绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇智能电子论文范文,希望它们能为您的写作提供参考和启发。
二、实施CDIO实践教学模式对策
1.树立现代工程教育观和实践教育理念应全面实施素质教育,在教育理念上凸显出时代特征,协调发展现代工程技术人员素质、能力和知识,完成4个转变:一是将教育以学科专业知识教学为中心转变为工程素质教育;二是从注重传授知识转变为重视学生创新能力培养;三是注重共性教育转变为全面因材施教,注重个性发展;四是从对科学系统性的重视转变对工程综合性的重视,从而提供新型的能力结构和知识体系,以培养出更多的工程应用型人才。
2.建立“电子特色班”,培养电子工程意识摒弃“千人一面、千校一面”的传统的培养模式,教学核心是培养学生的创新能力和工程意识,紧密结合素质教育和专业教育,实施因材施教。采用学生自主参与的原则,可建立3个特色班,主要包括应用电子专业2年级学生。将工程培训放在课余时间进行,把工程实训项目和非验证性工程实验作为培训的内容,对学生的创新性、工程性和主体性高度重视。告诉学生相关课题的不同方案,然后让学生围绕这一问题展开分组讨论,对解决问题的方法和思路共同探讨,将学生对电子工程意识有效的激发和调动起来,科学解决所存在的问题。对学生发现问题、分析问题、解决问题的能力进行培养。
3.引导工程实践入门,对实践教学体系进行优化高职院校智能电子专业应与大一新生的特点相结合,为将学生的学习兴趣有效激发出来,可开设引导性课程,具有高标准和高起点,引导工程实践入门。帮助学生对电子工程技术的精华尽早的领略,使他们能对一些简单的电子产品亲手制造。例如,可在第一学期对电子技术概论等课程进行开设,目标是将学生的兴趣和工程意识激发出来,重点是对电子工程的技术精华和工程理念进行讲授。同时,还可将创造性教学方法运用于理论教学中,对学生的创新思维进行启发。可成立“电子专业工程意识教育团队”,抽调专业骨干,形成了应用创新人才培养的理论教学体系,展现现代工程的特点,同时制定相配套的教学课件、教学大纲和人才培养计划。
4.建立阶梯式工程实践教学模式,对实践项目进行更新电子类专业的授课应体现实践性和综合性的特征,采用的教学手段是多媒体与板书的结合,教学方法是实验操作与课堂讲授相结合,考核方式是平时作业与期末考试相结合,帮助学生对应用课程知识深刻理解。可在智能电子类专业中进行实践探索,建立阶梯式工程实践教学模式:实习专业实验实训考工顶岗实习。在第一学期安排学生进行为期两周的认识实习,到校外实训基地,可通过多种形式,如实地参观、听报告、与企事业单位人员开展讨论和座谈等,帮助学生对未来就业岗位的工作环境熟悉和了解,对本专业应该掌握的技能和基本知识充分的认识,使学生对电子工程技术的感性认识提高。在第二、三学期对专业实验进行开设,适时更新实验项目,培养学生动手实践的兴趣。对电子专业多学科知识进行整合,对综合型交叉的多学科实训进行开设,对学生电子工程实践能力进行培养。第四学期,在训练学生专项技能的基础上,对电子专业多学科知识进行整合,并对综合型交叉的多学科实训进行开设,使学生的大工程实践技能得到增强。第四学期,组织学生参加各种考工,如无线电装接工和维修电工等,在考工过程和考工训练中,对学生工程实践技能的掌握进行培养。第五、六学期,对学生顶岗实习安排,可让学生直接参与各项工作,如设备维护、电子产品生产、研发等,在实际中应用所学的技能和知识技能。学生在顶岗实习过程中,视野更加开阔,有很高的主动性,不仅对所学的理论和实践技能进行了巩固,同时还使自身的使命感和职业感得到了加强,为将来的择业夯实了基础。
1.2开展多屏应用有线多屏应用是借助高性能的NGB网络,将丰富的视频向智能终端进行覆盖,在用户的TV、PC、PAD、手机等多屏终端之间建立互相通信的渠道,使得用户在多屏间可以进行相关的互通操控。有线多屏应用能打破有线的束缚,增强无线的扩展,以加强对用户的吸引力,是推动有线数字电视用户扩展的一项业务。使得电视机不仅承担传统家庭视频终端的功能,还能通过智能终端机顶盒的使用获得多渠道视频、多项视频显示工具的应用体验。因此,对于用户来说,有线多屏应用具有很高的实用性,为数字电视提供了一种差异化和补充性的服务。有线多屏业务包括多屏分发、多屏互动等应用。多屏互动主要是实现视频内容在多屏之间的无缝切换,在移动终端上的照片、视频、音乐等媒体内容可以一键切换到电视机大屏幕上播放。
1.3智慧社区应用开发有线广播电视属于特殊产业,具备社会公益属性和产业属性,同时承担着公益服务和市场服务。海门广电配合各级政府机构搭建智慧社区服务平台,是作为广电运营商所必须承担的社会责任,也是“智慧海门”建设的主要支撑平台。在海门广电有线数字电视的DVB与IP结合形成双模结构之后,能提供视频、图片、语音、数据通讯等各类融合业务,为科技、教育、文化、卫生、商务等行业搭建综合信息服务平台,使信息服务如同水、电、气等基础消费一样遍及千家万户,同时有线网络也需大量的信息资源来充实宽带网络,为广电有线网络发展提供助力。智慧社区平台的本地综合信息含政务信息、文化教育、电视商务、金融服务、交通出行、健康医疗、社区服务、便民服务等信息的,为有线数字电视用户提供智慧的政务、智慧的金融、智慧的文化、智慧的交通、智慧的医疗、智慧的社区等服务。图1为智慧社区页面示意图。
2有线数字电视网络结构创新
2.1建设大带宽、高速率的双向接入网络互动电视综合业务平台的建设一般包括三大部分:基础网络、前端平台业务支撑系统、终端机顶盒的建设。在政策明朗、资金充足的情况下,前端平台和终端机顶盒较容易实现;而基础网络部分由于建设周期长、施工复杂,后期再进行网改难度很大。没有大宽带、高速率、安全可靠和可控可管理的能承载全业务运营的双向综合信息网络,就没有交互数字电视业务,更谈不上开展其它增值业务。建设双向接入网络的目的是提高收入、提升网络价值、提高竞争力。目前,各地广电双向接入网络采用的主流技术方案有CMTS、EPON+EoC、EPON+LAN等,按光纤接近用户端的组网模式又可分为光纤到小区(FTTC)、光纤到楼栋(FTTB)、光纤到楼道单元(FTTU)、光纤到户(FTTH)。EPON技术结合了以太技术的简单性、光纤传输的高带宽以及点到多点无源结构的低成本,实现了经济的、可控制的、多业务的宽带接入,是近期宽带光接入及FTTH的主要实现方式。从今后广电开展3D高清电视、全高清甚至超高清电视、OTT高清应用等大宽带、高速率的业务需求来看,光纤到户FTTH网络建设势在必行。FTTH网络的优势显而易见:一是接入网络为无源全光纤结构,抗干扰和防雷性能好,易于管理维护;二是能实现百兆甚至千兆入户,网络符合大宽带、高速率、低造价、高可靠的要求。
2.2双向接入网络能支撑DVB+OTT双模交互业务受限于有线网络的文化、政治属性,以及需要安全运营的广播特性,通过能对软件包授权签名的前端平台、广电内网IP传输通道、专用DVB+OTT智能机顶盒来保障OTT业务的安全可控。适合广电开展DVB+OTT业务的两种组网模式介绍如下。
2.2.1IPQAM互动电视模式基于IPQAM的互动电视,IP通道只传输交互信令,QAM信道传送视频节目,这是目前广电广泛采用的交互电视的模式。在广电内网的内容整合系统上,引入签约互联网视频网站、图文资讯等内容,来自互联网的视频内容通过IPQAM方式下发到机顶盒,图文等资讯可以从IP通道或者数据广播方式下发。这种模式下,互联网网站只是广电的一个内容提供商,其视频、图文等内容必须经过广电运营商的格式转换、内容审核等处理后,通过互动电视点播平台发送到终端播放。图2为利用互动电视系统引入OTT内容示意图。
2.2.2DVB+内网IP模式在广电运营商内网新建立基于IP流媒体传输技术的业务系统,如IP/OTT流媒体服务系统、在线网游、在线相册、在线音乐等。内网IP流媒体视频业务与IPQAM互动业务的区别是视频不走IPQAM下发,而是走CMTS、EoC等IP通道直接下发到机顶盒。图3为广电运营商内网新建流媒体系统支持OTT业务组网架构图。内网OTT业务可以建立与交互电视机顶盒一致的门户,原互动电视平台内的VOD节目、TVOD节目也可以反向导入到IP视频播放平台,走IP通道到机顶盒。不论是IPQAM传输还是纯IP,给用户以一致的门户体验,不同来源的节目和不同传输方式有机地整合在一起。此方式不仅仅可以支持视频业务,也可应用于一些大型联机(online)类游戏、图文资讯等内容,广电运营商可以在内网搭建自己的平台,由游戏或内容集成商提供内容,内容运营的收费等由广电运营商控制,游戏等CP参与分成受益。
2.3双向接入网络能开展IP流媒体模式多屏互动业务多屏业务视频等IP数据流走有线双向网络,广电前端需要提供基于IP的直播电视和点播系统。移动终端通过IP内网登录到前端系统,交互选择观看节目后,由前端系统将直播电视、VOD视频,以及OTT引入的视频内容,通过转码器实时转码为合适移动终端分辨率的小码率的视频流(点播内容也可以是事先转码后存储在前端)。例如:约4Mbps的MPEG-2转为800k~1Mbps的H.264或AVS码流,经过广电内部IP网路由推送到Wi-Fi无线路由器或机顶盒,由机顶盒内置流媒体服务器或Wi-Fi无线路由器再分发到各种移动终端。其组网图如图4所示。
3构建高清互动电视业务支撑平台
开展智慧社区业务需要综合信息互动系统,视频点播、回看、时移需要DVB互动系统,OTT服务和多屏应用也需要前端系统的支撑,广电运营商要拓展多业务必须构建全媒体、全业务的高清互动电视平台。设立数字电视的DVB+OTT前端支撑系统,基于SDP平台设计,SDP平台是一个大容量、高性能、易维护、开放性和扩展性良好、有QoS/QoE保证的多业务融合平台。该平台能支持第三方业务系统的集成对接,支持单个SP/CP对各自业务系统的个性化运营需要。SDP平台定位为全媒体、全业务支撑平台,提供统一的业务系统集成规范,提供统一的增值业务孵化器,是广电海量增值业务统一的“杀手级支撑环境”或“杀手级支撑平台”。SDP平台通过水平化的架构,实现了统一的内容管理(如统一对接媒资系统)、统一的产品和业务管理、统一门户集成与展示、统一的终端接入(对接不同厂商的终端及中间件)、统一的支撑系统集成(如BOSS、网管等)、统一的能力接入和对外暴露,以及统一的业务创建、业务测试和业务运行环境,为广电增值业务提供统一的业务系统集成规范,提供门户集成、业务管控、内容管控、能力管控4大类接口或服务,从而有效降低增值业务上线成本(TCD),缩短增值业务上市时间(TTM),有效降低运营商的整体运营成本。
4推出电视智能化机顶盒
电视智能化机顶盒搭载了安卓等操作系统,用户除能收看电视节目外,还可自行安装各类应用软件,能支持DVB-C有线电视业务、互联网OTT业务、家庭宽带联网、VoIP可视电话、联网游戏、无线多屏互动等业务,可扩展支持智慧家庭、家庭物联网等功能,是支持三网融合业务的新型智能终端。传统电视机顶盒带给用户的体验比较单调,这也是制约数字电视业务进一步拓展的主要因素。从广电自身来看,不少广电运营商的基础网络设施不比电信差,而大量的视频、娱乐、公共服务等信息资源受困在网络上无法实现增值,因此有必要推出电视智能化机顶盒,以适应多元业务的开展,为用户提供全方位的视听、娱乐服务,使得广电在三网融合、多业务竞争中不断提高自身的竞争实力。电视智能化机顶盒的组网简图如图5所示。电视智能化机顶盒的优势还在于即使是在单向网络也能实现多屏业务。用户只需要一个智能机顶盒就可以实现家庭内联网的多屏应用业务,加上有线电视广播网天然的QoS质量保证,极少会出现一般互联网IP视频常见的卡片、缓冲延时等QoS问题,对提高用户黏度、吸引和留住有线电视用户有很大的帮助。多屏应用也由具备家庭多媒体网关的智能化终端机顶盒来实现。该智能终端内置Wi-FiAP和多路调谐器,具备QAM+IP的双网接入能力,支持多路频点同时解调,多路视频同时解扰;主处理器支持多路视频编码功能,可将收取的多套电视节目做实时MPEG-2转码为适合移动终端分辨率的H.264编码,再打包为IP视频流后通过Wi-Fi推送到多个移动终端上实现多屏观看业务(目前可实现4个终端收看不同的节目)。基于智能接入终端设备的强大本地视频处理功能和流服务能力,在单向网络上亦可以支持多屏应用。基于智能终端内置转码方案实现多屏业务的组网简图如图6所示。
在电子电路当中,往往是通过采用功率半导体器件来实现工业电能的控制和变换。由此可知电子电路针对的目标是工业电能,最终的目的在于尽可能的减小电能的损耗。电力电子器件在实际的工作中降低电能损耗的主要方法是控制其开关状态。因此,也可将电子电路归为一种功率较大的开关电路,运用其内部信号的微弱变化实现对电能的准确调控。
1.2电力电子变换器
电力电子变换器的核心也是电力电子器件,电力电子变换器完成对电能控制的前提是搭建一个完善的电路拓扑结构,此过程实际上就是电力电子器件集成为单个电路的过程,在集成的过程中需要结合器件的特点进行有规律的排列和分类,拓扑的优化环节主要表现在电力电子变换器的设计过程中,要求为不同元件选取更为准确合理的位置,以此达成电能控制的高标准。
2电力电子技术在智能电网中的应用
2.1高压直流输电技术的应用
对现阶段的直流输电系统进行研究后得知,在该系统当中,输电的过程中采取的是直流电,另外所有的环节均使用交流电。在输电的过程中,交流电首先在经过交流变压器后到达整流器,整流器的作用是将交流电转换为电压较高的直流电,然后该直流电在经过换流站以后达到逆变器,逆变器的作用是将该高电压的直流电转换为交流电,最终将电能传输到指定的系统当中。因此可以说高压直流输电技术是长距离输电最佳的技术选择,即使该输电系统发生问题,也不会对电网造成过大的影响。在智能电网中使用高压直流输电技术,不仅可以满足智能电网对电能运输的高要求,还可有效的控制电能在运输中的损耗。
2.2柔流输电技术的应用
如今,多种多样的新型能源和清洁能源得到了迅速的崛起,然而这离不开柔流输电技术的支持,这项技术也是这些新能源的重要组成。柔流输电技术将电力电子技术、电能控制技术融为一体,不仅可实现智能电网输电情况的实时监控,还可以灵活的扩充交流输电网络,从而大幅度的提高了电网系统的敏捷度,使电力传输的精细控制成为可能。对于我国智能电网而言,特高电压是无法改变的特征和基础,因此在引入新型能源以前,要对能源的隔离和接入环节进行充分的考虑,在此过程中同样离不开柔流输电技术的支持。由此可见柔流输电技术的重要性,而且在应用的过程中,还会根据实际的要求不断的进行优化和创新,从而提高电网电能运输的效率和质量。
2.3智能开关技术的应用
开关的作用是断开或者是闭合电路,智能开关实际上就是根据电流或者是电压的具体情况对电路进行控制。智能开关是由外壳、电源以及多种子开关组成,智能开关的电源具有过电压保护功能,子开关在智能开关内呈结合式排列,而且具有较强的防漏电保护功能。因此智能开关具有很高的安全性,可以为使用智能开关的电器提供稳定的用电环境。在智能电网不断发展的影响下,智能开关技术也随之向信息化不断迈进。
2.4高压变频技术的应用
高压变频技术的主要作用就是节能,而且效果显著,通过测试得知,通常情况下电网在使用高压变频技术以后节电率可以达到30%之高。但这种技术也存在相应的缺陷,缺陷主要包括过高的改造成本、高次谐波的产量超标,可能会造成不同程度的谐波污染。在智能电网中运用高压变频技术,可以十分轻松的使节能减排达到标准的要求,从而大幅度的提高供电企业的经济效益。
2智能电网优势分析及先进电力电子技术应用探究
2.1智能电网的主要优势分析智能电网在当下贯穿电力系统的各个环节,它是实现信息流以及电力流和业务流的一体化现代智能电网,自身有着显著的优势,它能够把各种发电以及储蓄能源方式得以兼容,将可再生能源的利用率得到有效提高,从而达到多样化的电力市场交易主体和电能产品。其用户能够在智能电网作用下对实时电价信息得到及时掌握,从而形成良好用电习惯。并能够有效的将用户用电质量多样式和电能质量多样式的选择得以实现,智能电网在故障的检修以及查找的灵敏度比较高,可在有限时间内找到故障,这对危险性有了很好的预防效果。
2.2智能电网中先进电力电子技术的实际应用智能电网中SVC技术的应用是比较典型的一种应用技术,这一技术主要是依靠着灵活交流输电装置,从而实现电压而对稳定以及调节系统电压和对无功潮流的控制等作用,这一技术是解决我国电网输电瓶颈的重要技术手段,SVC技术有着无功补偿以及潮流优化的功能,可对电网电能输送效率得到优化,并保障其安全稳定的运行。
另外电力电子技术在智能电网输电环节中的应用,其输电环节主要是柔性直流输电以及交流输电和高压直流输电这几种类型,直流输电有着稳性高和量大的特点,柔流输电是当前电力电子技术和电力系统结合的产物,可灵活适时控制电力系统主要参数,把控制技术和电力以及电子技术得到有机的结合,在高压输变电当中能够完成能源隔离增强电网稳定性,对输送电能力也能够得到有效提升。
智能电网中应用高压变频技术能够对智能电网的运行得到优化,它能够对电量得到节约三成以上的水平,将其技术应用到智能电网当中在整个运行操作过程中的节能效果能够比较突出,这也是用户实现节能减排的首选,功率单元串联多电协调操作方式在实际生活当中运用的较为广泛,其中的中亚三电平技术以及混合结构技术有着灵活的控制能力,这对智能电网的发展能够起到重要的促进作用。智能电网中高压直流输电技术的应用也能将智能电网的运行得到优化,智能电网运行的过程中输电采取的是直流电,发电以及用电采取的是交流电,这一技术主要是将直流和交流的转换进行实现的。交流电先变为高岩直流电主要是在输电线路换流变压器以及整流器的作用下进行实现的,而直流电主要是在输电线路逆变器的作用下进行实现的。远距离输电当中通过对高压直流输电技术的应用,能够将智能电网的故障率得到有效降低,并能够实现智能电网输电距离以及输电量较大的要求。
我国的智能电网发展还处在一个初级的阶段,对先进电力电子技术的应用能够推动其快速的发展,在这些技术当中,对超导电力技术的应用将会成为将来发展的一个重要趋势。高温超高电力技术是新兴的技术,能够在输电电缆以及变压器和电动机等诸多方面得到应用,实现这一电力技术并将其和智能电网得到有机的结合,能推动我国电网的发展。由于智能电网自身有着自愈能力,但实现双向流动就需要更为先进的技术设备,超导电力装备有着独特之处,它能够快速的调解电力系统增强其可控性。
2电子信息智能纺织品导电材料的制备
近年来,研究人员在电子信息智能纺织品导电材料的制备方面做了大量研究,笔者通过分析归纳将不同导电材料的制备方法分为4类,如图2所示。2.1混入法2.1.1编织法将导电纱线整合在织物结构中LiuY.[6]等人设计出一种应用在智能纺织品上的柔性可伸缩的磷酸铁锂电池,将LiFePO4作为阴极,Li4Ti5O12作为阳极,固体聚氧化乙烯电解质作为分离层铺在阴极和阳极之间,然后将这3层放置在液体聚合物溶液中,在50℃下使溶液蒸发,最后3层合并在一起成为一个电池条。由于该种材料具有热塑性,故此条状电池可以被切断或者拉伸,并混入织物中。据报道,单个的电池条只能提供约0.3V的电压,若将8个聚合物电池条与棉布材料编织在一起(见图3),用铜和铝作为导电线把它们串联起来,可以支持1个3V的发光二极管(LED)持续发光数小时(见图4)。图3电池条织入棉织物形成的导电线程图48个聚合物电池条供1个3伏LED灯发光KinkeldeiT.[7]等人提出一种纺织品一体化的电子鼻系统织物(见图5),将4种非导电聚合物分别在四种相应的溶剂中溶解,同时加入炭黑作为导电的填料,利用超声波震荡使颗粒分散均匀,从而制成4种不同聚合物复合材料的气体传感器。当气体传感器吸收有机溶剂后膨胀,聚合物内部的炭黑填料颗粒之间的距离会增加,使传感器的电阻发生变化。据报道,若使用柔性聚合物基板作为气体传感器的载体,将柔性聚合物基板形成的薄膜条(见图6)作为衬纬织入织物,在经向织入导电丝与柔性薄膜条接触,检测接触点的电阻变化,可以识别不同的溶剂蒸汽并对其进行分类。图5被织入织物的电子鼻系统图6基于柔性聚合物基材制成的薄膜条ZyssetC.[8]等人选用柔性塑料基板作为电子元件的载体,将它们切成条状编织进纺织品。通过织入导线,在导线、条状柔性塑料基板以及接触点之间形成相互连接而成的总线拓扑型的编织网络(见图7)。据报道,导线和柔性塑料基板之间的接触点可承受20N的剪切应力,若将温度传感器集成到条状塑料基板上,织物的抗弯刚度将提高30%。图7带有导条和导线的机织物照片2.1.2改变纱线结构设置导电层和不导电层Gu,J.F.[9]等人开发出一种高灵活度的、基于导电聚合物而制备的具有高电容性能的纤维。通过在两个低密度聚乙烯的绝缘片之间添加一种导电聚合物,从而创建一个简单的卷状电容器,然后把它们卷成一个圆柱体,放进高密度聚乙烯。通过加热,经小孔喷出纺丝,形成一个直径小于1mm的纤维。据报道,该电容纤维(见图8)容纳电荷的能力相当于同轴电缆的1000倍。图8中心具有两个电极的圆柱形电容器纤维GuoL.[10]等人设计了一种基于针织物的传感器,将不锈钢纤维作为导电纱线的外包纱线,将聚酰胺/莱卡的混合纱线作为芯纱,制作具有导电性能的包芯纱,然后制成针织物并测量其导电性能。据报道,以聚酰胺/莱卡混合纱线作为芯纱制成的针织物,其导电性能相对于以聚酰胺单一纤维作为芯纱制成的针织物有所提高。BaeJ.[11]等人提出一种用于操作电容式触摸屏面板的导电织物,将镀银的尼龙丝作为芯丝,将50/50棉/羊毛混纺纱作为外包纤维,利用传统的环锭细纱机制造导电纱线(见图9)。据报道,使用该种导电纱线可以织成具有导电性能的纬编针织物,采用该种纬编针织物制作的手套。可用于在极端寒冷的气候下操作电容式触控面板的屏幕。图9导电的环锭纺包芯纱的横截面2.2化学镀法张碧田[12]等人选用尼龙织物作为待镀织物,经表面粗化、胶体钯溶液活化及解胶处理后,进行化学镀镍。据报道,镀层中磷含量较低,有利于改善镀镍织物的导电性能,提高其电磁屏蔽的效果。甘雪萍[13]等人将涤纶作为基布在一定浓度的NaOH溶液中浸泡去油,然后在含有强氧化性的酸性KMnO4溶液中进行粗化处理,经SnCl2和HCl的敏化处理以及PdCl2和HCl的活化处理后,再进行化学镀铜和化学镀镍。据报道,织物的表面比电阻随着镀铜量的增加而显著减小,镍磷合金镀层质量的增加只能使织物表面电阻略有下降,见图10。纤维表面随着铜的不断沉积而变得光滑,但是镀铜时间达到15min时,纤维表面开始出现一些圆形的瘤子,并且经过化学镀镍处理后不能被镍层覆盖。图10织物化学镀铜、镍后的SEM照片2.3聚合法2.3.1气相沉积聚合法杨楠[14]设计出一套制备聚吡咯导电织物的方案,以纬平针织物作为基布,经过NaOH溶液的去油处理后,将试样经过一定浓度的对甲苯磺酸水溶液进行掺杂剂掺杂处理,再将试样经过一定浓度的FeCl3•6H2O乙醇溶液进行氧化剂掺杂处理,最后让吡咯蒸汽缓慢均匀地沉积在处理过的织物试样上,得到聚吡咯导电织物。2.3.2现场吸附聚合法狄剑锋[15]等人选定以锦纶/氨纶长丝共同编织的经编针织物作为基质,制备聚苯胺/锦纶/氨纶复合导电织物。首先将锦纶/氨纶织物试样浸入苯胺单体溶液进行单体吸附处理,然后将处理后的织物置于氧化剂过硫酸铵和盐酸反应液中,制得墨绿色的聚苯胺复合导电织物,再用盐酸、丙酮、去离子水分别洗涤至溶液为无色,烘干后即得到聚苯胺/锦纶/氨纶复合导电织物。2.3.3液相化学吸附聚合法胡沛然[16]等人以棉织物为模板,通过简单的“浸渍-干燥”过程,制备得到规则的氧化铟锡导电网络,再将其与聚二甲基硅氧烷树脂复合,得到复合柔性导电材料。据报道,氧化铟锡导电网络/聚二甲基硅氧烷柔性导电复合材料弯曲后的电阻率从20Ω•cm增长到80Ω•cm,仅增加了3倍,在弯曲同样的角度后,氧化铟锡纳米颗粒/聚二甲基硅氧烷柔性导电复合材料的电阻率从20Ω•cm快速上升到超过1000Ω•cm,增长了近50倍,导电性能下降非常明显,因此得出,氧化铟锡导电网络的使用能够在弯曲状态下有效地保持材料稳定的电学性能。2.3.4电化学聚合法Kim[17]等人采用电化学聚合法对锦纶/氨纶混纺织物进行聚合,在不同的聚合条件、伸长率和重复拉伸次数下测量织物的导电性能。据报道,织物伸长率在40%时,其导电灵敏度达到最大,如果再增加则伸长率变化不明显。导电织物的导电率会随着拉力的增加而稍微下降。2.4纳米涂层整理LimZ.H.[18]等人提出一种氧化锌纳米棒导电纺织品,让氧化锌纳米棒在普通的棉织物纤维上均匀生长,最后得到高结晶度的纳米棒导电织物。经过机械性能测试可知,纳米棒织物有较强的抗压和耐水洗性能,在室温下,该导电织物可用于气体和光学传感器,用来检测氢气和紫外线。ZhangW.[19]等人用单壁碳纳米管制备导电纱线,使用聚乙烯亚胺对棉纱进行预处理,用以提高碳纳米管的亲和力,然后将基于碳纳米管制备得到的导电纱线作为化学电阻,通过检测其电阻变化,可以在室温下检测氨气的浓度,制成氨气传感器,见图11。
二、智能化技术的应用优势
(一)免去了控制模型的建立
在电气工程的传统工作中,自动化系统控制的实现必须有控制模型的建立。但是,在实际的操作中,被控制对象往往需要十分复杂的动态方程,这就影响了精确效果的获得。由此,在设计对象模型的环节中,经常会遇到无法科学预测、无法准确估量的一系列困难。然而,智能化系统的出现,使这些困难得到了较好解决,极大促进了工作效率的提升,同时对于一些不可控制的因素,也实现了较好的控制,大大提升了自动化控制器的准确性。
(二)实现了便捷的电气系统控制
智能化控制器的实际应用实现了更加便捷的电气系统控制,随时都可以完成对系统控制程度的有效调整,极大提升了系统的整体工作性能,是对自动化控制顺利实现的进一步保障。从这一项优势中就可以看到,和传统的自动化控制器相比较,在任何条件下,智能化控制器都具有更加完善的调解控制功能,在电气工程的自动化实践应用中占据优势。
(三)实现了一致性的智能化控制
在自动化控制中的数据处理环节,智能化控制器可以实现一致性的智能化控制,很好解决了不同数据的处理困难。而且,在自动化控制的标准执行上,即使遇到陌生的数据,也依旧可以获得具有较高准确度的估计。但是,如果发现智能化控制器在实际的应用中没有发挥出理想的效果,一定要全面排查工程的各个细节,细致地进行分析,不能盲目的否定智能化控制技术。
三、智能化技术的实践应用
(一)系统病因诊断
在电气工程诊断工作中,采用传统的人工手段具有较强的复杂性,虽然对工作人员要求十分严格,但是也无法获得较为准确的诊断病因。在电气工程工作中,实现自动化控制的过程中经常会遇到一些如设备、数据等方面的问题,这是不可能避免的,采用传统的人工诊断办法不能确保病因处理的及时性,而且处理效果也不佳。但是,智能化技术的广泛应用,使得自动化控制工作的诊断效率得到大幅度提升。而且,定时检测诊断应用,有效避免了一些不必要的问题。
(二)系统设计优化
在电气工程发展中,传统的工程设计需要工作人员进行多次重复的实验操作和改良,而且,在这一工作过程中,对工作人员的工作素质也有着较高的要求,既需要工作人员掌握一定的专业设计知识,还需要工作人员能够很好的将知识理论应用于实践工作中。但是,在实际的设计工作中,工作人员往往不能做到全面的考虑,经常会漏掉一些具体的问题。所以,一旦发现复杂问题,很多情况下都不能做到及时解决。而智能化技术的出现,较好解决了这一问题。设计工作可以借助于计算机网络完成,也可以借助于相关的软件完成,既保证了设计中数据的准确性,也实现了设计样式的丰富化,更能够做到对复杂问题的及时处理,较好保证了自动化控制的稳定性。
(三)系统的自动化控制
在电气工程中,智能化技术可以应用于多个控制环节,能够很好的实现整体性的自动化控制。智能化技术的主要控制工作是借助于三种手段实现的,一是模糊控制,二是专家系统控制,三是神经网络控制。运用这三种控制手段,极大提升了自动化控制效率,使远距离的自动化控制成为可能,增强了对电气系统的运行反馈。特别是神经网络控制,能够实现算法的反向学习,在信号处理方面得到了较大应用。
与传统的机械工程相比,机械电子工程已经超越了单一的学科,显而易见,机械电子工程是一个交叉学科,它充分的融合机械技术与信息技术,这就要求其在进行设计的过程之中必须充分考虑和应用自己的设计方法,在实际的设计过程之中,设计人员往往采用自上而下的设计方法,这种设计方法是机械电子工程设计之有的方法。
1.2产品上的差异
机械电子工程的另一个特点就是其产品上的与众不同,与一般的产品不同,机械电子产品的结构看似简单,但是在实际的设计与开发过程之中却融入了很多先进的技术与理念,这就远远的超越了传统的机械,这就是产品的外观更加的轻盈小巧,同时可以实现更加的智能化与现代化,是生产力飞跃的具体体现。
2.机械电子工程的发展过程
前文已经讲过,机械电子工程并不是一个简单的孤立学科,它是一个涉及机械与信息技术的交叉学科,又受到人工智能理念的影响,因此是一个典型的交叉学科。正是由于该学科的复杂性造成该学科在形成的过程之中并不是一蹴而就的,相反,该学科在形成的过程之中经过了很多阶段,经过相关的发展才最终形成现阶段的机械电子工程:
2.1机械电子工程学的开端
机械电子工程学的起步阶段是传统的手工生产,在这个阶段,机械电子工程学的发展十分的缓慢,这是由于此社会的平均劳动生产率相对较为低下,劳动力资源相对也较为匮乏,生产力的发展与进步比较缓慢,但是在一次次的尝试之中,机械电子工程还是逐步的发展起来了。
2.2机械电子工程学的高速发展阶段
机械电子工程学的高速发展阶段主要是流水线生产线的成功应用,这一时期的生产过程已经具有了相应的标准,在很大程度上促进了生产力的发展与进步,并不断的拓展机械电子工程产品的种类,逐步满足社会的发展与需求。
2.3机械电子工程的成熟阶段
进入21世纪,机械电子工程逐步走入其成熟阶段,逐步的形成了其特有的生产体系与发展体系,并实现了与现代信息技术与人工智能技术的完美融合,进入了现代机械电子工程的成熟阶段,不断的促进现代生产的发展与社会的进步。
3.人工智能的发展史
3.1萌芽阶段
人工智能的萌芽阶段起源于法国,当时法国科学家首先研制出了第一部计算器,从此世界开始了人工智能的研究之路,直至冯诺依曼发明第一台计算机。人工智能在其萌芽阶段和其他技术一样,发展打偶较为缓慢,但是却为后来的发展积累了丰富的经验,为之后的发展奠定了坚实的基础。
3.2第一个发展阶段
1956年美国人第一次提出“人工智能”的命题,并进行了相关的研究,这是引起人工智能第一发展高峰期的标志。这一阶段的人工智能属于较为简单的发展阶段,主要针对的的任务是:博弈、计算以及证明等任务。在这一阶段的确取得了一定的成就,这一阶段的主要贡献是大大的解放了人们的思想,使人们认识并了解了人工智能的可行性,对人工智能后期的发展起到了巨大的促进作用。
3.3第二个发展阶段
1977年全球召开了第五届人工智能会议,这是人工智能发展的第二个阶段的开始,由此之后,人们认识到知识工程对于人工智能领域的重要意义与价值,并不断的进行相关的发展与研究,促使人工智能与实际生产相结合,逐步的推进了人工智能的快速发展与进步。也正是在这个阶段,人工智能获得了巨大的飞跃,并表现出广阔的市场前景,在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。
4.机械电子工程与人工智能的关系
机械电子系统具有不稳定性,这就使得机械电子系统在输入与输出关系的处理上比较困难。推导数学方程的方、建设规则库的方法以及学习并生成知识的传统方法,虽然在解析数学方面具有精密性,但是这些传统的方法还只能适用于一些相对简单的系统。然而现代社会所需求的系统是纷繁复杂的,往往会需要一个系统能够处理多种信息类型。人工智能建立系统所采取的方法中,主要使用的是神经网络系统和模糊推理系统。神经网络系统能够实现对人脑结构的模拟人,能够分析数字信号并给出参考数值。而模糊推理系统则是通过模拟人脑的功能,来实现对语言信号的有效分析。在处理输入输出的关系上,这两种方法既有共同之处,也存在各自的差异性。神经网络系统在信息的储存上是采用分布式的方式,而模糊推理系统则采用规则方式实现信息的储存。神经网络系统输入时由于每个神经元之间都有固定联系所以计算量一般都很大,而模糊推理系统的连接是不固定的,所以其计算量相对较小。人工智能系统的建立于发展在很大程度上促进了现代机械电子工程发展与进步。在实际的机械电子工程的设计工作之中,我们必须依靠相应的人工智能技术植入,只有这样才能更好的促进机械电子工程的发展,与此同时最大限度的促进人工智能功能的实现。很显然这个过程相互促进的过程,只有在发展之中充分的考虑两只之间的相互结合,不断的开拓出全新的技术,促进两者之间的更好的融合才能不断的促进两者的共同发展,不断的促进其进步,实现机械电子工程的不断发展,推进人工智能的持续进步。
1.1故障诊断
电气工程设备的工作时间长,难免会发生故障,由于电气设施故障的非线性、复杂性及不确定性,一旦发生故障,往往需要大量的时间排查故障,效率低、准确率低。而智能化技术能够有效解决这一问题。在故障发生前,一般仪器会出现一些人们很难发现的预兆,通过实时监测仪器状态,在出现异常时及时报警并提示故障位置,在故障真正发生前避免故障,能够在极大程度上减少维修时间。电气工程中常常通过分析变压器中渗漏油分解出来的气体进行故障诊断,确定故障发生的范围,并通过各种手段逐步缩小范围,从而确定故障位置并提示派遣人员及时检修。同时,智能化装置可以记录故障问题,为以后的故障诊断提供参考,使故障诊断更加安全可靠。
1.2智能控制
智能控制能够在很大程度上实现电气工程及其自动化的控制过程自动化,实现无人化管理和远程管理,提高管理的高效性。尤其对于一些高危险、高难度的工作,如高压控制,智能控制是必不可少的。相对于传统的控制器,智能控制器的灵活性更好,更易调节。传统的控制器在设置时需要精确考虑控制对象的动态方程,而实际涉及到的控制环境往往很复杂,存在很多不确定因素。但是智能控制不存在这方面问题,因为其在设计时并不涉及控制对象的模型。并且智能化控制器可以根据对响应数据(如鲁棒性变化、响应时间、下降时间)的分析随时调整系统,调整后智能控制器的性能会大大提高,调整的过程并不需要专业人士在场,这样就减少了大量的人力。以风力发电厂智能化升压站系统为例。智能化升压站系统通过对过程层和间隔层设备升级,将一些模拟量和开关量数字化,有效运用光纤设备,实现间隔层和过程层的通信。站控层由系统主机、工作站、VQC等设备组成,是全站监控、管理、调度中心。系统通过智能化控制,自动完成信息的采集、测量、控制、保护等功能,相比于传统的升压站系统在效率、有效性等方面有很大的提高。
1.3优化设计
电气设备的设计工作相当繁琐,需要综合运用成套设备、电路、电机与电气、电磁场、变压器等学科的知识,并结合过去的设计经验。传统的设计方式根据经验和实验,手工完成设计,方案的达标率非常低,修改难度大,成本高,产品的开发周期也很长。应用智能化技术能够有效提高设计产品的质量,缩短开发周期。智能化技术在这方面的应用主要有专家系统和遗传算法。其中,专家系统依据该领域的专家提供的知识经验,建立数据库,在决策前模拟专家决策过程,做出合理决策,该技术比较前沿,目前尚处于研发阶段,尚未得到大量应用。遗传算法是一种借鉴进化论的随机化搜索方法,被广泛运用于信号处理、组合优化、自适应控制等领域,在电气设计产品的优化上性能优越。
1.4PLC技术
PLC(可编程逻辑控制器)具有高可靠性和抗干扰能力,广泛应用于自动控制领域。在一些大型的电力企业的辅助系统中,PLC已经代替了一般的继电控制器。PLC技术使用内存,用程序方式存储控制逻辑,并用半导体电路实现。PLC技术的应用实现了供电系统的自动切换,用软继电器取代了实物器件,使供电系统更加安全可靠。并且,它能使用复杂的工作环境,具有良好的发挥性能,稳定性强。
2.智能化技术在电气工程及其自动化中的应用前景
2.1优势分析
智能化技术在电气工程及其自动化中相比于传统的控制系统有巨大优势。传统的自动控制系统需要建立控制模型,运用数学方法分析,建立动态方程,但由于系统的复杂性,在实际应用中往往会出现无法预料的问题,很难达到预期的效果。智能化系统可以从根本避免不可控因素,提高工作的效率。智能化技术可以实时监控系统,通过监测响应时间、下降时间等对系统进行实时调节,使系统性能大大提高。因此,智能化系统比传统的控制器更能适应实际工作环境。另外,智能化技术拥有很强的一致性。在输入不同的数据时具有同样可靠的估计能力,有广泛的适用性。
2.2性能方向
速度、精度及效率是电气工程及其自动化的关键指标。在电力系统中采用智能高速处理器芯片,同时采用交流数字伺服系统,能够改善电力系统的动态特性和静态特性,提高系统的速度、精度和效率。柔性化柔性化主要包括群控系统和数控系统这两个方面。对于群控系系统,必须按照生产流程的具体要求设计系统,使系统能够发挥最大的作用,完成信息流和物料流的动态调控。对于数控系统,其强大的可裁剪性和覆盖面可以满足客户的具体要求。
2.3功能方向
在功能方向上,主要包括设计用户图形界面、可视化计算、多媒体技术方面的发展。目前的操作系统一般都采用图形界面,具有良好的人机交互性。在智能化系统中采用图形化界面,通过窗口和菜单实现编程、图像显示、图像模拟、仿真等功能,能够降低操作者的门槛,方便非专业人士操作。通过可视化技术,信息的表达不再是呆板的文字和数据。将数据转化成图表,能方便操作者分析数据,也可以高效地处理和解释数据。同时,采用无图纸设计、虚拟样机技术等技术,将可视化和虚拟环境相结合,能够更加有效地提高产品质量、缩短产品开发周期。多媒体技术一般是将声音、文字、图像、视频等融合在一起传输,如果将多媒体技术应用于智能化系统,可以更加综合化、智能化地处理信息,能带来很大的经济效益。
2.4体系结构
通过集成化、模块化、网络化实现智能化技术在体系结构方面的发展和完善。可以使用高集成度的处理器、大规模集成电路FPGA、CPLD等提高软硬件运行速度。器件的高度集成化能够提高电路密度,减小器件体积,更加方便安装和使用。将智能化技术模块化,各模块之间通过接口通信,这样有助于技术的标准化和集成,也可以运用模块的增减将智能化产品分级别销售。将智能化系统联网使得人们能够对系统进行远程监控,随时掌握系统状况,使电气工程的控制不受地域限制。也可以实现在一台设备上控制其他设备,进行编程等操作。对于较小的电力系统,远程控制能够节约电缆的增加数,材料以及安装费用,并且可靠性高、灵活性强;但是在通讯量大的系统中远程控制会比较困难。
1.1智能电网应用现状随着经济社会的飞速发展,智能电网被广泛的应用到各区域中,出现的问题也不尽相同,具体表现在以下方面:第一,区域分布不平衡,发达地区和落后地区自动化技术存在明显的差异;第二,技术手段尚未达到所有电网建设的需求,用电负荷受阻的现象时有发生;第三,智能电网的输电设备、网架等基础结构相对落后,无法适应发电需要,严重的降低了效益;第四,可再生能源开发使用不够充分,大量浪费的情况屡见不鲜,违背我国“可持续发展”政策的要求。除上文描述的状况外,自动化技术还有很多问题亟待解决。
1.2智能电网的解决措施智能电网尚处于初级发展阶段,每个国家都在积极探讨如何将调度自动化技术更好的应用到本国发展中,因为我国智能电网建设总体落后于一些发达国家,对其应用更加迫切。所以,必须结合国情,综合考虑用电总量、环保节能、安全可靠等问题,努力将经济社会效益和电网发展有机的结合起来。与此同时,针对一些实际情况,还要采取具体的措施。第一,制定高效的标准,指导智能电网的实施建设;第二,做到具体问题具体分析,结合每个地方的实际特点,合理开发资源;第三,安排设置多种发电模式和电力存储并存,更好的实现节约资源的目的;第四,不断创新设计方案,提高电网的管理措施;第五,完善网络、计算机等通讯技术,避免运行时的阻碍。智能电网调度自动化技术的设计,如图1所示。通过图1的表述分析,不难看出智能电网的具体设计方案中包含通讯网络、通讯接口、区域保护、智能化调度等多信息,实现调度自动化技术的合理应用。
2调度自动化技术的未来发展方向
智能电网的发展前途将是无可限量的,在未来的建设体系中,很有可能会运用到AMI技术,有效的连接电力系统和负荷信息两部分内容。在调度自动化系统中,将会包括智能机器人、三维GIS、高级配网等众多高新技术,并且区域之间的数据信息,能及时的进行传送,相互学习更多的经验知识,不但增进彼此的共同进步,而且消除信息闭塞的情况。强大的自动化系统,能使得繁琐冗长的数据在规定的区域内进行整合,并且能任意调取所需的资料信息,形成完整的电网模型,这一系统具有功能卓越、灵活布控、层次众多等优点。建设信息构架,在为信息提供共享平台的同时,杜绝出现海量信息的筛选操作难题,便于及时有效的获取一手资料。智能化电网将配电、输电以及用户资料整合规划到既定的位置,实现电网互动供电[3],给用户带来极大的便利,实现灵活个性的供电需求,富余的电能可以作为投资或者应急使用。对于智能电网建设而言,能随时掌控用户对电量的需求情况,预算估计可能的风险,配置资源的使用、应对突发状况、节约电力资源、提高效率等,并且能树立良好的公司形象,切实担负起电力企业的责任。
[关键词]电子技术微处理器电子控制装置汽车传感器
随着微电子技术的不断发展,车辆中的电子自动化程度越来越高。可以说,机械技术构成了现代车辆的筋骨,电子技术则构成了现代车辆的神经中枢。汽车电子化的程度被看作是衡量现代汽车水平的重要标志,是用来开发新车型,改进汽车性能最重要的技术措施。增加汽车电子设备的数量、促进汽车电子化是汽车制造商夺取未来汽车市场的重要的有效手段。
汽车电子技术主要包括硬件和软件方面的内容:硬件包括微处理器及其接口、执行部件、传感器等;软件主要是以汇编语言及其他高级语言编制的各种数据采集、计算判断、报警、程控、优化控制、监控、自诊断系统等程序。
特别是微处理器的出现给汽车的电子自动化程度带来了革命性的变化,车辆上微处理器的使用数量激增,电子装置在整个汽车制造成本中所占的比例越来越大。例如,一些豪华轿车上,使用单片微型计算机的数量已经达到50个左右,电子产品占到整车成本的50%以上,微处理机将更广泛地应用于汽车安全、环保、发动机、传动系统、速度控制和故障诊断中,目前电子技术的应用几乎已经深入到汽车所有的系统。
一、电子技术在现代汽车中的应用
按照对汽车行驶性能作用的影响划分,可以把汽车电子产品归纳为两类:一类是汽车电子控制装置,汽车电子控制装置要和车上机械系统进行配合使用,即所谓“机电结合”的汽车电子装置;它们包括发动机、底盘、车身电子控制。例如电子燃油喷射系统、制动防抱死控制、防滑控制、牵引力控制、电子控制悬架、电子控制自动变速器、电子动力转向等,另一类是车载汽车电子装置,车载汽车电子装置是在汽车环境下能够独立使用的电子装置,它和汽车本身的性能并无直接关系。它们包括汽车信息系统(行车电脑)、导航系统、汽车音响及电视娱乐系统、车载通信系统、上网设备等。
1.在发动机上的应用
现代汽车发动机的基本功能没有根本变化,但引入了大量的电子控制装置,极大地改进了车辆的排放性能、燃油经济性和耐用性。发动机电子控制系统包括很多电子控制装置,电子燃油喷射和点火装置是其重要组成部分,除此外,还有自适应控制装置、智能控制装置及自诊断操作装置等。
现代汽车上,电子控制燃油喷射装置,因其优越的性能,已得到普及。这种新型燃油喷射装置可以自动保证发动机始终工作在最佳状态;电子点火装置(ElectronicSparkAdvance,ESA)由计算机、传感器及其接口、执行机构等部分构成。该装置可根据传感器送来的发动机各种参数进行运算、判断,然后进行点火时刻调节。在输出一定功率的条件下最大限度地节约燃油和净化空气。
各公司相继研制成功了多种新技术,并且投入了使用,取得了很好的效果。例如,由RobertBosch公司制造的计算机控制系统使用嵌入式微处理器技术实时监测发动机运转情况,确保喷射燃油量恰到好处,使燃油喷射量刚好满足要求,对清洁这些发动机大有帮助。
特别是电控直接喷射和共轨燃油系统两项技术的突破,催生了具有优良性能的新型柴油机的出现。这些新型柴油机电控、加速性良好、气味不浓也不产生烟尘、行程大并且耐用。
在通常的柴油机中,喷油泵在同一时间射出所有燃油,其结果就是产生柴油机标志性的乓乓的敲击声。在直接喷射时,燃料射入之前先有一小部分先行射入,这样当燃料射入时产生的敲击声会变得柔和。与此同时也可以降低燃烧温度,减少NOx(氮氧化物)的排放量。
共轨燃油系统的作用则在于它可以更好地控制燃油数量和喷射定时。共轨系统有一个高压泵,当喷油嘴开启时,高压使燃油产生很好的薄雾使得燃烧更加充分,同时还减少了尾气排放。
现代汽车的各种性能(燃油经济性、排放、驾驶性能和功率等)越来越好,而使这一切成为现实的正是电子技术与计算机辅助设计的结合。
2.在底盘上的应用
底盘电子控制系统包括很多电子控制装置,电子控制自动变速器(Electronic-C0ntrolledAutomaticTransmission,ECAT)是其重要组成部分。现在许多轿车的自动变速器是电子控制的,电子控制也就是微处理器控制。
自动变速器主要由液力变矩器和行星齿轮变速器组成,微处理器根据传感器输入信号和开关信号,通过电磁阀控制换档和变矩器锁止这两个工作过程,达到自动变档的最佳控制精度。发动机曲轴与变矩器涡轮之间通过离合器接合的装置也称为变矩器锁止,其作用是减轻变矩器涡轮与叶轮之间的打滑现象,改善燃油经济性。ECAT优点是加速性能好、灵敏度高、能准确地反映车辆行驶负荷和道路条件等。
自动变速器的电子控制装置是由信号输入系统、计算系统和控制信号输出系统这三部分组成。信号输入系统有:变速器输入速度传感器、变速器输出速度传感器、发动机冷却温度传感器、节气门位置传感器、发动机曲轴转速传感器、油温度传感器、歧管压力开关、制动开关等信号。这些信号反馈到ECU(在通用汽车上称为PCM-动力传动控制组件),在ECU进行计算然后输出控制信号,通过换档电磁阀、离合器电磁阀等控制换档和锁止动作。微处理器接到传感器反馈信号后,根据程序计算的结果发出控制信号接通变矩器的离合器电磁阀电源,驱使电磁阀启动,使离合器接合;如果切断离合器电磁阀电源则离合器分离。ECU是根据汽车行驶状态来操纵电磁阀通电开关开启或关闭的。当汽车速度比较慢或停止时,ECU不启动电磁阀,当汽车速度达到一定值时,ECU就会启动电磁阀使离合器接合。微处理器接到传感器反馈信号后,根据汽车车速、发动机转速及工作温度、节气门位置、歧管真空度、选档位置等输入信号参数选择换档。ECU根据即时变速杆的位置,对照参数计算选择最佳的档位位置,发出控制信号驱动换档电磁阀,令变速器换档。
通用、福特、丰田等等大厂商采用的自动变速器电子控制系统,根据与其连接的变速器和发动机的不同型号而不同,每个系统中的元件和系统的工作过程也随着不同的变速器而有所变化,但其基本的工作方式及基本部件还是一样的。
除此外,还有电子稳定智能控制装置(ElectronicStabilitvPro-gram,ESP)、电控悬架操作装置等。ESP将多种功能整合在一起,并在此基础上进行了扩展。与其他牵引力控制系统比较,电子稳定控制程序不但控制汽车驱动轮,而且可控制从动轮。通过安装在车辆上的轮速传感器、侧向加速度传感器和横摆角速度传感器,电子稳定控制程序能对车辆的状态进行实时监控,当感应到轮胎与地面失去附着力,车辆存在侧滑危险时,电子稳定控制程序会快速而有选择地对需要制动的车轮实施独立操作或降低发动机输出,以使车辆行驶方向尽可能保持与驾驶员的预期相一致,从而提升车辆在各种工况下的方向稳定性及可控性。
目前电控悬架,汽车的悬架系统一般是弹簧刚度和减振器阻尼特性不能改变的被动悬架,它不能根据使用工况和路面输入的变化进行控制和调整,故难以满足平顺性和操纵稳定性的更高要求5近年来,随着电控和随动液压技术的发展,弹簧刚度和减振器阻尼特性参数可调的电控主动和半主动悬架,在汽车上逐步得到应用和发展。
3.整车控制技术
整车控制技术包括车身电子控制、驾驶电子控制等系统。汽车车身电子控制技术所涉及的内容很多,主要包括对汽车照明灯和转向信号灯的电子控制、对电动座椅、电动门窗、电动门锁、自动雨刮等的电子控制以及多媒体系统等。目的是保证视野性、方便性、舒适性、娱乐性、通信功能等。目前车身电控技术呈现如下的发展趋势:进一步满足用户个性化的需求;先进的驾驶和乘坐信息系统,如车辆遥控检测、智能型防盗、乘座适应性控制、42V电子系统、环保设计系统等等。
传统的机械和液力驾驶控制系统由于结构的原因(间隙、运动惯量等),从控制指令发出到指令执行会有一定的延迟,这在极限情况下是不能允许的。电控驾驶控制系统是没有机械和液力后备系统的,电控驾驶控制系统主要由三部分组成:控制系统、执行系统、通讯系统。控制系统的功能是根据驾驶员的意图和车辆行驶状况,对执行器给出执行的设定值。执行系统的功能是在控制系统的控制下,完成具体的执行动作(转向、制动等)。驾驶电子控制技术在现代汽车中,已大量使用,完全取代传统的机械和液力驾驶控制系统是必然趋势。
4.主被动安全系统
汽车的操纵稳定性和安全性是衡量汽车性能的重要指标。电子控制技术的引入为汽车的稳定性和安全性提供了保障。
提高汽车的操纵稳定性,过去一直局限于通过改进轮胎、悬架、转向与传动系的性能来实现。随着计算机、传感器和执行机构的迅速发展,研发了各种显著改善操纵稳定性和安全性的电子控制系统如防抱死制动系统(Anti-LockBrakingSystem,简称ABS)、牵引力控制系统(TractionControlSystem,简称TCS,也称ASR)、四轮转向系统(4WS)、车辆动力学控制系统(VehicleDynamicControl,简称VDC,也称VSC、ESP)。其中,VDC是在ABS和TCS的基础上,增加转向行驶时横摆运动的角速度传感器,通过ECU控制各个车轮的驱动力和制动力,确保汽车行驶的横向稳定性,防止转向时车辆被推离弯道或从弯道甩出。
轮胎压力检测系统(TirePressureM0nit0ringSystem,简称TPMS)是在每一个轮眙上安装高灵敏度的传感器,在行车状态下实时监视轮胎的各种数据,通过无线方式发射到接收器,并在显示器上显示各种数据,任何原因(如铁针扎入轮胎、气门芯漏气)等导致的轮胎漏气、温度升高,系统都会自动报警,从而确保行驶中的安全,延长轮胎的使用寿命。
为了保证行车安全,安全气囊和座椅安全带控制系统是必不可少的。安全气囊的合理触发以及座椅安全带的及时束紧,需要安全系统对行驶状况的及时监测和判断。安全气囊和座椅安全带控制系统将采用越来越多的先进电子传感器、控制芯片以及电子控制装置。
二、电子技术在现代汽车中的发展趋势
随着高性能传感器、微处理器的研制成功以及网络、总线技术的完善,汽车电子技术将向集中综合控制和网络化方向发展。
1.集中综合控制
目前汽车电子技术向集中综合控制方向发展。例如,将发动机管理系统和自动变速器控制系统,集成为动力传动系统的综合控制(PCM);将制动防抱死控制系统(ABS)、牵引力控制系统(TCS)和驱动防滑控制系统(ASR)综合在一起进行制动控制;通过中央底盘控制器,将制动、悬架、转向、动力传动等控制系统通过总线进行连接。控制器通过复杂的控制运算,对各子系统进行协调,将车辆行驶性能控制到最佳水平,形成一体化底盘控制系统(UCC)。汽车的机械结构还将发生重大的变化,汽车的各种操纵系统向电子化和电动化发展,实现“线操控”。用导线代替原来的机械传动机构,例如“导线制动”、“导线转向”、“电子油门”等。
随着汽车电子装置越来越多,消耗的电能正在大幅度地增加。现有的12伏动力电源,已满足不了汽车上所有电气系统的需要,汽车12伏供电系统需向42伏转化。今后将采用集成起动机-发电机42伏供电系统,发电机最大输出功率将会由目前的1千瓦提高到8千瓦左右,发电效率将会达到80%以上。42伏汽车电气系统新标准的实施,将会使汽车电器零部件的设计和结构发生重大的变革,机械式的继电器、熔丝式保护电路将被淘汰。
2.网络化
汽车上的电子电器装置数量急剧增多,为了减少连接导线的数量和重量,网络、总线技术十分重要。集中综合控制要求有一个庞大而复杂的信息交换与控制系统,车用计算机的容量要求更大,计算速度要求更高。采用高速数据传输网络日益显得必要。光导纤维可为此传输网络提供传输介质,以解决电子控制系统防电磁干扰的问题。通讯线将各种汽车电子装置连接成为一个网络,通过数据总线发送和接收信息。电子装置除了独立完成各自的控制功能外,还可以为其他控制装置提供数据服务。由于使用了网络化的设计,简化了布线,减少了电气节点的数量和导线的用量,使装配工作更为简化,同时也增加了信息传送的可靠性。通过数据总线可以访问任何一个电子控制装置,读取故障码对其进行故障诊断,使整车维修工作变得更为简单。
三、结束语
汽车电子技术的应用将使汽车更加智能化和舒适。智能汽车装备有多种传感器,能够充分感知驾车者和乘客的状况,交通设施和周边环境的信息,判断乘员是否处于最佳状态,车辆和人是否会发生危险,并及时采取对应措施。今天,社会进入了信息网络时代,汽车已不仅仅是一种代步工具,人们已可以在汽车上收听广播,打电话,上互联网,处理工作。随着数字技术的进步,具有信息处理、通讯、导航、防盗、语言识别、图像显示和娱乐等功能的车载计算机多媒体系统的开发,汽车也将步入多媒体时代。可以预见到的将来,汽车装置自动导航和辅助驾驶系统,驾驶员可把行车的目的地输入到汽车电脑中,汽车就会沿着最佳行车路线行驶到达目的地。人们可以通过语言识别系统操纵着车内的各种设施,一边驾驶着汽车,一边欣赏着音乐电视,还可上网预定饭桌、机票等。
[参考文献]
[1]魏万云:《浅谈当代电子技术的发展》,《中国科技信息》2005年第5期。
[2]张凡、殷承良:《现代汽车电子技术及奠在仪表中的应用》,《客车技术与研究》2006年。
近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、高档轿车中汽车电子已占30%以上,而且这个比例还在、不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的完美结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的最佳状态。例如为使发动机处于最佳工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整最佳喷油量,最后还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出最佳点火时机的指令。这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩最大化,而同时燃油消耗和废气排放最低化的智能系统。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以最大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保证在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
1.电子操控系统的动作必须快速、正确、可靠。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。
2.现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
3.电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU必须具有自检、自维护能力,不断确认气囊系统的可正常运作的可靠性,确保动作的“万无一失”。
4.汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
5.与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
二、智能传感器:微传感器与集成电路融合的新一代电子器件
微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS(微机电系统)名称下的。这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(SmartSensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口(SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成CMOS电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将SmartSensor(或device)和Intelligentsensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS的最好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。