绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇高分子材料论文范文,希望它们能为您的写作提供参考和启发。
一些树木的分泌物常会形成树脂,不过琥珀却是树脂的化石,虫胶虽然也被看成树脂,但却是紫胶虫分泌在树上的沉积物。由虫胶制成的虫胶漆,最初只用作木材的防腐剂,但随着电机的发明又成为最早使用的绝缘漆。然而进入20世纪后,天然产物已无法满足电气化的需要,促使人们不得不寻找新的廉价代用品。
早在1872年德国化学家拜耳(A.Bayer)首先发现苯酚与甲醛在酸性条件下加热时能迅速结成红褐色硬块或粘稠物,但因它们无法用经典方法纯化而停止实验。20世纪以后,苯酚已经能从煤焦油中大量获得,甲醛也作为防腐剂大量生产,因此二者的反应产物更加引人关注,希望开发出有用的产品,尽管先后有许多人为之花费了巨大劳动,但都没有达到预期结果。1904年,贝克兰和他的助手也开展这项研究,最初目的只是希望能制成代替天然树脂的绝缘漆,经过三年的艰苦努力,终于在1907年的夏天,不仅制出了绝缘漆,而且还制出了真正的合成可塑性材料——Bakelite,它就是人们熟知的“电木”、“胶木”或酚醛树脂。
Bakelite一经问世,很快厂商发现,它不但可以制造多种电绝缘品,而且还能制日用品,爱迪生(T.Edison)用于制造唱片,不久又在广告中宣称:已经用Bakelite制出上千种产品,于是一时间把贝克兰的发明誉为20世纪的“炼金术”。
以煤焦油为原粒的酚醛树脂,在1940年以前一直居各种合成树脂产量之首,每年达20多万吨,但此后随着石油化工的发展,聚合型的合成树脂如:聚乙烯、聚丙烯、聚氯乙烯以及聚苯乙烯的产量也不断扩大,随着众多年产这类产品10万吨以上大型厂的建立,它们已成当今产量最多的四类合成树脂。合成树脂再加上添加剂,通过各种成型方法即得到塑料制品,到今天塑料的品种有几十种,世界年产量在1.2亿吨左右,我国也在500万吨以上,它们已经成为生产、生活及国防建设的基础材料。
二、从天然纤维到合成纤维
人类使用棉、毛、丝、麻等天然纤维的历史已经有几千年,但由于全球人口的不断增加和对纺织品质量的更高要求,从19世纪起,人们就为寻求新的纺织品原料而努力。
1846年制成硝化纤维;1857年制成铜氨纤维;1865年制成醋酸纤维;1891年制成粘胶纤维。由于粘胶纤维的原料是来源丰富的木材浆粕、棉短绒及棉纱下脚料等,再加上制成的纤维性能好,以至它的产量到20世纪50年代已经超过羊毛。
尽管上述几种称为“纤维素纤维”或“人造纤维”的出现是继纺织机械发明之后的又一次纺织革命,但它仍意味着人只是用化学方法,对天然植物纤维的再加工,而通过化学方法,制取全合成的、性能更为优异的纺织纤维阶段,才迎来了第三次纺织革命。
1928年32岁的美国化学家卡罗塞斯(W.H.Carothers)博士从大学岗位上应聘到杜邦公司,负责对不久前才兴起的高分子化学的基础研究,他们研究了多种脂肪族二元酸与二醇或二元胺的缩合反应,由于保证了反应物料的严格配比,从而获得分子量很高的缩聚物,但大多数产物的熔点偏低、不耐水,虽然有的可以抽丝,但不适于用做纺织纤维。反复不断地失败使卡罗塞斯在精神上受到很大打击,以至身上经常携带着一小瓶准备自杀的氰化钾。一直到工作6年后的1934年,终于在合成的数百种产品中,找到有希望成为优良纺织纤维的聚酰胺-66,尼龙(Nylon)是它在投产时公司使用的商品名。
杜邦公司为了使它工业化,动员了230多名各方面专家,花费2200万美元,到1939年始正式投产。这一成功不仅是合成纤维的第一次重大突破,也是高分子科学的重要进展。
尼龙投产后,杜邦公司马上宣布他们生产了比蜘蛛丝还细,比钢还结实的全新有机纤维。尽管当时第二次世界大战已经开始,仍然引起各方面关注。用它织成的女丝袜,销售第一天就卖出400万双,报纸上还报道了当时许多销售店曾引起“尼龙骚动”的场面,可惜的是卡罗塞斯本人却没有看到这种情况。41岁的他,虽然知道尼龙的研究已经取得突破性进展,但却总感到心力交瘁地被失败所缠绕,终于在1937年服毒自杀,留下深深的遗憾。
1938年德国研制出聚酰胺-6,即聚己内酰胺;1941年英国制出了聚对苯二甲酸乙二醇酯纤维,商品名Dacron、“的确凉”、或涤纶;1939年德国人又研制出聚丙烯腈纤维,但到1949年才在美国投产,商品名Orlon,我国称腈纶,此又出现多种新型合成纤维,满足了多种需要,但从应用范围和技术成熟等方面看,仍以上述几种为主,其产量约占总量的90%。
三、从天然橡胶到合成橡胶
自然界中虽然含有橡胶的植物很多,但能大量采胶的主要是生长在热带雨区的巴西橡胶树。从树中流出的胶乳,经过凝胶等工艺制成的生橡胶,最初只用于制造一些防水织物、手套、水壶等,但它受温度的影响很大,热时变粘,冷时变硬、变脆,因而用途很少。
1839年美国一家小型橡胶厂的厂主古德易(Goodyear)经过反复摸索,发现生橡胶与硫黄混合加热后能成为一种弹性好、不发粘的弹性体,这一发现推进了橡胶工业迅速发展。在这之前,橡胶的年产量只有388吨,但到1937年已增加到100万吨,即100年间增加了2000倍,这在天然物质利用史上是十分罕见的,尤其是1920年以后,由于汽车工业兴起,进一步扩大需求,以致世界各国开始把天然橡胶作为军用战略物资加以控制,这就迫使美、德等汽车大国,但却是天然橡胶的穷国开展合成橡胶的研究,这种研究是以制造与天然橡胶相同物质为目的开始的,因为人们已知它是由多个异戊二烯分子通过顺式加成形成的聚合体。
1914年爆发第一次世界大战,德国由于受到海上封锁,开展了强制性的合成橡胶研制和生产,终于实现了以电石为原料合成甲基橡胶的工作,到终战的1918年,共生产出2350吨。
战后,由于暂时性天然橡胶过剩,使合成橡胶的生产也告中止,但其研究工作仍在进行。先后研制成聚硫橡胶(1931年投产)、氯丁橡胶(1932年)、丁苯橡胶(1934年)、丁腈橡胶(1937年)等。
第二次世界大战期间,尤其是日本偷袭珍珠港、占领东南亚后,美国开始扩大合成橡胶生产,并纳入国防计划,1942年产量达84.5万吨,其中丁苯橡胶为70.5万吨。1950年以后,由于出现了齐格勒纳塔催化剂,在这种催化剂的作用下,生产出三种新型的定向聚合橡胶,其中的顺丁橡胶,由于它的优异性能,到20世纪80年代产量已上升到仅次于丁苯橡胶的第二位。此后又有热塑性橡胶、粉末橡胶和液体橡胶等问世,进一步满足了尖端科技发展的需要。
回顾过去,展望未来,在新世纪里新技术将更加迅猛发展,与此同时,作为技术革命物质基础的,以合成高分子为代表的新材料的研制和开发,也将越来越起着重要作用。
关键词
半导体材料;多晶硅;单晶硅;砷化镓;氮化镓
1前言
半导体材料是指电阻率在107Ωcm10-3Ωcm,界于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料[1],支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国和日本,其2002年的销售收入分别为3189亿美元和2320亿美元[2]。近几年来,我国电子信息产品以举世瞩目的速度发展,2002年销售收入以1.4亿人民币居全球第3位,比上年增长20,产业规模是1997年的2.5倍,居国内各工业部门首位[3]。半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。
半导体材料的种类繁多,按化学组成分为元素半导体、化合物半导体和固溶体半导体;按组成元素分为一元、二元、三元、多元等;按晶态可分为多晶、单晶和非晶;按应用方式可分为体材料和薄膜材料。大部分半导体材料单晶制片后直接用于制造半导体材料,这些称为“体材料”;相对应的“薄膜材料”是在半导体材料或其它材料的衬底上生长的,具有显著减少“体材料”难以解决的固熔体偏析问题、提高纯度和晶体完整性、生长异质结,能用于制造三维电路等优点。许多新型半导体器件是在薄膜上制成的,制备薄膜的技术也在不断发展。薄膜材料有同质外延薄膜、异质外延薄膜、超晶格薄膜、非晶薄膜等。
在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化铟、磷化镓、砷化铟、砷化铝及其合金等称为第二代半导体材料;而将宽禁带eg2.3ev的氮化镓、碳化硅、硒化锌和金刚石等称为第三代半导体材料[4]。上述材料是目前主要应用的半导体材料,三代半导体材料代表品种分别为硅、砷化镓和氮化镓。本文沿用此分类进行介绍。
2主要半导体材料性质及应用
材料的物理性质是产品应用的基础,表1列出了主要半导体材料的物理性质及应用情况[5]。表中禁带宽度决定发射光的波长,禁带宽度越大发射光波长越短蓝光发射;禁带宽度越小发射光波长越长。其它参数数值越高,半导体性能越好。电子迁移速率决定半导体低压条件下的高频工作性能,饱和速率决定半导体高压条件下的高频工作性能。
硅材料具有储量丰富、价格低廉、热性能与机械性能优良、易于生长大尺寸高纯度晶体等优点,处在成熟的发展阶段。目前,硅材料仍是电子信息产业最主要的基础材料,95以上的半导体器件和99以上的集成电路ic是用硅材料制作的。在21世纪,可以预见它的主导和核心地位仍不会动摇。但是硅材料的物理性质限制了其在光电子和高频高功率器件上的应用。
砷化镓材料的电子迁移率是硅的6倍多,其器件具有硅器件所不具有的高频、高速和光电性能,并可在同一芯片同时处理光电信号,被公认是新一代的通信用材料。随着高速信息产业的蓬勃发展,砷化镓成为继硅之后发展最快、应用最广、产量最大的半导体材料。同时,其在军事电子系统中的应用日益广泛,并占据不可取代的重要地位。
gan材料的禁带宽度为硅材料的3倍多,其器件在大功率、高温、高频、高速和光电子应用方面具有远比硅器件和砷化镓器件更为优良的特性,可制成蓝绿光、紫外光的发光器件和探测器件。近年来取得了很大进展,并开始进入市场。与制造技术非常成熟和制造成本相对较低的硅半导体材料相比,第三代半导体材料目前面临的最主要挑战是发展适合gan薄膜生长的低成本衬底材料和大尺寸的gan体单晶生长工艺。
主要半导体材料的用途如表2所示。可以预见以硅材料为主体、gaas半导体材料及新一代宽禁带半导体材料共同发展将成为集成电路及半导体器件产业发展的主流。
3半导体材料的产业现状
3.1半导体硅材料
3.1.1多晶硅
多晶硅是制备单晶硅和太阳能电池的原料,主要生产方法为改良西门子法。目前全世界每年消耗约18000t25000t半导体级多晶硅。2001年全球多晶硅产能为23900t,生产高度集中于美、日、德3国。美国先进硅公司和哈姆洛克公司产能均达6000t/a,德国瓦克化学公司和日本德山曹达公司产能超过3000t/a,日本三菱高纯硅公司、美国memc公司和三菱多晶硅公司产能超过1000t/a,绝大多数世界市场由上述7家公司占有。2000年全球多晶硅需求为22000t,达到峰值,随后全球半导体市场滑坡;2001年多晶硅实际产量为17900t,为产能的75左右。全球多晶硅市场供大于求,随着半导体市场的恢复和太阳能用多晶硅的增长,多晶硅供需将逐步平衡。
我国多晶硅严重短缺。我国多晶硅工业起步于50年代,60年代实现工业化生产。由于技术水平低、生产规模太小、环境污染严重、生产成本高,目前只剩下峨嵋半导体材料厂和洛阳单晶硅厂2个厂家生产多晶硅。2001年生产量为80t[7],仅占世界产量的0.4,与当今信息产业的高速发展和多晶硅的市场需求急剧增加极不协调。我国这种多晶硅供不应求的局面还将持续下去。据专家预测,2005年国内多晶硅年需求量约为756t,2010年为1302t。
峨嵋半导体材料厂和洛阳单晶硅厂1999年多晶硅生产能力分别为60t/a和20t/a。峨嵋半导体材料厂1998年建成的100t/a规模的多晶硅工业性生产示范线,提高了各项经济技术指标,使我国拥有了多晶硅生产的自主知识产权。该厂正在积极进行1000t/a多晶硅项目建设的前期工作。洛阳单晶硅厂拟将多晶硅产量扩建至300t/a,目前处在可行性研究阶段。
3.1.2单晶硅
生产单晶硅的工艺主要采用直拉法cz、磁场直拉法mcz、区熔法fz以及双坩锅拉晶法。硅晶片属于资金密集型和技术密集型行业,在国际市场上产业相对成熟,市场进入平稳发展期,生产集中在少数几家大公司,小型公司已经很难插手其中。
目前国际市场单晶硅产量排名前5位的公司分别是日本信越化学公司、德瓦克化学公司、日本住友金属公司、美国memc公司和日本三菱材料公司。这5家公司2000年硅晶片的销售总额为51.47亿元,占全球销售额的70.9,其中的3家日本公司占据了市场份额的46.1,表明日本在全球硅晶片行业中占据了主导地位[8]。
集成电路高集成度、微型化和低成本的要求对半导体单晶材料的电阻率均匀性、金属杂质含量、微缺陷、晶片平整度、表面洁净度等提出了更加苛刻的要求详见文献[8],晶片大尺寸和高质量成为必然趋势。目前全球主流硅晶片已由直径8英寸逐渐过渡到12英寸晶片,研制水平达到16英寸。
我国单晶硅技术及产业与国外差距很大,主要产品为6英寸以下,8英寸少量生产,12英寸开始研制。随着半导体分立元件和硅光电池用低档和廉价硅材料需求的增加,我国单晶硅产量逐年增加。据统计,2001年我国半导体硅材料的销售额达9.06亿元,年均增长26.4。单晶硅产量为584t,抛光片产量5183万平方英寸,主要规格为3英寸6英寸,6英寸正片已供应集成电路企业,8英寸主要用作陪片。单晶硅出口比重大,出口额为4648万美元,占总销售额的42.6,较2000年增长了5.3[7]。目前,国外8英寸ic生产线正向我国战略性移动,我国新建和在建的f8英寸ic生产线有近10条之多,对大直径高质量的硅晶片需求十分强劲,而国内供给明显不足,基本依赖进口,我国硅晶片的技术差距和结构不合理可见一斑。在现有形势和优势面前发展我国的硅单晶和ic技术面临着巨大的机遇和挑战。
我国硅晶片生产企业主要有北京有研硅股、浙大海纳公司、洛阳单晶硅厂、上海晶华电子、浙江硅峰电子公司和河北宁晋单晶硅基地等。有研硅股在大直径硅单晶的研制方面一直居国内领先地位,先后研制出我国第一根6英寸、8英寸和12英寸硅单晶,单晶硅在国内市场占有率为40。2000年建成国内第一条可满足0.25μm线宽集成电路要求的8英寸硅单晶抛光片生产线;在北京市林河工业开发区建设了区熔硅单晶生产基地,一期工程计划投资1.8亿元,年产25t区熔硅和40t重掺砷硅单晶,计划2003年6月底完工;同时承担了投资达1.25亿元的863项目重中之重课题“12英寸硅单晶抛光片的研制”。浙大海纳主要从事单晶硅、半导体器件的开发、制造及自动化控制系统和仪器仪表开发,近几年实现了高成长性的高速发展。
3.2砷化镓材料
用于大量生产砷化镓晶体的方法是传统的lec法液封直拉法和hb法水平舟生产法。国外开发了兼具以上2种方法优点的vgf法垂直梯度凝固法、vb法垂直布里支曼法和vcz法蒸气压控制直拉法,成功制备出4英寸6英寸大直径gaas单晶。各种方法比较详见表3。
移动电话用电子器件和光电器件市场快速增长的要求,使全球砷化镓晶片市场以30的年增长率迅速形成数十亿美元的大市场,预计未来20年砷化镓市场都具有高增长性。日本是最大的生产国和输出国,占世界市场的7080;美国在1999年成功地建成了3条6英寸砷化镓生产线,在砷化镓生产技术上领先一步。日本住友电工是世界最大的砷化镓生产和销售商,年产gaas单晶30t。美国axt公司是世界最大的vgf
gaas材料生产商[8]。世界gaas单晶主要生产商情况见表4。国际上砷化镓市场需求以4英寸单晶材料为主,而6英寸单晶材料产量和市场需求快速增加,已占据35以上的市场份额。研制和小批量生产水平达到8英寸。
我国gaas材料单晶以2英寸3英寸为主,
4英寸处在产业化前期,研制水平达6英寸。目前4英寸以上晶片及集成电路gaas晶片主要依赖进口。砷化镓生产主要原材料为砷和镓。虽然我国是砷和镓的资源大国,但仅能生产品位较低的砷、镓材料6n以下纯度,主要用于生产光电子器件。集成电路用砷化镓材料的砷和镓原料要求达7n,基本靠进口解决。
国内gaas材料主要生产单位为中科镓英、有研硅股、信息产业部46所、55所等。主要竞争对手来自国外。中科镓英2001年起计划投入近2亿资金进行砷化镓材料的产业化,初期计划规模为4英寸6英寸砷化镓单晶晶片5万片8万片,4英寸6英寸分子束外延砷化镓基材料2万片3万片,目前该项目仍在建设期。目前国内砷化镓材料主要由有研硅股供应,2002年销售gaas晶片8万片。我国在努力缩小gaas技术水平和生产规模的同时,应重视具有独立知识产权的技术和产品开发,发展我国的砷化镓产业。
3.3氮化镓材料
gan半导体材料的商业应用研究始于1970年,其在高频和高温条件下能够激发蓝光的特性一开始就吸引了半导体开发人员的极大兴趣。但gan的生长技术和器件制造工艺直到近几年才取得了商业应用的实质进步和突破。由于gan半导体器件在光电子器件和光子器件领域广阔的应用前景,其广泛应用预示着光电信息乃至光子信息时代的来临。
2000年9月美国kyma公司利用aln作衬底,开发出2英寸和4英寸gan新工艺;2001年1月美国nitronex公司在4英寸硅衬底上制造gan基晶体管获得成功;2001年8月台湾powdec公司宣布将规模生产4英寸gan外延晶片。gan基器件和产品开发方兴未艾。目前进入蓝光激光器开发的公司包括飞利浦、索尼、日立、施乐和惠普等。包括飞利浦、通用等光照及汽车行业的跨国公司正积极开发白光照明和汽车用gan基led发光二极管产品。涉足gan基电子器件开发最为活跃的企业包括cree、rfmicrodevice以及nitronex等公司。
目前,日本、美国等国家纷纷进行应用于照明gan基白光led的产业开发,计划于2015年-2020年取代白炽灯和日光灯,引起新的照明革命。据美国市场调研公司strstegiesunlimited分析数据,2001年世界gan器件市场接近7亿美元,还处于发展初期。该公司预测即使最保守发展,2009年世界gan器件市场将达到48亿美元的销售额。
因gan材料尚处于产业初期,我国与世界先进水平差距相对较小。深圳方大集团在国家“超级863计划”项目支持下,2001年与中科院半导体等单位合作,首期投资8千万元进行gan基蓝光led产业化工作,率先在我国实现氮化镓基材料产业化并成功投放市场。方大公司已批量生产出高性能gan芯片,用于封装成蓝、绿、紫、白光led,成为我国第一家具有规模化研究、开发和生产氮化镓基半导体系列产品、并拥有自主知识产权的企业。中科院半导体所自主开发的gan激光器2英寸外延片生产设备,打破了国外关键设备部件的封锁。我国应对大尺寸gan生长技术、器件及设备继续研究,争取在gan等第三代半导体产业中占据一定市场份额和地位。
4结语
不可否认,微电子时代将逐步过渡到光电子时代,最终发展到光子时代。预计到2010年或2014年,硅材料的技术和产业发展将走向极限,第二代和第三代半导体技术和产业将成为研究和发展的重点。我国政府决策部门、半导体科研单位和企业在现有的技术、市场和发展趋势面前应把握历史机遇,迎接挑战。
参考文献
[1]师昌绪.材料大辞典[m].北京化学工业出版社,19941314
[2]http//bjjc.org.cn/10zxsc/249.htm.我国电子信息产业总规模居世界第三.北方微电子产业基地门户网
[3]蓬勃发展的中国电子信息产业.信息产业部电子信息产品管理司司长张琪在“icchina2003”上的主题报告
[4]梁春广.gan-第三代半导体的曙光.新材料产业,2000,53136
[5]李国强.第三代半导体材料.新材料产业,2002,61417
[6]万群,钟俊辉.电子信息材料[m].北京冶金工业出版社,199012
中图分类号:G642 文献标识码: A 文章编号:1672-1578(2012)04-0055-02
“高分子材料学”是我校材料科学与工程专业(表面工程方向)的一门专业课程。表面工程学生的就业领域主要为材料涂装、防腐等,学生需要熟悉各种工程材料(金属材料、无机非金属材料、高分子材料等)的基本性质、制备工艺以及表面处理方面的知识。“高分子材料学”主要介绍高分子材料的制备、性能、成型、改性及应用等方面的知识。
“高分子材料学”这门课共32学时,所选教材为化学工业出版社出版的《高分子材料基础》。主要内容包括四部分:高分子材料的合成及制备、高分子材料的结构与性能、常见的高分子材料及其成型加工方法、高分子材料的改性及应用。该教材[1]浓缩了高分子材料与工程专业的四门专业主干课共192学时的内容,即高分子化学(48学时)、高分子物理(64学时)、高分子材料成型工艺(48学时)、聚合物改性原理及方法(32学时)。
1 “高分子材料学”讲授过程中面临的问题
“高分子材料学”课程的讲授具有较大难度,主要表现在以下方面:
该课程涵盖了高分子材料与工程专业学生的专业主干课内容,要深入讲解这些内容,需要近200学时,而针对表面工程学生开设的“高分子材料学”仅仅只有32学时,时间紧,内容多,如何合理安排各部分内容占的比重是授课教师面临的首要问题。
“高分子材料学”相关内容的学习,需要学生具备一定的化学基础及力学基础,而对表面工程的学生而言,因专业侧重不同,化学课程及机械基础课开设门类不如高分子材料与工程专业齐全,导致表面工程的学生在学习“高分子材料学”时,对教材内容的理解及掌握有一定难度。这对授课教师备课也提出了更高的要求,如何在有限的学时中适时补充相关背景知识帮助学生理解,是授课教师需要思考的另一问题。
“高分子材料学”虽为表面工程学生的专业课之一,但从历年就业情况看,表面工程学生就业以金属材料加工行业居多,而从事高分子材料加工行业的很少。故必然存在学生对该课程重视程度不够,学习积极性不高的问题,因此授课教师也需要在教学模式上进行探索创新,充分调动学生学习的积极性,引导学生主动参与到教学过程中来。
2 “高分子材料学”课程教学模式探索
2.1梳理重点,侧重剖析基本概念
“高分子材料学”学时有限,内容繁多,因此需要授课教师在备课时梳理出各章节的重要知识点和基本概念, 注意各部分内容的衔接,并找出线索将各章散落的知识点贯穿起来。
比如,在介绍高分子材料合成及制备时,着重讲授加聚反应及缩聚反应的基本步骤,对比这两种聚合反应的特点及反应产物特性,便于学生掌握常见高分子材料的合成反应类型,了解制备方法对材料性能的影响。考虑到表面工程学生的学科基础及专业侧重,对反应速率的计算等知识点不做要求。
再如,课程内容第二部分介绍高分子材料的结构与性能,这部分内容为承上启下的重点章节,高分子材料的结构及性能特点在其合成过程中奠定基础,并将在成型过程及改性中得以体现和完善。这部分内容体现了高分子材料与其他材料的本质区别,涉及的基本知识点很多,而且多为表面工程学生不熟悉的内容。因此,同样需要通过对比,突出高分子与低分子的结构与性能差异,侧重高分子温度——形变关系,结晶过程及晶体结构等重要知识点的讲解。
2.2因材施教,适时补充背景知识
“高分子材料学”中很多知识点的理解离不开有机化学、物理化学等基础课程的支撑,而表面工程方向的学生并未开设相关课程。为此,需要教师在讲授过程中适时补充背景知识。
例如,在讲授高分子合成反应类型对材料性能的影响时,可简要介绍常见化学基团的特点并联想对应的高分子材料的性能特点及成型要点。以聚碳酸酯(PC)为例,这种材料采用缩聚反应制备,分子结构中含有酯基,酯基在一定条件下容易水解,因此可联想到PC材料在成型时的高温条件下应避免水分的存在,防止水解反应发生导致材料性能劣化。
此外,为弥补学生基础知识的不足,讲授时还可结合日常生活中的实例进行对照说明。在讲授高分子结晶时,可联想泡面模型以及珍珠形成等实例;讲授高分子材料降解及添加剂功效时,可结合塑料制品长期暴晒变色发脆、塑料拖鞋逐渐由软变硬等学生熟知的生活常识进行分析。
2.3结合专业,调动学生学习积极性
“高分子材料学”为考查科目,且表面工程的学生就业以金属材料加工行业居多,学生误认为这门课程与自己的专业及将来就业衔接不紧,从而对“高分子材料学”课程重视不够,故学习积极性也不高。为此,授课教师应有意识的引导学生思考,并采用灵活的考核方式调动学生的积极性。
笔者在讲授此门课程时,并未采用课堂考试的形式进行考核,而是给学生布置了“高分子材料与表面工程”为主题的课程论文撰写任务,并让学生制作出相关的PPT将自己的论文进行口头陈述,最后根据其论文撰写情况、PPT制作情况及陈述情况给出该门课程的成绩[2]。课程论文的完成情况直接跟成绩挂钩,能有效调动学生的积极性及对课程的重视;课程论文的撰写需要大量专业文献为基础,学生在撰写论文的过程中能自觉关注及阅读相关专业文献,有利于拓宽其专业视野;制作PPT的过程是对课程论文内容的凝练,有利于学生理清思路掌握重点;口头陈述环节能有效杜绝学生互相抄袭论文,教师也能通过学生的口头陈述情况,观察学生对该门课程基础知识的掌握程度。
学生通过独立搜集资料撰写论文制作PPT并口头陈述等环节的训练,既能让他们发现“高分子材料学”这门课程与所学专业的紧密联系,也锻炼了他们的资料搜集能力及口头表达能力,为将来毕业答辩及就业面试打下基础。
3 结语
高分子材料是非常重要的工程材料,对于表面工程的学生而言,应该熟悉并掌握这类工程材料的特性。“高分子材料学”虽然不是表面工程方向的专业主干课,但涵盖了高分子材料相关的大量专业基础知识,也是面向表面工程学生开设的唯一一门有关高分子材料的课程。授课教师应该积极进行教学模式的探索,激发学生的学习兴趣,让学生在有限的学时中掌握相关基础知识。
参考文献:
[论文摘要]高分子材料专业英语中专业词汇较多、专业知识较强、中西文化差异大。本文在分析了科技英语特点的基础上,详细讨论了高分子材料专业英语的教学方法,提出了从扩大学生词汇量、分析句式结构、提高阅读理解和写作能力以及运用多种教学方法和手段等方面来提高学生高分子材料专业英语水平,使高分子材料专业大学生尽快适应社会需求。
高分子材料专业英语是一门以英语为工具的高分子材料专业课程,教学内容以高分子材料工程专业知识为主,以学术英语为辅,目的在于帮助高分子材料专业学生使用英语,直接学习和接触国外相关专业信息。这不仅要求顺利阅读、听懂英语,同时还要求以英语为工具获取专业信息。本文结合教学实践简述了科技英语的特点,以求在专业英语学习过程中准确理解原文,能够用目的语忠实而通顺地再现原文内容。
一、高分子材料专业英语特点
高分子材料专业英语的文体与修辞手段与文艺小说、新闻报道等迥然不同,具有以下特点:严谨周密,概念准确,逻辑性强,行文简练,重点突出,句式严整,少有变化。在阅读或翻译时要注意其行文特点和写作规律,以便更好理解高分子材料专业英语文章。其特点突出表现在以下几个方面:
(一)广泛使用被动语态
专业英语文章侧重叙事推理,强调客观准确。第一、二人称使用过多,会造成主观噫断的印象。因此尽量使用第三人称叙述,采用被动语态,例如:When a low-molar-mass by-product is formed, the adjective ‘condensative’ is recommended to give the term condensative chain polymerization[1]。(建议推荐,缩合连锁聚合)
(二)重要信息前置
专业英语表达方式往往和中文句式颠倒,常用前置性陈述,即在句中将主要信息尽量前置,通过主语传递主要信息。例如“……are charged into a 500 ml reaction kettle equipped with a mechanical stirrer and a reflux condenser”(向带有机械搅拌器和回流冷凝器的500 ml 反应釜内加入……)。
(三)动词的名词化
大量使用名词化结构(Nominalization)是专业英语的特点之一。因为专业英语文体要求行文简洁、表达客观、内容确切、信息量大、强调存在的事实,而非某一行为。专业英语中名词化句子可作主语、宾语、介词宾语、表语、宾语补足语、定语、同位语和状语等,换言之,除了不能担任谓语外,可以用作句子其它一切成分。例如:Such solutions can often be concentrated by freeze drying. This is done by bringing the surface of the solution in close contact with a cold condenser and applying high vacuum to the entire apparatus so that…… (冷冻干燥)[2]。
二、高分子材料专业英语教学实践
高分子材料专业英语课程为大学第三或第四学年课程,学生已经学习了大学英语课程和高分子物理、高分子化学和高分子材料工程等专业基础课程,笔者重点关注了以下几方面教学实践活动:
(一)扩大词汇量
英语单词的数量虽然庞大,但构成单词的元素———词根、前缀、后缀的数量却是有限的[3]。这就要求在英语单词的学习中,通过掌握词根、前缀与后缀来学习新的词汇。在高分子材料专业英语中,常见的词根主要包括各种元素等,如hydro (氢), chlor (氯),amino (氨基),carbo (碳),oxy(氧),fibro (纤维),kineto (运动)。常见的前缀主要包括各种基团、基团的数目、地位等的表示,如poly-(聚,多),deca-(十或癸),non (a)-(九或壬),mono-(单、一),macro-(大的、宏观),micro- (微的,小的),per-(高,过,全),ethyl-(乙基),phenyl-(苯基),benzyl-(苄基),aryl-(芳基),alkyl-(烷基),metyoxy-(甲氧基),iso-(异,等,同),ert-(叔),ortho-(邻,正,原),ultra-(超、极端),super-(过度、过多),co-(共同),ant (i)-(反,抗)。常见的后缀主要包括各类聚合物的表示等,如-ene(烯烃的后缀),-ylene(亚基),-ide(化合物的后缀),-ate(盐或酯基的后缀),-ester(酯),-ether(醚),-form(仿),-glycol(二醇),-one(酮),-nitrile(腈),-sulfone(砜),-wise(方式)。
polytetrafluorethylene(聚四氟乙烯)可以拆分成poly(聚) 、tetra(四)、fluor(o)(氟)、ethyl(乙基)和ene(烯)几部分,分开理解则容易记忆。hydrogen peroxide(过氧化氢)中hydrogen表示“氢”元素,per表示“过、高”,oxide表示“氧化物”。
(二)分析句式结构
对于课文,应突出重点,讲究长句的翻译技巧[4]。系统地阐述和分析翻译的基本知识、理论和技巧,使学生中掌握翻译的技巧,有利于学生翻译水平的提高。当学生碰到具体的问题时,就能够从语法现象、专业内容、修辞等方面灵活处理。如看到一个长句,先不要急于逐字逐句去看这个句子,先找出这个句子的主干,即主语、谓语(或系动词)、宾语(或表语),然后再看其余的修饰成分(也许是几个修饰词,也可能是一个完整的句子),分析它们与中心词之间的关系,然后根据中文表达习惯在主干中加入这些修饰成分。这样的翻译技巧和步骤适合任何的长句翻译。
(三)补充学习方法与技巧,引导学生进行归纳总结
高分子材料专业英语教材的课文专业词汇量大,复杂句子多,如果死记硬背,学生会感到吃力也会没有兴趣继续学习。因此,在教学的过程中要补充学习专业英语的方法。对于高分子材料词汇规律性而言,如词头poly-是多和聚的意思;词尾-ane 是指烷烃,-ene一般是指烯烃,-one 酮等;一些基团如methyl(甲基),ethyl(乙基),propyl(丙基)都是以-yl 结尾。那么在遇到生词polypropylene(聚丙烯)时,学生就可通过掌握的规律轻松记住单词,做到举一反三,达到事半功倍的效果。
(四)组织课堂讨论,注重给学生提供锻炼的机会
在教学实践中,为了给学生锻炼的机会,教师要善于“让位”,把讲台让给学生。例如,在学期的开始就将学生进行合理的分组,以每个小组为单位,提前布置课堂总体学习内容,让大家课下做一定准备,上课时临时抽查小组中的成员走上讲台给其他学生讲解指定段落,在学生讲解的过程中,教师也是听众;讲解完毕后,小组中的其他成员和其他小组的学生均可补充;教师做总结,对遗漏、错误的地方进行补充。一个学期结束,尽量使每位学生都至少有一次上台讲的机会。这样,一方面可以调动学生发现和解决问题的积极性, 减轻学生对教师的依赖,更重要的一个方面,给学生一个在公众场合表达自己的锻炼机会。采取这样的方式后,学生普遍反应良好,特别是对于不敢在公众场合说话的同学,认为经过这样的参与,自己不仅学到了知识,而且也锻炼了人际交往能力,为以后的应聘求职奠定了良好的基础。
三、总结
总之,在高分子材料专业英语的教学中,应充分发挥学生的积极主动性,尽可能地多引导学生做规律性的总结,熟悉句法技巧,并在考核方式上有所侧重,这样才有可能使专业英语的教学更加有吸引力,取得良好的教学效果。
[参考文献]
[1]揣成智.高分子材料工程专业英语[M].北京:中国轻工业出版社,1999 :18.
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)05-0225-02
一、引言
随着科学技术和经济环境的变化,高校毕业生的就业形势呈现日益复杂的趋势。社会对人才的技能、经验、实践能力以及综合素质提出了越来越高的要求[1-2]。高分子材料以其突飞猛进的发展态势和广阔的应用前景成为了21世纪最具生命力的新型产业。众多与高分子材料相关的行业发展迅猛,社会对兼具创新和实践能力的高分子材料专业的人才需求量越来越大,这无疑为毕业生提供了极好的就业前景[3]。如何提高大学生的就业能力,以更好地服务社会成为摆在高等院校人才培养方面的重要课题。
高分子材料是一门应用性和实践性极强的专业,其实践教学在一定程度上决定了人才培养的质量和水平。实验教学是重要的实践教学环节,它是提高高分子材料专业大学生操作能力、沟通能力、协作能力和综合素质的最重要最直接的手段。因此,高校高分子材料专业要通过建立科学的专业实验教学体系,积极探索实验教学改革,以全面提高大学生的就业能力。
本文立足于我校的高分子材料专业,基于就业能力提升这一核心,提出了几点关于高分子材料专业实验教学改革的建议。
二、实验教学现状分析
实验教学环节是学生获取专业知识的重要手段,对学生实践与创新能力的培养起到举足轻重的作用[4]。然而,传统的实验教学验证性实验居多,注重培养学生的实验操作技能,而忽视了学生的自主性、创造性思维的培养。一般,高分子专业实验教学体系由三大块构成即材料合成实验、材料成型加工实验和材料性能测试实验。三块实验内容各自独立展开,相互之间没有联系,缺乏知识点之间的串联及各部分间的逻辑性和系统性,不利于学生从整体上掌握知识。由于经费不足、缺乏激励机制等种种原因,大部分本科生仅限于实验课和做毕业论文时进行实验研究,缺少实验训练的机会,对广泛提升本科生的就业能力所起的作用也非常有限。因此,如何利用实验教学中心平台,建立合理的面对本科生的开放机制,是实验教学体系改革的重要内容。
三、实验教学改革举措
针对以上实验教学中出现的问题,我们提出了几点改革措施,以期能够促进大学生就业及提高大学生就业质量。
1.构建系统化实验教学体系。为了改善实验教学效果,需要加强高分子材料专业的实验教学体系的系统性。将高分子化学实验、高分子物理实验以及高分子成型加工实验等多门课程有机组合起来,利用不同课程间实验项目的关联性,形成多条跨越不同课程的实验项目链,构建出环环相扣、高度系统化的高分子专业实验教学体系。
例如,聚苯乙烯塑料的制备实验,它可以涵盖三个紧密相连的实验项目。利用高分子化学知识,从苯乙烯单体的悬浮聚合实验开始,获得聚苯乙烯粉体;再利用高分子物理知识,经由GPC凝胶渗透色谱分析所合成的聚苯乙烯的分子量及分子量分布,以确定聚苯乙烯的基本性能;再利用高分子成型加工实验,将聚苯乙烯粉体制成高分子塑料样条,对其拉伸、冲击等性能进行测试。将以上三个实验安排在同一个学期,按顺序依次开展实验,能够加强知识的连贯性,便于学生从整体上理解和掌握高分子材料的专业知识,从而提高学生的专业能力、学习能力和实践能力,为促进就业打下坚实的基础。
2.开展多层次实验教学。积极推行实验课程改革,开展多层次实验教学,降低验证性实验的比例,开设综合性实验,增设设计性实验,可以提升大学生的专业能力和培养创造性思维能力,从而使学生在就业竞争中展现出良好技能。
单一的验证性实验,缺乏对学生综合能力的训练。为了将高分子材料的专业知识有机地串联起来、灵活运用,需要开设一定比例的综合性实验。例如,开设“聚苯胺的制备和导电性测试”这一综合性实验。学生不仅能理解聚合物的结构,还能掌握聚苯胺的合成方法及性能测试方法。通过这一实验,能够把聚合物的“结构”与“性能”两大方面很好地结合起来,即加深了对相关知识的理解,又提高了学生综合运用知识的能力。
单一的验证性实验,只要求学生掌握简单操作,没有充分发挥学生的主观能动性。增加设计性实验,以学生为主、教师指导为辅,给学生发挥潜能提供更大的空间,为提高学生的就业能力奠定扎实的基础。例如,“海藻酸钠溶液的流变性研究”就是一个很好的设计性实验。根据实验任务,学生自己查阅相关文献、设计实验方案并付诸实施。这个过程要求学生动手、动脑、交流、协作,切实得到科学研究的一般逻辑过程训练。设计性实验既提高了学生的主观积极性,又增强了学生分析问题和解决问题的能力。
3.依托科研项目拓展实验教学。我校的高分子材料专业本科生除了实验课和做毕业论文之外,很少从事科研实验。只有极少数同学因为参与大学生创新项目或学科竞赛而进行实验研究。从普遍提高本科生的实践能力角度来看还远远不够,需要学校方面加大对大学生创新项目的支持力度,为更多的学生提供科研实验的机会。
另外,为了提高本科生的科研能力,设立导师专项基金,由导师的课题经费中拨出一部分用于本科生实验。导师重点选拔一些兴趣高、素质好的学生,在大二提前进入实验室学习,参与科研项目,这个措施对提高本科生创新能力和科研能力很有效,有些本科生在本科阶段已经发表了科研论文,有些本科生毕业后就直接进入导师实验室做硕士论文。不过,对于本专业兴趣不高的学生起不到太大作用。
4.建立长效激励机制。为了调动大学生主动进行创新实验的积极性,需要建立长效激励机制。对于创新型实验完成优秀者、完成自主创新项目者、发表科研论文或专利者等取得创新成果的学生给以增加学分的奖励,同时在保研、评奖学金等方面作为重要参考。这一举措可以大大增加大学生参加创新实践活动的机会,提升大学生就业竞争力。
5.完善实验成绩评定办法。受仪器设备条件的限制,学生单人操作的条件不具备,一般采取分组实验的形式,如何保证每个学生都能得到实验操作训练,需要完善实验成绩评定办法。实验报告是实验教学的一个重要环节。透过实验报告可以反应出学生对实验项目的理解和掌握情况。但是,单单依据实验报告评定成绩并不合理。通过课前提问考察学生的预习情况,观察实验过程中学生的操作能力、协作能力,并做好记录,以此作为评定实验成绩的重要依据,更能激发学生参与实验的兴趣,提高学生做实验的主动性。通过完善实验成绩评定办法,可以被迫式加强大学生参与实验的力度,从而提高大学生的实践能力。
四、小结
面对就业市场对高分子材料专业人才提出的越来越高的要求,进行实验教学改革提升本科生的就业能力具有重要的现实意义。本文提出从实验教学体系系统化、开展多层次实验、依托科研项目拓展实验、建立长效激励机制和完成成绩评定办法五个方面进行实验教学改革的建议,以期有效提升本专业大学生的就业能力。
参考文献:
[1]管天球.地方高校本科应用型人才培养模式研究与实践[J].中国高等教育,2008,(15):69.
通常情况下,两种不同的物质表面接触的时候就会形成电荷的迁移。在理论上来说,静电是普遍存在的,我们通过高分子材料一般都具有电绝缘性,所以会在摩擦后易产生带电现象。这种静电轻则吸附灰,重则引起火灾等重大事故。所以,怎样消除积聚在高聚物表面的静电,以及防止高聚物表面产生静电作用,已成为当今高分子材料研究领域的一个热门课题。
一、防静电技术的现状
目前静电技术是有很多种的,像我们平时用的塑料以及刷墙时用的涂料都是加入了导电的粉末,还有像石墨以及炭黑和和其他每一种金属粉末以及易于离子化的很多种无机盐类等这些是都可以防静电。有机静电剂主要是包括季铁盐类等。一般常用的有机抗静电剂是表面活性剂,我们可以把它加到塑料内部之后在扩散到它的表面里,还可以用到塑料的表面上。表面活性分子中有亲水的部分还有亲油的部分。亲水的那部分就留在塑料的表面上,就在表面形成导电层,因此形成了防静电的表面层。
二、高分子抗静电的方法概述
高聚物本身对电荷泄放的性质决定了高聚物表面聚集的电荷量,它主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,在这三者中以表面传导为主要途径。这是因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。
三、添加导电填料
这样的方法一般的是每种不同的无机导电填料掺入高分子材料基体中去,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。
四、与结构型导电高分子材料共混
导电高分子材料中的高分子是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。
五、添加抗静电剂法
永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。
六、我国高分子材料抗静电技术的发展状况
我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、烷基苯氧基丙烷磺酸钠、烷基二苯醚磺酸钾,上海助剂厂开发目前多家企业生产的抗静电剂十八烷基羟乙基二甲胺硝酸盐,另外该厂生产的抗静电剂硫酸二甲酯与乙醇胺的络合物、抗静电剂磷酸酯与乙醇胺的缩合物,北京化工研究院开发的三组份或二组份硬脂酸单甘酯复合物、阳离子与非离子表面活性剂复合物。从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。
七、结语
我国的合成材料抗静电剂的行业发展的前景较好的,我们针对国内的研究以及生产都应该根据现在的需求来调整自己的产业。应该加大新品种开发的力度。近几年来国外在不断的开发高性能的抗静电材料。在我国科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下几种:抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成海一岛型水性的导电膜。离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。介电常数大的抗静电剂可增加摩擦体间隙的介电性。增加制品的表面平滑性,降低其表面的摩擦系数。总的来看降低制品的表面电阻,增加导电性和加快静电电荷的漏泄,减少摩擦电荷的产生。
参考文献
[1]吴驰飞.有机极性低分子分散型高分子高阻尼新材料的研制[A].材料科学与工程技术——中国科协第三届青年学术年会论文集[C].2009.09.
[2]袁晓燕.天津大学材料学院高分子材料科学与工程系简介[A].复合材料.生命、环境与高技术——第十二届全国复合材料学术会议论文集[C].2010.07.
中图分类号:G640 文献标识码:A 文章编号:1002-4107(2015)10-0066-02
随着科技的不断进步,各国都在不断创新和研发新的材料,而每一种新材料的使用,都能够引起一次技术上的重大变革,而这种变革可能是世界性的。现代人类社会的“三大支柱”领域分别为材料、能源和信息。正是在这种背景下,高分子材料与工程专业在短短的二十年时间内发展迅速。1998年,教育部调整了高等学校本科专业目录,将与高分子材料相关的工科类专业统一为高分子材料与工程专业。教育部出台的专业建设指导精神明确指出,要重点发展高分子材料产业[1]。
东北林业大学高分子材料与工程专业,始建于2000年10月,专业的建立基于东北林业大学木材科学与技术学科在天然高分子材料的加工与利用等条件成熟的基础上,由我国木材胶黏剂领域知名专家顾继友教授组织创办。在十几年的不断实践探索中,建立了具有自己特色的人才培养模式,并依托东北林业大学的发展平台,明确培养目标,凸显了林业院校的特色和优势,培养了一大批兼具知识、能力和实践动手能力的高素质人才。
一、依托院校优势,打造品牌专业
东北林业大学创建于1952年,是国家“211工程”和“优势学科创建平台”项目重点院校。学校是以林科为发展优势,以林业工程为办学特色的综合性大学。高分子材料与工程专业在建立之初就显示出专业的优势,它是在天然高分子开发利用、生物质复合材料、高聚物合成、合成树脂胶黏剂的开发等领域都较成熟完备的基础上发展起来的,具有厚基础的专业优势。专业发展迅速,于2003年获批建立“生物材料工程”博士点学科,2006年该学科被评为黑龙江省重点学科,2010年进入“985”优势学科平台建设行列,目前是东北林业大学的重点专业。专业涵盖了胶黏剂、生物质复合材料、天然与合成高分子材料和生物质功能材料四个具有学科优势和特色的方向。其中胶黏剂是本专业的主要特色,尤其是木质基材料用胶黏剂的研究、开发和推广方面处于世界先进、国内领先的行列;专业的另一个特色是生物质复合材料的研究,尤其是在木塑复合材料、木质素、蛋白质、淀粉等生物质材料的开发利用方面具有较大优势。
高分子材料与工程专业为黑龙江省重点专业,教学理念先进,师资力量雄厚,具有丰富的教学管理经验,本专业有三门课程“胶黏剂与涂料”、“生物质材料”和“材料科学与工程基础”入选东北林业大学重点课程建设项目。东北林业大学作为林业院校的领跑者,有着林业院校的优势。为此,东北林业大学高分子材料与工程专业在人才培养模式的制定上以林业院校优势为依托,支撑学科“生物材料工程”在科研方面以天然高分子为核心,以生物质复合材料、胶黏剂、天然与合成高分子材料以及生物质功能材料四个特色研究方向为重点。与之相适应的专业人才培养模式既注重高分子材料与工程专业的基础,更体现林业院校相关专业的优势特色。在近十几年的人才培养过程中,专业也在不断的调整修订人才培养方案,既重基础,又宽口径,注重素质和能力培养,突出林业院校品牌专业的特色和优势。
二、特色化人才培养模式的构建
人才培养模式作为高等院校人才培养活动的实践规范和基本样式,是高等院校对本科人才培养目标、培养过程、培养途径以及培养方法等要素的综合概括。随着目前人才市场化程度的日益高涨,如何造就适应社会需要的应用创新型人才是亟待解决的难题[2]。不同的学校、专业应根据人才需求、本身专业特色以及学校优势等方面探索一条适合自己的人才培养模式,并且要经过一定的实践检验,千万不能照搬照抄、生搬硬套。
在人才培养目标的定位上,我们总结了一些地方院校人才培养的偏差,积极探索出“强化基础、因材施教、分类培养”的指导思想,考虑到学生的基础水平,发展方向、内在潜质,按照发展方向和个人选择的不同对学生进行分类,大致分为就业、继续深造、出国深造等几种类型,以此为前提在课程设置、实践动手能力、毕业论文和设计、教师培养等方面进行适当的改革,使培养出的学生知识结构广泛,基础扎实,动手能力强,能在聚合物合成、胶黏剂、生物质复合材料等领域从事生产、开发研究、管理的工程技术人才,探索出一种具有特色的人才培养模式。
三、特色化人才培养的具体措施
(一)规范培养过程,提升教育实力
学科之间的相互影响与渗透逐渐成为发展趋势,通过各学科之间的彼此渗透,相互关联成更大的、完整的学科体系[3]。这就要求现代大学教育要有更广博的知识背景,更敏捷的思维创新能力及开阔的学科视野。只有在大学科平台上和开放的学习氛围中采用灵活创新的教育模式,才能完成创新人才培养的目标要求[4]。
为满足国家林业科技的战略需求、学校建设高水平特色大学的要求以及社会对不同人才的需求,东北林业大学重点突出“林产”特色,构建相关的学科课程体系。本着厚基础、宽专业的主导思想,构建学科基础课;结合专业方向的特色,构建专业基础课和特色课程;同时完善交叉学科的渗透,构建开放性的选修课程,学生可自由选修,实现资源共享。学校和学科带头人广泛听取学生意见,制定了一系列切实可行的专业管理制度,加快重点专业建设步伐;加强教师队伍建设,构建专业教师团队;聘请国内外专家教授、学者定期在学院及学校范围内进行专题讲座;鼓励学生进行创新思维训练,以专业教师牵头,鼓励学生自主开发,大胆创新,认真观察;创建具有自己学科发展特色的高分子材料与工程创新实验室,建立以专业教师牵头,本科生为主体的创新训练团队,在保证验证性和设计性实验教学的基础上,增加本科生专业技能综合训练;从大一新生开始实行“导师制”,提倡因人施教,对学生进行启发式教育,鼓励学生开展批判式学习,用与时俱进的思想运用知识,用发散的思维研究知识[5]。
(二)产学研相结合
“产学研结合”是东北林业大学高分子材料与工程专业培养创新型人才的重要途径。“产学结合”是指学生的毕业设计和毕业论文来自于生产实际,学生通过走进工厂、校企合作单位帮助解决生产实际问题。一方面锻炼了学生实际解决问题的能力,培养了独立解决问题的意识,凡事不再依赖教师、依赖课本,是完全意义上的实践;学生通过实习较早地熟悉了工作岗位,积累了工作经验,对待就业问题不再盲目,缩短了学生适应工作岗位的时间。另一方面,工厂在实际生产中也遇到各种各样的问题,新鲜血液的注入也为企业解决了遇到的实际问题,节约了用人成本,并在经济效益方面有所收获。“研学结合”是学生的毕业论文或毕业设计选题大部分来源于指导教师的研究课题,导师的课题研究具有前瞻性及实践性,学生通过参与导师课题,导师指导学生更直接、更具体,锻炼了学生的科研能力,对于继续深造或是出国留学的学生来说锻炼了他们的创新思维能力和科学素养。结合科研实践培养专业人才是专业建设大力提倡的,专业教师积极以科研带动教学,以教学促进科研,学生积极参与教师课题研究工作对学生未来的发展大有裨益。
(三)突出专业实践特色建设
高分子材料与工程专业的特色是培养学生的实践能力和较强的创新意识,实践能力的培养不仅仅在课堂和实验室,高质量、充分的专业实践是人才培养必不可少的重要环节。在实践教学中,学生可以到企业现场观摩,根据企业现有的生产条件将理论和生产结合,学生将学习的书本知识融会贯通到实践中,同时在理论的指导下,学生撰写实习报告反馈实习内容。学校非常重视实践教学,出台了一系列的制度方案,健全实习质量保障体系。为此,专业积极拓展实践基地,依据指导教师的特长进行分工指导,邀请具有培训经验的一线工程技术人员进行现场讲解和模拟。学生的整个实践环节与毕业论文和设计紧密结合,实践过程为论文的撰写提供第一手资料,也锻炼了学生解决实际问题的能力。总之,不断探索高等学校专业与社会实践有机结合的长效机制,建立健全校外实践基地,是学生磨炼意志、增长才干、理论与实践相结合的重要载体。
无论是林业院校还是各类地方高校,都在努力地积极探索高分子材料与工程专业特色化人才培养的模式,东北林业大学在特色化人才培养方面也在不断实践中,既结合了传统的专业优势,又不断挖掘新思路、新方法、新观念,这是知识经济时代对人才培养的需要,也是林业院校人才培养的需求。
参考文献:
[1]中华人民共和国教育部高等教育司.普通高等学校本科
专业目录和专业介绍(1998年颁布)[Z].北京:高等教
育出版社,1998.
[2]周泉兴.人才培养模式的理性思考[J].高等理科教育,
2006,(1).
[3]曹赛先.一流大学的大学科观[J].当代教育论坛,2004,(1).
[4]陈峥滢,秦毅红.大材料学科研究性学习和创新能力培
养研究[J].理工高教研究,2010,(1).
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)24-0219-02
《高分子材料》是材料科学与工程学科的重要组成部分,是材料专业类学生的一门重要课程。但对于非高分子专业的学生,一般只有这一门高分子专业课,且学时有限。为使学生掌握广泛的基础知识、扎实的专业知识,该课程要将《高分子物理》、《高分子化学》、《高分子材料加工》等课程内容融为一体,并加强与其他材料科学的相互贯通。笔者在几年的教学实践中不断探索,对这门课的教学内容、教学方法和教学效果评价体系等方面进行了总结。
一、明晰教学目标、突出教学重点、合理安排教学内容
通过《高分子材料》的教学,需要学生掌握“高分子材料科学基础”、“高分子化学”、“高分子物理”、“高分子成型加工”、“通用高分子材料”等理论知识。在有限的学时条件下,要使对于高分子完全陌生的学生理解并掌握这些基本概念与原理,授课内容的选择是非常重要的。在内容选取上,我们的原则是既要让学生掌握相关的理论知识,又要有所侧重,并注重课程与先修课程的联系和课程前后内容的衔接等。高分子材料的制备、结构、加工及性能之间存在着一系列的有机联系,我们讲述的内容既要有独立性又应注意前后的关联性。首先,结合以前所学知识,让学生掌握高分子材料科学的基础知识。其次,高分子化学部分,我们着重讲解聚合反应机理。高分子的合成按机理主要分为逐步聚合与连锁聚合。连锁聚合中,以自由基聚合研究得最为透彻,我们分别结合反应过程的热力学和动力学,分析自由基聚合各个阶段的特点。至于离子聚合和定向聚合等内容,给定思考题安排学生课后学习。对于学生自学有疑问的地方,教师可以在答疑时给予指导。逐步聚合中,又可分为线形缩聚和体型缩聚,我们一般只讲述线形缩聚部分,体型缩聚安排为课后学习内容。高分子物理部分,我们集中讲述高聚物的结构与性能间的关系。通过掌握高分子材料的合成原理和方法,了解高分子材料结构与性能之间的关系,从而逐步形成较为完整的高分子材料科学知识体系。为了培养实用性、创新型人才,我们在教学中还及时更新教学内容,将新知识、新理论和新技术充实到教学内容中,为学生提供符合时代需要的教学内容。
二、积极探索教学方法,提高课堂教学效果
在《高分子材料》的几年教授过程中,为提高课堂教学效果,笔者一直不断探索,总结了一系列教学方法。
1.表格教学法。《高分子材料》的课程中,有很多教学内容可以通过对比进行讲解,比如聚合物的聚合机理中的连锁聚合和逐步聚合、自由基聚合的各种实施方法等。笔者在实践中,发现表格教学法是个很有效的教学方法。该方法运用比较,比传统直述法更清晰,利于学生掌握相关知识的区别和联系,从而更好地接受知识,并对各知识点有更深刻的理解。比如在讲述高分子材料的合成方法时,可以先用表格列出本体聚合、悬浮聚合、乳液聚合和溶液聚合四种实施方法,再在第一列列出配方、聚合场所、聚合机理、生产特征、产品特性、生产实例等与各实施方法对应的属性,然后一边讲解,一边将各属性填充,让学生接受知识点的同时也学习各属性的异同,从而加强对相关内容的理解和接受,也更利于学生记住相关内容。
2.示例教学法。示例教学法可以引发学生的学习动机,帮助学生理解抽象的事物和概念,发展学生的求知欲望。学生刚开始学习高分子材料,对有关知识和内容了解不多,专业术语比较陌生,但是日常生活中都接触过多种性能各异的高分子材料制品,对高分子材料性能的差异性有一定的感性认识。在讲课时可以引入这些实际的材料,既能提高学生的学习兴趣,也有利于更好地理解所学知识。比如在讲述高聚物粘弹性这部分内容时,高聚物区别于其他材料的最大特点是其粘弹性,由于高聚物分子运动的松弛时间正好我们能用肉眼观察到,所以才表现出这些现象。
3.启发教学法。《高分子材料》的教学中有不少抽象的概念、逻辑推理的演绎过程。老师在课堂上一味讲授专业知识和术语,学生学习热情不高。通过一边讲解,一边结合学科知识适当提出问题的启发式教学方式,能提高学生的学习兴趣和积极性,并能把一部分走神的学生拉回来。如讲到高分子结构时,先提出一个问题:“为什么橡胶和塑料的力学性能有这么大的差异?”给予学生适当时间思考后,再具体讲解高分子材料的结构,让学生带着问题听课,不但启迪了学生的思维,也使他们对所学内容有了更深刻的理解。
4.互动教学法。为了培养能解决实际问题的高素质人才,《高分子材料》的教学中,不应让学生死记硬背和生搬硬套,而应结合实际问题让学生思考,激发学生的发散思维。如讲到橡胶性能时,请同学们思考“如何提高橡胶的耐热温度”,再提示学生利用所学的高分子物理部分知识,从优化橡胶的结构入手,发动学生积极讨论,启迪思维,培养运用基础理论知识分析实际问题的能力。这种讨论式的教学方法,既活跃了学习气氛,启发学生思考问题,又可使学生对知识更好理解和掌握。在讲述高分子材料的合成时,经常通过合成反应式来表示合成过程和机理。我们一方面在课件编写中注意到让所有的反应方程式都不是一下显示出来,而是模仿板书一步一步显示,让学生有充分思考、接受的时间;另一方面,部分反应方程式让学生自己来写,旁边同学互相检查。通过这种方式,使学生更加熟悉并能深刻理解反应过程,其他同学的检查也能让同学发现自己意识不到的细节上容易出错的地方,了解出错的原因,补充没有掌握的知识点。
三、改革考核方式,提高学生综合素质
《高分子材料》的教学评价不但要考查学生基本理论知识的掌握情况,也要考查学生的再学习和独立思考解决问题的能力。为此,我们改变单一的一份试卷定成绩这种缺乏准确性和全面性的考试制度,将成绩的考核纳入每个教学环节中,为每个学生制订具体考核表,跟踪学生学习进展,使学生在学习中能随时了解自己的学习情况,督促自己不断学习、不断提高。其中考试方面根据课程的要求建立了《高分子材料试题库》,逐年对试题库的内容进行改进和更新,每年从试题库中抽取试题组成A、B两份试卷,严格考试要求和评分标准;另一方面,让学生选择一种新型高分子材料,查阅相关文献资料,描述它的合成、制备、结构、性能及应用前景,并撰写小论文;同时,增加学生课堂讨论、实验、作业等平时成绩的评分标准和比例。通过改革考核和评价体系,激励了学生的学习热情,锻炼了学生的实际能力,有利于培养高素质人才。
通过《高分子材料学》教学的探索和实践,初步探索了课程的教学思路和方法。在今后的教学中,我们还将不断总结经验,进一步完善教学过程中的各个环节,培养出既掌握专业知识,又具备分析问题、解决问题能力的能适应以后工作和科研需要的高素质人才。
参考文献:
[1]刘晶如,俞强,张洪文,等.高分子物理课程教学改革与实践[J].高分子通报,2010,(11):111-113.
[2]张镭.高分子化学教学的改革与探索[J].高分子材料科学与工程,2002,18(3):202-203.
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)07-0126-03
“通识教育”(general education)是高等教育的组成部分,是一种尽可能综合的(comprehensive)教育,是所有大学生都应接受的非专业性教育,在学生接受特殊的、专业知识之前对知识的总体状况有个综合性的了解。[1,2]1999年李曼丽等人在《清华大学教育研究》中提到:“通识教育目的是培养积极参与社会生活的、有社会责任感的、全面发展的社会的人和国家的公民。”[2]为了推进以“课程建设与改革”为核心的本科人才培养模式改革,苏州大学从2014年起正式启动通识教育课程改革计划,课程建设基本要求为:适合所有学生学习的非专业课程;注重学科交叉和学科前沿;提倡教学形式和教学方法多样化;注重经典原著阅读;建设有地域特色和本校特色的通识教育课程。通识选修课程包括五大模块:文学与艺术、历史与哲学、社会科学、数学与自然科学、科技与发展。通过跨学科的体系设计,让学生广泛涉猎不同的学科领域,拓宽知识视野,培养学生跨领域、多角度思考问题能力、批判性思维能力和包容性理解能力。2014年学校通识教育课程的申报数量达93门,经过专家组两轮评审,隶属于科技与发展模块的《生活中的高分子材料》课程成为立项建设中的一门通识选修课程,并于2015―2016学年开始对全校学生开放选修。
在认真开展本课程的项目建设工作过程中,笔者在课程教学内容设计和教学方法选择方面做了一些探索与尝试,在几轮教学实践中对教与学之间存在的问题进行了思考和改进,希望能够与相关老师一起交流教学经验,共同探讨如何寻找合适的教学模式来开设全校性工程技术类通识选修课。
一、《生活中的高分子材料》课程的体系建设
1.课程的建设目标。《生活中的高分子材料》课程是面向于全校所有学生学习的非专业课程,建设目标是普及生活高分子材料常识、推广不同专业的学生去了解我们生活中不可缺少的高分子材料;科学认知高分子材料性能特点、合理健康使用各种高分子材料;从而提出新问题和新思想,推动我们国家高分子材料产业链的进一步发展。
2.教学内容及课时安排。从与我们生活密切相关的“衣”“食”“住”“行”四个方面出发,给学生介绍典型的高分子材料组成、特性及使用注意事项。主要安排如下:
第一章 绪论(2课时)。介绍高分子材料的基本概念、新型高分子材料及其研究进展。
第二章 “衣用”高分子材料(8课时)。介绍纺织行业纤维材料(天然纤维和合成纤维高分子材料),了解一些服饰用涂层高分子材料和皮革高分子材料。
第三章 “食品”相关高分子材料(8课时)。介绍食品行业用塑料(塑料薄膜、塑料瓶、塑料餐具)高分子材料,了解天然高分子(淀粉、膳食纤维、蛋白质)和合成高分子(食品添加剂)等食用高分子材料。
第四章 “家装”高分子材料(10课时)。介绍塑料家具(热塑性塑料、热固性塑料),了解涂料(墙饰涂料、木器漆、家电粉末涂料)和粘合剂。
第五章 “户外运动”相关高分子材料(8课时)。介绍橡胶(天然橡胶、合成橡胶)和橡胶制品(轮胎、篮球、运动鞋),了解高分子基复合材料(运动自行车、复合材料赛车)。
3.多元成绩评价体系的建立。开设《生活中的高分子材料》这门课程是希望通过学习来加深学生对周围高分子材料的了解,知道其利弊及正确使用方法,让高分子材料更好、更安全地为己所用;激发学生对高分子材料世界进一步探索的激情,创造高分子材料与人的和谐环境。对学生一学期学习的考核不是一张试卷来决定,而是建立多元成绩评价体系。在充分考虑不同专业学生的个性的基础上,鼓励学生从不同角度去认识高分子材料,教学成绩的最终评价体现出全面性和激励性。指标包括课堂表现(20%)、平时作业(40%)和期末小论文(40%)三大方面。(1)学生对这门课程的学习态度会明显地体现在课堂表现中。(2)针对“衣食住行”中可能碰到的高分子材料设定一些开放性作业,让学生自主选择有兴趣的高分子材料去学习,找其优缺点、使用注意事项及这类高分子材料的发展史,然后分组讨论汇报,其余同学和老师一起给予评分作为平时作业的成绩。(3)在课堂知识的基础上,期末让每一个同学对某一大类高分子材料进行综述,引用实例,从不同的专业角度去分析其利弊和发展潜力,写出自己对材料改进的需求和建议方案,按照科技小文的格式编排、撰写和打印。
中图分类号:G642 文献标识码:A文章编号:1003-2851(2011)08-0-03
双语教学是指将母语外的另一种外国语言直接应用于非语言类课程教学,并使学生同步获取外语与学科知识的一种教学模式[1]。在世界科技水平迅猛发展的今天,教育的国际化趋势越来越明显,因此,为了让学生获得更多的知识,了解国际上前沿的科学发展资讯,提高专业技能,更好地把我们的研究成果推向世界,教育部多次发文鼓励双语教学的开展。
2001年教育部在《关于加强高等学校本科教学工作,提高教学质量的若干意见》中提出高校应积极推动以英语等外语进行的教学模式,明确要求各高等院校在3年内开设5%-10%的双语教学课程[2]。
2007年教育部了《关于启动2007年双语教学示范课程建设项目的通知》(教高司函[2007]137号),提出从2007年至2010年,共支持建设500门双语教学示范课程[3]。双语教学示范课程建设项目的建设内容不仅包括双语师资的培训与培养、聘请国外教师和专家来华讲学,还包括双语教材的引进、双语教学方法的改革与实践、优秀双语教学课件的制作、双语教学经验的总结等等,其资助经费为每门课程10万元。清华大学的《生物化学》、北京大学的《应用分析》、华中科技大学的《组织学与胚胎学》、武汉理工大学的《船舶辅机》等等高质量的双语教学示范课程将国际先进的教学理念和教学方法与中国高等教育实际相结合,为探索适合中国大学生英语和专业知识水平的双语课程教学积累了经验,对提高我国高校的双语教学质量起到了积极的推动作用。
高分子材料是由相对分子质量较高的化合物构成的材料,如:蛋白质、淀粉、纤维素、塑料、橡胶等等,它与金属材料、无机非金属材料等同是科学技术发展、经济建设中的重要材料。为了培养能适应经济社会发展需要、具有国际视野的创新型高分子材料技术人才,武汉理工大学材料学院特开设了《聚合物形态与结构》等高分子材料类双语课程,从高分子物理和高分子化学两个方面向学生介绍了聚合物,取得了一定的成果和经验。
本文从专业双语课程与专业英语的关系、教材的选择、中英文混合讲授和互动式教学等方面介绍了《聚合物形态与结构》双语课程教学实践中的体会和认识。
一、专业双语课程与专业英语
英语教学是贯穿整个大学本科的。通常,专业英语课程的教学是安排在学生完成了基础英语课程和部分专业基础课程学习之后的,属于英语教学的范畴。而随后进行的专业双语课程教学是属于专业教学的范畴[4]。开设高分子材料类专业英语课程的目的是为了让学生了解本专业的专业词汇,培养学生阅读专业技术英语文献与撰写科技英语论文的能力,其重难点在于大量的专业术语、名词性词组、合成新词以及复杂的被动语态长句。高分子材料类双语课程是将英语作为一种获取高分子学科专业知识的工具来进行的专业学科的教学,其主要教学目的不是英语,而是专业知识的学习。
因此,专业英语课程是实现专业双语课程教学的铺垫和基石,专业的双语教学是专业英语教学的延续和提高。
二、教材的选择
教材的选择对于能否达到预期的教学目的,让学生充分地掌握课程的精髓是至关重要的。原版英文教材有利于学生了解和掌握先进的思维方式和研究动态,但是由于中西方文化的差异,在教材的编排上,原版的英文教材和经典的中文教材有很大区别。原版英文教材通常采用演绎的方法安排教学内容,提出问题,引起读者的关注和兴趣,然后再通过对问题的解答来讲述专业知识[5]。而通常国内的中文教材是采用归纳的方法安排教学内容的,逻辑性强,条理清晰,学生容易理解。
因此在教学实践中,我们采用了以原版英文教材为主,辅以经典的国内中文教材,使教学内容即符合教学大纲的深度和广度,又能让学生汲取外文教材中的精华。J.M.G.Cowie著的《Polymers:Chemistry & Physics of modern materials》一书共有17个章节,从高分子链构造、构型与构象,凝聚态结构,逐步聚合,自由基聚合,离子聚合等方面对聚合物的形态、结构和性能进行了详细的介绍,内容深入浅出,结构安排合理,论述层次分明,图表简明清晰,是一本经典的高分子材料学科类教材,因此我们选择该书作为《聚合物形态与结构》课程的英文教材。
同时,我们还选用了Joel R.Fried 著的《Polymer science and technology》和George Ordian 编著的《Principle of polymerization》作为英文参考书。中文参考书我们选取了在知识的基础性、系统性上编辑得很好的国内高分子学科经典教材:由化学工业出版社出版,潘祖仁主编的《高分子化学》和由复旦大学出版社出版,何曼君等著的《高分子物理》。
但是由于教材出版周期较长,国内外最新的研究成果并不能及时地出现在教材上,因此,为了让学生掌握最新的聚合物方面的研究成果,我们在授课过程中插入了近两年权威期刊上如《Nature Materials》、《Advanced Materials》、《Journal of the American Chemical Society》、《Macromolecules》上相关文献的内容,紧跟高分子学科发展前沿,结合教材上的基础知识,讲授文章的知识点和创新点,以达到加深对基础知识的理解和提高对理论知识的应用能力的目的,让学生不仅学会从课本中获取知识,还会主动地从网上获取更多更新的专业资讯,养成主动学习的习惯。
三、中英文混合讲授
中文和英文在授课过程中的比例一直是双语教学中的一个难点[6]。《聚合物形态与结构》双语课程教学的首要目的是让学生掌握聚合物的分子结构、形态以及物理、化学性能,为开发和设计新型高分子材料打下基础。由于学生对于很多专业英语术语感到生疏,因此,如果教师从课件到板书再到讲述全部采用英文,学生在课堂上的注意力将很容易不自觉地集中到对这些生僻单词的理解上,从而本末倒置,忽略了对专业理论知识的深入学习,降低了学习专业知识的效率。同时,如果汉语过多地出现在教学过程中,那么学生将很难脱离母语环境,达不到培养学生用英文思考问题、解决问题的目的。为了解决这个难题,我们在教学实践中采用了以下方法:
(一)在首次授课时复习专业英语课程中的一些基础知识,介绍一些在高分子学科专业英语中常用的单位、常数、词缀、词根以及高聚物的名称。例如:通过对macro-+molecule(分子)macromolecule(高分子),poly-+ethylene(乙烯)polyethylene(聚乙烯),hydro-(水)+-philic(亲……的)hydro philic(亲水的),nucleo-(核)+-phile(亲……)nucleophile(亲核试剂)等词汇的学习来复习词法。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
(二)在每次课临近结束时把下节课最重要的专业词汇用课件展示出来,让学生提前预习。例如,在讲述《逐步聚合》这一章内容之前先将step-growth polymerization(逐步聚合),polycondensation(缩聚),functional group(官能团),functionality(官能度)等重要单词列出,授课时加以强调,并进一步地解释逐步聚合的反应机理。这样不仅能让学生在授课时不受到生僻单词的影响,还能让学生在课前对讲课内容有初步了解的基础上掌握授课的重点,加深印象。
(三)充分利用多媒体教学工具,将图、表、视频资料和文字相结合,用英文和中文双语讲解最重要和最难理解的词汇、物质的结构和知识要点。如图1所示,在讲授自由基聚合链引发反应的时候,采取图文并茂的方式,用直观、生动的教学方式来激发学生的兴趣,帮助学生加深理解授课内容。
(四)在利用现代多媒体技术讲课的同时,适量的传统板书可以避免学生的听觉和视觉疲劳,还能有效地调节课堂节奏,因此我们不能忽略传统板书在专业双语课程教学中的作用。通常,学生在学习公式推理较多的章节时容易觉得枯燥、注意力不集中,如果只用多媒体课件将整个推导过程展现给学生,学生将很难及时跟上教师的分析和推导过程。因此,在讲授高聚物的分子量、高分子溶液的热力学性质等章节时,不妨采用英文的传统板书来进行公式的推导和演算,再加以中文强调重要步骤的讲授方式来吸引学生的注意力,提高教学效果。
四、互动式教学
学生是课堂的主体,合理地调动学生学习的积极性和主动性,让学生和教师一起营造活跃、和谐的课堂气氛能使教学效果事半功倍。传统的教师提问学生回答的方式简单易行,适时地提出“Why?”,“What is……”,“How to……”和“What do you think?”等问句,鼓励学生用英文回答,不仅可以起到提醒学生主动思考的作用,还能让教师及时地了解学生掌握知识的情况,并据此调节课程的进度。
让学生以组为单位进行主题演讲和撰写小论文是国外高校在本科生教育中很普遍的一种教学方式。在《聚合物形态与结构》双语课程的教学中,我们将2-3个学生分为一组,让他们在给定的范围内自己选择论述主题,拟定小论文的题目,撰写论文。论文的内容很广泛,论文的格式要求和正式出版的文献一样,由摘要、背景介绍、论述、结论和参考文献等几个基本部分组成。教师在课程结束后留出一部分时间,把讲台让给学生,让他们像老师一样站在讲台上,利用多媒体课件和板书来讲述自己的论文。演讲完成后,教师或其他学生可以就自己感兴趣的问题进行提问。论文和演讲完成的情况将作为平时成绩最重要的依据,而平时成绩占期末总成绩的30%。论文的合作撰写点燃了学生主动学习的热情,提高了他们的科技论文写作能力,培养了他们的合作精神。主题演讲的开展为学生提供了一个展示自己的舞台,培养了学生的英语表达能力。另外,演讲的主题囊括了从聚合物发展历史,聚合新方法到聚合物的最新研究成果在工业上的应用等等方面,拓宽了学生的知识面,而论文和演讲相结合的方式也为本科生大四毕业论文的撰写和毕业答辩打下了良好的基础。
另外,email、qq群以及教学博客也是增进师生间互动的重要工具[7]。这些新颖的交流方式很容易被学生接受,为师生间课后交流(特别是羞于当面问问题的学生)提供了便利,让教师能随时了解学生在学习中的困难和对该课程的意见与建议,及时地调整教案和教学方式。
五、结束语
专业课的双语教学在高等教育中的比重越来越大,它在培养学生创新性[8],提高学生科学素养等方面起着不容忽视的作用。但是我国双语教学还处于初级阶段,我们的经验和认识还比较不足,希望能开展更多的校际交流和国际交流活动,让双语教学水平能在较短时间内取得较大的进步。
参考文献:
[1]齐民华.地方高校高分子材料与工程专业双语教学的思考[J].广东化工,2011,38(4):237-238.
[2]王小伍.大学物理双语教学的几个关键因素[J].重庆工学院学报(自然科学版),2007,21(9):157-159.
[3]张琳琪.“高分子科学技术导论”双语课程教学初探[J].科技信息,2010,(25):12-13.
[4]陈冬纯.论专业英语教学与专业“双语”教学――走出双语教学的误区[J].中山大学学报论丛,2005,25(6):30-33.
[5]高琼芝,王正辉.《高分子化学》双语教学的探索与实践[J].广东化工,2004,31(8):56-57.
[6]刘国生.推进双语教学提高大学英语教学质量[J].重庆理工大学学报(社会科学),2010,24(7):121-125.
分形理论与耗散结构理论、混沌理论被认为是70年代科学上的三大发现。1967年曼德布罗特(B.B.Mandelbort)在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。指出海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。实际上,具有自相似性的形态广泛存在于自然界及社会生活中,曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。并在此基础上,形成了研究分形性质及其应用的科学,也就是现在的分形理论(fractaltheory),自相似原则和迭代生成原则是分形理论的重要原则。
由于分形理论研究的特殊性,以及他在自然界应用的广泛性,目前分形理论已迅速成为描述、处理自然界和工程中非平衡和非线性作用后的不规则图形的强有力工具。自分形理论发展以来,国内外对分形理论在各方面的应用进行了大量的理论和实践,材料学中也一样,分型理论目前已渗透到了材料学的各个领域,尤其是高分子材料,下面就分形理论在高分子材料学中的应用做一浅议。
一、分形维数的测定方法
根据研究对象的不同,大致可以分为以下五类:改变观测尺度求维数;根据观测度关系求维数;根据相关函数求维数;根据分布函数求维数;根据频谱求维数,分形在材料科学中应用时,一般应用的测定分维方法是:盒维数法、码尺法和小岛法。
二、分形理论在高分子结构中的研究
(一)高分子链结构中的分形
由于高分子尺寸随链结构象而不断变化,对这类问题的处理属于统计数学中的“无规飞行”。但若从分形的角度来看,则高分子具有明显的分形特征并可以跟踪监测。对高分子中普遍存在的自回避行走也是如此,只是表现出不同的分形行为。又因为这类问题与临界现象很相似,故我们亦能采用重整化群等有力工具。并且分数维的另一独特功能是可灵敏地反映单个高分子的单个构象[4]。
(二)高分子溶液中的分形
由于高分子溶液中的大分子链使得其和普通液体在很多方面存在差异性,如普通液体所不具备的流变行为、应力传输等。在实际研究中。分形结构主要存在于高分子溶液中的凝胶化反应中,高分子溶液的凝胶化反应主要是指聚合物的凝胶化过程,是一种临界现象,是介于晶态与非晶态之间的一种半凝聚态,这个过程中高分子链之间会形成的网络结构,该结构是一类形状无规、无序且不规整的错综复杂的体系。但该体系是可以用分形的方法研究的凝胶化反应,在亚微观水平上存在自相似性。例如左榘等研究的苯乙烯一二乙烯的凝胶化反应。
(三)固体高分子中的分形
对于高分子材料,当固体高分子材料断裂时,不同力学性质的材料将形成不同的断面形貌,而断面形貌一般为不规则形态,是一种近似的或统计意义的分形结构,可用分形理论进行分析表征,从而根据断面的形状定量评价材料的力学性能。而微孔材料中由于分布着大量微小的孔洞,这些微孔具有不规则的微观结构,使得微孔材料无论在总体还是在局部都呈现出较复杂的形态,无法用传统的几何学理论进行描述,但可用分形几何理论对微孔形态的复杂程度作量化的表征[5]。