欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

电力系统自动化大全11篇

时间:2022-07-16 09:36:29

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇电力系统自动化范文,希望它们能为您的写作提供参考和启发。

电力系统自动化

篇(1)

关键词:电力系统自动化;发展;应用

1 电力系统自动化总的发展趋势

1.1 当今电力系统的自动控制技术正趋向于。

①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。

②在设计分析上日益要求面对多机系统模型来处理问题。

③在理论工具上越来越多地借助于现代控制理论。

④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。

⑤在研究人员的构成上益需要多“兵种”的联合作战。

1.2 整个电力系统自动化的发展则趋向于:

①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。

②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。

③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。

④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。

⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。

⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。

⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。

近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。

2 具有变革性重要影响的三项新技术

2.1 电力系统的智能控制。电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

①电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。

②具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。

③不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。

智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。

智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。

2.2 FACTS和DFACTS。

2.2.1 FACTS概念的提出。在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术――柔流输电系统(FACTS)技术悄然兴起。

所谓“柔流输电系统”技术又称“灵活交流输电系统”技术简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。

2.2.2 FACTS的核心装置之一――ASVC的研究现状。各种FACTS装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。ASVC是包含了FACTS装置的各种核心技术且结构比较简单的一种新型静止无功发生器。

ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会发生响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声,并且因为ASVC是一种固态装置,所以能响应网络中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。

2.2.3 DFACTS的研究态势。随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。可以说,信息时代对电能质量提出了越来越高的要求。

DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。

2.3 基于GPS统一时钟的新一代EMS和动态安全监控系统。

2.3.1 基于GPS统一时钟的新一代EMS。目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。

篇(2)

引言

近几年来,随着计算机和通信技术的不断发展,电力系统已经发展成为融计算机、通信、控制和电力电子装备为一体的系统。电力系统自动化处理的信息量越来越大,观测范围也越来越广,闭环控制的的对象也越来越丰富。为确保电力系统安全、平稳、健康的运行,对电力系统的各个元件、局部、全系统,采用具有自动检测、决策和控制功能的装置,通过信号和数据传输的系统,就地或远距离进行自动监视、调节和控制等,从而达到合格的电能质量。

1 电力系统自动化与智能控制系统

1.1 电力系统自动化

电力系统自动化主要是指通过具有自动控制功能和自动检测功能的设备对电能传输和生产的全过程进行自动化管理和自动化调度。使用自动化技术能够实现对电力系统远程和就地的自动控制、调节和监视,为电力系统稳定、安全、正常的运行提供保障,最大限度的满足电能质量的实际需求。实现电力系统化自动化对提高电力系统运转水平有着极为重要的现实意义,其自动化主要包括变电站自动化、配电网自动化和以及调度电网自动化等方面。实现电力系统自动化能够为电力系统稳定、安全的运行提供保障,提高电力系统供电质量,实现电力企业的经济效益和管理效率。

1.2 智能技术与电力系统自动化的结合

智能技术的发展为电力系统自动化的发展提供了更高的平台。在电力系统自动化中应用智能技术不仅能够发展和完善电力自动化技术,而且通过智能系统的有效应用,可以有效协调电力系统的不稳定性。考虑到当前电力系统的发展还不是很成熟,因此为了尽可能的满足公众对廉价和便利的电力网络需求,将智能技术应用到电力系统当中十分必要。但当前我国电力系统自动化水平还不是很高,各方面发展不太成熟,都不同程度的存在一些问题和不完善的地方。

2 电力系统中的自动化技术

2.1 变电站自动化

目前,我国变电站自动化的发展已经取得一定成效,使得变电站运行成本得到了很大程度的降低,增强了电网调度和输配电的可能性。在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。由于变电自动化具有运行状态稳定、自动化程度高等方面的特点,在各级变电站中得到了广泛运用。利用自动化技术,能够将电话人工操作和人工监视取代,从而使得安全运行水平和工作效率大大提高。

2.2 电网调度自动化

电网调度自动化主要包括核心计算机控制系统以及用于实时分析、计算的软件系统。电网调度自动化技术能够在进行电力生产时,利用对电网系统安全性和运行状态的分析和监控,对电力市场进行自动调度,满足电力市场实际运营需求。在控制手段上日益增多了微机、电力电子器件和远程通信的应用。在发电厂和变电站进行信息收集的部分为远动端,调度端则主要用于对远动端收集来的信息进行调度。

2.3 变电综合自动化

变电综合自动化通过对现代电子技术、信息处理技术以及计算机技术的运用,对变电站设备、仪器进行优化设计和功能组合,实现对变电站主要线路和相关设备的测量、自动控制以及监视等全面管理。追求的目标向最优化、协调化、智能化发展,例如,励磁控制、潮流控制。该技术具有维护调试和操作简便等方面的特点,使得变电站保护性能大幅增强,从根本上实现了变电站远程监控管理手段。

2.4 配电网自动化

配电网自动化技术通过将配电线路和配电变电站结合,共同合成配电网,具有分散、点多、面广等方面的特点。该技术能够对配电网运行状态进行实时监控,从而对配电网运行模式进行改进和优化,当配电网发生故障,出现运行异常现象时,配电网自动化技术能够将故障及时找出,并予以有效的处理措施。

3 电力系统中的智能技术

3.1 模糊控制

模糊控制主要采用的是一种模糊的宏观控制系统,它具有易操作性、非线性、随机性、简单化和不确定性等特点,这些特点使得监理模糊关系模型变得十分简单容易,并且具有非常大的优越性。模糊控制方法的优越性在任何地方都体现出来,包括家用电器中,他使得控制操作变得非常容易掌握并且十分的简单。这种模糊理论的智能技术在电力系统自动化的控制中具有非常实用的价值,因为他能够模拟人的决策过程和模糊推理过程。

3.2 线性最优控制

最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。

3.3 专家系统控制

专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用。但仍存在一定的局限性。

3.4 神经网络控制

神经网络控制是通过人工神经网络发展而成的,它主要应用在学习方面以及模型结构方面,并且已经得到了广泛的传播和成果。神经网络控制的非线性是目前最受人们关注的,此外它的鲁棒能力、处理能力以及自主学习能力也同样受到人们的关注。神经网络是由大量简单的神经元以一定的方式连接而成的神经网络。根据具体问题的不同,已经有多种神经网络结构及其训练算法在电力系统中得到了应用,主要的神经网络理论研究有神经网络的硬件实现问题研究和神经网络学习算法研究等。

4 智能技术与自动化的发展趋势

目前, 自动化正由单个单元逐步发展为部分区域乃至整个系统,有单一功能逐步发展为一体化、多功能。在控制策略问题上日益向着适应化、最优化、区域化和智能化方向发展。随着我国科技水平不断进步,智能化技术已广泛运用于各个领域,对电力系统而言,其意义尤为重要。虽然在电力电力系统中,智能技术已得到了广泛运用,当就目前的发展趋势来看,以计算机软硬件为基础的智能技术在电力系统中还将得到更为全面的应用。此外,智能技术与自动化技术将会得到更加紧密的结合,在电网系统中得到为好的运用。

5 结束语

随着计算机技术,控制技术及信息技术的发展,电力系统自动化面临着空前的变革。多媒体技术、智能控制将迅速进入电力系统自动化领域,而信息技术的发展,不仅会推动电力系统监测的发展,也会推动电力系统控制向更高水平发展。

参考文献

篇(3)

电力系统自动化是对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。

一、电力系统自动化总的发展趋势

(一)当今电力系统自动控制技术的发展趋势

电力系统在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展;在设计分析上日益要求面对多机系统模型来处理问题;在理论工具上越来越多地借助于现代控制理论;在控制手段上日益增多了微机、电力电子器件和远程通信的应用;在研究人员的构成上益需要多“兵种”的联合作战。

(二)整个电力系统自动化的发展趋势

由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。

二、电力系统的智能化技术

(一)变电站自动化

是在微机技术和网络通讯技术的基础上发展起来的。变电站自动化系统集保护、测量、控制、远传等功能为一体,采用微机化产品,并充分利用微机的数字通信的优势来实现数据共享的一套电力系统二次设备的自动化装置。它取代了常规的仪表盘、柜,以及一些中央信号装置,节省了变电站的占地面积,节省了电缆的投资。整个变电站要实现自动控制,一套优秀的监控软件是必须的。当操作人员进入变电站时,可以从自动化系统的当地监控软件上了解变电站当前的运行情况和历史记录。当地监控软件通过密码实现多权限多级管理,一般操作人员可以看主接线图、遥信遥控遥测表、特殊功能显示图、SOE等图表,系统管理员可以修改软件配置、各级权限范围、各种图表,操作员和监督员同时认可才能进行遥控操作。登入登出过程、执行操作后软件都会详细记录操作人姓名、密码、操作等信息。软件根据设定自动记录所需的四遥量并进行统计,形成曲线、棒图等。

(二)建立坚强、灵活的网络拓扑

坚强、灵活的电网结构是未来智能电网的基础。我国能源分布与生产力布局很不平衡,为了缓解此现状所带来的不利影响,我国开展了特高压联网工程、直流联网工程、点对点或点对网送电等工程的实施建设。如何进一步、优化特高压和各级电网规划成为需要解决的关键问题。随着电网规模的扩大、互联电网的形成,电网的安全稳定性与脆弱性问题越来越严重,对主网架结构的规划设计要求也相应地提高了。只有灵活的电网结构才能应对自然灾害和社会灾害等突发灾害性事件对电网安全的影响。

(三)实现开放、标准、集成的通信系统

智能电网的发展对网络安全提出了更高的要求,智能电网需要具有实时监视和分析系统目前状态的能力:既包括识别故障早期征兆的预测能力,也包括对已经发生的扰动做出响应的能力,其监测范围将大范围扩展、全方位覆盖,为电网运行、综合管理等提供外延的应用支撑,而不仅局限于对电网装备的监测。

(四)CAN总线技术在电力调度自动化系统的应用

CAN总线在电力调度的大系统中作为站点内部智能数据模块与计算机之间的通信网络,在通信速度、通信距离、抗干扰等方面完全能满足控制系统的要求。随着计算机科学的发展,现场总线控制系统在数据交换的实时性、准确性、快速性方面的突破性进展,为电力网系统经济、合理的调度运行提供了技术保证和技术支持。CAN总线是一种有效支持分布式控制或实时控制的串行通信网络。

在该电力调度系统,每个分站点均由工控机和若干测控接点组成。所有测控点都以“平等主体”挂接在总线上,每一点对应35kV回路或6kV回路的测控。测控点能够采集对应回路的遥信量及遥测量,能根据接收到的命令主动将数据发送到CAN总线,通过预先设定的验收码和验收屏蔽码可以控制该测控点从总线上接收哪些数据或命令。站点工控机通过CAN卡从CAN总线上接收各节点数据进行处理,再通过网卡到集团千兆网,转发到总调度中心。该智能测控节点的软件由两部分组成:一部分为初始化程序,包括对单片机本身的中断、定时器串行口等的初始化和CAN控制器的初始化;另一部分为测控供电回路电量参数的数据采集处理。CAN总线比其它形式总线在速度、抗干扰能力及高性能上有着巨大的区别,CAN总线设计灵活、可靠性高、布线方便,更加适合于工业领域到各种集散控制系统

(五)电力载波技术在自动抄表中的应用

目前在电能表远程抄收中,最适宜采用的方式为低压电力线载波与10kV电力线载波所组合而成的系统。其技术构成如下:

1.在硬件方面,为了减少各个电路部分相互之间的串扰,要合理划分弱信号电路,强信号电路;合理划分数字电路部分和模拟电路部分;对于模拟信号输出和输入口均采用磁路耦合方式进行隔离,同时对于输入信号使用具有高的带外衰减系数的无源带通滤波器;对于外部数字信号接口电路部分使用具有良好电磁兼容性能的集成电路;在各输入和输出端口添加相应的保护器件;另外,还要使用具有高稳定性、高抗干扰性的电源,进一步提高整体的抗干扰能力。

2.在软件方面,使用内置式看门狗,使之能够有效地监测软件运行故障,在合理的较短时间内从故障中恢复;在MCU软件设计中使用分布式软件陷阱,以监测软件的运行并从故障中恢复;对端口采样时,使用重复采样判别技术,防止慢上升速率信号中叠加的噪声对采样精度的影响。

3.在数据传输方面,为了提高传输的可靠性,克服信道中噪声对判决错误的影响,除了合理选择调制与解调方法外,还要采用差错控制编码技术(也称纠错编码),最大限度地保证数据传输的可靠。

(六)配电网自动化

篇(4)

1电力系统自动化的主要内容

针对电力企业的特点,实现电力系统的自动化应符合如下要求:快速、准确的收集、检测和处理电力系统各系

统、部件的运行技术参数。根据电力系统的实际运行状态和系统各部件的技术要求,为运行人员提供调控的指令,或能够自动对各部件进行调控。实现全系统分层次、分部分的综合调控,探索电力系统优质电力系统管理的最佳方式。电力系统实现自动化不仅能节省大量人力、物力、财力,而且还能降低电力系统事故的发生率,增加电力设备的使用寿命,综合提高和改善电力系统运行性能。

2几种电力系统自动化技术探讨

(1)主动的对象数据库技术及其在电力系统自动监视与控制中的运用面向对象技术在软件的重用性、继承性、封装性、开放性及软件工程等方面带来革命性的影响,已经深刻影响软件系统开发与设计的各方面,如面向对象的分析、面向对象的设计、面向对象的编程等。新一代的电网调度自动化系统应该全面地采用面向对象技术,支持面向对象的标准。

主动的对象数据库与一般的关系数据库相比,主要的优势在于主动功能以及对对象技术的支持。关系数据库要实现数据的判断(如数据发生变化,数据越限)以及数据的分析都是由外来程序完成的。而在主动的对象数据库中,利用数据库的触发子可以实现系统的监视功能,利用数据库中对象的函数可以实现系统的控制功能。

由于引入触发机制以及对象技术,这就可以在数据库中实现自动监控,在节省数据读出和写入时间的同时,又充分地利用数据库对数据的管理功能,提高数据可靠性,维护数据的一致性,便于数据的共享等。随着数据库技术的发展,以及对监控系统中触发子和对象的函数功能的进一步研究,有望实现电力系统自动监视与控制的更加复杂的功能。

(2)现场总线控制系统。现场总线技术(FCS)实际上是将安装在工业过程现场的智能自动化仪表和装置与设置在控制室内的仪表和控制设备连接起来的一种数字化、串行、双向、多站的通信网络。现场总线技术将专用微处理器置入传统的测量控制仪表,它作为智能设备的联系纽带,把挂接在总线上、作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、监控、优化及控管一体化的综合自动化功能。这是一项智能传感器、控制、计算机、数字通信、网络为主要能容的综合技术。

在我国电力系统中,目前DCS系统得到广泛的应用。这种控制方式的实现需要通过传感器、变送器将所有被控设备的状态、电量、非电量信号收集到中央控制室的主控计算机上,然后在计算机上按照规定的数学模型进行计算、判断、进而向被控设备发出指令。其在本质上仍然为数字控制器与模拟变送器组成的模拟-数字混合系统,在电厂或变电站内受电磁干扰严重,难以达到严格的计算精度,并实施准确控制。另一方面,模拟变送器位于测控现场,而控制器位于集中控制室。这从构成控制系统的信号流的角度来看,在现场把被控参数转换为测量信号后,被送往位于集中控制室的控制器,再把所得到的控制信号由控制室送往现场的调节阀或控制电机。这样,即使是一个简单的回路控制系统,其信号的必经路径也将会很长,因而会引起许多弊端和隐患。

将FCS引入电力系统将在根本上优化控制系统的各种性能。将整个生产过程的控制功能分散,为每个被控设备就地配备专用的底层前置控制计算机,这些专用的前置机根据控制要求负责管理被控设备的有关信息。这些信息经前置机处理后通过通讯接口由现场总线与上位计算机相联。此时上位机的任务已不再是全面监控所有设备,而是担负人机对话或向上级调度远传信息的任务。在上位机可以根据前置机上传的信息构造各种画面、图象、图表、曲线来直观地反映现场设备的运行情况。不仅前置机可以配合PLC根据所取的实时数据对被控设备实行必要的调节和控制,而且上位机也可以直接通过前置机对被控设备进行实时性不强的调节和控制,把控制功能下放到现场,仅由现场仪表就可以实现控制功能。这样无疑增强整个电力系统自动控制系统的可靠性和系统组织的灵活性。并且基于这种现场总线技术的系统,还可与其它计算机、节点通讯,构成高性能的控制系统。

(3)光互连并行处理器阵列在电力系统自动控制和继电保护中的应用研究。光互连技术的特点:①光互连不受电容性负载的影响,其输入输出可根据需要具有很大灵活性。②光互连的扇出数主要受探测器功率限制。光互连既可解决无终端的电互连线受到临界线长度的限制的问题,又可解决有终端线受到沿该线输出端密度限制的问题,它可以在计算系统内部实现高性能互连。它以光速传递信息,可将时钟扭曲问题减小到最小程度。③光互连不受平面和准平面的限制,光在光波导中可以大于10°的交叉角相互交叉,自由空间光束可相互穿越而不相互作用,可提高系统集成度。

篇(5)

电力系统自动化是对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。

一、电力系统自动化总的发展趋势

(一)当今电力系统自动控制技术的发展趋势

电力系统在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展;在设计分析上日益要求面对多机系统模型来处理问题;在理论工具上越来越多地借助于现代控制理论;在控制手段上日益增多了微机、电力电子器件和远程通信的应用;在研究人员的构成上益需要多“兵种”的联合作战。

(二)整个电力系统自动化的发展趋势

由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。

二、电力系统的智能化技术

(一)变电站自动化

是在微机技术和网络通讯技术的基础上发展起来的。变电站自动化系统集保护、测量、控制、远传等功能为一体,采用微机化产品,并充分利用微机的数字通信的优势来实现数据共享的一套电力系统二次设备的自动化装置。它取代了常规的仪表盘、柜,以及一些中央信号装置,节省了变电站的占地面积,节省了电缆的投资。整个变电站要实现自动控制,一套优秀的监控软件是必须的。当操作人员进入变电站时,可以从自动化系统的当地监控软件上了解变电站当前的运行情况和历史记录。当地监控软件通过密码实现多权限多级管理,一般操作人员可以看主接线图、遥信遥控遥测表、特殊功能显示图、SOE等图表,系统管理员可以修改软件配置、各级权限范围、各种图表,操作员和监督员同时认可才能进行遥控操作。登入登出过程、执行操作后软件都会详细记录操作人姓名、密码、操作等信息。软件根据设定自动记录所需的四遥量并进行统计,形成曲线、棒图等。

(二)建立坚强、灵活的网络拓扑

坚强、灵活的电网结构是未来智能电网的基础。我国能源分布与生产力布局很不平衡,为了缓解此现状所带来的不利影响,我国开展了特高压联网工程、直流联网工程、点对点或点对网送电等工程的实施建设。如何进一步、优化特高压和各级电网规划成为需要解决的关键问题。随着电网规模的扩大、互联电网的形成,电网的安全稳定性与脆弱性问题越来越严重,对主网架结构的规划设计要求也相应地提高了。只有灵活的电网结构才能应对自然灾害和社会灾害等突发灾害性事件对电网安全的影响。

(三)实现开放、标准、集成的通信系统

智能电网的发展对网络安全提出了更高的要求,智能电网需要具有实时监视和分析系统目前状态的能力:既包括识别故障早期征兆的预测能力,也包括对已经发生的扰动做出响应的能力,其监测范围将大范围扩展、全方位覆盖,为电网运行、综合管理等提供外延的应用支撑,而不仅局限于对电网装备的监测。

(四)CAN总线技术在电力调度自动化系统的应用

CAN总线在电力调度的大系统中作为站点内部智能数据模块与计算机之间的通信网络,在通信速度、通信距离、抗干扰等方面完全能满足控制系统的要求。随着计算机科学的发展,现场总线控制系统在数据交换的实时性、准确性、快速性方面的突破性进展,为电力网系统经济、合理的调度运行提供了技术保证和技术支持。CAN总线是一种有效支持分布式控制或实时控制的串行通信网络。

在该电力调度系统,每个分站点均由工控机和若干测控接点组成。所有测控点都以“平等主体”挂接在总线上,每一点对应35kV回路或6kV回路的测控。测控点能够采集对应回路的遥信量及遥测量,能根据接收到的命令主动将数据发送到CAN总线,通过预先设定的验收码和验收屏蔽码可以控制该测控点从总线上接收哪些数据或命令。站点工控机通过CAN卡从CAN总线上接收各节点数据进行处理,再通过网卡到集团千兆网,转发到总调度中心。该智能测控节点的软件由两部分组成:一部分为初始化程序,包括对单片机本身的中断、定时器串行口等的初始化和CAN控制器的初始化;另一部分为测控供电回路电量参数的数据采集处理。CAN总线比其它形式总线在速度、抗干扰能力及高性能上有着巨大的区别,CAN总线设计灵活、可靠性高、布线方便,更加适合于工业领域到各种集散控制系统

(五)电力载波技术在自动抄表中的应用

目前在电能表远程抄收中,最适宜采用的方式为低压电力线载波与10kV电力线载波所组合而成的系统。其技术构成如下:

1.在硬件方面,为了减少各个电路部分相互之间的串扰,要合理划分弱信号电路,强信号电路;合理划分数字电路部分和模拟电路部分;对于模拟信号输出和输入口均采用磁路耦合方式进行隔离,同时对于输入信号使用具有高的带外衰减系数的无源带通滤波器;对于外部数字信号接口电路部分使用具有良好电磁兼容性能的集成电路;在各输入和输出端口添加相应的保护器件;另外,还要使用具有高稳定性、高抗干扰性的电源,进一步提高整体的抗干扰能力。

2.在软件方面,使用内置式看门狗,使之能够有效地监测软件运行故障,在合理的较短时间内从故障中恢复;在MCU软件设计中使用分布式软件陷阱,以监测软件的运行并从故障中恢复;对端口采样时,使用重复采样判别技术,防止慢上升速率信号中叠加的噪声对采样精度的影响。

3.在数据传输方面,为了提高传输的可靠性,克服信道中噪声对判决错误的影响,除了合理选择调制与解调方法外,还要采用差错控制编码技术(也称纠错编码),最大限度地保证数据传输的可靠。

(六)配电网自动化

篇(6)

【关键词】电力自动化;现场总线;无线通讯技术;变频器

【 abstract 】 along with the power electronic technology, microelectronics technology ditch rapid development, the original power transmission (electronic drag) control concept has not fully grasp modern production automation department shall bear the first line in the flow of control equipment all tasks. And, electric drive control was already out of the factory, in traffic, farm, office and home appliances, etc have gained wide use. Its object of study has developed for motion control system, only for the relevant

Electrical automation technology of the new development introduced some.

【 key words 】 electric power automation; The fieldbus; Wireless communication technology; inverter

中图分类号:F407.61文献标识码:A 文章编号:

1.引言

现今,创新的自动化系统控制着复杂的工艺流程,并确保过程运行的可靠及安全,为先进的维护策略打造了相应的基础。

电力过程自动化技术的日新月异和控制水平的不断提高搜企网版权所有,为电力工业解决能源资源和环境约束的矛盾创造了条件。随着社会及电力工业的发展,电力自动化的重要性与日剧增。传统的信息、通信和自动化技术之间的障碍正在逐渐消失。最新的技术,包括无线网络、现场总线、变频器及人机界面、控制软件等,大大提升了过程系统的效率和安全性能。

2.电力自动化的发展

我国是从20世纪60年代开始研制变电站自动化技术。变电站自动化技术经过数十年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。

3.电力自动化的实现技术

现场总线(Fieldbus)被誉为自动化领域的计算机局域网。信息技术的飞速发展,引起了自动化系统结构的变革,随着工业电网的日益复杂工业自动化网版权所有,人们对电网的安全要求也越来越高,现场总线控制技术作为一门新兴的控制技术必将取代过去的控制方式而应用在电力自动化中。

4.无线技术

无线通讯技术因其不必在厂区范围内进行繁杂、昂贵的布线,因而有着诱人的特质。位于现场的巡视和检修维护人员借此可保持和集中控制室等控制管理中心的联系,并实现信息共享。此外,无线技术还具有高度灵活性、易于使用、通过远程链接可实现远方设备或系统的可视化、参数调整和诊断等独特功能。无线技术的出现及快速进步,正在赋予电力工业领域以一种崭新的视角来观察问题,并由此在电力流程工业领域及资产管理领域,开创一个激动人心的新纪元。

尽管目前存在多种无线技术汉阳科技,但仅有几种特别适用于电力流程工业。这是因为无线信号通过空间传播的过程、搭载的数据容量(带宽)、抗RFI(射频干扰)/EMI(电磁干扰)干扰性、对物理屏障的易感性、可伸缩性、可靠性,还有成本,都因无线技术网络的不同而不同。因此,很多用户都倾向于“依据具体的应用场合,来选定合适的无线技术”。控制用的无线技术主要有GSM/GPRS(蜂窝)、9OOMHzRadios、wi-Fi(802.lla/b/g)、WIMAX(802.16)、ZigBee(802.15.4)、自组织网络等,其中尤以Wi-Fi和WIMAX应用增长速度最快,这是因为其在带宽和安全性能方面较优、在数据集中和网络化方面具备卓越的安全框架、具有主机数据集成的高度灵活性、高的鲁棒性及低的成本。5.信息化技术

电力信息化包括电力生产、调度自动化和管理信息化两部分。厂站自动化历来是电力信息化的重点,大部分水电厂、火力发电厂以及变电站配备了计算机监控系统;相当一部分水电厂在进行改造后还实现了无人值班、少人值守。发电生产自动化监控系统的广泛应用大大提高了生产过程自动化水平。电力调度的自动化水平更是国际领先,目前电力调度自动化的各种系统,如SCADA、AGC以及EMS等已建成,省电力调度机构全部建立了SCADA系统,电网的三级调度100%实现了自动化。华北电力调度局自动化处处长郭子明说,早在20世纪70年代华北电力调度局就用晶体管计算机调度电力,从国产1 2 1机到1 7 6机,再到176双机,华北电力调度局全用过,到1978年已经基本实现了电网调度自动化。

6.安全技术

电力是社会的命脉之一,当今人类社会对电力系统的依赖已到了难以想象的程度。电力系统发生大灾变对于社会的影响是不可估量的,因此电力系统最重要的是运行的安全性,但这个问题在全世界均未得到很好解决,电力系统发生大灾变的概率小但后果极其严重,我国电力系统也出现过稳定破坏的重大事故。由于我国经济快速发展的需求,电力工业将会继续以空前的速度和规模发展。随着三峡电站、西电东送、南北互供和全国联网等重大工程的实施,我国必将出现世界上最大规模的电力系统。

7.传动技术

实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。变频器作为节能降耗减排的利器之一,在电力设备中的应用已经极为广泛而成熟。对于变频器厂商而言,在未来三十年,变频器,尤其是高压变频器在电力节能降耗中的作用极为明显,变频器也成为越来越多电力行业改造技术的首选。

在业内,以ABB为首的电力自动化技术领导厂商,ABB建立了全球最大的变压器生产基地及绝缘体制造中心。自1998年成立以来,公司多次参与国家重点电力建设项目,凭借安全可靠、高效节能的产品性能而获得国内外用户的好评。其公司多种产品,包括:PLC、变流器、仪器仪表、机器人等产品都在电力行业中得到很好的应用。

8.人机界面

篇(7)

随着国民经济的发展,人民生活水平的提高促使了用电量的不断增涨,与此同时对于电能质量、可靠性、安全性和稳定性也提出了新看法。在这种社会发展形势下,供电企业做好电力调度工作尤为关键,其调度自动化系统的应用也越来越发挥出其重大优势。

一、电力调度自动化系统分析

经过国内外社会发展实践表明,现代化电力系统管理的基础在于调度自动化,开展调度自动化工作可以有效的提高电力系统的安全性、经济性和稳定性,也有助于提高电能质量,增加企业经济效益和社会效益,同时达到电能高效利用的目的。

1、电力系统自动化

电力系统自动化主要指的是在工作中采用各种具备自动计数的监测设备、决策方案、控制功能的装置和通信信号系统来数据传输和管理的电力系统元件、系统组成来进行监控、调节、控制,以保障电力系统运行安全、高质、稳定运行,从而为人们生活和工作提供充足的电能。

2、电力调度自动化

截至目前,电力系统已成为社会发展中的核心环节,而电力调度自动化则是电力系统中最为关键的内容,也是电力系统自动化的一部分。在目前的社会发展中,我们常说的电力调度自动化主要指的是在工作中以计算机技术为核心、以信息技术为平台形成的电网监控调度自动化系统,其基本在构成按照功能和组成可以分为以下环节:

2.1、信息采集和命令执行环节

信息采集和命令执行子系统是整个电力调度系统中的初始阶段,是电厂、变电站运动终端的主要构成。而运动终端与主电站配合能够形成一个功能齐全、准确的数据采集系统,从而形成一个系统的实时参数,在遥信方面的主要功能在于采集并传送极端保护器的动作信息、参数和断路器的状态信息。

2.2.信息传输子环节

信息传输环节是实现电力调度自动化的主要设施,是信号传递媒介,一般在目前的工作中,按照信息传输子系统的通道结构我们可以将其分为模拟传输系统和数字传输系统两个不同组成环节。

2.3、信息收集、处理和控制环节

为了实现对电力系统调度自动化的管理和控制工作,在目前的管理工作中我们可以通过从技术标准、管理策略方面入手,为实现对整个电网进行监测和控制功能,需要在工作中收集分散在各个发电厂和变电站的实时信息,并对这些信息及时的加以归纳和总结,并将结构显示给调度员,产生相关的系统控制方法。

二、电力调度系统的自动化功能

通过对调度自动化系统进行开发利用和整理,使得电力公司调度系统能够形成一个信息可靠、畅通性能好、主站处理功能完善、监控功能合理的综合性整体,从而为电力系统的安全、经济、高效运行提供扎实的技术保障。

1、电力系统的监控功能

在目前的电力调度系统中,对电力系统进行监视和控制尤为关键,是为自动发电控制、经济调度、安全分析等高层次功能提供实时数据。其中监视主要是对电力系统运行信息的采集、处理、显示、告警和打印,以及对电力系统异常或事故的自动识别,向调度员反映电力系统实时运行状态和电气参数。而控制主要是指通过人机联系设备执行对断路器、隔离开关、静电电容器组、变压器分接头等设备进行远方操作的开环控制。

2、电力系统安全分析

电力系统安全分析主要内容是利用实时数据对电力系统发生一条线路、或一台发电机、变压器跳闸的假想事故进行在线模拟计算,以便随时发现每一种假想事故是否可以造成设备过负荷、以及频率和电压超出允许范围等不安全情况,是一系列以单一设备故障为目标而进行的在线潮流计算。

3、电力系统经济调度

电力系统经济调度是在满足安全、电能质量和备用容量要求的前提下,基于系统有功功率平衡的约束条件和考虑网络损失的影响,以最低的发电(运行)成本或燃料费用,达到机组间发电负荷经济分配且保证对用户可靠供电的一种调度方法。在调度过程中按照电力系统安全可靠运行的约束条件,在给定的电力系统运行方式中,在保证系统频率质量的条件下,以全系统的运行成本最低为原则,将系统的有功负荷分配到各可控的发电机组。经济调度一般只按静态优化来考虑,不计算其动态过程。

三、电力系统调度自动化技术在国外的应用

国外的电力系统调度自动化系统均是采用了RISC工作者,UNIX操作系统和国际公认的标准,主要有以下几种:

1、西门子SPECTRUM系统。该系统是由德国西门子公司基于32比特SUN点的SPACE或IBMMRS6000工作站硬件平台,引入软总线概念,服务器之间及内部各进程与实用程序问的信息交换实现标准化开发的。采用了分布式组件、面向对象等技术,广泛应用于配电公司、城市电力公司和工业用户。

2、CAE系统。该系统采用64比特ALPHAI作站、客户I服务器体系结构和双以太网构成的EMS硬件平台,选用分布式应用环境开发研制的,集DAC、SYS、APP、COM于一体。该系统功能分布于各节点,能有效地减少网络数据流,防止通信瓶颈问题。

3、VALMET系统。该系统适用于多种硬件平台,可连接SUN、IBM、PHA工作站。该系统包括实时数据、历史数据和应用软件三个服务器。

4、SPIDER系统。该系统是由ABB公司开发的,采用分布式数据库和模块化结构,可根据用户实际需求配置系统。它具有双位的遥信处理功能,使状态信号稳定性好,并有一套完整的维护工具。

四、电力系统调度自动化技术的发展趋势

随着计算机技术、通信技术、数据库技术等技术的快速发展,电力系统调动自动化技术应朝着模块化、面向对象、开放化、只能化合可视化等方面发展。

1、模块化与分布式。电力系统调度自动化系统软件设计的重要思想就是模块化和分布式。组件技术是一种标准实施的基础,能够实现真正的分布式体系结构,基于平台层解决数据交换的异构问题,是一种重要的电力系统调度自动化技术。

2、电力系统调度综合自动化。全面建立调度数据库系统,提高电力系统调度自动化的综合管理水平,使电力系统运行达到最优化,避免电力系统崩溃或大面积停电事故,提高电力系统的安全性和可靠性;建立并完善电气事故处理体系,使事故停电时间降到最短,降低各种不必要的影响。

五、结语

随着电力市场的引入,更多的市场参与者要求能够使用调度自动化系统进行信息上报和查询等操作,这就对智能调度系统的信息安全防护能力提出了更高的要求。尽管国家经贸委和电监会已经出台了相关技术规定,但是可以预计电力二次系统安全防护问题将面临更多的挑战。“智能调度”系统将能够满足客户在信息安全防护能力方面更高的需求。

篇(8)

社会经济的发展水平不断的提高,同时人们对电能的需求也大大的增加,在这样的情况下电能的可靠性和安全性也提出了更高的要求,最近几年,计算机技术也在不断的发展和完善,所以电力调度工作的质量和水平也在不断的提升,如何提高电力系统调度自动化的水平也成为了当前非常重要的内容之一。

1.电力调度自动化概述

电网调度自动化通常就是指借助电网运动化和数字化会发展,在市场经济发展的条件下,电网的规模也不断的增大,人们的在用电量上有更高需求的同时也使得用电的可靠性和安全性都提出了更高的要求,在这样的情况下,如果一个部件出现了问题就很有可能会使得整个电网有瘫痪的风险,这样就会出现大范围停电现象。因为人民生活水平都在不断的提升,为了保证工作的过程中不能产生停电现象,所以就必须要对电力的供应进行严格的控制,同时还要在停电之前贴出通知,电力企业在这样的情况下就要面临非常严峻的考验,所以在这一过程中必须要对电力调度自动化系统进行严格的控制。

1.1电力调度系统的发展

在电力系统最早起源于20世纪中期,最早是为了解决电网在工作中很难控制的一些问题,在那个阶段主要的目的就是对系统信号进行及时的控制,在实施控制的过程中采用的技术主要有接点遥控或者是其他装置对其进行有效的控制,在当时主要是为了可以更好的对电网频率予以适当的调整和控制。通常我们所说的电力系统自动化通常就是指在实际的工作中采用现代化先进技术对设备的运行情况进行实时的监测和控制,这样就可以很好的体现出其自身的安全性和稳定性,这样才能更加充分的体现出其自身的优势,保证人们正常生产和生活上的电力供应。

1.2电力调度自动化分析

在很长时间的社会实践和研究之后,相关人员得出了如下结论。在电力系统的运行和发展中,要想有效的提高电力调度控制和管理的工作质量一定要在实际的工作中采用适当的方法对其进行有效的控制,而只有这项工作的质量能够得到保证,才能更好的确保电网的正常运行。在实际的工作中,它一方面可以有效的提高电网的工作质量,同时也能够提高电力企业在发展中所获得的经济效益,在节能方面也越来越成熟,在这样的情况下电力行业的发展就成为了社会发展中一个非常重要的问题。而电力调度方面的研究也更加的深入。通常所指的电力调度是在电力企业的发展中以计算机作技术作为主要的依托,以现代化的信息技术作为发展的条件,将电力调度作为调度工作中采用的主要方法,在应用的过程中,它的运行方式也是有着自身独到特点的。

1.2.1信息采集与命令系统

该系统是电力调度自动化系统中一个非常重要的组成部分,这一系统的出现也是当今系统发展过程中一个刚刚起步的时期,在运行的过程中它主要是通过电厂、发电终端以及相关的设备对运行中相关的信息予以有效的整理,这样就可以将这些信息传递给计算机集控平台,从而可以对系统进行有效的远程控制。

1.2.2信息传输环节

信息传输是整个工作中最为关键的一部分,在过去的信息传输工作中,因为信息传输技术的不科学而引发了许多的工作控制失误,给工作的开展造成严重的损失,甚至是给人们生活带来一定的影响。近年来,随着无线电通信技术、电磁波通信等新方式的产生,信息传输控制工作逐渐得到改善与优化,为整个电网调度系统工作的开展打下了坚实的指导基础。

1.2.3信息收集、处理和控制环节

为了实现对电力系统调度自动化的管理和控制工作,在目前的管理工作中我们可以通过从技术标准、管理策略方面入手,为实现对整个电网进行监测和控制功能,需要在工作中收集分散在各个发电厂和变电站的实时信息,并对这些信息及时的加以归纳和总结,并将结构显示给调度员,产生相关的系统控制方法。

2.电力系统调度自动化技术在国外的应用

2.1西门子SPECTRUM系统

该系统是由德国西门子公司基于32比特SUN点的SPACE或IBMMRS6000工作站硬件平台,引入软总线概念,服务器之间及内部各进程与实用程序问的信息交换实现标准化开发的。采用了分布式组件、面向对象等技术,广泛应用于配电公司、城市电力司和工业用户。

2.2 CAE系统

该系统采用64比特ALPHAI作站、客户I服务器体系结构和双以太网构成的EMS硬件平台,选用分布式应用环境开发研制的,集DAC、SYS、APP、COM于一体。该系统功能分布于各节点,能有效地减少网络数据流,防止通信瓶颈问题。

2.3 VALMET系统

该系统适用于多种硬件平台,可连接SUN、IBM、PHA工作站该系统包括实时数据、历史数据和应用软件三个服务器。

3.自动化系统技术的产生背景

随着我国电力系统的不断发展,网络分布也越来越广。电力系统网络的运营与维护同样需要大量的人力、物力与财力。传统的人工抄表、监测技术已经不再满足目前日益发达的电力系统现状。自动化系统能够对目前应用的电力系统进行全面监测,对在系统运营过程中出现的故障进行记录与处理,大大提升了电力系统运行的稳定性。

4.电力系统应用互联现状

目前,我国应用的电力调度自动化系统在应用中主要有以下几种:首先是CC一2000型电力调度自动化系统,它由部分高等院校与研究机构合作而成,充分利用了标准化技术为软件提供接口,此电力调度自动化系统采用实时数据采集的方式,在不同的服务器分布相对的应用功能,即使在某一区域发生故障,也不会对整个系统的正常运行造成干扰。现代电力系统的自动化技术已经体现出更多的成熟的特点,开始广泛应用于我国电力系统的建设与运行中。SD一6000~量管理系统具有统一的支持平台,具有较大屏幕与调度自动拨号功能,在信息的传递时具有高实时性与超高质量的人机界面,是目前国内相对先进的的EMS系统,在我国的南方地区已经得到应用。OPEN一2000,量管理系统能够实现监控与数据采集功能、自动发电控制技术功能等软件,把调度与管理等应用于一体,具有开放型与分布式的特点,适合于省高调等新一代管理系统。此系统维护方便,已经在我国部分的市调项目上得以应用,并取得了不错的效果。

5.电力系统调度自动化技术的发展趋势

5.1模块化与分布式

电力系统调度自动化系统软件设计的重要思想就是模块化和分布式。组件技术是一种标准实施的基础,能够实现真正的分布式体系结构,基于平台层解决数据交换的异构问题,是一种重要的电力系统调度自动化技术。

5.2电力系统调度综合自动化

全面建立调度数据库系统,提高电力系统调度自动化的综合管理水平,使电力系统运行达到最优化,避免电力系统崩溃或大面积停电事故,提高电力系统的安全性和可靠性;建立并完善电气事故处理体系,使事故停电时间降到最短,降低各种不必要的影响。

6.结束语

电力企业逐渐涌入了市场化的发展大潮当中,在这样的情况下,市场参与者和竞争者都在实际的工作中引入了调度自动化系统,这样就可以对信息进行查询等操作,虽然国家相关部门已经出台了相应的规定,但是我国电力调度自动化系统还是需要不断的改进和完善。

篇(9)

中图分类号: TM73 文献标识码:A

随着经济的不断发展,传统的电力系统在提供生活用电和生产用电方面表现得越来越力不从心,用电量的不断提高,对电力系统发电量提出了更高的要求和挑战,电网的不断扩大需要强化电力系统的安全性和稳定性。电力系统电力调度自动化,是电力事业发展的必然,不仅能够有效提供电力系统运行的相关信息,还能方便电网运行监控人员进行相关的系统数据处理,是当前电力系统的重要组成部分,是保证电力系统安全性、稳定性、经济适用性的基石,能够促进电力事业的快速发展,提高电力企业的经济效益和社会效益。

一、电力系统电网调度自动化功能要求

电力系统,是现代人类生活的重要组成部分,生活用电和生产用电的不断增加,要求电网的不断扩大,但是电力系统是一个运行操作极为复杂的过程,处理不当不仅会影响电量的供需,而且还会带来一定的安全隐患。电力系统电网调度自动化的出现,一定程度解决了这些问题。电力系统电网调度自动化,是电力系统的重要组成部分,不仅能够有效提高电力系统的安全性、稳定性,还能够有效提高电力系统的整体运行水平,确保生产生活用电的及时供应。信息化时代的到来,促进了信息技术的不断发展,使得电力系统电网调度自动系统的配置越来越高,运行水平越来越强,有效保障了电力系统的安全。当今时代,电网运行监控人员已然将电网调度自动化作为了一种有效的安全监控工具,有效解决了运行信息及相关数据的分析处理,促进了电力系统结构的合理性和安全性,促进了电力系统电力设备的可靠性,并有效完善了电力系统自动装置。电力系统关乎人们的生活生产水平,一时的疏忽可能会造成巨大的经济损失和人身安全损失,电力系统电网调度自动化的出现,能够及时处理局部电力故障,并在最短的时间内恢复正常,避免大面积区域停电的恶果,有效减少甚至拒绝了大面积区域电网系统崩溃的现象。

二、电力系统电网调度自动化技术应用分析

电力系统电网调度自动化技术应用对于整个电力系统的发展极为必要,相关的技术主要包括以下几种:

1 集成化技术在电力系统中的应用

集成化技术,主要指的是电网调度的二次系统,二次系统的功能性是极为强大的,是数据处理的重要基础,促进资源的合理配置,提高资源共享水平,协调电网发展要求,促进电力系统的全面信息化和自动化。

2 网络化技术在电力系统中的应用

信息化时代的到来,互联网时代的逼近,促进了信息的交流和共享,先进的网络技术已经蔓延到了生活的各个方面,电力系统也不例外。电力系统中网络化技术的应用,不仅促进了资源的整理和细化,而且有效协调了信息与资源共享之间的矛盾,保证了整个电网的安全,对于电力系统运行中出现的问题,及时应用网络化技术的力量,不仅能够有效避免较大的失误和损失,而且能够有效提取有价值的数据,并加以使用和分析,促进问题的有效解决和电力系统的正常应用和运行。

3 智能化技术在电力系统中的应用

现代社会的整体发展方向是智能化、自动化、信息化,智能化技术在电力系统中的应用,能够高效率地集成数据,并加以分析和整理,不仅能够促进电力系统的优化,检测电力系统的运行,还能够及时控制,禁止意外事故的发生,即使遇到不可抑制的故障,也能够智能化地辨别事故并加以修正,及时恢复系统应用,促进电力系统的正常运行。此外,电力系统管理、运行、调度的智能化,是保证电网协调优化的重要举措。

4 数字化技术在电力系统中的应用

时代的发展,科学的进步,极大程度上带动了信息技术的不断发展。数字化技术在电力系统中的应用,主要体现在电网运行数据的相关处理、收集、利用,以便更好地完善数字化电网调度体系,促进电网管理的规范化、智能化,促进电力系统的稳定性和安全性。电网系统的数字化主要包括数字化管理,数字化决策,数字化通信,数字化信息处理,这些在电网系统中都是不可或缺的,各司其职,各尽其用。数字化管理,主要是大量设备运行和生产的数据应用,以便实现电网在进行维护、运行、管理中的信息化。数字化决策主要为了保证电网运行的稳定、安全、经济。当然,这些需要有强大的决策分析能力,才能及时控制,促进优质高效。数字化通信和信息处理也是电力系统极为重要的方面,能够有效实现市场信息监控和管理,进而促进电力系统设备的有效运行。

总而言之,电力系统电网调度自动化,是时代的发展要求,是现代社会电力事业发展的必然走向,是提高电力系统经济效益和社会效益的重要保障,符合社会的整体要求和历史走向,满足了现代人对电力事业的整体愿望。当前电力系统电网调度自动化功能正逐步健全,技术应用正不断拓宽,虽然在其应用和发展过程中存在一些暂时的缺陷和不足,但是为电力系统的进一步发展奠定了坚实的基础。了解电力系统电网调度自动化的现有功能,熟练地应用相关技术,及时弥补自动系统过程中已经出现的问题和不足,并加以改进和修正,是未来电力系统电网调度自动化的必然要求,只有这样,才能不断提高电力系统效力,确保电力系统稳定,推动电力系统高效运行,确保生产用电和生活用电的及时到位、方便快捷,促进电力事业的整体发展。

参考文献

篇(10)

前言

在信息技术的带领下,自动化也扩大了使用的范围。在农业方面,可以自动的为农作物施肥,喷水。在工业方面,可以自动的生产,自动的进行包装。在电气方面,也慢慢的使用在我国的电力系统中。但在电力中的应用还不是很成熟,还有不足的地方需要去改正。怎样才能更好的在电力系统中使用自动化,现在还是一个谜团,等待着研究人员分析以后的结果。研究的主要对象要与实际的电网相结合,从而得到两者更匹配的结果。

1、电气自动化发展现状

电气自动化的发展离不开信息技术的发展,信息技术才使得电气自动化技术的产生,并且在其他的方面也运用的很广泛。据现实的情况而言,电气自动化技术的提高以以下几点为主。

高度信息化

当前我国电气自动化技术发展的高度信息化不仅表现在其技术、机器的使用等方面,而且在部门管理或者数据的处理等方面也实现了信息化。信息化技术的提高模糊了原本较为明确的设备界限,如控制系统的模糊化,同时与之相应的软件、通讯等方面要求更高了。由于电气自动化技术与电脑的发展技术是相关的,所以多媒体技术与信息技术的发展在电气自动化发展进程中占据很大的作用。

易于维护

正如前面所讲,电气自动化技术是与Internet的发展紧密联系的,计算机技术的一个优点就是其有较大的灵活性及能迅速地集成或提供信息,这也就使得电气自动化较以往的传统技术相比,更易于维护。

易于控制

电气自动化技术使用范围的增大,和它本身的容易控制的有点是密不可分的。随着经济的发展,市场的变化,电气自动化技术需要时刻的改变来适应变化,以便协调性的发展。例如:将马达和变压器用线连接起来,在作业时只需要控制这一根线,就可以控制其两者的操作,简单易实施。

2、电气自动化技术在电力系统中的应用

电气自动化技术离不开计算机,计算机是自动化技术的核心,所有自动化的工作都由计算机支配。以下是在电力系统中电气自动化技术的应用。

仿真技术

在电力系统中自动化技术日渐真态化,它不仅能够呈现大量的实验数据,而且可以支持多项操作同时进行,并能够帮助实验人员测试新的装置,同时能实施同步控制,所以仿真技术为电力系统提供了较好的实验条件,有助于对电力系统实施动态监控及仿真建模等技术的应用,既有利于操作又易于控制。

智能技术

电气自动化技术的引进加强了电力系统的控制技术。不仅是在操作方面,在电网的监控方面也提供不少的帮助。例如:一个地方的电网出现故障,通过电脑的监控就可得知,以最短的时间通知电力部门修复,降低危险的发生。

多项技术的集成

现代的自动化电力系统将多项技术集成一体,易于管理,又不会因为客户有不一样要求而达不到。与传统电力系统相比,有点在于可以提高电力系统的竞争意识。因为电气自动化的统一化可以对于不同的项目给予支持,统一的工作实践少于每个部门单独作业。

人工智能技术

电力系统中自动化技术不需要人工的操作,可以自动的对电网中出现的问题及时反应在计算机上,如果问题不是很大的话,自动化技术可以自动的对该故障进行解决。自动化技术的发展增强了电力系统的运作。

电网技术

电网技术的应用推动了电网技术一体化及其调度自动化的发展,而电网技术的一体化加强了电力系统中配电模型及高级软件等技术的发展,同时提高了数字信息技术处理能力。电网调度自动化的发展是电力系统自动化的主要组成部分,而调度自动化的发展与计算机技术的发展也是息息相关的。

3、电子自动化技术的未来发展走向

全控型电子开关技术的应用

在以往的电力控制开关中我国采用的是半控型晶闸管,该开关控制的缺点在于不能对整个电路实施很好控制,而全控型电子开关技术如IGBT这一技术,其不仅电流密度大且开关速度相较其他电子开关较低,而且整个电路相对简单,无论在维修还是处理等方面都较便捷。

变换器电路的发展逐渐高频化

变换器电路的发展的趋势是逐渐高频化,高频率和低频率相比,优点在于许多干扰因素无法到达高频,对电路没有影响。而且低频化电力在开关过程消耗的也比高频化电力消耗的多。

电流控制技术的发展

电流控制技术的发展主要体现在将定子电流的磁场分开,将各磁场加以控制。但是这种控制技术的发展离不开坐标变化的发展,这种技术的发展加强了电流控制技术的管理,这是一种新颖的管理手段,不仅其结构较为简单,且手段较为直接,是一种有效的动态交流方法。

通用变电器的大量使用

所谓通用变电器指的是中小功率在400kVA以下的变频器。当前使用的较为普遍的是没有跳闸的变频器,通用变电器使得自动化控制更为简单,易于操作,因为如果在整个电力系统中采用通用变电器,无论是计算机网络的总体控制,还是各线路数据的管理、控制、处理等阶段与传统使用的变电器相比较都要容易。

4、结语

综上所述,电气自动化技术的发展对于电力系统是非常关键的。电力系统是一个较为复杂的系统,光靠人为的操作是不足够的。而自动化技术可以简化电力系统,在控制,操作,和处理问题时就变的容易。使用自动化可以减小人们的劳动时间,反应问题的时间也短,降低损失。而对自动化技术而言,最重要的就是计算机的使用,信息技术是否发达决定着计算机的灵敏程度,计算机的灵敏度越高,自动化就越快,电气系统的发展才会更顺利。虽然电气自动化技术在我国的电力使用中还不是很成熟,但是在我国科研人员的努力下,就会不断的将这门技术发展。

参考文献

篇(11)

当前电气自动化的系统构成主要技术支撑点仍然是微软的Inter-netExplore、WindowsNT,这些技术拥有非常标准的执行语言以及相应的操作规范,在该项技术发展的过程中逐步建立了标准的平台。由于电气自动化系统越来越多的得到广泛的使用,该系统也被越来越多的企事业单位采用,因此随着科技的飞速发展,电气自动化系统的维护过程也变的越来越简单方便,系统的操作界面也得到了极大的改善。

1.2分布式控制应用

分布式控制系统在实际应用中往往被称为分散控制系统,系统可集中进行管理、收集数据和集中控制自动控制系统,同时还可以在生产过程中用数台计算机分别控制多个回路。电气自动化系统的目的就是为了达到对每个运行的组成单元部分进行有效管理和调控,同时还要兼顾好设备与线路之间、设备与设备之间的相互关系,所以分布式控制系统的应用在电气自动化系统中的地位非常重要。

1.3IEC61131标准使编程接口标准化

在IEC61131标准颁布之前的最初阶段每个生产厂家都有自己企业的执行标准,每个厂家的每种元器件不论是使用范围、功能还是型号都有着巨大的区别和不同,因此造成标准互不通用,元器件市场非常混乱,设备之间也不能够相互匹配组合使用,对设备进行统一管理维护也就更是无从谈起。在IEC61131标准颁布之后,这一行业中有了行业执行标准,因此无论是何厂家所生产的元器件均可以以最佳的组合进行匹配,极大的提高了生产效率。

2电气自动化技术在电力系统中的应用

2.1计算机技术在电力系统自动化应用

计算机的出现对人类社会的进步起到了巨大的促进作用,而电力系统中采用计算机控制技术对电力系统的发展也做出了巨大的贡献。计算机技术的发展速度日新月异,其在电力系统中的众多关键环节中都发挥着重要的作用,例如发电、变电、输电以及配电等关键环节。因此也就促进了电力系统的电气自动化技术的飞速发展。

2.2智能电网技术的应用

智能电网技术是指由计算机技术与电力系统自动化技术有机结合而形成的一个面向全局的智能控制技术,它涵盖了输电、变电、配电、用户、发电及调度的每个环节,智能电网技术是一个非常典型的技术。而在计算机技术中被广泛应用的一个技术便是细心管理系统。计算机技术系统纳入了很多稳定控制系统、变电站自动化系统,同时一样的还有诸如调度柔流输电以及自动化系统等。智能电网的最初原形在某种程度上就可以认为是数字化的电网建设,这一前期铺垫过程也可归于为我国建设智能电网所做的预备建设。智能电网的通信技术又是智能电网中比较典型的技术,当然也离不开计算机技术作为技术支撑,需要应用现代最先进的网络通信专业技术,需要拥有可靠性、双向性、实时性等等特点,并且这一系统是完全靠计算机技术而存在的,同时还兼具信息管理的功能。

3电气自动化技术发展趋势

我国虽然现阶段电力系统的电气自动化技术发展迅速,但是与国外相比在我国起步较晚,因此很多技术及研发水平与国外很多方面还存在着巨大的差距。这也就要求我国在借鉴和学习国外电力系统电气自动化技术的同时,还要客观实际的结合我国电力系统的实际情况,不断的研究和开发适合我国国情及发展需求的电气自动化系统。

3.1保护、控制、测量一体化

根据专业分工、人员配置、运行体制角度出发,目前我国的的自动化系统采用较多的是保护相对独立而站内监控收集数据,从而提供详细的分析结果和处理结果。将测量、控制及保护有机的结合在一起可以更加完美的实现设备无重复配置、技术合理性、维护工作量变繁为简及未来快速发展趋势。测量、控制及保护的信息来源全部都是来自于现场,测量和控制一般采集的是电力系统的运行状态等信息,设计要求测量范围较窄,对其精度的要求较高,数值一般在测量额定值左右浮动,保护主要收集一次设备的异常状态故障的信息,测量范围则比较宽,常规定按额定值参考,因此其精度也较低。CPU(总控)单元只接受由当地上位机或远方输出的控制命令,通过规定的校核之后便可直接进行动作到保护回路,这样一来就免去了遥控执行、遥控输出等等步骤,提高了可靠性,也简化了设备。同时这些装置的运行可靠性必须达到要求。这也就要求在设计、运行、制造及管理各个部门之间突破原有专业界限,相互配合从而适应各种变化。

3.2国际标准的应用

经过多年的发展,IED电力自动化方面也得到了长足的进步和被广泛的采用。国际电工委员会制定了IEC61850国际标准,目的是为了使不同厂家所生产的IED设备的信息相互之间可以无障碍操作以及实现信息共享,使得厂站电气电气自动化系统成为可持续开发系统。同时我国为了与国际标准接轨,我国已经展开了基于国际标准的电气电气自动化系统的研发计划,因此我们有理由相信这也是未来自动化系统的主要发展方向。