(12):1730.
[12]裘名宜,李晓岚,刘素鹏,等.一枝黄花对消炎痛所致大鼠胃溃疡的影响[J].时珍国医国药,2005,16(12):1267.
[13]刘素鹏,裘名宜,吴正平,等.一枝黄花对动物肠平滑肌运动的影响[J].时珍国医国药,2006,17(11):2151.
2根据教育目的明确教学重点
对于化学制药专业的学生来讲,作为药化专业学生来讲最重要的药物分子与机体细胞之间相互作用机制可以少讲,因为高职化学制药专业的学生应以化学药物的基础知识为重点,在作者与学生的交流中发现,分子生物学是让他们对药化学习感到吃力甚至反感的主要原因。而且作者通过学生的平时作业及考试成绩分析发现,学生有些能够将分子生物学及药物的作用机制等知识点记住,药物说明书上常见的化学结构都不知如何命名,也不能通过化学结构推断出其性质和用途,主要原因是没有根据化学制药专业学生将来服务社会的就业岗位来调整药物化学的教学重点,违背了化学制药专业开设药物化学课程教学的初衷。
3重视实训课的教学,培养学生规范操作的职业技能
高职院校药物化学的实训课中,部分老师给学生打分评价的时候只看最后的结果,强调按照实验课本上的标准程序去实验。事实上很多药物史上重大的发现和突破都是一些偶然的或者从副作用等其他的方面来展开的,而不是按照固定的程序产生的。之前在药物化学的实训课的考核中,老师一般根据学生做实验的结果来打分,而作者认为学生将来就业要胜任自己的岗位工作和有所创新,必须重视实验记录情况、操作的准确记录度以及实验结果的分析。因为只有重视实验过程的详细记录和操作的规范准确,才有利于对实验结果的分析。实验结果本身在于实验过程是否准确,至少能够说明在某种固定的条件下产生了一个真实的结果,但是如果实验条件记录不清楚,实验结果即使正确也不能说明什么问题,再次重复可能不会得出上次一样的结果,它可能只是一种偶然条件下产生的。而如果结果是错的将无法从实验记录中查出失败的具体原因,因为对其产生的过程以及实验条件都没有详细的记录。
4强调自学能力的培养
在这个知识发展日新月异的时代,如何培养和提高学生的自学能力就显得尤为重要。化学制药专业是一个新型发展起来的专业,药物化学与数理化这样大部分规律已经明确知道的学科不同。药物化学基础理论是一个复杂的系统,更新也很快,因此在教学的过程中应强调学生文献检索能力和自学能力的培养。学生在未来的学习和工作中只有不断的自我更新专业知识,才能适应社会的发展不与社会脱节。在目前的信息社会,文献的检索利用及自学能力的强弱会对工作效率和质量产生重要的影响。
作者:焦芳婵 许自成 卢秀萍 郑聪 肖炳光 刘朝营 单位:云南省烟草农业科学研究院 河南农业大学烟草学院
含氮类化合物(总植物碱、总氮和蛋白质)含量均以C1群体最高,分别达到了2.30%、2.09%和10.60%;总植物碱的变异系数表现为原始亲本>C0群体>C1群体,而总氮和蛋白质的变异系数在不同世代间表现为C1群体>原始亲本>C0群体;C1群体的总植物碱、总氮和蛋白质含量分别与原始亲本、C0群体的差异达到显著水平。钾、石油醚提取物和挥发碱含量均以C1群体最高,分别达到了1.94%、4.98%和0.30%,主要表现为C1群体>C0群体>原始群体;钾和石油醚提取物含量的变异系数在不同世代中均较小,而挥发碱含量的变异系数均较大,说明钾含量和石油醚提取物含量在样本间的变化较为稳定,而挥发碱含量在样本间较不稳定。C0群体和C1群体的钾含量差异不显著,但分别与原始亲本的钾含量差异显著;不同世代间的挥发酸含量差异不显著。方差分析原始群体与C0群体、C1群体化学成分之间的方差分析。挥发酸含量在不同世代间的差异未达到显著水平,而还原糖、总糖、总植物碱、总氮、钾、蛋白质、淀粉、石油醚提取物和挥发碱的含量在不同世代间的差异均达到极显著水平。不同世代群体烤烟的感官质量分析基本数量特征不同世代的感官质量评吸得分。C1群体的香气质、香气量、杂气、刺激性指标得分和评吸总分均达到了最大,在不同世代间主要表现为:C1群体>C0群体>原始群体;余味得分在不同世代间主要表现为:C0群体>C1群体>原始群体,燃烧性和灰色得分在不同世代间主要表现为:原始群体>C0群体>C1群体。
从变异系数可以看出,各项感官质量指标的变异系数均较小,说明不同世代烤烟的感官质量得分在样本间较为稳定。各个群体香气量平均得分比较表明,通过两轮的轮回选择,香气量平均得分得到提高,初步说明轮回选择方法在高香气育种中是可行的。多重比较表明:C1群体的香气质、香气量、刺激性和评吸总分均最高,并且分别与C0群体和原始群体之间的差异达到了显著水平,而C0群体和原始群体之间的差异均未能达到显著水平;C0群体的余味得分最高,C1群体的杂气得分最高,但是余味和杂气在不同世代间的差异均未能达到显著水平;原始群体的燃烧性得分最高,与C0群体的差异不显著,但是原始群体和C0群体烤烟的燃烧性得分分别与C1群体的差异达到了显著水平,不同世代烤烟的灰色得分两两间差异显著。方差分析三个群体感官质量指标之间的方差分析结果。从表中可以看出,余味和杂气两项指标的评吸得分在不同世代间的差异均未能达到显著水平,而香气质、香气量、刺激性、燃烧性、灰色和评吸总分在不同世代间的差异均达到了极显著水平。烤烟香气量得分与化学成分的相关分析不同世代烤烟的香气量得分与常规化学成分的相关分析结果(表略)表明:原始亲本的香气量得分与常规化学成分的相关性不显著,仅与总氮和蛋白质的显著负相关;C0群体的香气量得分与常规化学成分的相关性较烤烟原始亲本有所加强,其中与还原糖、总糖和钾含量的正相关达到了极显著水平,与含氮类化合物(总氮、总植物碱和蛋白质)和挥发碱的负相关达到了极显著水平;C1群体的香气量得分与糖类化合物、含氮类化合物、钾、挥发酸和挥发碱的相关性均达到了极显著水平,仅与石油醚提取物的正相关不显著。说明经过不断的回交可以加强烤烟香气量得分与常规化学成分的相关性。
烟草作为一种经济作物,其化学成分种类繁多、结构复杂,易受气候、栽培、加工等多种因素影响,各种化学成分含量和相互间比例的变化较大[14]。本研究分析了轮回选择育种过程中不同世代群体的化学成分含量变化,结果表明:经过两次轮回选择后,C1群体烤烟的糖类化合物(还原糖、总糖和淀粉)和原始亲本相比较分别降低了28.79%、12.53%和52.32%,而含氮类化合物(总植物碱、总氮和蛋白质)分别增加了26.37%、23.67%和23.11%,钾含量也提高了1.49%,除了挥发酸含量在原始群体和C1群体间的差异不显著外,其余各项化学成分指标在原始群体和C1群体间的差异均达到了显著水平。轮回选择作为群体改良技术,应用相当广泛,在作物增产[15]、抗病性[16]、提高蛋白质含量[17]等数量性状的持续改良中都取得了良好的效果。本研究分析结果表明:经过轮回选择,C1群体烤烟的香气质、香气量、杂气、刺激性和评吸总分均有明显的改善,分别比烤烟原始亲本增加了6.58%、5.02%、0.31%、0.31%、4.61%和2.66%。除了杂气和余味外,其余各项感官质量指标在烤烟原始亲本和C1群体之间的差异均达到了显著水平。说明通过轮回选择,烤烟的香气质、香气量和评吸总分均得到了明显的改善。将不同世代烤烟的香气量得分与常规化学成分进行相关分析的结果表明:烤烟原始亲本的香气量得分与常规化学成分的相关性不明显,仅与总氮和蛋白质的显著负相关,而C1群体烤烟的香气量得分与糖类化合物、含氮类化合物、钾、挥发酸和挥发碱的相关性均达到极显著,仅与石油醚提取物的正相关未能达到显著水平。说明经过不断的选择,提高了烤烟香气量得分与常规化学成分的相关性。
二、高职文化创意设计类专业课程设置的问题
1.课程目标针对性不强。课程目标是课程设置的目的和方向,也是对人才培养目标的具体实施和微观细化,清晰明确、具有针对性的课程目标无疑是课程设置的前提。但是许多高职文化创意设计类专业要么盲目效仿本科专业模式,要么较随意地按照流行的新软件、新名称课程马上就开设,不管师资力量是否充足、社会是否真正有需求。笔者认识的一家高职院校,在平面广告设计专业中开设了数门最新的多媒体视频处理软件课程,弄得教师苦不堪言,学生一片茫然。还有些院校“因人设课”,从教师出发,而不是从社会需求和人才培养体系、课程结构去设置课程。追溯原因,是缺乏对高职类专技人才培养的准确定位和对行业市场需求、职业岗位群的细致调研。文化创意设计类专业与文化创意产业紧密相连,是为产业、行业、企业输送适用人才,而文化创意产业范畴广泛,文化、创意、设计类专业方向甚多,如果不仔细分析,确定好现实、明确、细致的课程目标,课程设置主观臆断或者盲目跟风,必然造成学生“蜻蜓点水”,最终限于迷茫和肤浅,既不“多能”也不专。
2.课程内容与实践脱节。作为专业高技能人才培养的高职教育,实践性应是其突出的特点。但是实际中,多数院校课程内容与实践脱节的现象严重,主要体现在,一方面,如前所述,照搬本科院校的学科教育模式,进行课程压缩与删减,而真正需要实践操作锻炼的课程大多上成了理论课。以艺术设计为例,像人体工学、材料与工艺、印刷技术等原本需要实景学习、实际案例参与和操作的课程,课堂上经过理论讲解、经典案例赏析就结束了,好一点的也只是模拟性质的案例学习,根本谈不上深入掌握实践操作要领。实际上,文化创意设计类专业在课程上应当注重实践的比例,增加实景实战的训练与经验累积,处理好部分理论课程与实践课程的关系,明确“必需”与“够用”的标准,让学生做到既对专业背景知识了解,又能精于实际创意构思、设计应用。另一方面,一些重要的创意、技能类课程并不能紧跟行业、市场的变化和流行趋势。如,广告行业的CI系统早已经突破了以往单纯的平面、静态传播方式,因此在应用中也频繁出现了卡通吉祥物、立体标识、交互动态、视频媒体等,但是绝大多数院校的CI课程仍然是平面化作业,老旧案例学习、模板套用,结果学生拿出的作品与企业、行业的差距可想而知。
3.课程体系缺乏系统性。人才培养方案落实到课程体系上最重要的是要构建一个科学、合理的课程结构,协调好各门专业课程的比例、时间、位置、关系,评估它们各自的效果、相互的衔接与影响。然而部分院校的课程体系随意变化,课程门类想改就改,甚至同一门课程,每一届的内容都不一样;有些院校课程内容重复,课程之间相互套叠,如,环境艺术设计专业方向的《室内设计原理》《家居陈设设计》《商业空间设计》与主干课的内容重叠,范围互相包含,这是教学资源的浪费;还有些院校偏重软件、工艺一类的操作,为了尽早让学生掌握而急功近利,那些引领学生入行业门的课程居然放在了软件课之后,学生学了半天,不知道学了以后用来做什么,或者简单地认为学习创意、设计仅仅是熟练软件就够了,形成了所谓的“唯技术化”心态。其实,作为文化创意设计类专业,创意才是核心,只有操作,没有创意,充其量是个工匠,不是设计师和创意人员。这些现象都是因为课程体系缺乏系统性、科学性造成的。
4.课程缺少总结与反馈。虽然许多院校在文化创意设计的课程上有联系企业、政府等实际项目,做到了工学结合,学生受益匪浅,但是往往是以完成项目、成果汇报展为结束,忽略了对这些经历的总结反思及企业、用人单位、受众的反馈,经常是重复同样的模式,缺乏变通与改进,使得课程效果没有明显的提升。实际上,对课程的总结与反馈既可以帮助我们对教学效果进行全面的评价与反思,也便于我们及时调整课程内容、教学方式,进一步完善课程体系。同时,由于文化创意、设计服务是服务型的行业,这就需要对结合实践项目的教学进行受众反馈,可以是企业的意见、消费对象的意见,也可以是参与课程的师生的感受。它既可以帮助师生思考创意、设计有无继续提升的空间,也能为校企合作的可持续进行提供经验。
三、高职文化创意设计类专业课程设置的改革思路
1.课程设置统分结合,要针对细分方向与新兴方向。课程设置不仅要注意大的专业方向,也要有细的小方向、特定方向的课程内容,做到统分结合。如广告设计与制作专业,海报招贴、企业形象CI设计、包装设计、书籍装帧等都是主干课程,但是学生在就业时面临的广告企业,有的专注于样本、宣传册等平面设计,有的专注于动态和视频广告,有的侧重于品牌形象策划与设计。同样是环境艺术设计专业,有的企业侧重做家装,有的则专注于景观设计。所以,我们需结合学生的兴趣爱好和发展方向,在课程设置中既涉及大的专业面,同时必须有专攻。可以先有共同的专业基础课,然后部分专业课根据教师的不同专长,进行师生互选。另外,文化创意设计类学科、专业的发展主要体现为横向性和交叉性,这就要求我们在课程设置时必须与时俱进、关注流行趋势、新兴方向、新需求等。如,广告专业及时开设网络广告的设计课,品牌策划设计及时增添卡通形象、品牌吉祥物设计课,环境艺术设计专业设置会展类课程和方向等。
2.课程体系要强调专业的系统全面能力、整合精炼。现在大多数高职文化创意设计类专业仍在使用传统的“三段式”课程体系,即按公共文化课、专业基础课、专业课的顺序递进。这带来两个问题,一是各门课程追求各自学科理论体系的完整性,课程间缺乏沟通与连贯性;二是如上文提及的,课程内容交叉重叠、浪费教学资源、学生能力得不到有效深入和提升。因此,有必要以文化创意设计类专业的系统全面能力为依据,以职业岗位的具体技能要求为标准,整合相关课程,按照难度将它们有序地分散到每一学期,逐渐深入,每一学年自成体系。可以在“大的专业课”中以多个课题的形式整合原来零散和容易重叠的课程内容,力争做到“少而精”,同时,让文化课、选修课在合适的位置融入专业课程体系,不能仅仅成为学生漫无目的、“混学分”的课程,要真正起到对专业素养底蕴的熏陶。如,可以将传统文化赏析、地方人文历史一类的文化课、选修课置于涉及这些内容的专业课之前,以便学生明确目的,产生兴趣,更好地完成专业课中与此有关的创意设计课题。
3.专业课程三个主要方面要合理设置、紧密衔接。专业课要注重三个主要方面:创意类课程、设计总结与理论类课程、实践与操作类课程,它们是构成学生文化创意设计核心技能与思维的关键,需要统筹协调,不可偏废,以全面提升教学质量。以往很多院校都比较重视实践与操作类课程,如软件课、材料课、模型制作课等,认为操作熟练、技术应用方面经验多是文化创意设计类专业高技能人才的培养重点,但是我们不能忽视创意与文化、总结与理论对思维能力的影响。毕竟文化创意、设计服务业是智力密集型行业,提供的是知识服务,创造的是知识经济,行业的特性告诉我们,不能因为是高职教育就简单地把应用人才划归到操作工的地位。这里,创意类课程要着重训练学生挖掘文化元素、人文资源的敏锐目光以及将文化资源转化为创意和设计概念的思维能力;设计总结与理论类课程着重进行理论教学、创意设计经验的总结与思考;实践与操作类课程主要强调将创意与概念等转化为实际应用产品、作品并能适应市场推广的能力;另外,三方面课程需要贯通、融合与衔接。可以对创意、理论和实践操作课程以同一专题项目或课题范围进行联系与衔接,将课题深入、完善、做好做精,避免课题内容的低层次重复、浅尝辄止。
Abstract:ObjectiveTostudythechemicalconstituentsoffruitingbodiesofGanodermlucidum..MethodsVariouskindsofchromatographymethodswereusedtoseparatethechemicalconstituentsfromthefruitingbodiesofG.lucidum.Theirstructuresweredeterminedby1H,13C-NMRandMassspectraldata.ResultsEightcompoundswereisolatedfromthefruitingbodiesofG.lucidumandcharacterizedasganoderiolB(1),ganodericacidA(2),lucidenicacidA(3),ganodermanondiol(4),3,7,11,15,23-pentaoxo-5α-lanosta-8-en-26-oicacid(5),ergosta-7,22-dien-3β-ol-pentadecanoate(6),ergosta-7,22-dien-3β-ol(7)andn-hexacosanoicacid(8).ConclusionCompound8wasisolatedfromG.lucidumforthefirsttime.
Keywords:Ganodermalucidum(Leyss.exFr.)
Karst.;Fruitingbody;Triterpenoids;N-hexacosanoicacid
赤芝Ganodermalucidum(Leyss.exFr.)Karst.为担子菌纲多孔菌科灵芝属植物[1],与紫芝GanodermasinenseZhao,XuetZhang均首次收录于《中国药典》2000年版[2],作为灵芝的药用正品。灵芝在我国已有悠久的应用历史,东汉时期的《神农本草经》已把灵芝列为上品,认为灵芝能防治多种疾病,是滋补强壮、扶正固本的珍品。为了从中分离出具有抗肿瘤活性的成分,我们对该植物进行了提取分离,并对分得的单体进行了分离纯化和结构鉴定。本文报道从其中分离并鉴定出的8个化合物,它们分别为:灵芝醇B(ganoderiolB,1)、灵芝酸A(ganodericacidA,2)、赤芝酸A(lucidenicA,3)、灵芝酮二醇(ganodermanondiol,4)、3,7,11,15,23-5O-5α-羊毛甾-8-烯-26烷酸(3,7,11,15,23-pentaoxo-5α-lanosta-8-en-26-oicacid,5)、麦角甾-7,22-二烯-3β-醇十五烷酸酯(ergosta-7,22-dien-3β-ol-pentadecanoate,6)、麦角甾-7,22-二烯-3β-醇(ergosta-7,22-dien-3β-ol,7)及正二十六烷酸(n-hexacosanoicacid)。
1仪器与材料
熔点用X-5型显微熔点测定仪测定(未校正);NMR谱用BRUKERAvance300及BRUKERAvance500型核磁共振仪测定;ESI-MS用HP1100HPLC/ESI液质联用仪测定;EI-MS用岛津MS7070E型质谱仪测定。
薄层色谱硅胶及柱色谱硅胶为青岛海洋化工厂生产;SephadexLH-20为Pharmacia公司产品;硅胶GF254薄层预制板为烟台化学工业研究所产品;所用试剂均为分析纯。
样品采自安徽省黄山市,由中国科学院地理与湖泊研究所南京中科药业股份有限公司沈建高级工程师鉴定为赤芝Ganodermalucidum(Leyss.exFr.)Karst.,凭证标本存放于南京中科药业股份有限公司。
2方法与结果
2.1提取与分离
赤芝子实体粗粉(干品)4kg,用8倍量乙醇分别回流提取3次,2h/次,提取液浓缩得浸膏,加适量水混悬稀释后,得到下层沉淀(Ⅰ)部分(33g)和上层混悬液,上层混悬液依次用石油醚(60~90℃)、二氯甲烷、醋酸乙酯分别萃取,合并萃取液,回收溶剂,得到二氯甲烷(Ⅱ)萃取部分(63g)。Ⅰ部分经硅胶柱层析,石油醚-醋酸乙酯(10∶0~0∶10))梯度洗脱,每份500ml,分别浓缩,其中94~98份合并后经反复硅胶柱层析(石油醚-醋酸乙酯)和SephadexLH-20纯化(甲醇),得到化合物5(23mg),Ⅱ部分采用硅胶柱层析,石油醚-醋酸乙酯(10∶0~0∶10))梯度洗脱,其中37~42部分、43~45部分、69~81部分、82~100部分、152~156部分及223~239部分分别经反复硅胶柱层析(石油醚-醋酸乙酯系统)及SephadexLH-20纯化(氯仿-甲醇系统),得到化合物1(8.4mg)、2(120mg)、3(6.7mg)、4(13mg)、6(13mg)、7(36mg)和8(15mg)。
2.2结构鉴定
2.2.1化合物1白色晶体,mp171~173℃,分子式C30H48O2。EI-MSm/z:440[M]+,相对分子质量440。Liebermann-Burchard反应阳性。1H-NMR(CDCl3,300MHz)δ:5.47(1H,d,J=6.4Hz,C7-H),5.40(1H,t,J=6.6Hz,C24-H),5.31(1H,d,J=6.2Hz,C11-H),4.00(2H,s,C26-H),3.24(1H,dd,J=11.4,4.4Hz,C3-H),1.67(3H,s,C27-CH3),1.01(3H,s,C28-CH3),0.88(6H,s,C19和C30-CH3),0.57(3H,s,C18-CH3)。13C-NMR(CDCl3,75MHz)δ:35.72(C-1),28.10(C-2),78.97(C-3),38.68(C-4),50.31(C-5),22.98(C-6),120.25(C-7),142.72(C-8),146.00(C-9),37.36(C-10),116.30(C-11),37.83(C-12),43.77(C-13),49.14(C-14),27.88(C-15),31.49(C-16),50.92(C-17),15.73(C-18),22.70(C-19),36.05(C-20),18.37(C-21),35.91(C-22),24.51(C-23),127.03(C-24),134.39(C-25),69.08(C-26),13.58(C-27),25.53(C-28),27.88(C-29),15.73(C-30)。将化合物1的光谱数据与文献[3,4]对照,确定为灵芝醇B。
2.2.2化合物2白色结晶,mp112~113℃,分子式:C30H44O7。EI-MSm/z:516[M]+,相对分子质量516。Liebermann-Burchard反应阳性。1H-NMR(CDCl3,500MHz)δ:4.79(1H,m,C15-H),4.62(1H,m,C7-H),1.28(3H,s,C19-CH3),1.26(3H,s,C28-CH3),1.12(3H,s,C27-CH3),1.10(3H,s,C29-CH3),0.98(3H,s,C18-CH3),0.90(3H,s,C21-CH3)。13C-NMR(CDCl3,125MHz)δ:35.61(C-1),34.31(C-2),216.82(C-3),46.52(C-4),48.97(C-5),29.01(C-6),68.98(C-7),159.01(C-8),140.41(C-9),38.08(C-10),119.55(C-11),51.75(C-12),46.83(C-13),53.96(C-14),72.50(C-15),36.26(C-16),47.90(C-17),17.29(C-18),19.32(C-19),32.62(C-20)19.53(C-21),49.60(C-22),208.5(C-23),46.68(C-24),34.62(C-25),179.98(C-26),16.92(C-27),19.72(C-28),27.26(C-29),20.75(C-30)。将化合物的波谱数据与文献[5,6]对照,完全一致,确定为灵芝酸A。
2.2.3化合物3白色针状结晶,mp294~295℃,分子式:C27H38O6。Liebermann-Burchard反应阳性。EI-MSm/z:458[M]+,相对分子质量458。1H-NMR(CDCl3,300MHz)δ:0.95,1.06,1.08,1.21,1.30(各3H,s),0.93(3H,d,J=8.4Hz),4.81(1H,t,J=7.8Hz,C7-H)。13C-NMR(CDCl3,75MHz)δ:30.59(C-1),34.31(C-2),216.57(C-3),46.81(C-4),49.00(C-5),27.71(C-6),66.39(C-7),157.88(C-8),141.33(C-9),38.32(C-10),197.68(C-11),50.28(C-12),45.01(C-13),59.38(C-14),217.90(C-15),41.11(C-16),46.39(C-17),17.73(C-18),18.18(C-19),35.20(C-20),18.04(C-21),30.50(C-22),35.71(C-23),177.52(C-24),27.03(C-25),20.81(C-26),24.70(C-27)。将化合物3的波谱数据与文献[7,8]对照,完全一致,确定为赤芝酸A。
2.2.4化合物4白色针晶,mp182~183℃,分子式C30H48O3。Liebermann-Burchard反应阳性,EI-MSm/z:456[M]+,相对分子质量456。1H-NMR(CDCl3,300MHz)δ:5.40(1H,d,C7-H),3.30(1H,dd,活泼氢质子),1.22(3H,s,C27-CH3),1.13(3H,s,C26-CH3),1.09(3H,s,C29-CH3),0.59((3H,s,C18-CH3),0.91(3H,d,C21-CH3)。13C-NMR(CDCl3,75MHz)δ:35.55(C-1),34.87(C-2),216.80(C-3),47.49(C-4),50.74(C-5),23.69(C-6),119.95(C-7),142.88(C-8),144.54(C-9),37.22(C-10),117.27(C-11),37.85(C-12),43.78(C-13),50.32(C-14),31.48(C-15),27.88(C-16),50.99(C-17),15.74(C-18),22.07(C-19),36.64(C-20),18.65(C-21),33.49(C-22),28.74(C-23),79.61(C-24),73.24(C-25),23.23(C-26),26.59(C-27),25.46(C-28),25.37(C-29),22.48(C-30)。将化合物4的波谱数据与文献[9,10]对照,确定为灵芝萜酮二醇。
2.2.5化合物5浅黄色针状结晶,mp105~106℃,分子式C30H40O7。ESI-MSm/z:513[M+H]+,相对分子质量512。1H-NMR(CDCl3,500MHz)δ4.85(1H,m,C3-H),1.28,1.14,1.12,0.99,0.89,0.59(各3H,s)。13C-NMR(CDCl3,125MHz)δ:37.20(C-1),34.23(C-2),215.44(C-3),46.95(C-4),50.85(C-5),33.76(C-6),199.44(C-7),149.79(C-8),146.83(C-9),39.29(C-10),199.42(C-11),48.80(C-12),43.86(C-13),57.14(C-14),206.99(C-15),39.71(C-16),44.3(C-17),16.00(C-18),19.71(C-19),31.99(C-20),18.54(C-21),48.87(C-22),207.63(C-23),46.50(C-24),34.43(C-25),180.38(C-26),16.84(C-27),20.90(C-28),27.53(C-29),20.24(C-30)。将化合物5的波谱数据与文献[11~13]对照,确定为3,7,l1,15,23一五氧化-5α-羊毛甾-8烯-26-烷酸。
2.2.6化合物6白色粉末,mp113~115℃,分子式C42H86O2。Liebermann-Burchard反应阳性ESI-MSm/z:623[M+H]+,相对分子质量622。1H-NMR(CDCl3,300MHz,)δ:5.13~5.22(3H,m,C7,C22,C23-H),4.71(1H,t,J=6.0Hz,C3-H),2.30(2H,t,J=7.6Hz,C2′-H),1.25~1.46(长链饱和亚甲基),1.03(3H,d,J=6.4Hz,C21-H),0.91(3H,d,J=6.18Hz,C28-H),0.88(3H,t,J=6.4Hz,末端甲基),0.85(3H,s,C19-H),0.81(6H,m,C26和C27-H),0.54(3H,s,C18-H)。13C-NMR(CDCl3,75MHz):36.75(C-1),27.72(C-2),73.19(C-3),33.92(C-4),40.15(C-5)29.72(C-6),117.37(C-7),139.55(C-8),49.37(C-9),34.29(C-10),21.53(C-11),39.46(C-12),43.33(C-13),55.12(C-14),22.95(C-15),28.10(C-16),55.82(C-17),12.13(C-18),12.96(C-19),40.47(C-20),19.67(C-21),131.96(C-22),135.61(C-23),42.87(C-24),33.14(C-25),19.96(C-26),21.10(C-27),17.62(C-28),14.11(末端甲基)29.1-29(饱和亚甲基),173.32(C=O)。化合物6与文献[14]数据相一致,确定为麦角甾-7,22-二烯-3β-醇十五烷酸酯。
2.2.7化合物7无色针晶,mp136~141℃,分子式:C28H46O。Liebermann-Burchard反应阳性。EI-MSm/z:398[M]+,相对分子质量398。13C-NMR(CDCl3,75MHz)δ:37.16(C-1),31.48(C-2),71.06(C-3),38.00(C-4),40.29(C-5),29.65(C-6),117.46(C-7),139.78(C-8),49.49(C-9),33.10(C-10),25.55(C-11),39.47(C-12),42.85(C-13),55.12(C-14),22.93(C-15),28.08(C-16),55.78(C-17),12.09(C-18),13.02(C-19),40.44(C-20),19.64(C-21),131.91(C-22),135.57(C-23),42.83(C-24),33.10(C-25),19.93(C-26),21.10(C-27),17.60(C-28)。以上数据与文献[15,16]报道的麦角甾-7,22-二烯-3β-醇数据相一致,故确定为麦角甾-7,22-二烯-3β-醇。
2.2.8化合物8白色片状结晶,mp79℃,分子式C26H52O2。EI-MSm/z:396[M]+,相对分子质量396。1H-NMR(CDCl3,300MHz)δ:0.88(3H,t,J=7.2Hz),1.25(44H,m),1.63(2H,m),2.35(2H,t,J=7.41Hz),9.8(-COOH),13C-NMR图谱中具有1个末端甲基信号(14.1),一些饱和亚甲基信号(29.1~29.5,C4~C23)及33.59(C-2)。以上数据与文献[17]报道的正二十六烷酸相一致,故确定为正二十六烷酸。
3讨论
本实验从赤芝子实体中分离到三萜酸类5个,麦角甾类2个,脂肪酸类1个。其中正二十六烷酸为首次从该植物中分离得到。
现代药理学研究表明,三萜类是灵芝的主要活性成分,从中寻找出抗肿瘤及抗艾滋病病毒的活性成分是目前科学研究的热点。本实验中分离得到的灵芝萜酮二醇就具有抗艾滋病病毒化合物的活性基团,值得进一步研究开发。
【参考文献】
[1]冯敏,沈建.东方神奇仙草[M].北京:科学出版社,2004:17.
[2]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2000:147.
[3]王芳生,蔡辉,杨峻山,等.赤芝子实体中三萜化学成分的研究[J].药学学报,1996,31(3):200.
[4]MorigiwaA,KitabatakeK,FujimotoY,etal.Angiotensinconvertingengyme-inhibitorytriterpenesfromGanodermalucidum[J].ChemPharmBull,1986,34(7):3025.
[5]王芳生,蔡辉,杨峻山,等.赤芝子实体中灵芝酸类成分的研究[J].药学学报,1997,32(6):447.
[6]HirotaniM,FuruyaT,ShiroM,etal.Aganodericacidderivative,ahighlyoxygenated1anostane-typetriterpenoidfromganodermalucidum[J].Phytochem,1985,24(9):2055.
[7]LuoJ,LinZB.AnewtriterpenefromthefruitingbodiesofGanodermaLucidum[J].ActaPharmSin,2001,36(8):595.
[8]NishitobaT,SatoH,KasaiT,etal.NewbitterC27terpenoidsfromthefungusGanodermalucidum(reishi.)[J].AgricBiolChem,1985,49(6):1793.
[9]普琼惠,陈虹,陈若芸.松杉灵芝的化学成分研究[J].中草药,2005,36(4):502.
[10]ArisawaM,FujitaA,HayashiT,etal.Revisionof1H-and13C-NMRassignmentoflanostanoidsfromGanodermalucidumby2D-NMRstudies[J].JNalProd,1988,51(1):54.
鸡骨香Crotoncrassifolius为大戟科巴豆属植物,别名千人打、土沉香、黄牛香、鸡角香、透地龙等,主要分布于海南、广东、广西、福建等我国南部地区,越南、老挝、泰国也有分布。其根可作药用,性苦、辛、温;具有行气止痛、祛风消肿、燥湿等功效[1],国内主要用于治疗胃痛和风湿骨痛。泰国学者LaddawanBoonyarathanakornkit等[2]报道,该植物有抗癌活性。关于鸡骨香的化学成分,在20世纪80年代,LaddawanBoonyarathanakornkit等进行了初步的研究,从该植物种分离得到4个化合物,即cyperenoicacid,acetylaleuritolicacid,β-amyrin和chettaphanin-Ⅰ,在国内尚未有其化学成分的研究报道。为了补充和丰富该植物的研究内容,为该植物的药用提供理论基础,本实验进一步对鸡骨香根的化学成分进行研究,分离鉴定了7个化合物,其中有6个化合物首次从该植物中分离得到。
1仪器与材料
柱层析材料为青岛海洋化工厂生产的100-200,200-300目硅胶;薄层层析材料为青岛海洋化工厂生产的硅胶G,60H,GF254型硅;凝胶SephadexLH-20为瑞典AmershamBiosciences生产。所用试剂均为工业纯,经过重蒸后使用。
质谱由VGAutoSpec-3000质谱仪测定,电离条件为70ev;核磁共振谱由BrukerAM-400.0型核磁共振仪测定(TMS为内标),核磁共振氢谱(1HNMR)在400.13MHz下测定,核磁共振碳谱(13CNMR)在100.6MHz下测定。
鸡骨香C.crassifolius干燥根0.9kg,2005²12由海口市中药材公司提供,经海南大学海洋学院邓世明博士鉴定为大戟科巴豆属植物鸡骨香CrotoncrassifoliusGeisel。凭证标本存放于海南大学海洋学院。
2方法与结果
2.1提取和分离鸡骨香干燥根(0.9kg)粉碎后用70%的乙醇浸提3次,48h/次,乙醇提取液减压浓缩后加水使成悬浮液,依次用石油醚、醋酸乙酯萃取。
石油醚部分提取物(10.5g)经硅胶柱层析(100~200目),石油醚-醋酸乙酯(10∶1)洗脱,每份收集200ml,经TLC检测合并相同的流份,得到J1~J88个组分。其中J2(1.4g)组分经硅胶柱层析,石油醚-氯仿(1∶2)洗脱,每份收集50ml,合并11~15流份,析出晶体,得化合物Ⅱ(84mg)。J3(1.2g)浓缩液有方晶析出,溶解后过柱,分别用石油醚-氯仿(1∶15)、氯仿-醋酸乙酯(10∶1)洗脱,每份收集约20ml,3~8流份再过柱,经氯仿-石油醚(10∶1)洗脱,得化合物Ⅳ(18mg)。J5经柱层析,用氯仿洗脱,每份收集15ml,收集6~8流份,得化合物Ⅲ(45mg),该化合物硫酸显红色;11~16流份过柱,用氯仿-石油醚(10∶1)洗脱,每份收集20ml,5~8流分经石油醚-丙酮(15∶1)洗脱,得化合物Ⅵ和Ⅶ;17~22流份过柱,用石油醚-丙酮(20∶1)洗脱,得2~6流份,过凝胶SephadexLH-20,甲醇洗脱得化合物Ⅴ(0.36mg);
醋酸乙酯部分提取物用氯仿-醋酸乙酯(20∶1~4∶1)梯度洗脱,每份收集50ml,经TLC检测,合并成分相同部分。其中第二部分经过氯仿-丙酮(30∶1)洗脱,每份收集约30ml,4~18流份经石油醚-丙酮(2∶1)洗脱,得化合物Ⅰ。
2.2结构鉴定
2.2.1化合物Ⅰ无色晶体,易溶于醋酸乙酯,mp:131.5~132.5℃;分子式C24H28O9;质谱EI-MS:470,417,324,292,264,94,81;核磁共振13C-NMR(100.6MHz,CDCl3)δ:40.7(C-1),26.5C-2),32.1(C-3),57.0(C-4),136.3(C-5),70.0(C-6),32.6(C-7),35.7(C-8),53.9(C-9),130.2(C-10),18.9(C-11),72.3(C-12),125.2(C-13),107.8(C-14),144.3(C-15),139.4(C-16),16.6(C-17),170.9,171.5(C-18,C-19),176.5(C-20),170.2(21),52.4,52.8(-OCH3),21.0(-CH3);核磁共振1HNMR(400.13MHz,CDCl3)δ:2.16(2H,m,H-1),2.18(1H,m,H-2a),2.02(1H,m,H-2b),2.15(2H,m,H-3),5.46(2H,t,J=8.00,H-6,H-12),1.61(1H,s,H-7a),2.05(1H,m,H-7b),1.88(1H,m,H-8),1.73(1H,s,H-11a),1.61(1H,d,J=3.4,H-11b),6.34(1H,s,H-14),7.36(1H,s,H-15),7.45(H,s,H-16),1.00(3H,d,J=6.68,-CH3),1.88(3H,s,CH3CO-),3.72(6H,s,-OCH3)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[3]中化合物MallotucinB一致,确定化合物Ⅰ为MallotucinB。其结构式见图1。
2.2.2化合物Ⅱ晶体,易溶于氯仿和石油醚,分子式C15H22O2;质谱EI-MS:234,191,178,163,133,91;核磁共振13C-NMR(100.6MHz,CDCl3)δ:68.2(C-1),25.7(C-2),36.3(C-3),123.1(C-4),173.2(C-5),31.3(C-6),48.0(C-7),26.9(C-8),27.9(C-9),36.0(C-10),41.7(C-11),26.2(C-12),19.3(C-13),18.0(C-14),171.3(C-15);核磁共振1HNMR(400.13MHz,CDCl3)δ:1.56(1H,m,H-2a),1.77(1H,ddd,H-2b),2.67-2.79(2H,m,H-3a,H-3b,H-6b),2.25(1H,m,,H-6a),1.98(1H,m,H-7),1.38(1H,ddd,H-8a),1.89(1H,dddd,H-8b),1.27(1H,dddd,H-9a),1.54(1H,m,H-9b),2.08(1H,m,H-10),0.83(3H,s,H-12),1.00(3H,s,H-13),0.87(3H,d,H-14)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[2]化合物Cyperenoicacid基本一致,确定化合物Ⅱ为Cyperenoicacid。其结构式见图1。
2.2.3化合物Ⅲ无色油状物,分子式为C15H24O;EI-MS(m/z):220(M+),217,189,147,124,109,81,55;核磁共振13C-NMR(100.6MHz,CDCl3),δ:53.4(C-1),26.7(C-2),41.7(C-3),81.1(C-4),54.1(C-5),30.0(C-6),27.5(C-7),24.7(C-8),38.9(C-9),153.6(C-10),20.2(C-11),16.3(C-12),28.7(C-13),26.1(C-14),106.6(C-15);核磁共振1HNMR(400.13MHz,CDCl3)δ:0.44(1H,d,J=10.4Hz,H-6),0.66(1H,m,H-7),1.01(3H,s,H-13),1.02(3H,s,H-12),1.26(3H,s,H-14),4.62,4.65(each1H,brs,H-15)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[4]中化合物Ent-spathulenol一致,确定化合物Ⅲ为Ent-spathulenol。其结构式见图1。
2.2.4化合物Ⅳ晶体,mp:94℃,分子式C15H24O,质谱EI-MS(m/z):219[M-1]+,203,189,175,133;核磁共振13C-NMR(100MHz,CDCl3),δ:65.8(C-1),26.1(C-2),37.8(C-3),131.1(C-4),146.2(C-5),28.1(C-6),48.5(C-7),27.5(C-8,C-9),35.2(C-10),41.1(C-11),26.1(C-12),19.3(C-13),17.9(C-14),60.6(C-15);核磁共振1HNMR(400.13MHz,CDCl3)δ:1.44(1H,m,H-2a),1.63(1H,d,J=13.0Hz,H-2b),2.62(1H,m,H-3a),2.40(1H,d,J=15.0Hz,H-3b),2.62(1H,m,H-6a),2.28(1H,m,H-6b),1.86(1H,m,H-7),1.25(1H,m,H-8a),1.72(1H,m,H-8b),1.07(1H,m,H-9a),1.43(1H,m,H-9b),1.96(1H,m,H-10),0.80(3H,s,H-12),0.92(3H,s,H-13),0.89(3H,s,H-14),4.15(2H,q,H-15)。核磁共振13C-NMR和核磁共振1HNMR数据与文献[2]化合物Cyperenol一致,确定化合物Ⅳ为Cyperenol。其结构式见图1。
2.2.5化合物Ⅴ无色晶体mp:223~224℃,分子式C30H50O;核磁共振13C-NMR(100.6MHz,CDCl3)δ:38.7(C-1),27.4(C-2),79.0(C-3),38.9(C-4),55.3(C-5),18.3(C-6),34.3(C-7),40.9(C-8),50.4(C-9),37.1(C-10),20.9(C-11),25.1(C-12),38.0(C-13),42.8(C-14),27.4(C-15),35.5(C-16),42.7(C-17),48.2(C-18),47.9(C-19),150.4(C-20),29.8(C-21),39.9(C-22),27.9(C-23),15.3(C-24),16.2(C-25),16.1(C-26),14.5(q,C-27),18.0(C-28),19.2(C-29),109.6(C-30);核磁共振1HNMR(400.13MHz,CDCl3)δ:3.20(1H,dd,H-3),2.29(1H,ddd,H-19),4.60(1H,bs,H-29a),5.52(1H,bs,H-29b),1.21,0.96,0.92,0.91,0.90,0.87,0.85(s,-CH3);碳谱和氢谱数据与文献[5]中化合物Lupeol基本一致,确定化合物Ⅴ为Lupeol。其结构式见图1。
图1化合物Ⅰ~Ⅴ结构(略)
2.2.6化合物Ⅵ白色针状晶体mp:135~136℃,10%硫酸显红色,分子式为C29H50O;质谱EI-MS(m/z):414(M+),396,381,329,303,255,213,145,107,85。碳谱数据(13C-NMR,CDCl3,100.6Hz)δ:37.3(C-1),31.9(C-2),71.8(C-3),42.2(C-4),140.7(C-5),121.7(C-6),31.9(C-7),31.6(C-8),50.2(C-9),36.5(C-10),21.1(C-11),39.8(C-12),42.3(C-13),56.8(C-14),24.3(C-15),28.3(C-16),56.1(C-17),11.9(C-18),19.5(C-19),36.2(C-20),18.9(C-21),33.9(C-22),26.1(C-23),45.8(C-24),29.1(C-25),19.4(C-26),19.1(C-27),23.1(C-28),12.0(C-29);核磁共振1HNMR(400.13MHz,CDCl3)δ:5.54(t,1H,J=5.3Hz,6-H),3.56(m,1H,3-H),2.31-1.04为甾核骨架和侧链氢,1.03(s,3H,19-CH3),0.95(d,3H,J=6.6Hz,21-CH3),0.88(d,3H,J=6.7Hz,28-CH3),0.85(t,3H,J=7.0Hz),0.82(d,3H,J=6.6Hz,29-CH3)。碳谱和氢谱数据与文献[6]中化合物β-谷甾醇一致,确定化合物Ⅵ为β-谷甾醇。
2.2.7化合物Ⅶ白色针状晶体mp:168~169℃,10%硫酸显红色,碳谱数据(13C-NMR,CDCl3,100.6Hz)δ:37.3(C-1),31.9(C-2),71.8(C-3),42.2(C-4),140.7(C-5),121.7(C-6),31.9(C-7),31.6(C-8),50.2(C-9),36.5(C-10),21.1(C-11),39.8(C-12),42.3(C-13),56.1(C-14),24.3(C-15),29.0(C-16),56.7(C-17),12.1(C-18),19.5(C-19),40.2(C-20),21.1(C-21),138.3(C-22),129.3(C-23),51.3(C-24),31.9(C-25),21.1(C-26),19.0(C-27),25.5(C-28),12.3(C-29);核磁共振1HNMR(400.13MHz,CDCl3)δ:5.37(t,1H,J=2.6Hz,6-H),5.17、5.02(dd,JI=8.7Hz,J2=15.2Hz,22-H,23-H),3.56(m,1H,3-H),2.31-1.04为甾核骨架和侧链氢,1.03(s,3H,19-CH3),1.04(d,3H,J=6.9Hz,26-CH3),0.82(t,3H,J=7.5Hz,28-CH3),0.87(d,3H,J=6.4Hz,22-CH3),0.82(d,3H,J=7.6Hz,29-CH3)。碳谱和氢谱数据与文献[7]中化合物豆甾醇一致,确定化合物Ⅶ为豆甾醇。
3讨论
大戟科Euphorbiaceae巴豆属CrotonL.植物多为乔木或灌木,稀亚灌木。全世界有八百余种,广布于热带、亚热带地区。我国有21种,4变种,主要分布在我国南部地区。该属多数品种能入药,少数品种有毒。该属植物主要含有萜类、生物碱、肌醇类、多酚等化合物。其中,萜类化合物最常见,二萜类化合物为该属植物的主要活性成分[8]。
本实验从大戟科巴豆属植物鸡骨香的干燥根中分离得到7个化合物,5个萜类化合物,2个甾体。从化合物的类型看,与报道的该属其他植物的化合物类型是相似的,主要是萜类化合物。
【参考文献】
[1]邓世明.海南常用中草药名录[M].北京:中国科学技术出版社,2006:19.
[2]LaddawanBoonyarathanakornkit,Chun-taoChe,HarryH.S.Fong,etal.ConstituentsofCrotoncrassifoliusRoots[J].Plantamedica,1988:61.
[3]TakeshiKawashima,TokyoTetsuoNakatsu,YoshimasaFukazawa,etal.DiterpeniclactonesofMallotusRepandus[J].Heterocycles,1976,5:227.
[4]张文,郭跃伟,MolloErnesto,等.中国南海豆荚软珊瑚中倍半萜化学成分的研究[J].天然产物研究与开发,2005,17(6):470.
[5]MochammadSholichin,KazuoYamasaki,RyojiMochammadKasai,etal.13CNuclearMagneticResonanceLupane-TypeTriterpenes,Lupeol,BetulinandBetulinicAcid[J].Chem.Pharm.Bull,1980,28(3):1006.
Abstract:ObjectiveTostudythefat-solublechemicalconstituentsofCarexsiderosticta.MethodsThecolumnchromatographywasusedforisolationofchemicalconstituents.Thechemicalconstituentswasseparatedandidentifiedbyphysiochemicalandspectroscopicanalysis.ResultsElevencompoundswereisolatedfrom70%ethanolextractofCarexsiderostictaandfourofthemwereidentifiedasdotriacontan(Ⅰ),lacceroicacid(Ⅱ),β-sitosterol(Ⅲ),β-daucosterol(Ⅳ).ConclusionAmongthesecompoundsⅠ-Ⅳwereobtainedfromsedgefamilyforthefirsttime.
Keywords:Sedgefamily;Carexsiderosticta;Extractionandseparation;Chemicalconstituent
宽叶苔草CarexsiderostictaHance是莎草科苔草属多年生草本植物,又名崖棕、钻草。喜湿润,耐荫蔽。生于林下、山地阴坡及土质肥沃的阴湿地。分布于中国东北、华北、华中各省区。《本草图经》中有记载:“味甘、辛,性温”。文献报道[1]其具有益气养血,活血调经之功效,主治气血虚弱,倦怠无力,心悸失眠,月经不调,经闭。目前,尚未有文献报道过宽叶苔草的化学成分,甚至未曾报道过莎草科苔草属的同类植物的化学成分,因此,为了深入了解莎草科植物的化学成分,我们对宽叶苔草化学成分进行了全面研究,从其70%乙醇提取物的石油醚萃取物中分离出11个化合物,鉴定了其中4个化合物的结构,其余工作正在进行中。
1仪器和试剂
宽叶苔草采自于黑龙江省鹤岗市萝北县。ZF-Ⅰ型三用紫外分析仪(上海顾村电光仪器厂);RE-52Α旋转蒸发仪(上海亚荣生化仪器厂);核磁共振波谱仪:INOVO400MHz(美国瓦里安公司),以TMS为内标;质仪:HEWLETTPAKARD2110;傅里叶变换红外光谱仪:BruckerVector22(德国Brucker公司);XT24型显微熔点测定仪(温度计未校正,北京泰克仪器有限公司);硅胶G(化学纯)青岛海洋化工有限公司。
2提取与分离
宽叶苔草的干燥粗粉2kg,用70%乙醇回流提取3次,将醇提液趁热抽滤,合并滤液,减压回收至无醇味,再用石油醚萃取,减压回收溶剂,取残渣70.2g,拌样硅胶420g后进行常压硅胶柱层析,石油醚-醋酸乙酯不同比例(100∶1~1∶1)洗脱,合并相同流分,用硅胶柱色谱得到4个单体化合物Ⅰ~Ⅳ,石油醚-醋酸乙酯(40∶1)得到化合物Ⅰ,Ⅱ,(10∶1)得到化合物Ⅲ,(1∶1)得到化合物Ⅳ,利用化学方法和光谱分析确定了这4种化合物的结构。
3结果鉴定
化合物Ⅰ为白色粉末,化学式为:C32H66,GC-MS:450(M+),436,418,393,379,365,351,337,323,309,284,267,253,239,225,211,197,183,169,155,141,127,113,99,85,71,57,43,29,15等符合饱和脂肪烷烃碎裂规律。1H-NMR(CDCl3)δ:1.25(s,30×CH2),0.88(s,2×CH3),13C-NMR(CDCl3)δ分别为:31.92,29.69,29.36,22.69,14.12。依据1H-NMR和13C-NMR与参考文献[2]中正三十二烷对照完全一致,故鉴定化合物Ⅰ为正三十二烷(dotriacontan)。
化合物Ⅱ为白色粉末状结晶(石油醚~醋酸乙酯),mp76~78℃,IR(KBr)cm-1:3300(COOH),2917(CH3),2849(CH2),1709(C=O),1463(CH2),GS-MSm/z(%)显示480(M+),465,424,410,368,129,115并出现111,97,85,71,57(C4H9+)等递减14的碎片峰,以及73,129,185等相差56的含羧基的离子碎片峰〔(CH2)nCOOH〕及13C-NMR(CDCl3)δ中176.61(C=O),符合饱和脂肪酸的一般裂解规律,根据以上数据及参考文献[3,4],推断该化合物为正三十二烷酸(lacceroicacid)。
化合物Ⅲ为白色针状晶体,mp134~136℃。Liebermann-Burchard反应阳性,分子式为:C29H50O。GS-MSM/Z:414(M+),396,381,329,303,255,213,145,107,85。1H-NMR(CDCl3)δ:5.33(1H,br,s,H-6),3.52(1H,m,H-3),1.02,0.80,0.85,0.66,0.85,0.90(各3H,×CH3)。13C-NMR(CDCl3)δ:37.2(C-1),31.6(C-2),71.8(C-3),42.3(C-4),140.7(C-5),121.7(C-6),31.9(C-7),31.9(C-8),50.1(C-9),36.5(C-10),21.1(C-11),39.8(C-12),42.3(C-13),56.8(C-14),24.3(C-15),28.2(C-16),56.0(C-17),11.8(C-18),19.4(C-19),36.1(C-20),18.8(C-21),33.9(C-22),26.0(C-23),45.8(C-24),29.1(C-25),19.9(C-26),19.0(C-27),23.0(C-28),12.0(C-29)。1H-NMR和13C-NMR与文献报道的β-谷甾醇一致[5~8]故鉴定化合物Ⅲ为β-谷甾醇(β-sitosterol)。结构式见图1[9]。
化合物Ⅳ白色粉末,mp295~297℃,Liebermann-Burchard反应和Molish反应均为阳性。IRν(cm-1):3415(-OH),1643(C=O),1022(C-O)。1H—NMR(CDCl3)δppm:0.69~1.26(6×CH3),4.20(1H,d,J=8Hz,H-1),5.37(1H,m,H-6)。糖部分C1~C6:100.86,78.92,76.17,75.54,73.29,61.61,说明是葡萄糖,苷元部分与β-谷甾醇相同,该化合物1H-NMR,13C-NMR数据与文献[6,7]中胡萝苷比较完全一致,故鉴定化合物Ⅳ为胡萝卜苷(β-dauco-sterol)。结构式见图2[9]。
图1β谷甾醇结构式(略)
图2胡萝卜苷结构式(略)
【参考文献】
[1]国家中医药管理局《中华本草》编委会.中华本草[M].上海:上海科学技术出版社,1999,8:556.
[2]梁光义,王道平,徐必学,等.民族药骚羊古化学成分的研究[J].贵州科学,2003,21(1):58.
[3]毕志明,杨毅生,王峥涛,等.流苏石斛化学成分的研究(Ⅰ)[J].中国药科大学学报,2001,32(3):200.
[4]杨尚军,仲英,骆宏丰,等.霞草根化学成分的研究[J].中国中药杂志,1999,24(11):680.
[5]郑卫平.唐于平,楼风昌,等.迭鞘石斛的化学成分研究[J].中国药科大学学报,2000,3l(1):5.
[6]韦松,梁鸿,赵玉英.怀牛膝中化合物的分离鉴定[J].中国中药杂志,1997,22(5):293.
由于中国法制史这门学科是以中国法制发生、发展为基本线索,以大量史料为理论来源,具有时间跨度长、涵盖内容广泛且零散、文字艰深晦涩、专有名词难以理解等特点,因此教师在采用讲授教学法时,要注意两方面的问题。
大学是人生一个重要的选择过程的开始。高职院校的学生毕业后,主要有三个出路,一是就业;二是创业;三是专升本。这三条路径,多数选择就业,选择升学和创业的是少数。所以对高职院校来说,有一个重要的任务,就是要引导学生对自己的未来发展有一个规划,引导他们做好就业、升学或创业的准备。创业对于一名高职学生来说是一个充满吸引力的词汇,高职设置的很多专业,如兽医、会计、食品加工等专业因其专业本身的特点和高职的办学机制的优势,使得毕业生一进入工作岗位就能很快适应工作,所以这类专业的学生毕业后小规模创业或毕业工作一段时间后再创业是较有优势的。创业对于一个高职毕业生来说是有很大诱惑力的,但并非每一个人都适合走这条路。那么,如何让学生发现自己的创业素质,激发起学生创业的激情,帮助指导学生为创业做好心理、技能等各方面的准备,是大学阶段对学生进行创新创业教育的一个重要内容。职业生涯规划教育就是指导大学生思考并规划未来发展,主动选择最适合自己的成功道路。职业生涯规划的第一步要实现三个目标:一是了解职业生涯规划是一项怎样的工作;二是意识到完成职业生涯规划这个工作对自己未来人生发展非常重要;三是做出承诺愿意花费时间和精力完成这样这项工作。这一过程也是引导学生发现问题、勇于对自己承担责任的过程。对于创业者来说必须具有规划自己人生目标的能力,所以在职业生涯规划课程教学的第一步,教师就要引导学生要拥有自己创业的梦想,激发起学生创业的激情,鼓励学生建立起为实现自己未来创业梦想做好准备的决心。
2探索自我、发现优势,鼓励大学生自觉培养创业的基本素质
创业的过程困难重重,能否坚持直至成功需要具备良好的创业素质。因此,对于把创业作为人生目标的人来说,不只要有激情,要做好创业的心理准备,同时还必须充分了解自己的优势和劣势,清楚自己是否具备创业者的基本素质,能够清楚地告诉自己“我适合创业”,并以此不断激励自己遇到挫折时不退缩。职业生涯规划的核心内容就是职业定位,要对自己进行职业定位需要学生们思考并回答三个问题:我将来要从事什么工作,我将来要到哪里工作,我职业发展的路径是什么,进行职业定位的前提是对自我的“特质”进行分析,这也是职业生涯规划的第二个步骤——自我探索阶段。自我探索要完成四项任务:职业兴趣探索、性格偏好探索、工作技能探索和工作价值观探索,对这四个方面的分析实质上是让学生清楚自己:我喜欢做什么,适合做什么,我能做好什么,我在职业活动中最看中的东西是什么,在指导学生进行自我探索的过程,教师可以将创业者的基本素质按兴趣、性格偏好、工作技能和工作价值观四个方面分类,在进行自我探索的过程中重视指导学生对自己是否具有创业者的素质进行评估。特别强调的是评估不是目的,目的是让学生意识到将来创业必须具备哪些基本素质,如\9墨圊恬面业果自己还有欠缺的话,必须制定切实可行的规划进行自我训练。如创业者必须对成就有高度的欲望、对把握自己的命运有强烈的自信心,这也是我们所说的创业激情。工作价值观主要有成就、独立自主、挑战性、服务他人、人际交往等,因而在工作价值观探索时,教师可以帮助学生认清自己工作价值观的同时,指导学生确立创业所需要的工作价值观,如强烈的成就感、对独立自主和挑战性工作的追求等。
3掌握技能、学会方法,指导大学生自觉学习