欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

概率论与数理统计大全11篇

时间:2022-11-21 22:10:55

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇概率论与数理统计范文,希望它们能为您的写作提供参考和启发。

概率论与数理统计

篇(1)

一、引言

概率论数理统计是研究随机现象统计规律性的一门数学学科,是数学专业和其他工科及管理类学生必修基础课程,是工学及经济学硕士研究生入学考试的必考内容之一,分值占到20%~25%。概率论与数理统计遍及科学技术领域、工农业生产,是数学学科中与现实世界联系最密切、应用最广泛的学科之一,是许多新发展的前沿学科的基础。

二、教学存在的问题

1.很多学生把概率论与数理统计这门课程作为纯粹的数学课来学,没有注意到这门学科的趣味性和广泛的应用性。课程本身基本概念、公式较多,难以理解,做起习题来较难下手,缺少利用数学知识分析解决问题的能力,这与我们培养复合型人才的定位是不相适应的。

2.教师为中心的课堂教学。传统的教学模式是以书本为核心、教师为中心的教学模式。但这种应试教育从长期看不利于培养学生创新思维,不能适应时代要求,使学生处于背、记、考的恶性循环之中,扼杀了学生的个性。传统的教学模式注重理论,偏离于实际应用,学生即使学完课程,通过考试之后也很快忘记学过的主要知识点,不能学以致用。

3.学时分配问题。很多工科院校概率论与数理统计课程的学时是48学时,这其中大部分是分配给概率论部分,应用性更强的统计部分的学时少之又少。笔者所在学校的生物专业、测绘专业对数据的处理要求高,学时不能满足学生的高要求。教师讲课过程中重理论轻实践,结果学生缺乏创新精神,不能适应时展的需要。

4.读书式的多媒体教学。多媒体课堂上,有的教师照“片”宣科,缺少师生之间的互动;有的教师的教学视频画面跳转过快,不顾学生听课状态,使学生思路跟不上。这样的教学尽管使用了多媒体,也只是把知识硬塞给学生。

三、教学改革

1.改变教学形式,调动学生的积极性。教学形式要求我们的课堂教学要有“度”,采取适当的方式改变现有的教学状况,如课前先布置知识点,让学生分小组进行讨论,加深学生对知识的理解与学习,提高学生的主动性和探索性,教学一体,增进师生之间的沟通,增加课堂的趣味性。教学过程中,教师可以通过案例调动学生的学习积极性,讲解概率的起源及历史上著名的赌博问题。教师讲解概率论的发展史可以增加数学家如德摩根、蒲丰、皮尔逊、柯尔莫哥洛夫等人物介绍,讲授古典概率模型的生日问题、分房问题、装箱问题、摸球问题、约会问题,让学生体会到概率在我们身边无处不在。教师在教学中要注重知识点的关联性,如一维随机变量与多维随机变量。教师要发现学生易混淆的概念:全概率公式与贝叶斯公式,分布函数与函数分布,互不相容、对立、独立性、不相关等。教师在教学中要详细讲解相关概念,剖析概念的本质区别。

2.开设实验教学。教师教学可以开设实验教学环节,计入学生的平时成绩。例如,学校图书馆单位时间内进入图书馆的人数,观察其是否服从Possion分布。调查信息与计算科学专业学生每月生活费用的分布情况,给定置信水平下的置信区间。通过生活小知识,学生产生对概率论与数理统计的学习兴趣,提高解决实际问题的能力。随着科技的不断进步,Excel、Lingo、Eview、SPSS软件为复杂的统计工作带来极大的方便。教师可以在教学过程中加入一些数学软件教学。例如,Matlab数学软件所带的统计工具箱几乎包括了所有参数估计、假设检验、回归分析等数理统计领域,命令调用十分简单,能培养学生的分析能力、推理能力、建模能力,有利于学生的个性发展,推进学生素质培养。教师可以鼓励学生参加数学建模竞赛,为学生毕业后的发展奠定良好的基础。

3.多媒体教学+传统教学的结合。多媒体技术是教学中的辅助工具,教师可在多媒体上展示教材中的定义、定理并做页码标注,节省时间,让学生多做习题,做到“精讲多练”,提高教学效率。例如,幻灯片使教学效果直观、形象,尤其对合班授课、坐在后面的同学视觉效果会更好。教师以多媒体图形表格的形式给出单个正态总体的待估参数的置信区间、假设检验的拒绝域,可以让学生一目了然,深刻理解概念及结论的本质。多媒体教学主张以教师为主导、学生为主体的教学模式,教师应遵循教学规律,针对学生的反应适时调整教学内容与方式,将传统的板书教学、教师的肢体语言和多媒体课件有机结合,有张有弛,以期达到最佳的教学效果。

4.考试方式的改革。随着复合型人才培养的需要,考试方法的改革势在必行,其主要目的是提高学生的学习积极性,培养学生的学习能力和应用能力。学校可以采用“期末闭卷+平时成绩”的综合考核方式,期末试卷和平时成绩各占一定比例。期末试卷可以减少学生死记硬背的知识,增加考查综合能力的知识点,加大平时成绩的考核力度。学校可以采用多种形式,如作业情况、平时表现、期中考试、实验教学,可以让学生以小论文的形式探讨对概率论与数理统计课程中感兴趣的方面。

四、结论

概率论与数理统计的教学目标是使学生学会书本知识,使学生学会如何应用所学知识解决今后学习和工作中的实际问题,提高学生的创新能力。高校教师应利用多种教学手段,提高课程的教学效果。

参考文献:

[1]茆诗松,程依明,濮晓龙.概率论与数理统计[M].北京:高等教育出版社,2011

篇(2)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)45-0109-03

《概率论与数理统计》课程是大学数学公共基础课程之一,是一门应用性很强的学科,它从数量上研究随机现象的统计规律性,在先进材料设计、计算机模拟计算、天气预报、人口统计等众多科学技术与人类实践活动中运用概率统计的知识去解决问题。它对培养学生处理“随机”的数学基础知识、基本能力和综合素质具有其他课程不能替代的作用,然而,怎样才能使学生从传统的确定性思维模式进入随机性思维模式,进而学好这门重要课程是相关教师面临的挑战。笔者结合自身的教学经历,从以下几个方面进行了教学改革,取得了一定的教学效果。

一、引入数学史,增强趣味性

在教学中引入一些教材中没有出现的相关数学史,特别是介绍数学家的生平轶事及其对本学科的贡献,往往能吸引学生的注意力,激发学生的学习兴趣,并且也会提高他们的问题意识与思维能力。例如上第一次课时,可以首先从著名的“德・梅耳问题”与“分赌注问题”出发,向学生介绍概率论与数理统计的起源和发展,在此过程中穿插讲解数学家帕斯卡、费马、惠更斯、拉普拉斯、马尔科夫、辛钦等的贡献;在讲解概率的公理化定义时,可讲解前苏联数学家柯尔莫哥洛夫的生平及其提出的“概率的公理化定义”的重要意义;在讲解几何概率时可以穿插介绍几何概率开创者蒲丰的生平,以及由蒲丰投针试验所产生的蒙特卡洛方法的影响;在讲解中心极限定理时,可以穿插讲解伯努利、切比雪夫、李雅普诺夫等数学家的生平;在讲解“t-分布”时,告诉学生“t-分布”还有一个名称――学生氏分布,然后介绍“开创了小样本理论的先河”的英国数学家戈塞特提出该分布的艰辛过程。这些数学家的故事不仅可以让学生慢慢对这门课程产生兴趣,还在无形中了解了丰富的数学文化,而且提高了学生的数学素养。

二、案例教学法,突出趣味性

目前数学课堂教学中,教师普遍采用给出概念、公式、定理,然后再去解释概念、推导公式、证明定理的教学方式,学生感觉枯燥无味,学习兴趣会大大降低。案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。通过案例教学把所学的理论知识和实际生活结合起来,把抽象的数学与生动有趣的案例结合起来,培养学生分析和解决问题的能力。例如在讲授全概率公式和贝叶斯公式时首先可提出这样一个有趣的问题:假如你有机会参加电视台的一档娱乐节日,主持人指着三个商标对你说,其中一个商标后面的奖金是2000元,另两个商标后面的奖金分别是20元和50元,你可以随意选择一个商标,所对应的奖金就归你了。你当然想得到2000元,你可选定一个商标,如1号商标(但未打开),主持人知道哪个商标后面是2000元,哪两个商标后是20元和50元,他打开了50元的一个商标,比方他打开3号商标,主持人对你说,现在再给你一次机会,允许你改变原来的选择,为了得到2000元,你是坚持选择1号商标还是改选2号商标呢?教师可引导学生开展讨论,在讨论的基础上引入全概率公式和贝叶斯公式帮助大家做出选择。这无疑使学生对学习的新知识产生了强烈的欲望,唤起了学生的注意,激发了学生学习的积极性和主动性,并取得了很好的教学效果。

三、注重科学思维和科学方法的培养

趣味与科学的严谨性是相辅相成的。在教学过程中,不但要用趣味性提高学生的学习兴趣,还要体现数学思维在教学中的渗透与学生创新思维能力的培养。通过有意识地营造使学生不断在取得思维成就的环境中,让学生不断在思维成功的喜悦中良性循环,越学越想学,越思考越灵活。对同一问题不同的求解方法,锻炼不同的思维方式,从而潜移默化地培养了学生的科学思维方法。例如,有2张甲等票和n-2张乙等票共n张票,n人通过抽签决定所得的是甲等票还是乙等票,问抽签的结果与抽签的顺序是否有关?该问题的解决可以有两种方法。

四、提炼知识,把握脉络

五、统计软件的辅助实践

《概率论与数理统计》这门课程公式多、计算烦琐,给应用带来困难。对具有概率统计功能软件的了解和掌握显然对理解和应用有极大的帮助。除Excel外,通用Mathem atica、SPSS等都是很好的工具,概率统计是最需要使用计算机的领域,我介绍SPSS软件自带的统计程序包,其中有实现常用统计计算的各种外部函数,我在教学中针对一个具体工程问题教授学生使用国内外广泛流行的SPSS统计软件进行分析,要求学生:(1)会用SPSS软件求概率、均值与方差;(2)能进行常用分布的计算;(3)会用上述软件进行期望和方差的区间估计;(4)会用上述软件进行回归分析。

例题:电容器铝箔电解扩面腐蚀工艺的影响因素主要包括电解液温度(A)、HCl浓度(B)、H2SO4浓度(C)、电解时间(D)、电解电流密度(E),以A、B、C、D、E为实验影响因素,比电容为影响指标,通过L16(45)正交实验,考察五个实验因素对指标的影响程度并做出显著性分析。对用SPSS软件对实验结果进行方差统计分析可知,五个实验因素电蚀扩面效果和阳极箔比电容都有显著影响,这和文献报道的结论相一致。五个实验因素影响程度大小顺序为硫酸浓度>盐酸浓度>电流密度>时间>温度,硫酸浓度是最重要的影响因素,因此可以对硫酸浓度进一步进行单因素实验,以确定出最佳的电解腐蚀扩面工艺,为相关行业高比容阳极铝箔的研制提供参考。

六、考核形式的转变

考核是对学生学习情况、教师教学效果的评估,采取何种形式进行考核,对于学生学习方法、教师教学方法都有导向作用。受应试教育的影响,国内大多课程的考核方法都是闭卷,但对于《概率论与统计学》这门实用性很强的课程来说,我认为授课的重点是要让学生掌握统计学的核心思想,学会利用统计的思维处理问题,而不是教会学生像学习“纯数学”那样机械地做题。该课程公式和计算众多,不能让公式和计算成为学生学习的障碍,应当重视对概率统计重要概念的理解、总结归纳问题和研究问题能力的培养。因此,我认为本课程考核中可以尝试开卷考核、半开半闭考核以及分组考核、实验考核及撰写小论文等多种形式,使学生不至于为死记一些定理公式浪费过多的时间。

七、教学效果

课堂教学无非有三种境界:一是传授知识,二是培养思想方法和能力,三是激发兴趣和应用意识。教师的教学任务之一就是要提升课堂教学境界,从上述几个方面改进传统教学模式,与时俱进引入新的思想和方法,使原本抽象、枯燥的数学理论变得形象生动,减轻了学生的学习负担,激发了学生的学习兴趣,进而提高了教学质量。可以说本文提出的教学改革方式真正实现了第二种、第三种境界。调查问卷和学生的反馈表明,新措施是有效的,提高了学生的学习兴趣和教学效果。教学工作是一项复杂而艰巨的任务,还需要在长期的教学工作中不断探索,积累经验,逐步提高。

参考文献:

[1]盛骤.概率论与数理统计[M].北京:高等教育出版社,2001.

[2]魏宗舒.概率论与数理统计教程[M].北京:高等教育出版社,2001.

[3]李晓莉.概率统计的多元化教学探讨[J].大学数学,2005,21(04).

[4]冯凤萍,崔继贤.概率统计的探索与改进[J].高师理科学刊,2004,24(02).

[5]张瑞亭.对概率统计教学中若干问题的探讨[J].教育教学论坛,2014,(02).

篇(3)

中图分类号:G642.0 文献标识码:A 文章编号:1002-7661(2012)07-011-01

作为大学数学的基础课程,概率论与数理统计在高校数学教育中占有十分重要的地位,由于研究的对象的特殊性,以及规律的普遍性,它与数学其他方向不同具有广泛的应用背景,而统计学部分更成为经济学,社会科学,管理等诸多领域不可或缺的有力工具,而近期其理论甚至被物理学,遗传学以及信息论所采用,因此讨论仔细研究概率论与数理统计的教学方法对高校教育来说是十分必要的功课。

鉴于学生大多数在高中阶段已经接触过古典概率论的一些基础知识以及计算方法,但并没有掌握概率论的基本原理,在本科阶段的概率论与数理统计的教学目标,主要应当设定在令学生把握这门课程的基本思路以及如何把理论与具体的实际应用结合上,而为了实现这一点,就要从以下几步入手。

一、 应用与理论结合让学生在上课中找到乐趣

鉴于本科阶段,高等数学与线性代数的授课以理论与计算为主,在授课中较难激发学生的自主思维创造能力,因此显得相对枯燥,而概率论与数理统计则大不相同,它是从实践中诞生而最终又回到实践的课程,因此在课程教学中可以先以具体实际问题设问,来调动学生的思考,进而在教学过程中通过对理论的学习解决学生的疑惑,这是令教学摆脱纯理论的单调而获得生命力的很好手段。例如著名的玛丽莲问题:“台上有三个门,一个后面有汽车,其余后面是山羊,主持人让你任意选择其一,然后他打开两个门中的一个,你看到的是山羊,这时,他给你机会让你重选,也就是你可以换选剩下的门,那么你换不换?”,这个问题在当时曾引起了广泛的争论,学生在思考时会提出各种不同的意见和根据,而此时,可以借对此问题的剖析,以及概率论原理在此问题中的应用,令学生切身感觉到概率论在具体问题中的用处。

二、 概率论发展史与案例结合让课程不再单调

众所周知,概率论的源于赌博问题,而如何从赌博问题发展出一门应用性与理论性都很强的学科很自然的会激发学生的兴趣,因此在课程开始的时候,可以逐渐引入概率论的发展史,

例如代表人物以及发展阶段所研究的典型问题,通过把握这类问题的脉络,概率论便有了一部生动的发展史,而在对概率论各种问题的学习中,学生自然会产生新的视角与连贯性的思维,对于培养学生的创新思维能力有很大的好处,创新思维并非凭空产生,而是诞生于对旧理论的脉络和发展趋势的把握之中的,因此在教学中一点一点介绍概率论的流变过程是很有价值的。

三、高等数学知识回顾与概率论的新内容相结合让课程更具有说服力

拉普拉斯将概率论与数学经典的分析理论结合,使得概率论演变成为一门严谨的科学,而概率论的学习中很自然的会遇到很多之前在高等数学学习阶段已经学过的知识,在讲授概率论这方面的知识前,对高等数学的知识做些回顾,可以帮助学生更好的把握所学过的知识与新知识之间的联系,进而更容易从研究简单的古典概率问题过渡到相对抽象的问题。

四、学生自主学习与课堂老师讲授相结合使课程更生动活泼

传统的概率论教学是老师讲授为主,习题为辅的灌输式教学,这种教学方式的特点是老师全程掌握教学进程,比较容易解释内容并进行习题讲解,但在这种教学方式下,学生由于处于被动接受的地位,所以很容易分神,学习效率并不高,积极性也不强。

而为了解决这样一个问题,西方哲学宗师苏格拉底最早提出了辩证法的概念,他将自己的苏式辩证法称为“助产术”,这种方法的特点在于,老师的责任在于提出问题,而提出问题之后,任由学生来解答问题,当学生尝试解答问题的时候,实际上他们便开始真正对问题进行思考,而自主的思考是开启智慧之门的金钥匙,老师在学生提出各种解答方式的同时,不断的继续对学生的答案进行提问,随着问题与回答的逐层深入,引导学生自己接触到问题的最终答案。正因为在这样一个过程中,教师的责任只在于提出问题并加以引导,而寻求最终答案的过程都是由学生自己完成,因此可以将这种方法称为智慧的“助产术”。

篇(4)

“概率论与数理统计”这门学科,是数学中一个比较特殊的分支,一般来说,是大部分本科院校中理工、经管相关专业的必修课程,大学本科生学习这门课的目的是学习现实生活中众多随机现象在统计学上有怎么样的规律性,这门课的知识面非常广泛,并且其中所教授的知识也非常的深刻,通过这门课所学到的统计学规律在自然科学等生活中的众多领域都可以有所应用.

首先,“概率论与数理统计”之所以从属数学,是由于在概率论使用的过程中比较频繁地用到了数学中的集合、微分等知识,其次,它之所以是数学殊且活跃的一个分支,是因为这门课在研究方法以及思路上都和其他分支有所区别.由于它们之间的关系界定不是非常清晰,所以难免会有很多学生在学习的过程中感觉这门课和数学之间的关系比较模糊,虽然很多地方用到了数学知识,但是如果完全用数学方式来学习又很难掌握这门课程,还无法解决部分问题.通过以往这些年的教学,笔者认为,要想解决这个问题,就要从根本上让学生领会这门课的学习思路,在遇到问题的时候,能够灵活使用学到的知识来解决问题,要达到这种效果,要从以下几个方面着手.

一、在授课的过程中激发学生的兴趣

大部分大学生对新知识还是抱有很浓厚的兴趣的,所以说我们要充分利用这一点,在教授课程的时候,可以加入其他的一些知识,让学生们在学习的过程中,产生联系思维,从而更加专注于课程内容,并且借此来提高他们对这门课程的兴趣.如果说能够在这门课一开始就调动起学生的积极性,那之后的课程讲解中,就会减轻很多的压力.比如,开学第一堂课一般会讲赌博和概率论的起源,出于对未知事物的好奇心,往往就能有效地调动学生的积极性.

二、概念的分析和讲解

由于这门课与以往的数学还是有所区别,所以在学习的时候,要让学生能够清楚地了解和记忆相关的概念.可能会有人觉得概念非常无聊,并且很多教师也不会在课程上花费很多精力去进行概念的讲解,更多的是把精力放在应用上面.但是如果教师都这样教授,只会把学生也引入误区,如果学生对概念还没有一个清楚透彻的了解就去专注于计算,就只能在之后的学习过程中解一些比较直接、简单的题,一旦遇到比较灵活、难度大的题,就很难灵活地运用概念来完成解题.

所以说,这就需要我们对这门课的概念有一个正确的认识,概念相当于一门课程的沟通基础,如果不能熟练掌握,就很难保证在之后的学习中能够有更深入的体会.所以说,教师在进行授课的过程中,要用恰当的方式来进行概念的教授,让学生理解这门课是为了解决什么问题,用什么方法可以更巧妙地解决这些问题.比如,我们在教学“数学期望”的过程中,就可以向学生讲述帕斯卡和梅耳的故事,来跟他们讲述期望实际上是指什么,通过这样一种更加生动的教授,学生就可以更加清晰地了解这个概念究竟要如何使用.在教授的过程中,我们需要有所注意,还可以在讲概念的基础上,加上一些简单的运用以及衍生,比如,帕斯卡的分法和2∶1分法,哪一种是更加有效的,重点是要能够清楚地阐释帕斯卡分法,“2∶1”仅仅想到了现有的状况,帕斯卡却想到了未来的各种可能,并且进行了加权处理,这才是帕斯卡分法的意义所在.

三、教学案例要贴近学科现实

本门课程并不是一门非常抽象、远离实际的课程,而是与实际密不可分,特别是我们在讲解一些经典例题的过程中,更是可以生动体会到这一点.正是由于它的这一特性,我们更是要注意在列举题目的时候,不能够太过于生硬、死板,这样非常不利于学生的理解和记忆,而如果我们可以在平时积累一些有趣的例子,应用在课堂的教学中,相信可以在很大程度上帮助学生理解和记忆相关的知识点.比如,我们经常会遇到的抽签,或者说保险相关的一些问题等,都可以运用到课程的教授当中来,通过探讨,第一,可以减少这门学科和学生日常生活之间的距离感;第二,也可以帮助学生理解知识点,并调动他们的积极性;第三,还能够帮助学生锻炼自己的解决问题能力;最后,还能让学生在今后思考问题的时候,更加全面,更加理性.

四、借助多媒体提高教学效率

以往的教学过程中,教师主要借助一些简单的教具,例如,黑板、教材来完成教学任务,而现如今,随着科技发展,越来越多的教学工具开始走进课堂.比如,我们可以利用计算机,直接进行一些图形上的演示,或者文字的说明,通过这样的一种教学方式,可以让学生通过更直观的方式接收到更多的信息,相比于以往的教师口头讲授,也有更强的教学效果.除此之外,我们还可以把正态分布、二维正态分布等等原本很难教授的课程的实验过程,直接通过计算机进行演示,这样,比起口头讲述,可以给学生留下更加深刻的印象,学生也更容易理解这些概念.

我们日常生活中遇到的很多问题,都可以用概率解决,概率也为我们的学科进步做出了巨大的贡献,所以说,我们站在巨人的肩膀上,更要尽自己最大的努力,把概率这门课程用更灵活的方式教授给我们的学生,只有这样,学生才能够把这门课应用在自己的日常生活中,并且将概率学发扬光大.

【参考文献】 

[1]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2010. 

篇(5)

概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程,同时有不少人文社科类专业也在开设这门课程。它是与实际生产生活联系最为密切的一门课程。由于它在自然科学、社会科学、工农业生产、金融经济等各方面的广泛应用,本课程在高等学校教育中的重要地位日益凸现。因此,作为本门课程的授课教师,不仅要给同学们讲解它的基本理论知识,更重要的是引导学生学会运用概率统计的思想方法,来解决实际问题。这是每位授课老师义不容辞的职责,也是同学们学习的动力源泉和最终归宿。

为了使同学们更好地运用概率统计,这种数学方法解决实际问题,在课堂上可以花少量时间向同学们介绍数学建模的思想,树立他们运用数学方法,解决实际问题的意识和全局观。当然,在我们概率统计的教学课堂上,主要是教学生如何建立概率统计模型去解决实际问题,告诉他们概率统计模型是在处理随机性问题时非常有力有效的模型。一旦同学们体会到了这一层,就会变被动学习为主动学习,学习效果当然也会大为提高。作为老师,大约可以从以下几方面来做。

一、告诉大家什么是“数学建模”

“数学建模”是指根据生产、生活中遇到的实际问题的特点和规律,抽象和提炼出一个数学问题,用数学的工具,包括计算机、信息查询等手段来求解,并将结果经解释验证后用于解决实际问题,指导生产生活的过程。作为数学研究与实际的社会生产生活交叉组合,而产生的一个新兴的学科领域,数学建模随着电子计算机这一高科技运用的不断普及而日显重要。

课堂上可以举几个随处可见的易于理解的实例,来阐述数学建模的概念和威力。比如:椅子能在不平的地面上放稳吗,人口增长的规律如何呢,双层玻璃比单层玻璃的隔热性好多少等等。当然,无需把每个问题讲得很详细,只需告诉同学们这些实际生活中的问题,可以转化成数学的符号和公式,运用数学方法能得到满意的解决。

对于不同的甚至相同的实际问题,运用数学中不同学科领域的理论和方法,可以建立各种不同的数学模型。它们各有优劣,在实际建模中应该视具体问题,选择相对更有效更精确的数学工具建立模型,以实用作为主要原则。而运用概率统计思想方法建立的数学模型就是概率统计模型。在概率统计课堂上,对于一般数学建模的概念和思想不用花很多篇幅讲解,只是让大家有这么一个建模的意识和全局观即可。

二、注重讲解概率统计模型的实例,激发兴趣

随机现象在日常生活中无处不在,比如产品的销售与库存、股票期权等投资分析,气象预报、社会经济预测控制等问题。它们几乎都可以建立概率统计的数学模型进行解释和解决。要想提高学生建立概率统计模型解决问题的能力,在教学中可以选择具有丰富现实背景的学习材料,从现实生活中找素材,激发学生利用概率统计方法解决实际问题的“欲望”。我们教师可以从简到难,先提一些简单的实际问题,帮助同学们理解,增强他们的信心;然后随着学习的不断深入,知识的不断增多,再逐步提出复杂一些的问题,这样同学们解决问题的能力就会得到较快的提高。

比如,在开始学习泊松分布时,我们可在课堂上举类似如下的一个简单的例子。

例:某商品的月销售量X服从参数为10的Poisson分布,问:这个月底的库存应为多少才能保证下个月不脱销的概率不低于0.95?

尽管这个例子看起来很简短,但是从以往课堂上同学们的反应来看,发现初学者理解起来还是有难度的。对他们来说关键的难点在于:这个问题中哪个量是随机变量,哪个量是要需要我们人为去决策的普通变量。对这个问题初学者往往比较模糊,需要多加思考练习和体会。我们在教学中要有意识地引导同学们弄清这个关键点,然后才能把模型建好。就此例而言,月销售量X是一个随机变量。我们设这个月底的库存为a,它就是一个决策变量,就是高等数学里面的普通未知数,而不用看成随机变量。那么这个问题就可以转换为这样简单的数学模型:

这个模型很容易求解。当同学们理解了这个思路以后,就会觉得很有意思,增添了兴趣。

再比如,学习了数学期望之后,可提出这样的实际问题让同学们考虑。

例:设报童每天从邮局订购零售报纸,批发价为每份0.4元,而每天报纸的需求量X服从正态分布N(150,36),零售价为每份0.6元,如果当天的报纸卖不掉,他就按每份0.2元处理掉。为使获利最大,报童每天应向邮局订购多少份报纸?

告诉同学们这里只是以报童卖报问题为例,这类问题非常多,企业的生产、销售、削价都是类似的。先让同学们自己独立思考,细致地分析,大胆地写出模型求解。哪怕一开始写错也没关系,只有这样才能不断进步。等同学们有了自己的思路之后,我们再来讲解正确的做法。这个问题比前一个问题复杂许多了,关键的还是分清楚普通自变量与随机变量,理出它们之间的数量关系,写出目标函数表达式。只有这样才能建立正确的数学模型。叫做错的同学把自己的想法和正确的做法作对照,从而发现自己概念上的误区或者是公式的运用错误,认识到把实际问题转化为正确的数学模型的重要性。初学者只有反复的经过“犯错――纠正――再犯错――再纠正”的过程,才能真正掌握建立概率统计模型解决实际问题的方法。

诚然,课堂上的时间是有限的,教学实例和手段也是有限的,课堂教学主要起到一个抛砖引玉和激发兴趣的作用。我们要启发大家在课下独立地去观察和思考实际生产生活中的问题和现象,让他们自觉的、有意识的运用概率统计的方法建立模型,并努力加以解决。

当然,对于一个比较复杂的问题,同学们未必能够很完整地解决。但是在解决这个复杂问题的过程中,同学们所收获的东西却是让他们受益不尽的。比如,当他们碰到不理解的东西或觉得所学知识不够用的时候,就会自主地去学习相关知识,翻阅资料或者上网查询等等;而有时可能有了大概的解决思路,但是对中间的某一概率或统计问题不会求解,他们必然要去打开平时让他们很头疼的书本,从中找到解决的方法。这时,他们就会体会到概率统计这门课程,甚至是其他数学课程的妙用之处,在今后就会加倍努力地去学习。

三、强调统计软件的应用

对于统计中许多方法可以充分借助当前流行的各种统计软件,如excel,spss等等。在课堂上举一些来源于现实生活的实例,并现场用软件解决。有些时候我们可能会事先就把问题用软件解出来,然后直接用ppt向同学们展示运算结果。这样做可以提高课堂效率,但并不利于学生理解掌握全局的思路和整个操作过程,对于步骤比较少的问题可以这样做。但是对于综合性强一点的问题,我们最好把分析思路和运用软件操作的全过程向大家演示。鼓励学生们多上机,掌握一门有用的统计软件,让他们充分体会到概率统计理论结合软件运用之后的强大威力,在实际应用中如虎添翼,提升他们的学习兴趣和学以致用的迫切愿望。

只要同学们感受到了概率统计这门课程有很强的实用性,就一定会学好的。多留问题给他们自己思考解决,那么他们的独立学习研究和应用知识的能力就能得到快速的提高。长此以往,他们在今后的工作中就会干得更出色,更加受益于这门课程。而作为引导者的我们,就真正起到了领路人的作用,教学效果事半功倍。

参考文献:

篇(6)

二、开放学生思维,明确教学目的

在数学教学过程中,学生是是教学的主体,每个人都有自己的思维能力,所以教师必须明确教学目的,使学生的思维得到尽可能的开放,促进学生探索创新能力的不断提高。因此,教师在选择案例时,要综合评估学生的学习能力,对概率的概念、公式进行仔细讲解,将统计知识点贯穿到整个课堂教学,使案例突出教学重点,达到知识点融汇教学的教学目的。开放课堂教学,不仅可以使学生掌熟练握更多的概率论与数理统计知识点,更能拉近学生与作者、学生与自己的师生距离,使师生之间的感情更加融洽,从而大大提高教学质量的目的。

三、有效组织教学,提高综合能力

在数学学习是整个过程中,打好基础是非重要的,因此,在概率论与数理统计的教学中运用案例教学,教师要有效组织教学,促进学生综合能力的提高。针对概率论与数理统计的难点和易点,循序渐进的提升难度,让学生熟练掌握每个知识点,培养学生敏捷的数学思维能力,不断开阔学生的视野,使学生的概率论与数理统计分析能力变得更强,从而达到提高教学质量的目的。例如:针对篮球投篮问题,根据球队人数的变化来计算投篮的概率,从最简单的计算开始,随着人数的变化,计算复杂程度也变得越来越高。这就是一个概率论与数理统计知识点逐渐加深的案例,通过这个案例教学,学生的思维能力可以不断增强,综合能力也会得到不断提高。

四、课后教学总结,不断改革创新

概率论与数理统计的教学中,案例教学方法应用的课后总结,是教师对课堂教学不足的完善,可以有效保证案例教学的教学质量,不断创新教学方法和模式,同时促进教师自我的不断提升。课后总结,分为学生的总结和教师的总结,学生通过总结,可以对案例教学进行仔细的分析,培养学生处理问题和解决问题的思路,提升学生实践动手能力;教师总结时,对重点知识进行再度印象加深,促进学生不断探索和创新,从而促进教师教学的不断创新。

篇(7)

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)09-125-01

概率论与数理统计是一门研究随机现象统计规律性的学科,教学内容较多,难度较大,而教学时数少,因此,如何提高概率论与数理统计课程的教学质量是探讨的热点,笔者从以下四个方面作出了探索。

一、重视高中内容与大学内容的衔接

高中数学中随机事件,频率与概率,古典概型与几何概型,条件概率与事件的独立性,数学期望和方差等内容【1】与大学概率的内容有所重复。因此在讲解这些内容时,可以由学生来讲解高中部分的知识,在这个基础上,教师再作出适当的拓展。这样教学的重点就得以体现,概念的讲解也不显得突兀。

二、重视实例的引入

在概率论与数理统计教学中,有许多抽象枯燥的知识点,在讲解的过程中学生易出现不愿思考和焦虑的现象。教师要注重实例的选择,选择的实例既要与时俱进,又要充分与专业相联系。笔者所在的是军事院校,所以在选择实例时具有军事特色。例如,在讲解数学期望的时就引入航母得平均维修费用;在讲解贝叶斯公式时,引入武器装备损伤性的分析和大家都熟悉的“孩子和狼”的故事中,村民对这个孩子的可信度时如何下降的;这些实例来源于学生熟悉的军事生活,从而大大激发了学生学数学用数学的兴趣。

三、重视绪论课

好的开始是成功的一半。绪论课的成功与否关系到能否调动学生学习这门课的兴趣。绪论课一般包含以下几方面的内容:第一介绍概率论的起源与发展;第二介绍本课程的内容体系以及解决的问题,给学生一个全局的印象,知道概率将学习哪些内容;第三从生活实例出发,给学生一个直观的认识,了解到概率来源于生活。

四、弱化计算技巧,重视应用

概率论与数理统计的传统教学,重视计算技巧,推理和证明,教材中有大量的例题和习题,教师因为课时的限制想做到面面俱到实属难事,常常说:要授之予渔。因此,教师必须对教材上的知识进行探索归纳总结,以点带面,重视思想方法的教学,淡化计算过程。特别是连续性随机变量的知识点要用到高等数学中的定积分,变上限积分,二重积分以及级数的知识,学生这些知识难免会遗忘,笔者在教学中的处理方法是适当的复习补充,再辅助matalab的应用。

概率论与数理统计的应用部分在数理统计,但是目前因为课时,大多数院校的教学中心在概率论的知识,部分院校在削减了学时后,只学概率而不涉及统计。 而且统计这部分内容公式繁多,计算量大,很多学生学完之后不知道如何应用。笔者结合这两年的数学建模题讲解统计学的原理,例如结合葡萄酒的分析,讲解了数据的处理,总体的估计,置信区间等内容,

篇(8)

【关键词】

民办高校;概率论与数理统计;改革;案例教学法

民办高校是我国高等教育大众化进程中高等教育从单一性的办学形式向多样化的办学形式发展的产物,是高等教育领域中的一支生力军.由于起步晚、面对全新教育对象,民办高校从培养计划的制定到课程的设置都处于探索阶段.作为唯一研究随机现象统计规律性的一个数学分支,其理论和方法的应用几乎遍及各领域,又向各个基础学科、工程学科渗透,与其他学科相结合发展形成不少新学科,如生物统计、统计物理、医药数理统计等,它又是许多新的重要学科的基础,如信息论、控制论、可靠性理论和人工智能等.由于它的广泛应用性,概率论与数理统计课程是理工科及经管类专业教学体系中的重要部分,也是理学、工学、经济学硕士研究生入学考试的一门必考课.因陈旧的教学方法已经无法满足学科发展对该课程的要求,因此,对于本门课程的教学改革势在必行.结合我校校情本文对产生问题的原因进行了分析,并结合工作教学实践,提出了部分改革措施.

一、传统教学方法的缺陷

目前的教材及教师授课都存在重理论、轻应用的特点,缺少该课程本身的特色及特有的思想方法,使许多初学者产生了厌学情绪.产生这种现状的原因在很大程度上归咎传统教学方法的机械化.在传统的教学方法下,学生获取知识的主要途径就是老师灌输,学生被动接受.这种“填鸭式”的教学忽略了学生的主体地位,同样也没有发挥出概率论与数理统计这门学科的特点.

二、改革教学条件

(一)以专业为导向精选教材随着概率论与数理统计的教材改革开展得如火如荼,新的教材不断涌现,但真正适合的教材却屈指可数.在概率论与数理统计的教学中,应高度重视并加强统计的应用部分教学,突出其应用性.因此应以专业为导向精选教材,首先教材主要内容应包括概率论基础(概率空间、随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理)、数理统计基础(统计量及其分布、统计估值、统计检验、方差分析、相关与回归分析)和统计实验设计等三大部分.其次,教材的选取应注重以下三点:第一是注重渗透统计思想,加强实际应用.所选例子和习题都应直接来自生产和生活实际,这不仅能加深对基本概念和基本方法的理解,同时也能提高学生学习的兴趣.第二是在习题编排方面,应注重选择难易结合,深浅对练的习题教材.第三是要切实实现专业课相互渗透,相互融合,在教学中大量引入应用实例,将统计思想运用于专业,使学生学习目标明确,同时也促进了学生对后继专业课程的学习.

(二)教学手段的改变在教学过程中要充分注意该门课程“应用型”的特点,也要充分应用多媒体等辅助手段,开发多媒体教学课件,利用各种媒体增加课堂教学的信量,丰富教学内容、提高课时利用率,增加实例演示,使课堂教学图文并茂,声像具备,使抽象问题更加直观.

三、改进教学方法

教学内容的改革与教学方法的改革是相辅相成的,没有教学方法的改革,教学内容的改革就很难取得实际效果.在教学过程中,我们“以学生为主体,以教师为主导,知识、素质和能力协调发展”的现代教育思想为指导,教学中突出学生的中心地位,注重对大学生逻辑思维能力、分析问题和解决问题能力的培养.精心设计教学法,比如教师讲重点、讲难点、讲思路、讲方法,采用启发式、激励式的教学法,让学生积极参与到课堂中去.可以适当组织一些课堂讨论,比如案例教学法.案例教学的目的是希望学生从实际问题出发,掌握理论知识,进一步运用到实践.为了达到这个目的,首要问题就是选择案例.这实际上是案例教学中最重要也是最困难的地方,主要取决于老师的选择.为了发挥案例的最大作用,在每个教学的环节应该慎重选择案例.比如说,处在概念的引入阶段时,案例发挥的作用应该是启发学生提出概念,并且理解概念的必要性与合理性,而且不能占据太多的时间.此时选择的案例一定要简单,具有代表意义,让学生直观上就能明白下面的概念要表达的含义.可以看这样一个引入最大似然估计概念的案例:一名学生和一个猎人去打猎,看到一只兔子跑过,听到一声枪响,兔子应声倒下,问:这一枪最有可能是哪个人放的.这是一个非常直观的问题,设置在课堂上既简单又能够说明事情.通过这个问题,学生的积极性都调动起来了,绝大多数同学都会回答这一枪一定是猎人放的.进一步,老师要引导学生揭示其中的原因,同学们会有不同的答案,都处在现象上面说明问题,最后老师可以根据学生的答案做总结:这一枪最可能是猎人放的.这里面有一个“小概率原理”,就是一个小概率事件在一次试验中是不可能发生的,假如这一枪是学生放的,说明学生一枪就击中兔子的概率是很大的,这显然是不合逻辑的,因此这一枪最有可能是猎人放的.进一步老师可以根据这个例子,引入最大似然估计的思想:在一次抽样中,取到了某个样本,说明这个样本出现的可能性最大,那么使得这个样本出现的可能性达到最大的参数值就是最大似然估.通过案例这种直观工具,加入学生的讨论,会让抽象的理论更加具体,使枯燥的课堂生动起来.同时要加强对习题课、辅导及批改作业等教学辅助手段的重视,注重科学适当的作业习题训练,已达到熟练掌握基本知识和提高运用技能的目的.对于考核,应建设概率论与数理统计试题库,以保证试题的标准和质量.另外概率与统计应该分开来考核,概率论部分基础知识多应该采用闭卷考试,而数理统计部分应用性强、公式多应该采用开放式的考核.

四、趣味导向,培养学习兴趣

兴趣是最好的老师.如果能激发学生学习的兴趣,就可以唤起他们学习的动机,从而主动学习.俗话说“良好的开端是成功的一半”,上好第一次课,对于培养学生学习概率统计的兴趣非常重要.通过提出疑问、分析疑问、解决疑问而进行教学不仅有利于养成学生积极思考、敢于批判等良好的心理品质,也是激发学生兴趣的有效手段.不过在教学中我们要注意,不能只是机械地为了疑问而疑问,要明确自己的目的所在.具体来说,所设疑问要从实际出发,能够激发起学生的共鸣,使他们踊跃参与进来,这样才能真正提高学习兴趣和教学效率.在学习统计量的概念一节时,给学生介绍了这样一个案例:二战期间,盟军坦克作战能力超过了德国,但盟军仍担心德国的新型坦克,而且盟军不知道德国一年能制造多少坦克.缺乏这个信息,盟军对胜利没有一点把握.于是,情报部门开始观察德国坦克制造厂,甚至派人去战场数德国坦克,但收获甚微.后来统计学家发现可以利用坦克上的序列号来进行推断.假设德国坦克编号1,2,…N(其中N为总生产数量).如果缴获5台坦克,编号分别是10,21,33,68和92.此时样本总数S是5,最大序列号M是92.经过测试演算,得出制造总量=(M-1)(S-1)S.运用这个公式,统计学家认为在1940年6月到1942年9月,德国每个月制造出246台坦克,比情报部门的数据1400台要低得多.战争结束后,盟军拿到了制造厂的生产报表,数据显示这三年德国每月生产245台坦克.学生通过这个例子发现原来统计学这么好玩还非常有用,就会开始对概率统计课程产生浓厚的兴趣.在引入基本概念时尽可能解释其直观背景和实际意义,并多举生活中常见的例子,也可以在课堂上利用计算机软件和数学软件进行一些简单的模拟试验,让学生直接观察并参与到试验中,从而改变学生对数学课呆板枯燥的认识,提高学生对概率论与数理统计学习的兴趣.社会日新月异,社会对于人才素质的要求也逐渐提高,学校教育的培养目标逐渐开始向培养复合型人才,培养实际应用型人才转化.传统的教学开始不能适应社会发展的需求,这就需要我们探索、研究新的课程教学,从而为国家输入更加强有力的血液.

【参考文献】

[1]齐名友著.世纪之交话数学[M].武汉:湖北教育出版社,2000.

[2]K.J.德夫林著,李文林等译.数学:新的黄金时代[M].上海:上海教育出版社,1997.

篇(9)

概率论与数理统计课程是工科数学的重要基础课之一,该课程的基础是概率论,而重点的应用部分是数理统计,学习概率论与数理统计可以培养学生的统计分析能力和实际问题解决的能力.在学生的后续课程中作用重大,而且对于实际问题的解决提供了很好的方法.根据独立学院的办学宗旨,还有学院的特色及学科的不同,我们有针对性的改革了教学体系,培养学生的开放性思维,教学过程坚持“实用型”.在内容深度上,我们的原则是“淡化理论、注重实用”.在内容构架体系上,我们的出发点是实用性和针对性的教学,教学目的就是解决实际问题,今后重点培养学生的数学应用能力.在教学方法上,通过分析问题来建立数学模型.基于以上我总结的经验,得到一些较适用的教学方法,想推荐给大家,下面就给出三个方面进行探讨与讨论,分别包括概率论与数理统计的教学内容及方法、教学设计、教学实验.

1理出课程的重难点,给出恰当的解决方法

概率论与数理统计课程的重点是:随机事件和概率、二维随机变量及其概率分布、随机变量的数字特征、数理统计.难点是:抽象的概念(随机变量的定义,分布函数的定义等)、理论的推导(如全概公式与贝叶斯公式)、解题的方法与技巧(如二维随机变量的边缘分布)、严密的逻辑性(如随机变量矩、协方差和相关系数,要以随机变量的期望、方差为基础)等.解决办法:多以实际例子及概念产生的背景作为铺垫,引出概念,让学生对概念的理解更深入透彻;减少理论推导,多分析解题思路;重点讲解和训练一般的解题技巧和方法;要求学生多做练习,加强基础知识的训练,牢固掌握概率论的基本知识为后面的数理统计服务等.课堂上对学生的学习状态随时关注,根据学习状态确定习题量及其难度.教材内容要取舍得当,根据学生的学习情况调整教学内容,课堂氛围也很重要,教师要调动好课堂气氛.

2巧妙地设计教学环节

教学环节的设计是很重要的,能直接影响我们的教学效果.判断我们上每一节课是否成功,是取决于学生能够接受多少新知识,那么我们就要保证教学环节的流畅、自然.

2.1上好每一章的第一节课

每一学期的第一节课很重要,一个老师上好第一节课可以带领学生入门,能够吸引学生的注意力,激发学生的学习兴趣,充分调动学习的积极性.对于每一章的第一节课也同样重要,首先老师介绍一下这一章要学的所有知识,简单概括本章的重点与难点,还有这一章与前后章节的联系及在这一本书中的地位,学习本章内容所要用到的学习方法,还有本章知识的实际应用等等.上每一章第一节的时候让学生了解这一章要学习的内容,引起学生的学习兴趣.

2.2讲解新知识要生动有趣,贴切实际生活

在17世纪,英国一个叫梅莱的贵族有“一夜暴富与一夜沦为乞丐”的故事,他的两次赌博结果,给出了概率的起源问题.例如我们常用的手机,从收到短信开始计时到收到下一条短信,这其中的等待时间;还有我们任意时刻等待短信的时间;这都是服从指数分布的.还有经常逛商场会遇到抽奖活动,但是顾客的抽奖结果多是“谢谢参与”,这就是古典概型.涉猎高手和小朋友同时射击,听到枪响兔子倒下,我们看到猎人的枪和孩子的枪都冒烟了,那到底是谁射中的兔子?这个问题就是小概率事件原理.这些实例都需要学生对现象进行细致的观察,把生活中的这些问题模型化,从而获取新认识,如果我们能以上面的实例来讲解,从而引出指数分布,古典概型,小概率原理,那么新的概念、定理、公式就更容易理解,学生也更容易接受.采取这样的方式教学,学生的好奇心就很快被教师调动起来,教师也更容易讲授新的知识,学生也能比较容易地理解并掌握新的知识.例如社会保险在我们现实生活中总会提及,我们也都有这样的疑问:保险公司和投保人之间谁是最大的受益者呢?假如n个人向某保险公司购买人身意外保险(按保期一年算),假定投保人在一年内发生意外的概率是0.01,问(1)该保险公司赔付的概率是多少?(2)n多大时以上赔付的概率超过二分之一呢?分析:设“一个人一年内是否发生意外”是一次随机试验,现有n个人参加了这次保险,那么上面的问题就是一个n重的贝努里概型,且假定每个人在一年内发生意外的概率为P=0.01.设Ai={第i个投保人出现意外},i=1,2,…,n;B={保险公司赔付},又B=A1+A2+…+An,再根据德摩根率,有P(B)=1-p(B)=1-p(A1A2…An)=1-p(A1)p(A2)…p(An)=1-(1-0.01)n=1-0.99np(B)=1-0.99n≥0.5,有0.99n≤0.5,n≥lg0.5lg0.99≈684.16.由此可见,“概率很小的事件在一次试验中几乎是不发生的”,但是大规模的重复试验发生的概率几乎是1,所以保险公司虽说是会有赔付,但是保险公司还是“受益匪浅”的,基本上是不会亏本的.

3增加实践教学环节

随着计算机的普及还有各种数学软件的开发利用,就有必要在概率论与数理统计课程教学中增加实验教学环节.在概率论与数理统计课程的教学中引入数学实验,对学生的学习兴趣提高有所帮助,而且学生学习数学知识的效率也会提高,帮助学生应用数学知识解决实际问题,培养学生的动手能力.

3.1用数学实验思想,优化教学内容

“数学实验”就是从问题出发,借助计算机,通过学习者亲自设计与动手操作,学习、探索和发现数学规律或运用现有的数学知识分析和解决实际问题的过程.换言之,数学实验就是学习者自主探索数学知识及其实际应用的实践过程.数学实验的目的,就是在数学的学习过程中,通过数学实验改善学生的学习方式和学习过程,从而帮助学生在自主探索和合作交流的过程中理解和掌握基本的数学知识与技能、数学思想和方法,并获得广泛的数学活动经验,有效提高数学学习的能力.

3.2增加数学实验内容,激发学习的创造性

在教学中可讲解简单的例子,让学生发挥想象,自己建立数学模型,利用SPSS软件对此模型求解,再观察分析给出计算结果,这样不仅让学生对课程感兴趣也体现了学生的创造性.随意开设数学实验,给学生锻炼的机会,对于培养学生的创造性是非常有效的.

3.3利用数学软件,提高学生的计算能力

概率论与数理统计中的计算问题可以用数学软件SPSS求解,计算机的发展提供了便利,对于过于繁杂的计算用计算机计算是方便快捷的.将数学实验国家精品课的适当的内容穿插在本课程教学中,以习题课的形式介绍,引导有兴趣的学生自己去尝试.课程组每年定期举办数学建模培训班,利用各种教学软件演示概率论与数理统计的应用方法,在整个教学过程贯穿数学建模的思想与方法.融合数学知识强调应用能力的培养,我独立学院的学生在全国大学生数学建模竞赛活动中取得了优异的成绩,这是难能可贵的.

4结束语

本文从三方面探究了工科概率论与数理统计课程在独立学院的教学方法,通过我对教学方法的探索和改革,对于激发学生学习该课程的兴趣有所帮助,体现该课程的价值让学生充分认识到,让学生自己主动学习.以上三个方面的教学方法,应用在独立学院的概率论与数理统计的课堂教学中,取得了较为不错的教学效果.首先增加了学生学习概率论与数理统计的积极性,其次对于活跃课堂气氛有很大的帮助,再次学生不反感学习概率论与数理统计这门课程,最后也是最重要的一点考核通过率有很大的提高.通过以上改革完善了概率论与数理统计的教学,当然今后教学工作中还有更多新的方法,有待我们进一步实践和探索,不断的完善和提高.

参考文献:

〔1〕秦川.概率论与数理统计(第二版)[M].长沙:湖南教育出版社,2013.

〔2〕宗序平.概率论与数理统计(第三版)[M].北京:机械工业出版社,2011.

〔3〕陶伟.概率论与数理统计习题全解[M].北京:国家行政学院出版社,2008.

篇(10)

概率论与数理统计是高等院校理工科各专业的数学类基础课程.它既有严谨的理论体系,又有很强的应用性;它的内容既蕴涵现代数学思想,又包括实际问题的统计处理方法,广泛应用于工业、农业、军事和科学技术中.因此,这门课程在培养大学生的数学素养方面起着重要作用.在概率论与数理统计课程教学中,如何才能取得良好的效果?大家进行了广泛的研究与实践.本文针对概率论与数理统计课程教学中,学生普遍“学不好、学好不会用、学后易忘记”的现状,结合概率论与数理统计课程的特点,深入分析学生实际,介绍了教学方法改革的一些尝试.

一、概率论与数理统计课程教学中存在的问题

概率论与数理统计是一门非常抽象的学科,它是研究随机现象统计规律性的学科,是一门很有特点的学科.它的内容非常丰富,概念和公式多且杂,容易混淆;基本概念抽象复杂、难以理解;涉及的知识点太多,需要用到高等数学、线性代数中的许多知识.一直以来,学生学习的都是确定性的内容,突然来研究随机问题,往往感到处理问题的方法与其他数学课程有很大的差异,普遍不适应,觉得习题难做,方法难于掌握.

学生在学习概率论与数理统计的过程中,常常有两种感觉:

一是学好不会用.掌握了相关知识,除了应付考试,却不知道在实际中灵活应用所学知识,遇到实际问题时,往往无从下手.

二是学后容易忘记.学生常常反映,概率论与数理统计的公式、定理特别多,不容易记住,学起来很枯燥,即使记住了,只要几天不看,就忘记了好多.

二、概率论与数理统计课程教学方法研究与实践

为了解决这些问题,在教学中,我们着重于对基本概念、基本理论和思想方法的讲解,尽量淡化定理的严格证明,紧密结合实际背景,注重知识连贯性和系统性,从而加深对相关数学概念的理解.

1.关于概率的公理化定义

篇(11)

1.教学现状

1.1教材分析

概率论与数理统计是一门研究随机现象客观规律的学科,由随机现象的普遍性决定了该学科应用的广泛性。在工业、农业、医学、科技、经济等领域得到广泛应用。在国外一些发达国家,几乎所有大学生都必须学习该学科。我国也越来越重视该学科的学习。

调查发现:概率论与数理统计所采用的教材,多为茆诗松、程依明、濮晓龙编写的教材。该教材前四章为概率论部分,主要叙述各种概率分布及其性质,后四章为数理统计部分,主要叙述各种参数估计与假设检验。该教材编写从实例出发,图文并茂,通俗易懂,注重讲清楚基本概念与统计思想,强调各种方法的应用,适合初次接触概率统计的读者阅读。

1.2调查结果分析

笔者对周口师范学院数学与统计学院2011级、2012级、2013级应用统计学专业学生进行了关于该课程教学情况的抽样调查问卷:共发放问卷100份,回收100份。调查结果发现:本课程在应用统计学专业占有重要地位,学生很重视对该课程的学习;授课教师在上课时着重全讲细讲,忽略培养学生的能动性和参与性,忽略培养学生解决实际问题的能力,导致学生只知道重要,而不知道如何重要;目前该课程重视理论推导、知识的传授、课堂教学,不重视应用能力培养和课外实践,学生在学习过程中普遍感觉困难。因此,如何提高教学效果,培养学生的各方面能力成为了当今地方高校教育改革的重点课题。

1.3教师面临的问题

对于授课教师来说,也面临很多问题:教师讲课思路沿袭传统的教学方法,注重逻辑推理;教材中理论部分比重多,相对实用的方法少;实验条件差,教学远离计算机,不能配合相应的统计软件进行教学;新进教师专业素养不够高,不能很好的在传授知识的同时,传授概率统计思想,对教学造成困难。

2.教学改革及效果

2.1依据专业特点,精选教材及教学内容

通过对各种概率论与数理统计教材对比发现其内容大都包括如下三部分:概率论基础、数理统计、辅助软件。教师在选取教材时应从教材内容、例子、习题着手。其中,内容应由浅入深,便于理解;例子和习题应接近生活。

2.2联系实际,提高学生学习兴趣

爱因斯坦有句名言:“兴趣是最好的老师。”因此,激发学生学习该课程的兴趣,消除学生对学习该课程的恐惧心理至关重要。首先,开好第一节课可以通过向学生介绍概率论与数理统计的起源、发展及现状,激发学生学习兴趣。其次,在教学中引入一些实例进课堂,帮助学生了解问题的实际背景,便于他们理解抽象的理论概念。不仅提高学生对该课程的兴趣,而且培养了学生解决实际问题的能力。

2.3结合多媒体和网络平台,拓宽教学空间和时间

“黑板+粉笔”的传统教学方法已过时,不利于培养学生的思维能力和创新意识。多媒体和网络技术开始进入课堂教学。多媒体教学使教学生动形象、丰富多彩、直观易懂。同时,建立网络课程平台,实现资源共享。教师在课下应该建设该课程的课程网页,连接相关知识和参考资料,了解最新发展和动态。通过课程主页、web、E-mail等,把教师的讲授从课堂拓展到课外,把学生的学习从黑板拓展到网络,把教学的方式从课堂的面对面拓展到网络的心对心。要重视统计软件包的使用,特别要注重概率论与数理统计的思想与计算机实验的有机结合。这不仅有助于学生理解概率统计思想和快速实现论证计算,而且拓宽了教学空间和时间。

2.4将数学建模思想融入教学过程,提高学生解决实际问题的意识和能力

数学建模作为数学与其它学科交叉组合产生的一个新兴学科,随着计算机在生活中的广泛应用而日益重要。由于随机现象的普遍性,在该课程中的很多地方可以融入数学模型,例如体育彩票、保险精算、投资理财等问题。

近几年,地方院校越来越重视全国大学生数学建模竞赛。分析近些年的题目,竞赛涉及的概率统计知识越来越多。由此可见,要使学生更好的掌握概率统计知识,提高解决实际问题的能力,将数学建模思想融入概率论与数理统计的教学过程非常重要。

2.5改进考核方法,提高学生学习主动性

公正合理的考核机制,有利于准确评价学生对课程的掌握程度。笔者所在院校采用的考核方法已由纯考试成绩改为:学生成绩=平时成绩(30%)+考试成绩(70%)。其中,学生平时成绩包括作业情况(20%)、出勤情况(30%)、上课提问情况(50%);这种考核方法可以全面考核学生的学习情况,并客观给出成绩,提高学生学习主动性。

2.6教学效果

通过各方面的改革,笔者所在学院的学生在全国大学生数学建模比赛中,表现出很高的兴趣并取得不错的成绩。更有一些学生,不仅掌握了知识,而且通过自己进一步整理和深化,写出了很多优秀毕业论文。

3.结语

如何开设好概率论与数理统计课程是一个长期而又复杂的系统工程,需要教师从不同角度和方面去积极地探索。本文通过对概率论与数理统计的教学现状、教学改革及效果进行探讨,给出笔者的一些浅薄观点,并将在实践过程中不断修正完善,希望能够给各位同仁们提供一些参考。

【参考文献】

[1]茆诗松,程依明,濮晓龙.概率论与数理统计教程(第二版)[M].北京:高等教育出版社,2011

[2]彭君.概率统计教学改革探讨[J].数学理论与应用,2011.31(3):103-105