绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇数据通信技术范文,希望它们能为您的写作提供参考和启发。
数据通信是以“数据”为业务的通信系统,数据是预先约定好的具有某种含义的数字、字母或符号以及它们的组合。数据通信是20世纪50年代随着计算机技术和通信技术的迅速发展,以及两者之间的相互渗透与结合而兴起的一种新的通信方式,它是计算机和通信相结合的产物。随着计算机技术的广泛普及与计算机远程信息处理应用的发展,数据通信应运而生,它实现了计算机与计算机之间,计算机与终端之间的传递。由于不同业务需求的变化及通信技术的发展使得数据通信经过了不同的发展历程。
1通信系统传输手段
电缆通信:双绞线、同轴电缆等。市话和长途通信。调制方式:SSB/FDM。基于同轴的PCM时分多路数字基带传输技术。光纤将逐渐取代同轴。
微波中继通信:比较同轴,易架设、投资小、周期短。模拟电话微波通信主要采用SSB/FM/FDM调制,通信容量6000路/频道。数字微波采用BPSK、QPSK及QAM调制技术。采用64QAM、256QAM等多电平调制技术提高微波通信容量,可在40M频道内传送1920~7680路PCM数字电话。
光纤通信:光纤通信是利用激光在光纤中长距离传输的特性进行的,具有通信容量大、通信距离长及抗干扰性强的特点。目前用于本地、长途、干线传输,并逐渐发展用户光纤通信网。目前基于长波激光器和单模光纤,每路光纤通话路数超过万门,光纤本身的通信纤力非常巨大。几十年来,光纤通信技术发展迅速,并有各种设备应用,接入设备、光电转换设备、传输设备、交换设备、网络设备等。光纤通信设备有光电转换单元和数字信号处理单元两部分组成。
卫星通信:通信距离远、传输容量大、覆盖面积大、不受地域限制及高可靠性。目前,成熟技术使用模拟调制、频分多路及频分多址。数字卫星通信采用数字调制、时分多路及时分多址。
移动通信:GSM、CDMA。数字移动通信关键技术:调制技术、纠错编码和数字话音编码。
2数据通信的构成原理
数据终端(DTE)有分组型终端(PT)和非分组型终端(NPT)两大类。分组型终端有计算机、数字传真机、智能用户电报终端(TeLetex)、用户分组装拆设备(PAD)、用户分组交换机、专用电话交换机(PABX)、可视图文接入设备(VAP)、局域网(LAN)等各种专用终端设备;非分组型终端有个人计算机终端、可视图文终端、用户电报终端等各种专用终端。数据电路由传输信道和数据电路终端设备(DCE)组成,如果传输信道为模拟信道,DCE通常就是调制解调器(MODEM),它的作用是进行模拟信号和数字信号的转换;如果传输信道为数字信道,DCE的作用是实现信号码型与电平的转换,以及线路接续控制等。传输信道除有模拟和数字的区分外,还有有线信道与无线信道、专用线路与交换网线路之分。交换网线路要通过呼叫过程建立连接,通信结束后再拆除;专线连接由于是固定连接就无需上述的呼叫建立与拆线过程。计算机系统中的通信控制器用于管理与数据终端相连接的所有通信线路。中央处理器用来处理由数据终端设备输入的数据。
3数据通信的分类
3.1有线数据通信
数字数据网(DDN)。数字数据网由用户环路、DDN节点、数字信道和网络控制管理中心组成。DDN是利用光纤或数字微波、卫星等数字信道和数字交叉复用设备组成的数字数据传输网。也可以说DDN是把数据通信技术、数字通信技术、光迁通信技术以及数字交叉连接技术结合在一起的数字通信网络。数字信道应包括用户到网络的连接线路,即用户环路的传输也应该是数字的,但实际上也有普通电缆和双绞线,但传输质量不如前。
分组交换网。分组交换网(PSPDN)是以CCITTX.25建议为基础的,所以又称为X.25网。它是采用存储——转发方式,将用户送来的报文分成具用一定长度的数据段,并在每个数据段上加上控制信息,构成一个带有地址的分组组合群体,在网上传输。分组交换网最突出的优点是在一条电路上同时可开放多条虚通路,为多个用户同时使用,网络具有动态路由选择功能和先进的误码检错功能,但网络性能较差。
帧中继网。帧中继网络通常由帧中继存取设备、帧中继交换设备和公共帧中继服务网3部分组成。帧中继网是从分组交换技术发展起来的。帧中继技术是把不同长度的用户数据组均包封在较大的帧中继帧内,加上寻址和控制信息后在网上传输。
3.2无线数据通信
无线数据通信也称移动数据通信,它是在有线数据通信的基础上发展起来的。有线数据通信依赖于有线传输,因此只适合于固定终端与计算机或计算机之间的通信。而移动数据通信是通过无线电波的传播来传送数据的,因而有可能实现移动状态下的移动通信。狭义地说,移动数据通信就是计算机间或计算机与人之间的无线通信。它通过与有线数据网互联,把有线数据网路的应用扩展到移动和便携用户。4网络及其协议
4.1计算机网络
计算机网络(ComputerNetwork),就是通过光缆、双绞电话线或有、无线信道将两台以上计算机互联的集合。通过网络各用户可实现网络资源共享,如文档、程序、打印机和调制解调器等。计算机网络按地理位置划分,可分为网际网、广域网、城域网、和局域网四种。Internet是世界上最大的网际网;广域网一般指连接一个国家内各个地区的网络。广域网一般分布距离在100-1000公里之间;城域网又称为都市网,它的覆盖范围一般为一个城市,方圆不超过10-100公里;局域网的地理分布则相对较小,如一栋建筑物,或一个单位、一所学校,甚至一个大房间等。
局域网是目前使用最多的计算机网络,一个单位可使用多个局域网,如财务部门使用局域网来管理财务帐目,劳动人事部门使用局域网来管理人事档案、各种人才信息等等。
4.2网络协议
网络协议是两台计算机之间进行网络对话所使用的语言,网络协议很多,有面向字符的协议、面向比特的协议,还有面向字节计数的协议,但最常用的是TCP/IP协议。它适用于由许多LAN组成的大型网络和不需要路由选择的小型网络。TCP/IP协议的特点是具有开放体系结构,并且非常容易管理。
TCP/IP实际上是一种标准网络协议,是有关协议的集合,它包括传输控制协议(TransportControlProtocol)和因特网协议(InternetProtocol)。TCP协议用于在应用程序之间传送数据,IP协议用于在程序与主机之间传送数据。由于TCP/IP具有跨平台性,现已成为Internet的标准连接协议。网络协议分为如下四层:网络接口层:负责接收和发送物理帧;网络层:负责相邻节点之间的通信;传输层:负责起点到终端的通信;应用层:提供诸如文件传输、电子邮件等应用程序要把数据以TCP/IP协议方式从一台计算机传送到另一台计算机,数据需经过上述四层通信软件的处理才能在物理网络中传输。
数据通信是以“数据”为业务的通信系统,数据是预先约定好的具有某种含义的数字、字母或符号以及它们的组合。数据通信是20世纪50年代随着计算机技术和通信技术的迅速发展,以及两者之间的相互渗透与结合而兴起的一种新的通信方式,它是计算机和通信相结合的产物。随着计算机技术的广泛普及与计算机远程信息处理应用的发展,数据通信应运而生,它实现了计算机与计算机之间,计算机与终端之间的传递。由于不同业务需求的变化及通信技术的发展使得数据通信经过了不同的发展历程。
1.技术介绍
1.1通信系统传输手段
电缆通信:双绞线、同轴电缆等。市话和长途通信。调制方式:SSB/FDM。基于同轴的PCM时分多路数字基带传输技术。光纤将逐渐取代同轴。
微波中继通信:比较同轴,易架设、投资小、周期短。模拟电话微波通信主要采用SSB/FM/FDM调制,通信容量6000路/频道。数字微波采用BPSK、QPSK及QAM调制技术。采用64QAM、256QAM等多电平调制技术提高微波通信容量,可在40M频道内传送1920~7680路PCM数字电话。
光纤通信:光纤通信是利用激光在光纤中长距离传输的特性进行的,具有通信容量大、通信距离长及抗干扰性强的特点。目前用于本地、长途、干线传输,并逐渐发展用户光纤通信网。目前基于长波激光器和单模光纤,每路光纤通话路数超过万门,光纤本身的通信纤力非常巨大。几十年来,光纤通信技术发展迅速,并有各种设备应用,接入设备、光电转换设备、传输设备、交换设备、网络设备等。
卫星通信:通信距离远、传输容量大、覆盖面积大、不受地域限制及高可靠性。目前,成熟技术使用模拟调制、频分多路及频分多址。数字卫星通信采用数字调制、时分多路及时分多址。
移动通信:GSM、CDMA。数字移动通信关键技术:调制技术、纠错编码和数字话音编码。
1.2数据通信的构成原理
数据终端(DTE)有分组型终端(PT)和非分组型终端(NPT)两大类。分组型终端有计算机、数字传真机、智能用户电报终端(TeLetex)、用户分组装拆设备(PAD)、用户分组交换机、专用电话交换机(PABX)、可视图文接入设备(VAP)、局域网(LAN)等各种专用终端设备;非分组型终端有个人计算机终端、可视图文终端、用户电报终端等各种专用终端。数据电路由传输信道和数据电路终端设备(DCE)组成,如果传输信道为模拟信道,DCE通常就是调制解调器(MODEM),它的作用是进行模拟信号和数字信号的转换;如果传输信道为数字信道,DCE的作用是实现信号码型与电平的转换,以及线路接续控制等。传输信道除有模拟和数字的区分外,还有有线信道与无线信道、专用线路与交换网线路之分。
2.数据通信的分类
2.1有线数据通信
数字数据网(DDN)。数字数据网由用户环路、DDN节点、数字信道和网络控制管理中心组成。DDN是利用光纤或数字微波、卫星等数字信道和数字交叉复用设备组成的数字数据传输网。也可以说DDN是把数据通信技术、数字通信技术、光迁通信技术以及数字交叉连接技术结合在一起的数字通信网络。数字信道应包括用户到网络的连接线路,即用户环路的传输也应该是数字的,但实际上也有普通电缆和双绞线,但传输质量不如前。
分组交换网。分组交换网(PSPDN)是以CCITTX.25建议为基础的,所以又称为X.25网。它是采用存储——转发方式,将用户送来的报文分成具用一定长度的数据段,并在每个数据段上加上控制信息,构成一个带有地址的分组组合群体,在网上传输。分组交换网最突出的优点是在一条电路上同时可开放多条虚通路,为多个用户同时使用,网络具有动态路由选择功能和先进的误码检错功能,但网络性能较差。
帧中继网。帧中继网络通常由帧中继存取设备、帧中继交换设备和公共帧中继服务网三部分组成。帧中继网是从分组交换技术发展起来的。帧中继技术是把不同长度的用户数据组均包封在较大的帧中继帧内,加上寻址和控制信息后在网上传输。
2.2无线数据通信
无线数据通信也称移动数据通信,它是在有线数据通信的基础上发展起来的。有线数据通信依赖于有线传输,因此只适合于固定终端与计算机或计算机之间的通信。而移动数据通信是通过无线电波的传播来传送数据的,因而有可能实现移动状态下的移动通信。狭义地说,移动数据通信就是计算机间或计算机与人之间的无线通信。它通过与有线数据网互联,把有线数据网路的应用扩展到移动和便携用户。
3.网络及其协议
中图分类号:TP393文献标识码:A文章编号:1009-3044(2012)08-1809-02
数据通信是依照通信协议,利用数据传输技术在两个功能单元之间传递数据通信信息。它可以实现计算机与计算机、计算机与终端或者终端与终端之间的数据信息传递。数据通信系统的特点是:计算机之间以及任何计算机中间的通信;计算机之间通信过程需要有严格的通信协议和标准;数据通信对数据传输的可靠性要求很高;通信中的通信量具有突发性;信源与信宿采用的设备多样在速率、编码、同步通信规程等方面有很大差别;传输效率较高。数据在通信过程中必须建立通信线路和通信双方的物理通道;建立数据链路和通信双方的同步联系;传送控制和数据信息;结束数据传输和物理通道。计算机之间以及任何计算机中间的通信必须要有传输信道。传输信道是有不同的传输媒体和相关设备组成。根据传输方式不同可分为有线数据通信和无线数据通信。它们都是通过传输信道将计算机与数据终端联系起来的,使得多地之间的数据终端实现软、硬件和信息资源共享。
1通信系统传输
1.1电缆通信
主要有双绞线通信,基于同轴的PCM时分多路数字基带传输的技术。它具有抗干扰能力强、传输距离远、布线容易、价格低廉。
1.2微波通信
分为模拟电话微波通信和数字微波通信。微波通信具有容量大、频带宽、质量好并可传至很远的距离,可以用于各种电信业务的传送,还具有良好的抗灾性能,对水灾、风灾以及地震等自然灾害。模拟微波系统每个收发信机最大可以工作于2700路通信,它采用的调制方式是SSB/FM/FDM。数字微波同时传送三万多路数字电话电路(2.4Gbit/s)。它采用的调制方式是BPSK、QPSK、QAM等。
1.3光纤通信
光纤通信已经在现代通信网中起着举足轻重的作用,因其通信容量大,通信传输距离长,抗干扰性能力强等特点,得以脱颖而出,是主要的传输工具。
1.4卫星通信
利用人造卫星做为中转站实现多点之间信息的传递,应用在一些高端领域。其特点是通信距离远,通信容量大,覆盖面积大,不受地域限制、不受大气层的影响,具有很高的可靠性。
1.5移动通信
涵盖多个通信频段,能够应用在陆、海、空移动通信中。它采用了频分多址(FDMA),时分多址(TDMA),码分多址(CDMA)技术。数字移动通信关键技术有多址接入技术、信源编码技术、信道编码技术、数字调制技术、扩频技术、时域均衡技术、分集技术。
2数据通信的原理
数据终端(DTE)有分组型终端(PT)和非分组型终端(NPT)两大类。分组终端(PT)是具有X.25协议接口,能直接接入分组交换数据网的数据通信终端设备。它可通过一条物理线路与网络连接,并可建立多条虚电路,同时与网上的多个用户进行对话。非分组终端(NPT)需经过分组装拆设备,才能连到交换机端口。通过分组交换网络,分组终端之间,非分组终端之间,分组终端与非分组终端之间都能互相通信。数据终端(DTE)它包括计算机、终端、协议翻译器、多路分解器、打印设备等。数据通信设备(DCE)通常只有调制解调器和部分交换机COM接口。该设备与通信网络连接构成网络终端的用户网络接口。它提供了网络的一条物理连接,以及转发业务。数据电路由传输信道和数据电路终端设备组成,数据通信设备(DCE)负责网络或传输介质上收发比特。DCE与DTE必须相互交换,通过交换电路完成对数据或控制信息交换。交换网线路要通过呼叫请求,线路连接建立,通信结束后线路拆除过程。专线连接无需上述过程。计算机系统中的通信控制器用于管理与数据终端相连接的所有通信线路。中央处理器用来处理由数据终端设备输入的数据。
3数据通信的分类
3.1有线数据通信
3.1.1数字数据网(DDN)
数字数据网(DDN)的应用主要表现在公共DDN网络,DDN可向用户提供速率在一定范围内可选的异步或同步传输、半固定连接的端到端数字信道。其异步传输速率为50bit/s至19.2Kbit/s,同步传输速率为600bit到64Kbit/s。半固定连接是指信道为非交换行,由网络管理人员在计算机用命令对数字交叉连接设备进行操作,并控制传输速率到达地点和路由转换。DDN可为公用数据交换网、各种专用网、无线寻呼系统、可视图文系统、高速数据传真、会议电视、ISDN以及计算机网络提供中继信道或用户的数据通信信道。DDN可为帧中继、虚拟专用网、LAN以及不同类型的网络提供网内连接。利用DDN实现集团用户计算机局域网的联网,采用数据终端单元(DTU)进入DDN,不仅提供传输速率为9.6Kbit/s以上,而且误码率很小,通信质量和可靠性都得到保证。由于DDN独立于公用电话交换网,所以DDN为集中操作维护中心提供传输通道,不论交换机处于什么状态,它都能将信息送到集中操作维护中心。
3.1.2分组交换网
分组交换网是一种采用分组交换方式的数据通信网,它所提供的网络功能相当于ISO/OSI参考模型的低三层:物理层、数据链路层和网络层功能。ITU的X.25建议就是针对分组交换网而制定的国际标准。因此,分组交换网有时也称为X.25网。分组交换网最突出的优点是方便于不同类型终端间的相互通信,线路利用率高,在一条电路上同时可开放多条虚拟通路,网络可靠性高,信息传输时延小,经济性能好,信息传输质量以及线路利用率高。在分组交换中,由于采用了“虚电路”技术,使得在一条物理线路上可同时提供多条信息通路,即实现了线路的统计时分复用,这是其它网络所无法做到的。
3.1.3帧中继网
帧中继是在分组交换基础上发展起来的一种交换技术,他比分组交换技术更加适合现代通信网的需要。帧中继就是减少节点处理时间技术,由于帧传送不会出现差错,帧的目的地址出现就立即转发该帧,其某些工作由用户端处理,大大减少帧时延。因此帧中继网吞吐量很大。
3.2无线数据通信
无线数据通信是通过电磁波传送数据信息的一种通信手段。它是在有线数据通信的基础上发展起来的,实现移动状态下的数据通信。也就是计算机间或计算机于人之间的无线通信。它的优点是:相比之下用无线数传模块建立,成本廉价;无线的方式可以迅速组建起通信链路,建设工程周期短;不受地理环境限制,适应性好;相比有线通信有更好的扩展性;出现故障时则能快速找出原因,更容易实现设备维护。
4网络及其协议
4.1计算机网络
计算机网络就是通过双绞线、同轴电缆、光纤、卫星通信、移动通信、微波通信等有线或无线通道将多台计算机联系起来,实现相互通信,进行信息交换。每个用户通过网络可实现网络资源共享。计算机网络按范围划分为局域网、城域网、广域网和网际网。局域网指在某一区域内由多台计算机互联成的计算机组。属于一个学校、工厂、机关或一个系统组建的小范围网。城域网又称都市网。城域网它的覆盖范围一般为一个城市。广域网属于如一个国家或洲际网络。
局域网是目前使用最多的计算机网络,一个系统能运用多个局域网络,如一个系统财务部门使用局域网来管理财务账目,学校使用局域网来进行网络化教学,工厂使用局域网进行产品种类和数量的统计,交通系统使用局域网进行信号灯的控制,人事部门使用局域网来管理人员状况、档案信息以及人才的流动等。
4.2网络协议
网络协议分为用户数据报协议、小文件传输协议、时间协议、虚拟终端协议、传输控制协议、简单邮件传送协议、路由信息协议、点对点协议、IPv6 Internet协议、Internet控制信息协议、开放最短路优先协议、安全超文本传输协议、超文本传输协议、高层数据链路协议、文件传输协议、动态主机配置协议、边界网关协议、网络管理协议、地址解析协议。
最常用的是传输控制协议和网际协议即TCP/IP协议,TCP/IP协议特点是具有开放体系结构,并且管理简单容易。作为互联网的基础协议,没有它就根本不可能上网,任何和互联网有关的操作都离不开TCP/IP协议。在整个因特网上IP地址是唯一的,IP协议是由32位二进制数组成的。如198.168.30.254就表示连接到因特网上的计算机使用的IP地址。
5总结
总而言之,随着Internet网技术的不断发展,数据通信技术得以普及和广泛的使用,数据通信的新技术新设备不断更新,仍然固守的话会被这个时代淘汰,需要我们不断学习新知识、了解和掌握数据通信技术。目前,在各个层次、各个领域中数据通信网络综合业务数字网方向发展,语音、视频、数据、图像等各种数据通信在各个领域、各个层面都得到广泛使用。特别是在通信领域数据通信得到了广泛应用。
通信双方有一方或两方处于运动中的通信。包括陆、海、空移动通信。采用的频段遍及低频、中频、高频、甚高频和特高频。移动通信系统由移动台、基台、移动交换局组成。若要同某移动台通信,移动交换局通过各基台向全网发出呼叫,被叫台收到后发出应答信号,移动交换局收到应答后分配一个信道给该移动台并从此话路信道中传送一信令使其振铃。它是伴随着现代信息技术革命的发展而迅速成长起来的,到当前为止第四代通信技术已经得到了广泛的推广,在社会上得到了空前繁荣,给人们生产生活带来了极大的便利,同时,时代是不断发展的,第五代移动通信技术也以可观的前景呼之欲出。在高速发达的信息化时代中,科学技术迅猛发展,人们的消费观念也在与时俱进,对远程通信的方式的需求也在不断改变,这既有利于推进移动数据的发展,同时也为移动通信的发展提出了挑战。对于通信技术的发展,首先应当满足移动数据用户的心理需求,满足他们的实际需要,同时也应当与时俱进,与时展的大趋势保持一致,不断改革创新,借助当前发达的科学技术,不断完善改进移动数据通信技术。其次就是应当保持通信信息的质量不失真,满足用户的实际需求。
1移动通信技术的现状以及存在的问题
移动通信技术由两项技术构成,一种是无线电通信技术,另一种是多媒体通信技术,这也是前两代的通信技术的方式。到了第三代,两种技术互相结合,因此取得了进一步的的完善与发展,这种技术的应用范围很为广泛。在过去几十年里,3G技术对无线通信技术起到了举足轻重的作用,为移动通信技术的发展产生了巨大的影响,无线通信技术可谓发生了前所未有的变化。到了以后广泛推广的4G技术,与3G相比,在技术上有了很大的突破,传输速率大大增加,促进了无线通信的进一步的完善与发展,同时也收到了广大用户的一致好评,4G技术已成为移动数据通信的一个里程碑。但是由于产生的时间相对还比较短,就难免存有问题,首先,通信速率需要提升空间,然后,管理系统还需要进一步灵活。应到加强保障消费者的个人隐私,保障移动通信的安全性与隐蔽性。
2当前4G通信技术特点及其需待改进之处
4G移动数据与前几代比较,其最大的特点就是网络集成效果完善与实现,众多系统信号在此统一整合与运用,互惠功效在互联之中效果明显。明确地说,互联帮助4G网络拓展了自身。提高了其兼容性。无线通信技术包括应用层、物理层以及二者的环境层。物理层的功能是为数据端设备提供传送数据通路、传输数据,并且负责用户的抉择。环境层对于相应的地址相关变换、安全性能处理及对服务质量负责,而应用层则是对移动通信用户提供一定的服务,并且用户在使用其他的程序时,也由该层次完成对应的协调工作。不过,其受到地点、时间等客观因素的影响而在逐渐减弱,这是实现多层次、全方位覆盖的一个成功实践。并且4G网络对于网络一致性,也实现了对多种数据信息的处理和传输,实现了从小容量图片到大容量视频的转变,取得了显著的成果。移动数据目前面对的最大困难还是在于对信号的保持问题,这是由于两个基站的覆盖范围不同,从而导致出现的信号暂时丢失,从而对移动数据用户带来了极大的不便。首先,这和如今城市高楼林立,建筑高大,从而导致信号受到障碍有关,并且由于建筑物复杂,也致使建站困难,找不到合适的建站地点。其次,与手机网速以及通信系统的运行状况也有关键,由于网络的容量是一定的,如果上网的人数增多,那么网速必然导致相应的减弱,并且如今智能手机已经得到了普及,因此会,网速减弱是显而易见的事实。解决这一问题,需要运营商增多覆盖基站的数量,缩短基站的距离,从而增强网速。
3移动数据分析对于移动通信的影响及对其的建议
由于网络信息技术的不断完善以及移动数据技术的进步,移动用户们对移动数据通信的质量要求越来越高,这主要表现在两个方面,一是对通信速度的要求,二是对通信质量的要求,这也是阻碍通信技术发展的主要因素。这主要由于对用户的数据使用情况还不够了解,致使更多数据没有发挥更大的作用。通过对移动通信的深入分析,这不仅能促进通信人员对移动数据通信现状的进一步了解,同时也由于制定合理的措施。并且有利于在存在的问题暴露出来,进而一步步地去解决。要解决这种被动的局面,最重要的就是要充分了解消费者的需求,掌握他们的使用习惯,从而对症下药,满足用户的需要。从而也有利于促进数据通信行业的快速发展,并带来可观了的效益。
3.1优化相应的移动通信网络
通信网络的优化需要移动数据分析的帮助,优化数据的采集过程即为网络优化。进行数据的优化是网络优化的第一步,需要在充分了解事实情况的基础上进行数据收集,这是提高工作效率的需要,也是为了保障采集工作的需要。在采集相关信息后,便可以分析数据了,需要摸清那个数据信息的来源,从而对需要了解的信息进行全面详细地了解。其中包括网络干扰信息以及心令信息等。认识问题的关键在于解决问题,最终便是依据基本原理以及应用理念,对存在的问题以及潜在的问题采取有效的举措。
3.2全面分析已有的数据库
数据库是集合大量基础数据的处所,与移动数据通信技术相关的信息也都储存于此,由于相应的调用模式、调用模式以及数据库与数据库之间的关联形式,这都为通信工作人员调用相关信息提供了极大的便利,他们可以迅速地提取他们所需要的信息,这样就有利于提高工作人员的工作效率。并且用户在使用过程中也能满足其使用需要,并且也能解决他们所提出来的疑问。虽然相应的设备和技术可以满足数据的存储和调用,但是这些都是相对较为简单的功能,对于一些较为复杂的功能还是望尘莫及,比如在进行数据搜集中,完全可以通过增加相关特征的存储与调用和数据频率,由此,运营商就能以此来制定供给型的服务,从而避免了只能做简单的服务。这样一来通过获得用户的口碑,可以大大促进了经济效益的提高,以此带来显著的经济效益。
3.3供决策的数据分析资料并创新工作方法
移动数据的最大优势就是能够将不同行业的数据进行处理,从而将其关联起来,从而打破以往移动数据通信相互分离的模式,从而挖掘其更深层次的潜在价值。这样一来,不仅可以提高移动通信数据的应用平台,同时运营商的经营理念与经营策略也将大大改变。
3.4做好4G网络安全防护措施
网络编码实际上是将路由和编码的信息进行相互交换的方式。传统路由主要是实现信息的存储和转发,网络编码则能够接收到几个不同的数据组,然后将其融合编码信息,增大传输信息的数量,从而能大大提高网络的利用效率,结束了传统中认为独立比特不可压缩的理论。它的工作原理是利用有限域中的运算,将接收到的几个不同的数据组,在网络不同的结点中进行重新编码组合,然后将编码过的数据以多播的形式转发给各个目的结点,并由目的结点对其解码还原,得到原始数据,这样就实现了通信。网络编码的主要优势是提高了网络通信的系统性能,提高通信效率,这是因为网络编码增大了每次传输的数据量,减少了传输数据的次数,从而能够很好地提高网络通信的性能,不仅增加了网络数据的吞吐量,也提高了宽带的利用效率,还能平衡各网络目的结点之间的负载能力。在当前人们越来越依赖无线通信技术的的背景下,网络编码对提高网络安全、提高资源利用率等方面也有十分重要的作用。
2基于网络编码的数据通信技术研究
2.1网络编码的路由协议
在数据通信技术当中,路由器提供了网络互联的机制,实现将一个网络的数据包发送到另一个网络。在这个数据传输的过程中,路由是根据IP数据包发送的路径信息。为了保障数据传输的可靠性,就必须实现制定规范的路由协议。基于网络编码的路由协议是网络编码实现及应用的基础,将网络编码与路由协议统一到一个较高层次,从而满足数据传输的需求。在当代社会发展过程中,数据通信技术的作用越来越大,人们对数据通信性能需求不断提高,为了更好地满足当代社会发展的需求,基于网络编码的数据通信就必须对其路由协议进行相关的研究。利用网络编码技术进行数据信息传送能够极大的提高信息传送效率。这不但是因为网络编码可以使网络数据单次传送的信息量大幅度增加,还在于网络编码可以减少分组的传送次数,保障数据传输的性能。
2.2基于网络编码的数据传送模型
构造算法的提出,为网络编码的成功构造以及保证网络各节点成功解码数据奠定了可靠的基础,在实际应用中,算法的复杂程度较低,易于部署应用。当前,网络编码的码构造算法主要有线性网络编码和随机网络编码等,就编碼机制设计的实际情况来看,其中比较常用的是线性网络编码,基于网络中间节点对接收到的不同输入链路信息实现线性组合,进而将组合的数据进行转发。就线性网络编码的实际应用情况来看,其主要包括指数时间算法、多项式算法以及随机网络编码算法等比较典型的码构造算法。而随机线性网络编码方案往往具有相对独立的网络拓扑结构的灵活性,因此,线性编码运算形式具有简便性,可以提高数据通信质量和效果,在实际编码过程中大多采用随机线性网络编码构造方案。
2.3网络协议
结构当前网络编码研究中涉及到的主要部分还是在网络层方面,特别是如何有效地将路由协议与网络编码有机结合,是基于网络编码的网络结构研究的重要方面。有一部分研究已经深入到网络编码如何有效结合协议结构中其他协议层,例如网络编码与MAC层协议或者与传送层TCP协议等等的结合问题。因为网络编码的特性与传统网络数据通信的方式有很大的区别,所以为了不更改已普遍应用的传统网络协议,将网络编码与其融合将会遇到各种各样新的问题,例如,它们之间的兼容性、网络编码对网络协议结构是否会产生不利的影响。这些问题都是后来研究者需要解决的问题,同时也为研究基于网络编码的网络协议结构提供了框架性借鉴,使得网络编码能够与传统的网络协议有机融合,提高网络通信性能。
2.4基于网络编码的数据传送性能保证机制
在标准的网络环境下,网络数据传送极易受到网络拓扑结构的易变性和数据传送的突发性等因素的影响和作用,导致网络数据传送不稳定,甚至出现分组丢失以及数据传送延时等问题。因此,基于网络编码的数据通信技术应依据网络实际运行状态,探讨数据传送性能保证的编码策略方法,最大程度上提高数据传送的可靠性,避免数据传送延时情况出现。相关学者研究表明,采用多速率编码机制并利用不同链路的数据执行相关决策机制,有助于降低网络编码对数据传输的影响,使数据传送延时问题得以有效控制,在未来发展过程中,相关解决方案仍有待进一步探索。
总之,在这个信息化快速发展的社会地方中,人们对数据通信性能要求不断提高,为了更好地满足人们的需求,加大数据通信技术的研究显得极为重要。网络编码的提出为我国当前网络数据通信技术的发展提供了一个全新的平台。随着网络编码的应用不断推广,基于网络编码的数据通信技术不仅可以保障数据传输的效率,减少信息的冗余,同时还可以保障数据通信的安全性、稳定性、可靠性。伴随着科学技术的不断创新,基于网络编码的数据通信技术将会在不断的实践过程中加以完善可发展,为我国当前社会提供更多、更好的发展契机。
参考文献:
[1]余翔,吕世起,曾银强.C-RAN平台下信道编码与网络编码的联合算法设计[J].广东通信技术,2016(4).
中图分类号:TP309.7 文献标识码:A 文章编号:1007-9416(2015)03-0020-01
信息,数据和信号是非常重要的,它们分别涉及到三个不同层次的通信问题。通信的目的是交流信息,而数据实体则是信息的传输,它涉及到事物的具体形式:信息是对数据的解读,是数据的内容和含义,它可以有数字,文字,声音,图形,以及各种形式的图像,信号是数据的表示,也被称为电磁或电子编码数据,它允许数据在媒体上以适当的形式被传送。
1 模拟数据与数字数据
数据一般分为两大类:模拟数据和数字数据。模拟数据被连续地改变由传感器采集而获得的值,如温度,压力,是目前在电话,广播电视中的声音和图像,数字数据是模拟数据之后,在由量化获得的离散值,它采用了一系列符号代表信息,前面的每个符号只可以取采取有限的值。
2 模拟信号和数字信号
信号通常是以时间为自变量,在数据(振幅,频率或相位)作为因变量的参数表示。是否信号其连续因变量的值可分为模拟和数字信号。
(1)模拟信号是与完全可变信号的变化连续地变化的信息信号的结果。模拟信号的自变参数可以是连续的或也可以是分散的,但它必须是一个连续的因变量。电视视频信号,语音信号(PAM)信号的脉冲相位调制(PPM)和脉冲宽度调制信号(PWM)也属于模信号。(2)数字信号是指表示该数字信号的信息是一个离散因变量,自变量的值是离散时间的标志,数字信号是有限的变量状态,通常表示为x(nT)。数字电话,计算机数据和数字电视等都是利用数字数据,可以是一系列电压脉冲或光脉冲来表示的断续变化。
3 数据通信方式
至少由三部分组成的通信系统,发射器、传输介质,接收机。发送器产生信息,通过传输介质发送到接收机。在数据通信系统的设计中,还需要考虑以下几个问题:
3.1 单工、半双工与全双工通信
根据双方通信的分工和信号传输的方向可以分为三种模式:单工,半双工和全双工。单工模式:双方的通信设备中发射器与接收器明确分工,只能在发送器向接收器单一固定的方向传送数据。如早期的计算机的读卡器就是采用单工通信的典型发送设备,象打印机就是典型的接收设备。半双工模式:通信两方面既是接收器也是发射器,两方设备可互相传送数据,但有时候也只能往一个方向发送数据。如,步话机在某一时该只能一方说话,故此也是半双工设备。全双工方式,通信两方面的设备既是接收器,也是发射器,两方面的设备能同时向对方传送数据。如,双方可以同时讲话的电话就是全双工设备。在计算机网络中一般都采用全双工模式,但局域网采用半双工方式。
3.2 串行通信与并行通信
根据通信使用数据的信道数,可分成串行通信和并行通信。通过传输线逐位传输数字代码的为串行通信,两方面都以数据帧为单位传输信息。用串行方式通信时只要在收发双方建立一条通信通道。对远程教学来说,串行模式通信的造价低,可以采用。并行模式的通信方式是要用一组传输线多位同时传输数据,收发两方之间要建立多条并行的通信通道,要让并行的各条线路都一至,因此便要传输定时和控制信号,但并行的各条线路的信号经过转发和放大处理时,会有不同的延迟与变型,所以也很难做到并行同步。要是采用很复杂的技术,线路和设备这样成本会很高,在远距离数字通信中不适合使用。
3.3 同步技术
发送者和接收者必须在同一时间上的通信过程进行同步,一方保持码元之间的同步,在另一方,必须保持起止时间的安全符号或符号组成的数据块之间的同步。实现字符之间的常用方法或数据块的开始和结束的时间同步有两种,异同传输和同步传输。每一次只传输一个字符,每一个字符以一位起始位为向导,一到两个停止位结束。收接方要衣据“1”至“0”变跳来辨别一个新安符的开始,之后收接字符的所有位。异步传输是指字符之间的时间间隔和字符是可变性的。也不用来格地规定它们的时间关系。起始位为“0”,代表了时间,停止位为“1”,代表的1-2位的持续时间。发送方可以在没有数据传输时发送连续的停止位也称空闲位。这种通信方法简便,如计算机和调解器之间的通信就是使用这种方法,它的缺点是每个字符有2-3位开销,降低了通信效率。在同步传输模式中,一般以数据块为传输单位。为了使接收机能够确定该数据块的开始和结束,需要在每个数据块的开始和结束处各加一个帧头和一个帧尾,只有加有帧头和帧尾的数据才称为一帧,帧头与帧尾取决于数据块是面向字符(字符同步)还是面向位(dit synchronons)的。
如利用面向字符的方法,这个数据块以一个或多个同步字符作为起始位,一般被称为SYN,控制字符的位方式与传送的任意数据字符有着明显的区别。帧尾是另一个独特的控制字符ETX。则可以更快地接收数据,直至帧尾字符ETX的末端被发现。然后,接收器确定下一个字符的SYN。
面向位的方法是把数据块作为位流面而不是作为一个字符流处理。除了帧头和帧尾的原理有些区别外其它基本一致。在面向位的方法中,因为数据块可以具有任何一种模式,因此不能保证帧头和帧尾标志出现在数据块中,为此帧头和帧尾使用的是特殊的比特序列标志“01111110”,为了避免这种序列存在于数据块中,发送方所传输的数据中当出现5个1后就额外插入一个0。当接收方检测到5个1的序列时,只检查最后的一位数据就行,如果该位是0,接收方删掉这个附加的0,象这样的规程就是零插删除法。在高级数据链路控规程HDLC和IBM公司规定的同步数据链路控制规程SDLC就是采用这种技术。这是在国际标准化组织ISO所规定的的。
参考文献
数据通信是以“数据”为业务的通信系统,数据是预先约定好的具有某种含义的数字、字母或符号以及它们的组合。数据通信是20世纪50年代随着计算机技术和通信技术的迅速发展,以及两者之间的相互渗透与结合而兴起的一种新的通信方式,它是计算机和通信相结合的产物。随着计算机技术的广泛普及与计算机远程信息处理应用的发展,数据通信应运而生,它实现了计算机与计算机之间,计算机与终端之间的传递。由于不同业务需求的变化及通信技术的发展使得数据通信经过了不同的发展历程。
一、通信系统传输手段
电缆通信:双绞线、同轴电缆等。市话和长途通信。调制方式:SSB/FDM。基于同轴的PCM时分多路数字基带传输技术。光纤将逐渐取代同轴。
微波中继通信:比较同轴,易架设、投资小、周期短。模拟电话微波通信主要采用SSB/FM/FDM调制,通信容量6000路/频道。数字微波采用BPSK、QPSK及QAM调制技术。采用64QAM、256QAM等多电平调制技术提高微波通信容量,可在40M频道内传送1920~7680路PCM数字电话。
光纤通信:光纤通信是利用激光在光纤中长距离传输的特性进行的,具有通信容量大、通信距离长及抗干扰性强的特点。目前用于本地、长途、干线传输,并逐渐发展用户光纤通信网。目前基于长波激光器和单模光纤,每路光纤通话路数超过万门,光纤本身的通信纤力非常巨大。几十年来,光纤通信技术发展迅速,并有各种设备应用,接入设备、光电转换设备、传输设备、交换设备、网络设备等。光纤通信设备有光电转换单元和数字信号处理单元两部分组成。
二、数据通信的构成原理
数据终端(DTE)有分组型终端(PT)和非分组型终端(NPT)两大类。分组型终端有计算机、数字传真机、智能用户电报终端(TeLetex)、用户分组装拆设备(PAD)、用户分组交换机、专用电话交换机(PABX)、可视图文接入设备(VAP)、局域网(LAN)等各种专用终端设备;非分组型终端有个人计算机终端、可视图文终端、用户电报终端等各种专用终端。数据电路由传输信道和数据电路终端设备(DCE)组成,如果传输信道为模拟信道,DCE通常就是调制解调器(MODEM),它的作用是进行模拟信号和数字信号的转换;如果传输信道为数字信道,DCE的作用是实现信号码型与电平的转换,以及线路接续控制等。传输信道除有模拟和数字的区分外,还有有线信道与无线信道、专用线路与交换网线路之分。交换网线路要通过呼叫过程建立连接,通信结束后再拆除;专线连接由于是固定连接就无需上述的呼叫建立与拆线过程。计算机系统中的通信控制器用于管理与数据终端相连接的所有通信线路。中央处理器用来处理由数据终端设备输入的数据。
三、数据通信的分类
数字数据网(DDN)。数字数据网由用户环路、DDN节点、数字信道和网络控制管理中心组成。DDN是利用光纤或数字微波、卫星等数字信道和数字交叉复用设备组成的数字数据传输网。也可以说DDN是把数据通信技术、数字通信技术、光迁通信技术以及数字交叉连接技术结合在一起的数字通信网络。数字信道应包括用户到网络的连接线路,即用户环路的传输也应该是数字的,但实际上也有普通电缆和双绞线,但传输质量不如前。
分组交换网。分组交换网(PSPDN)是以CCITTX.25建议为基础的,所以又称为X.25网。它是采用存储――转发方式,将用户送来的报文分成具用一定长度的数据段,并在每个数据段上加上控制信息,构成一个带有地址的分组组合群体,在网上传输。分组交换网最突出的优点是在一条电路上同时可开放多条虚通路,为多个用户同时使用,网络具有动态路由选择功能和先进的误码检错功能,但网络性能较差。
帧中继网。帧中继网络通常由帧中继存取设备、帧中继交换设备和公共帧中继服务网3部分组成。帧中继网是从分组交换技术发展起来的。帧中继技术是把不同长度的用户数据组均包封在较大的帧中继帧内,加上寻址和控制信息后在网上传输。
四、网络及其协议
计算机网络技术使用了通信线路和设备,用于连接不同地区的计算机网络,形成计算机网络系统,从而满足人们对语音、图像、数据等信息的共享需求。计算机网络中的组成设备主要有网关、交换器、网桥等,进行数据传递的过程就是计算机网络通信技术,计算机网络通信的基础是网络协议,只要计算机的网络协议相同,就可以实现信息数据的通信和共享。
1数字数据通信技术的概述
1.1数字数据通信技术的优势
数字数据通信技术与传统的模拟数据通信技术相比有着极大的优势:第一,数字数据通信技术中,数据传输的单位是数据帧,在传输时,一旦出现传输错误,就可以及时通过检错编码和重新发送数据帧进行检测,大大提升了通信的可靠性能。第二,数字数据通信可以将视频、声音、图像等非数据信息转换为数字信息,并在计算机网络中进行传输。第三,数字数据通信技术有效加强了信息加密技术,使得信息的隐私性得到保障,避免外界的非法获取,保障了信息的安全性。第四,数字数据通信技术采用了继电器设备,并对信息和数据进行适当的放大和整形,避免了噪音的累积和影响,保证了数据在通信传输过程中遇到长距离传输时的完整性。第五,数字数据通信技术发展的速度不断加快,并利用了集成电路,大大减少了电路设备的数量,降低了设备的成本和体积,使通信设备便携方便。第六,数字数据通信技术中应用了多路光纤技术,使得数据的通信路径更多,传输速度加快,可以在同一时间传输更多的数据,满足了快速发展的生活需求。
1.2数字数据通信中的指标
1.2.1速率
通信技术中的速率指的是每秒能够传送的代码位数,其计算公式是:S=1/T*log2n公式中的T是指脉冲的重复周期(脉冲的宽度),n是指调制的点平数。由此可见,T的重复周期(脉冲的宽度)的倒数就是每一秒的单位脉冲数,如果n=1/T,那么单位脉冲的重复频率就是每一秒的位数。在调制器中,每一个调制转换时间都与一个代码对应。由此可见,调制速率与信息传输速率是相同的。
1.2.2误码率
误码率是衡量数据通信系统信息传输可靠性的关键指标,误码率主要指在数据进行通信传输的过程中,二进制码出错的概率,它的计算公式是:P=Ne/N公式中,Ne指的是传输错误的码数,N指的是传输过程中二进制码的总数。
1.2.3信道容量
信道容量决定了数据的通信速率,是检测信息通信能力的重要因素,在计算机网络中,比特是最常用的一个二进制单位,每秒能够传送的比特数量是信道容量的单位。
2计算机网络通信的现状分析
计算机技术的普及加快了经济的发展,也提高了人们的生活质量,传统的通信技术已无法满足新时代的要求,因此,通信技术也不断更新。近年来,通信技术经历了模拟技术、二代GSM技术、CDMA技术、3G通信时代,目前,通信技术已进入4G通信时代,较以往的通信技术而言,4G通信传输速度更快,完整性更高,安全性更稳定,方便了人们生活和工作的交流与沟通。另外,多媒体技术也在快速发展的通信技术时代背景下得到了提高,数字数据通信技术中可以将图像、音频、影视等数据转变为数字信息,方便了传输和共享,同时,数字数据通信技术还增加了存储容量,可以无限制存储,多媒体技术与计算机网络数字数据通信技术的高度融合,将更好地满足社会和人们的需求。
3数字数据通信技术的编码
3.1基带传输
基带传输是指通过传输线路直接传送包含数字信号的电脉冲,是通信技术中最常见的传输方式,广泛应用在距离较近的局域网信息数据传输中,在传输中,常使用不同的电压电平来替代二进制数字进行表示。
3.2编码方案
数字信号脉冲编码方案多种多样,主要包括:单极性不归零码、双极性不归零码、单极性归零码、双极性归零码4种。其中归零码与不归零码的区别主要是脉冲时间与码数的关系,如果在一个全部时间内是用电流来进行传输的就称为不归零码,如果发出的电流少于一个码数的全部时间就称为归零码。简而言之,归零码发出的是较窄的脉冲,而不归零码发出的是较宽的脉冲。除此之外,单极性码与双极性码的区别则是单极性码可以将直流分量进行累计,而双极性码则不可以累计直流分量,更有利于通信传输。
3.3同步过程
同步过程是指接收端按照发送端的每个码数的重复频率以及起始时间来接收和传输数据的,在计算机网络数字数据通信技术中,主要应用的是位同步法和群同步法。位同步法是指接收端对于传输的每一个数据都和发送端保持一致,并在时间上保持同步,为了实现位同步法,我国目前常用的有外同步法和自同步法2种。外同步法是指接收端的数据信息直接由发送端预先发送过来,并保持同步;自同步法则是指接收端从发送端传输的各种波形中提取数据信息,并保证提取的数据信号不论时间上还是内容上都与发送端保持一致,例如:曼彻斯特编码。群同步法是指在发送端传输信息后,将传输的信息分成若干群,这里的群是一种序列,序列有起始数据,也有终止数据,而所有数据都是有着固定的传输频率的,这样也就保证了发送端和接收端的信息一致。
4数字数据通信传输方式
4.1数字通信方式
一般来说,数字通信传输方式主要包括2种,即并行传输方式和串行传输方式。其中,并行传输方式一般适用于近距离数据通信传输,在发送端和接收端2个设备传输时,数据可以在并行的多条通信线路上达到传输多个数据位的效果。而串行传输方式则多用于远距离数据通信,在进行传输时,数据是一位一位地在通信线路上进行传输,并主要有3种传输方向,即单工结构、半双工结构、全双工结构。其中的单工结构只支持1个方向上的数据通信传输,而半双工结构就可以支持数据在2个方向上进行数据通信,而遇到特殊情况时,会在1个方向上进行数据通信传输,全双工结构指的是只可以在2个方向进行数据通信。
4.2多路复用方式
多路复用方式主要分为频分多路复用和时分多路复用2种传输方式。频分多路复用方式是指将信道的总容量分解成为多个子信道,而且每一个子信道的带宽完全相同,每一个子信道都可以单独负责传输信号,使得信号可以同时传输,加快传输速度。时分多路复用方式是指按照时间的先后顺序,将每一个信道分解成多个时间段,在同时传输多个信号时,每一个传输的数据信号就会占用一个时间段,从而达到实现多个数据同时传输的目的。
4.3同步传输和异步传输方式
在数字数据通信的过程中,为了保障发送端和接收端的数据信息完整性和同步性,各个码数也必须保持同步,数据模块和各个字符在传输的起始时间和终止时间也需要相同,目前,我们多采用同步传输和异步传输2种方式来达到这个目的。其中的同步传输是指在数据进行传输时,加入一些同步字符,从时间进行判断,只有保证了数据的传输起始时间和终止时间相同,就可以判断数据传输的同步性。而异步传输则常用于低速的传输设备,在数据中只能1位1位地加入起始字符和终止字符,导致传输效率低,结构也相对简单。
5结语
随着计算机网络技术的应用和普及,数字数据通信技术越来越完善,满足了社会的发展要求,也方便了人们的生活和工作,在我国军事、工业、航空航天技术、卫星通信技术等领域也得到了广泛应用。本文首先对数字数据通信技术进行简述,并分析发展现状,对计算机网络数字数据通信技术的传输进行阐述,以期对我国计算机通信技术提供参考。
[参考文献]
[1]刘忠.探讨计算机通信与网络发展的应用技术[J].电子技术与软件工程,2014(16):44.
[2]宋舒豪.探讨计算机通信与网络发展的应用技术[J].信息通信,2014(3):172.
[3]赵洪涛.浅议计算机通信与网络发展的应用技术[J].交通科技与经济,2004(2):37-38.
[4]张雪艳,刘春霞.计算机通信与网络发展的应用技术[J].煤炭技术,2012(10):174-175.
中图分类号:TP393.02 文献标识码:A 文章编号:1007-9416(2016)11-0023-01
计算机网络技术已经应用到各个领域中,覆盖面积庞大,成为人们生产、生活必不可少的工具。其中,在通信领域中,计算机网络发挥其特有的特性,将通信线路与系统变成一个整体,进而更好的满足人们的需求[1]。
1 计算机网络数字数据通信技术的优势
1.1 采用计算机网络数字数据通信技术可靠性更高
计算机网络数字数据通信技术在传统通信数据时,采用的是数据帧传输模式,当通信数据在传送的过程中出现错误或发生故障时,可以通过发现数据帧产生的异常情况来判断错误或故障源头。同时,在发现数据帧出现问题后,还具有数据重新发送的功能,大大缩减了出现数据传输问题的可能性。人们在使用的过程中,采用计算机网络数字数据通信技术可以极大地降低数据错误而引起的不良后果。并且,采用数据帧传输方式,还能够减少人员检修的概率,充分发挥出其自身的作用。而数据帧传输方式的运行基础就来源于计算机网络数字数据通信技术,该技术能够最大程度的提升通信技术的可靠性,提高人们对于通信工程的信任度[2]。
1.2 计算机网络数字数据通信技术具有转换性
在传统的通信数据传输中,对于照片、视频以及声音等数据只能以原有形式进行传输,传输速度缓慢。而在计算机网络数字数据通信技术中,可以将用户发送的照片、视频等内存较大的数据转化为数字数据进行传输,降低了传输时间,让传输效率更高。在现代生活中,快节奏的生活方式已经成为一种新的生活方式。传统的传输方式已经不能满足现代生活的需求,亟待改革。而计算机网络数字数据通信技术则弥补了速度的不足,满足了人们的需求。
1.3 计算机网络数字数据通信技术安全性更高
计算机网络数字数据通信技术对传输中的信息给予了信息加密技术,降低了信息被攻击以及窃取的可能性。在传统的信息传输过程中,由于没有安全保密措施,很容易被黑客或其他不法分子攻击,造成信息泄露,不论是对个人还是对单位都会产生极大的负面影响,造成隐私的泄露[3]。而计算机网络数字数据通信技术则不同,为了能够保障用户的通信使用安全性,对于数据的传输技术,着重加大了对加密技术的研究,最大限度的提升了通信技术的安全性,能够满足人们对于信息安全性的需求。
1.4 计算机网络数字数据通信技术完整性更高
通信数据通常无法避免需要进行长距离的传输,而在传统的信息传输过程中,长距离传输往往会造成数据的丢失或损坏,对信息的完整性有很大影响。在短距离的数据传输过程中,通常不会遇到这样的问题。但是,有庞大的数据需要长距离传输,这就对通信技术产生了新的要求。而计算机网络数字数据通信技术则弥补了不足之处,在长距离的信息传输过程中,融入了继电器技术,尽可能的减少外界的干扰,如噪音的干扰等。计算机网络数字数据通信技术采用继电器设备,确保了通信数据传输中的完整性,降低了信息丢失或损坏的可能性。
1.5 计算机网络数字数据通信技术具有节省成本优势
在传统的通信数据传输中,需要大量的电路设备来支持数据的传输。而采用计算机网络数字数据通信技术,融入了集成电路思想,将大量的电路设备转换为集成电路,间接的减少了所需电气设备数量,进而帮助通信企业降低了购买设备成本。同时,设备的减少也为保护环境贡献了一份力量,每一个电路设备都会涉及到资源的消耗与废物的排放。而电路设备的减少,对于保护环境也具有十分重大的意义。
2 计算机网络数字数据通信技术的现状
在计算机技术成为普及技术的今日,不仅满足了人们在日常生活中的需求,还加快了不同领域的行业发展。在通信行业中,为了能够满足人们对通信技术的需求,计算机网络数字数据通信技术的研发成为通信行业中的一座里程碑。近些年来,社会的节奏不断变快,为了跟上社会的发展步伐,通信技术从模拟技术、GSM技术等技术一路走来,目前已经进入了4G通信技术时代。4G通信技术是计算机网络数字数据通信技术成熟化的表现,最大程度的满足了人们对于通信技术的需求。同时,计算机网络数字数据通信技术具有传输速度快、传输数据安全性高、可靠性高以及传输更加稳定的优势。除此之外,现在的计算机网络数字数据通信技术还能够将视频、图片等图像化的数据转化为数字数据,降低了传输负担,加快了传输速度,更加符合社会需要[4]。
3 结语
计算机技术与互联网技术的研发与普及,对社会各个行业都产生了巨大影响。而在通信领域中,相较于传统的通信技术而言,具有更大的优势。采用计算机网络数字数据通信技术可以满足人们对于信息传输速度、信息传输安全、信息传输可靠性及稳定性的要求,最大程度满足人们在生活与生产中的需要,成为社会不可或缺的一部分。计算机网络数字数据通信技术是一项优质通信技术,能够最大程度上推动社会稳步前进。
参考文献
[1]宋同庆,丛林,鲁宝泽.计算机网络中的数据通信技术[J].数字技术与应用,2015,12(22):48.
引言
随着科学技术的不断发展,也促进了信息技术的高速发展,提高了通信的效率和质量。过去的信息通信模式仅仅是通过数字技术和交换技术,效率和质量不高,随着时代的改变难以满足人们的需求。因此,计算机网络和通信技术的发展有着重要的意义。这两者间并不是毫无关联的,应当对两者的联系进行分析,更好的进行应用,促进两者的共同发展。
1、计算机网络和通信技术概念
1.计算机网络技术
计算机网络技术指的是将现代通信技术和网络技术相互结合,通过相应的通信线路或设备,将存在于各个不同地域,可以单独工作的计算机设备连接到一起。在此基础上,可以有效的进行计算机之间的资源共享和传输。计算机的网络系统是由资源网络和通信网络两者共同组成的,网络的含义指的是通过电缆、无线通信以及电话线等连接在一起的集合。在网络中,两个节点之间可以进行无障碍的通信,网络中的数据、硬件和软件都可以达到共享的目的。在一个全面的计算机网络中,由网管、网桥、路由器、集线器、中继器和交换器等设备组成。
2.通信技术
所谓的通信技术,指的是在不同的计算机或计算机与设备之间,进行数据交换的过程。根据不同的发展阶段,分别为模拟通信、数字通信和数据通信,分别通过模拟信号、数字信号和信息员产生的数据信号进行传输。
根据数据通信的不同交换方式,可以分为电路互换、报文互换和分组互换三种交换方式。计算机之间的信息传输和共享,都是以网络协议作为基础。即使计算机之间有所区别,但所使用的网络协议是相同的。通过相同的语言,能够完成计算机之间的信息互换。而在网络协议的选择上,要根据实际情况进行分析选择[1]。
2、计算机网络和数据通信的发展阶段
2.1联机阶段
在此阶段中,计算机主要是通过中央处理器,将不同地域的多个计算机连接到一起,进行信息控制和交换的过程。在这种方式下,主要负责工作过程的是主处理器,并将各个计算机中的大量数据进行收集和存储,而其他的计算机只是针对性的对一部分信息进行处理。
但是,随着计算机数量的不断增加,主处理器所面临的数据越来越多,工作负荷也越来越大。导致主处理器的运行速度越来越慢,其信息的获取速度也受到了一定的干扰。为了解决此问题,在通信线路和中央处理器中间,增加了一个通信控制器或前段处理机,对终端计算机的信息收集和控制进行辅助,提高其运行速度,加快处理数据的效率。
2.2计算机互联阶段
计算机互联阶段的发展在上个世纪六十年代,将多个计算机实现互联,保证信息之间的传递和共享。这种方式有着多种优点,例如分组交换、控制分散、资源多项共享等。但与此同时,此阶段也有着一些局限性,例如相对封闭、过于独立等,不利于网络的全方面互通和信息的全面共享。
2.3标准化网络阶段
二十世纪八十年代,在集成电路和微处理的发展背景下,计算机技术得到了全面的应用,也为标准化网络的发展奠定了一定的基础。在这一发展阶段中,计算机已经不仅仅是一个大型设备,随着设备体积的不断减小,信息处理速度的不断提升,计算机具备了更多的功能,在信息处理的速度上也有了较大的提升,运行更加稳定。另一方面,随着局域网技术的迅速发展以及路由器、调制解调器等设备的应用,方便了计算机之间的信息传递,加快了信息传递和共享的效率。
2.4高速网络和互联阶段
在二十世纪九十年代,开始提出了“信息高速公路”的概念,这也是信息化通信发展的必然趋势。并逐渐在国际上进行应用,其中以美国的发展最为明显。从此,全球范围内的网络通信技术都开始以互联网作为基础,实现了全球资源的共享,促进了数据通信和计算机网络的发展。
3、计算机网络和数据通信的实现方式
3.1以太网
以太网属于计算机控制技术中的一种方式,有着较为明显的优点:较高的通信效率,应用范围所受限制较少,成本低,有着丰富的网络资源。目前在商业行业的计算机通信中应用较为广泛,有着较好的应用前景和市场潜力。随着此技术的不断发展,在工业方面也逐渐开始普及,根据以太网的技术特点,在信息共享和通信方面的作用非常明显。再加上此技术成本较低,在市场上具备一定的竞争力,不仅能够提高通信网络的效率,还能够有效降低企业建设局域网的成本。因此,以太网是目前应用最广泛的计算机控制技术,同时也促进了网络和数据通信的发展[2]。
3.2现场总线技术
通过现场总线技术,能够在生产现场和测量设备之间进行数字化通信,从而实现计算机网络与通信技术。此技术的主要数据传输方式是基带传输,能够有效保证信息的时效性,而且在传输过程中不易扰。此外,其功能模块并不是集中的,有利于设备的维护,稳定性较强。现场总线技术所使用的是开放式的互联结构,能够实现同层网络的互联,另一方面,操作性也较强,在通信协议的背景下,能够协调不同的通讯设备。现场总线技术的优势也较为明显,具备稳定性、可靠性、兼容性和实用性的特点,相关的技术也在逐渐完善。但是由于其自身的制约,也存在着种种缺陷。首先信息的传输效率检查,速度有一定的限制。另一方面,现场总线技术的标准较为复杂,一旦出现问题,难以进行有效的控制。和以太网相比,稳定性方面有所提升,但是效率上却不如以太网。因此在使用时,要根据实际情况灵活运用,发挥其技术优势。
4、网络与通信技术的发展
计算机网络和通信技术分为两种:光通信和电通信。电通信技术中又分为无线通信技术和有限通信技术两部分。近年来,随着我国网络和通信技术的不断发展,在全国范围中,已经成功实现了基础信息通信网络的建设,其规模在国际上处于领先地位。
计算机控制技术对网络和通讯技术的发展有着一定的促进作用。随着近年来我国计算机网络和通讯技术的不断完善,在大容量程控交换机的设计方面有所进展,加强了交换机和用户信息等的维护控制方面。对传统的预选控制的方法进行了改善,通过程序化的控制,更好的在存储器中进行存储处理。当交换机进入工作状态后,同时控制使用者拨打的号码以及其变化,根据相关的规范执行程序,完成各项功能。
另一方面,通信的变革能够促进网络和通信技术的发展。目前,我国的网络和通信技术的应用逐渐普遍,在通信方式不断更新的同时,计算机网络和通信的应用也分为多种形式,例如嵌入式、分布式、集中式,这些计算机技术都在各个领域发挥了一定的作用。计算机网络和通信技术有一个共同的特征:计算机技术的大规模应用。通过两者的结合,促进了计算机网络和通信技术的发展,推动了我国的技术发展。根据目前的发展形势,我国已经全面进入光纤、无线时代,必然会再次推动计算机网络和数据通信的发展[3]。
5、结语
随着信息技术的不断发展,计算机网络和数据通信在各个领域都有着广泛的应用,对人们的生活和生产方式造成了重大的影响。随着相关技术研究的不断深入,计算机网络和数据通信技术的服务水平和业务范围的拓展,促使行业不断的发展。在未来的发展中,为了保证网络和数据资源的共享,满足时代的需求,必然要以高速率、广范围作为研究原则,促进计算机网络和数据通信的发展。
参考文献
2系统硬件设计
2.1现场传感器节点设计
在系统终端采集节点功能简单、结构精简,采用蓄电池供电,应用CC2430内部定时时钟产生中断对其予以唤醒,多数时间终端节点处于睡眠模式,这种工作模式能够最大程度节约电能。该器件对电源敏感性要求相对不高,故电源模块选用蓄电池为节点供电,以达到方便、便携的目的。系统主要有两个电源电路,一路5V电源为传感器供电,一路3.3V电源为无线模块供电。5V电源模块选用一款1.25A的大电流、高精度、低压差的LM2940芯片,工作时静态电流低至240μA。
2.2节点传感器模块
现场传感器节点被安装在被监控对象上,采集抽油机井的载荷、位移等参量,为实现载荷、位移及电参数的实时采集,并与控制器及上位机监控系统进行通讯和实时传输。节点传感器模块主要包括:主电机参数检测;减速器参数检测与故障判断;游梁位移传感器检测;曲柄角速度检测;抽油机载荷检测。
2.3网络协调器节点(网关节点)设计
网关节点的功能包括建立网络、无线收发数据等。系统设计汇总网关包含ZigBee无线网络的协调器,即网络的建立者,主要负责ZigBee和GPRS的双向数据、转换协议。协调器节点(网关节点)一直保持工作状态,侦听监测网络,执行各协议层的任务,随时处理采集终端节点关联、解关联以及数据帧发送、接收请求等。各终端采集节点通过协调器与GPRS网络校对时,使得网络时间同步。通过GPRS网络将数据发送回上位机监控室。ZigBee网络中协调器与GPRS模块之间通过串口连接,协调器将从终端子节点传感器采集的数据汇聚后再传至GPRS模块内,通过内部的TCP/IP协议将数据打包封装后发送至SGSN进而与GGSN沟通后,井场SGSN将数据包传送到上位机监控中心。网关经过ZigBee网络周期性采集抽油机井工况数据,再通过GPRS模块实时地传送至监测室中,监测中心接收到现场上传来的数据后,通过内部网Intranet与管理终端实现共享。
2.4远程监测中心
远程监测中心是一个服务器,服务器上运行着上位机软件,当远程监测中心接受到无线传感器网络采集的数据后,该软件可图形化显示远程油田上的数据。
3系统软件设计
ZigBee节点的软件设计开发是在IAR、PacketSniffer、SmartRF04、FlashProgrammer等软件开发环境的联合使用过程中进行的,主要是完成节点网络的建立与维护、各工矿数据的采集处理、采集数据的实时传输等功能。传感器通过ZigBee把采集到的数据传输到协调器。每一个单独节点上装载有载荷传感器和角位移传感器,传感器节点采用命令工作的方式对数据进行采集。
3.1数据采集程序设计
采集时刻到来时,传感器节点首先要打开传感器开关,待传感器工作稳定以后,系统工况数据采集流程图采集得到的模拟电压值将会被送入到AD口转换成数字量。本系统使用的是CC2530内部集成的AD转换器,此AD转换器支持14位的模拟数字转换,具有多达12位的ENOB,包括一个模拟多路转换器,8个各自可配置的通道,可接受单端或者差分信号,以及拥有一个参考电压发生器。ADC控制寄存器包括ADCCON1(ADC控制寄存器1)、ADCCON2(序列AD转换控制寄存器2)、ADCCON3(单通道AD转换控制器2)、ADCL(ADC数据低位)、ADCH(ADC数据高位)。
3.2数据传输程序设计
传感器节点直接与协调器节点进行通信,该过程中传感器节点一直处于休眠状态。协调器节点组网完成后,开始发送广播帧通知覆盖所有传感器节点,组建网络。协调器接收到传感器的入网命令后,要将此传感器节点的IEEE地址保存下来,并立即向传感器节点发送响应帧,允许此传感器节点加入该网络,协调器节点将一直进行组网操作,直至整个超帧完结。
3.3网关节点工作流程
网关节点中ZigBee网络协调器主控器将采集的工况数据通过RS-232串口传送GPRS模块,GPRS模块内置TCP/IP协议会将数据打包发送至SGSN,进而与GGSN通信沟通后对数据进行处理后,经SGSN发送至监测中心。网关节点工作流程图如图5所示。