绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇混凝土结构设计论文范文,希望它们能为您的写作提供参考和启发。
前言
所谓超限高层建筑工程是指超出国家现行规范、规程所规定的适用高度和适用结构类型、体型特别不规则以及有关规范、规程规定应进行抗震专项审查的高层建筑工程。中广大厦是集办公,住宅,商场,餐饮,娱乐为一体的大型高层综合性建筑。包括三栋高层塔楼(A,B,C栋).裙房五层,地下二层。地下一、二层为设备用房,汽车库,地下二层战时为六级人防。地上一~五层为商场。A、B栋塔楼为6~26层蝶形平面的高层住宅,房屋高度89.1米,包括局部突出在内,建筑总高度106.1米。C栋塔楼为6~28层大空间办公室,房屋高度99.6米。包括局部突出在内,建筑总高度118.800米。五层商场总面积为26745平方米,总建筑面积100010平方米。
因房屋总长度远超过钢筋混凝土结构伸缩缝最大间距55米的限值,为此设二道抗震缝将房屋分为三段,形成三个结构单元。即A、B栋高层为大底盘、双塔楼;C栋为独立带裙房的框架剪力墙结构高层建筑;其余为框架结构。建筑抗震设防类别均为乙类,场地类别为Ⅱ类。基础采用钢筋混凝土平板式筏形基础,底板厚度1600mm(住宅部分)、1800mm(办公部分),持力层为强风化砂岩,地基承载力标准值400Kpa,压缩模量Es=12~17Mpa.。本建筑的结构安全等级为一级,设计基准期为50年。本文以A、B栋为论及对象。
1、结构布置特点
A、B栋高层为满足上部住宅建筑的舒适性、规则性要求(即住宅室内无柱角)及下部五层商场大空间的使用要求,采用五层大底盘双塔楼框支剪力墙结构,在五~六层中间利用设备层做转换层,采用梁式转换,转换层设置标高为23米。高宽比为3.22,长宽比为4.13,转换层上下剪切刚度比值γ=1.395。
1、房屋高度超限
A、B栋高层房屋高度为89.1米,超过了《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3-91)中规定的框支剪力墙结构8度区适用高度80米的限值。
2、采用双塔楼联体结构,质量、刚度分布不均匀,竖向不规则。
3、高位转换:
在五~六层之间利用设备层做转换层,标高23米。超过8度区转换层宜控制在3层以下的限制。
4、由于住宅建筑平面的要求,局部存在二次转换。
5、由于商场使用功能的限制,A、B栋塔楼的落地剪力墙数量偏少,且大都布置在商场后部,主体结构与大底盘中心的偏心矩与底盘尺寸之比大于0.2。
6、6~26层住宅部分在剪力墙局部开设角窗。
2、构造措施
经我院多次分析论证,认为其主要不利因素为:框支剪力墙结构在转换层以下,支撑框架与落地剪力墙并存,形成了“支撑框架—剪力墙“体系。此中,支撑框架是一个薄弱环节。这种结构体系,在高位转换时,由于在转换层附近的刚度、内力和传力途径发生突变,易形成薄弱层,对抗震不利。同时,支撑框架柱要直接承担上部传来的重力荷载,直接承担其上剪力墙由于倾覆力矩产生的轴力,要直接承担不可能依靠楼板全部间接传力给落地剪力墙而有一部分直接传来的地震水平剪力。这样使得转换层以下支撑框架柱的内力远大于计算分析结果。对此采取以下措施:
1、在塔楼范围内五层以下框支部分采用钢骨混凝土柱,钢筋混凝土梁混合结构(钢骨混凝土柱共48个)。作为解决高位转换和高度超限的一项重要措施。
2、A、B栋塔楼的裙楼楼屋面板,在塔楼高振型的影响下,承受较大反复作用下的纵向拉压力及横向剪力,受力十分复杂。同时,由于建筑使用功能的要求,在裙楼中部开设大洞以便设置电梯,对楼板削弱较大。针对这一不利因素,在设计中采用了加强开大洞处楼板四周梁的断面及配筋,加大楼板厚度,增设斜筋的措施。
3、由于上部住宅为蝶形平面,在转换层个别部位出现了二次转换梁。根据《高层建筑混凝土结构技术规程》(JGJ3-2002)第10.2.10条的规定:转换层上部的竖向抗侧力构件(墙、柱)宜直接落在转换层的主结构上。当结构竖向布置复杂,框支主梁承托剪力墙并承托转换次梁及其上剪力墙时,应进行应力分析,按应力校核配筋,并加强配筋构造措施。B级高度框支剪力墙高层建筑的结构转换层,不宜采用框支主、次梁方案。针对这一不利因素,我们采取了加强框支主梁的配筋构造措施,并在框支主梁的下部配筋区设置钢梁的措施。
4、在住宅部分开设角窗,削弱了剪力墙结构体系的整体性,对其抗震性能带来了不利影响,改变了剪力墙与框支梁之间的传力方式。针对这一不利因素,我们决定从受力计算和构造措施两方面予以加强处理。
3、计算结果分析
3.1、总体计算结果
1、计算软件:
采用中国建筑科学研究院的PKPM系列中的TAT(多层及高层建筑结构三维分析与设计软件),SATWE(多、高层建筑结构空间有限元分析与设计软件)两种不同程序分别进行对比计算,其总体计算结果接近。下面列出TAT、SATWE的计算结果。地震影响系数采用《建筑抗震设计规范》GBJ11-89中的数值:多遇地震0.16,罕遇地震0.9,阻尼比取0.05
2、设计参数:
地震烈度8度;场地土类别Ⅱ类;抗震等级框架、剪力墙均为一级;楼层自由度数:每个塔楼每层3个自由度(两个平动,一个扭转);地震作用按侧刚分析模型考虑扭转耦连,用18个振型计算,固定端取在±0.000处。
3、结构基本周期:
SATWE结果:T1=1.3611T2=1.3455T3=1.2611
T4=1.1075T5=1.0510T6=1.0458
(仅列出前六个振型)
TAT结果:T1=1.5046T2=1.4899T3=1.3669
T4=1.2368T5=1.1506T6=1.0749
(仅列出前六个振型)
4、地震作用下的底层水平地震剪力系数:
SATWE结果:Qox/G=4.44%Qoy/G=4.35%
TAT结果:Qox/G=4.08%Qoy/G=4.08%
5、地震作用下按弹性方法计算的最大层间位移与层高比值:
SATWE结果:Ux/h=1/2262Uy/h=1/2187
TAT结果:Ux/h=1/1573Uy/h=1/1583
6、地震作用下按弹性方法计算的最大顶点位移与总高比值:
SATWE结果:Ux/H=1/3021Ux/H=1/2649
TAT结果:Ux/H=1/2428Ux/H=1/2373
7、结构振型曲线及时程分析的部分图形
3.2、计算结果分析
根据以上计算结果来看,两种计算结果接近。下面以SATWE程序为主进行分析:
1、自振周期在合理范围之内,结构扭转为主的第一自振周期与平动为主的第一自振周期之比为0.9,满足规范要求。
2、振型曲线光滑符合规律。
3、底层剪重比>3.2%,满足规范要求。
4、最大层间位移和顶点位移<1/1000,满足规范要求。从最大楼层位移曲线可以看出,五层以下较缓,而转换层以上较陡,说明底盘刚度比塔楼刚度小。
5、分析表明,时程分析的最大位移均不超过反应谱法计算的位移值,y向楼层剪力,X、Y向楼层弯矩均不超过反应谱法计算的楼层剪力及楼层弯矩,仅X向楼层剪力TAF-2波大于反应谱法,但三个波的平均值仍小于反映谱法楼层剪力。动力时程分析复核结果表明,不需要调整个楼层构件的内力和断面配筋。
3.3、局部计算及构造处理
1、框支梁:采用SATWE程序中的框支剪力墙有限元分析程序进行计算,并进行应力分析。同时,加强框支梁的配筋构造措施,为避免框支梁钢筋过密,在框支主梁的下部配筋区加设一根580mm高的钢梁。
2、角窗:整体计算时,角窗上部墙体按双悬臂梁进行计算。配筋设计时同时满足剪力墙连梁的要求。同时,加强角窗周围的暗柱及连梁的配筋,边墙剪力墙加墙垛,角窗部分楼板加斜筋。
3、钢骨柱的计算:首先,确定钢骨的截面形式,预定钢骨柱的钢骨含钢率,带入SATWE程序中进行整体计算,并根据计算结果调整含钢率。有关钢骨柱的构造及具体做法见下面的详细介绍。
4、钢骨混凝土结构设计前的准备工作
采用钢骨混凝土是解决超限问题的重大技术措施,也是本次设计的重要组成部分,在我省也是首次采用。在本次设计中,钢骨柱采用的是实腹式十字型钢,钢骨梁采用的是工字型钢。在钢骨混凝土结构设计中需要注意的几个问题如下:
4.1、钢骨的含钢率:
关于钢骨混凝土构件的最小和最大含钢率,目前没有统一的认识,但当钢骨含钢率小于2%时,可以采用钢筋混凝土构件,而没有必要采用钢骨混凝土构件。当钢骨含钢率太大时,钢骨与混凝土不能有效地共同工作,混凝土的作用不能完全发挥,且混凝土浇注施工有困难。因此,在冶金部行业标准《钢骨混凝土结构设计规程》YB9082-97中将钢骨含钢率定为2%~15%。一般说来,较为合理的含钢率为5%~8%。另在建设部行业标准《型钢混凝土组合结构技术规程》JGJ138-2001中定为4%~10%。在中广大厦钢骨混凝土柱的设计中,考虑到建设单位尽量节约钢材,节省资金的要求,经专家委员会认可,钢骨柱的含钢率确定为3.5%。
4.2、钢骨的宽厚比:
钢板的厚度不宜小于6mm,一般为翼缘板20mm以上,腹板16mm以上,但当钢板厚度大于36mm时,钢材的厚度方向的断面收缩率应符合现行国家标准《厚度方向性能钢板》GB5313中的Z15级的规定。这是因为厚度较大的钢板在轧制过程中存在各向异性,由于在焊缝附近常形成约束,焊接时容易引起层状撕裂,焊接质量不易保证。钢骨的宽厚比应满足规范的要求。
4.3、钢骨的混凝土保护层厚度:
根据规范规定,对钢骨柱,混凝土最小保护层厚度不宜小于120mm,对钢骨梁则不宜小于100mm。
4.4、要重视钢骨混凝土柱与钢筋混凝土梁在构造连接上的配合协调问题。
5、钢骨的制作与构造措施
5.1、钢骨的制作
钢骨的制作必须采用机械加工,并宜由钢结构制作厂家承担。型钢的切割、焊接、运输、吊装、探伤检验应符合现行国家标准《钢结构工程施工及验收规范》GB50205、《建筑钢结构焊接技术规程》JGJ81、《钢结构工程质量检验评定标准》GB50221的规定,钢材、焊接材料、螺栓等应有质量证明书,质量应符合国家有关规范的规定。焊接前应将构件焊接面除油、除锈,焊工应持证上岗。施工中应确保施工现场型钢柱拼接和梁柱节点连接的焊接质量,型钢钢板的制孔,应采用工厂车床制孔,严禁现场用氧气切割开孔,在钢骨制作完成后,建设单位不可随意变更,以免引起孔位改变造成施工困难。
5.2、钢骨混凝土中设置抗剪拴钉的要求
钢骨混凝土与钢筋混凝土结构的显著区别之一是型钢与混凝土的粘结力远远小于钢筋与混凝土的粘结力。根据国内外的试验,大约只相当于光面钢筋粘结力的45%。因此,在钢筋混凝土结构中认为钢筋与混凝土是共同工作的,直至构件破坏。而在钢骨混凝土中,由于粘结滑移的存在,将影响到构件的破坏形态、计算假定、构件承载能力及刚度、裂缝。通常可用两种方法解决,一是在构件上另设剪切连接件(栓钉),并按照计算确定其数量,即滑移面上的剪力全由剪切连接件承担,称为完全剪力连接。这样可以认为型钢与混凝土完全共同工作。另一种方法是在计算中考虑粘结滑移对承载力的影响,同时在型钢的一定部位:如(1)柱脚及柱脚向上一层范围内;(2)与框架梁连接的牛腿的上、下翼缘处;(3)结构过渡层范围内的钢骨翼缘处加设抗剪栓钉作为构造要求。构件中设置的栓钉应符合国家现行标准《园柱头焊钉》GB10433的规定,栓钉直径一般为Ø19,长度不宜小于4倍栓钉直径,间距不宜小于6倍栓钉直径,且不宜大于200mm。并采用特制的设钉枪进行焊接,焊接质量应满足规范要求。
5.3、钢骨的拼接
钢骨柱的长度应根据钢材的生产和运输长度限制及建筑物层高综合考虑,一般每三层为一根,其工地拼接接头宜设于框架梁顶面以上1~3m处。钢骨柱的工地拼接一般有三种形式:(1)全焊接连接;(2)全螺栓连接;(3)栓、焊混合连接。设计施工中多采用第三种形式,即钢骨柱翼缘采用全溶透的剖口对接焊缝连接,腹板采用摩擦型高强度螺栓连接。中广大厦设计中的钢骨工地拼接采用第三种形式。
5.4、钢骨柱的柱脚构造
1、钢骨柱的柱脚分为埋入式和非埋入式两种,在抗震区宜采用埋入式柱脚,柱脚钢骨的混凝土最小保护层厚度为:中间柱:不得小于180mm,边柱和角柱:不得小于250mm。
2、钢骨柱埋入式柱脚的埋入深度不应小于3倍型钢柱截面高度,在注脚部位和柱脚向上一层的范围内,钢骨柱翼缘外侧设置栓钉,栓钉直径不小于Ø19,间距不大于200mm,且栓钉至翼缘板边缘的距离大于50mm。
3、在中广大厦的钢骨设计中,由于建筑物嵌固端取在±0.000米处,为保证地下一层汽车库的使用功能,经多次反复研究、讨论,最终确定了底层框架梁水平、垂直加腋,钢骨伸入框架柱内长度为1.5m,下部与钢筋混凝土柱柱心钢筋焊接。在施工过程中,施工单位提出,钢骨注脚放在半层柱上施工有困难,施工质量无法保证。后经施工单位、设计单位、制作单位及建设单位多次研究,决定在钢骨柱柱脚底部另设格构式支架,将支架一延伸至地下一层底板(支架必须保证拉力传递),比上述方法容易施工,加快了施工进度。经实践证明在今后的设计中若遇到同类问题,宜将钢骨直接伸入地下一层,这样即满足了埋入式柱脚的埋深问题,又取消了底层梁加腋的施工工序、支架的制作安装工序,节省了时间,施工质量较易保证。
5.5、钢骨柱的节点构造
框架梁、柱节点核心区是结构受力的关键部位,设计时应保证传力明确,安全可靠,施工方便,节点核心区不允许有过大的变形。
在钢骨混凝土结构中,梁、柱节点包括以下几种形式:(1)钢骨混凝土梁—钢骨混凝土柱的连接;(2)钢梁—钢骨混凝土柱的连接;(3)钢筋混凝土梁—钢骨混凝土柱的连接。在中广大厦设计中我们遇到的是第三种情况。
规范规定,节点区钢骨部分的连接构造应与钢结构的节点连接相一致,在柱钢骨的钢牛腿翼缘水平位置处应设置加劲肋,其构造应便于混凝土浇灌,并保证混凝土密实。柱中钢骨和主筋的布置应为梁中主筋贯穿留出通道,梁中主筋不应穿过钢骨翼缘,也不得与柱中钢骨直接焊接,钢骨腹板部分设置钢筋贯穿孔时,截面缺损率不宜超过腹板面积的25%。
根据规范要求,在中广大厦钢骨设计中,我们采用的方法是:在钢筋混凝土梁与钢骨柱连接的梁端,设置一段工字型钢梁(牛腿),钢梁的高度由钢筋混凝土梁高决定,一般为钢筋混凝土梁高的0.7倍以上,钢筋混凝土梁内钢筋的一部分与钢牛腿焊接或搭接,钢牛腿的长度应满足梁内钢筋内力传递要求。因钢骨柱主筋穿过钢牛腿翼缘,钢牛腿强度有所削弱,因此梁内钢筋焊接或搭接长度应从牛腿根部起算。在实际施工中,由于钢牛腿长度较长,运输有困难,钢牛腿的长度均取满足梁内主筋焊接长度要求。在钢牛腿的上、下翼缘上设置栓钉,栓钉的直径为Ø19,间距200mm,从框架梁梁端至钢梁(牛腿)端部以外2倍梁高范围内为框架梁端箍筋加密区,梁内主筋保证有不少于1/3主筋面积穿过钢骨连续配置。
为方便钢骨的工厂化制作,钢骨混凝土结构与普通钢筋混凝土结构设计中不同且难度最大的是:
(1)需确定钢骨柱中每根钢筋的准确位置;
(2)根据钢骨这种型钢翼缘的宽度确定框架梁的宽度;
(3)确定框架梁中每根钢筋的位置;
(4)根据柱梁钢筋的位置确定钢骨穿孔的位置;
(5)钢骨中穿钢筋的孔径由钢筋直径确定,一般比钢筋直径大4~6mm;
(6),钢骨中纵横两方向穿钢筋孔的位置至少应错开一个孔径。
5.6、钢骨的柱顶构造
根据规范规定,但结构下部采用钢骨混凝土柱、上部采用钢筋混凝土柱时,其间应设置过渡层。在本次设计中,过渡层设置在转换层中,柱顶加设一块25厚柱顶锚固板。但在实际施工过程中,转换大梁配筋较多,柱顶锚固板直接影响转换大梁钢筋的锚固,经多方研究,取消了柱顶锚固板,为转换大梁的顺利施工创造了条件。
6、经济比较
未采用钢骨混凝土柱前,框支柱截面尺寸为1300X1300mm,上部住宅为6~25层。采用钢骨混凝土柱后,框支柱截面尺寸为1100X1100mm,上部住宅为6~26层,框支柱截面面积减少了30%左右,住宅面积增加了1860平方米。
在整个建筑中,共使用型钢650吨,型钢的材料、制作、安装综合预算价约为6500元/吨,减去缩小柱截面及减少钢筋面积的费用后,增加费用257.63万元,柱截面缩小后商场部分增加使用面积115.2平方米,按20000元/平方米计算,增加收益230.4万元。增加住宅面积增加收益372万元(1860平方米,按2000元/平方米计算),变更后增加净收益352.77万元。
2我国目前规范对钢筋混凝土排架设计的不足
在钢筋混凝土排架结构的抗震设计方面,GB50191—2012构筑抗震设计规范和GB50011—2010建筑抗震设计规范指导规范不同地域、不同排架结构的抗震设计。本文结合《构筑抗震设计规范》的具体条文,阐述了目前规范中钢筋混凝土排架结构中设计的不足和缺陷。有关排架结构上部屋架结构计算的规定有:
1)《构筑抗震设计规范》6.2.19条规定,针对Ⅲ,Ⅳ类场地和8度、9度时,应该考虑屋架下弦的拉压效应对结构的影响并核算屋架承载力;
2)《构筑抗震设计规范》6.2.22条规定,针对Ⅲ,Ⅳ类场地和8度、9度时,应验算变形产生的附加内力。上述两点叙述,规范使用“应”字,因此应考虑建立合适的屋架和支撑的杆系模型,否则无法得出上述内力值。在钢结构排架设计方面,钢排架结构施工进度快,造价低,但以后要经常维护保养。框架结构施工复杂,造价高,后期维护工作量低。在工程建设中,钢架也就是在排架柱方向通过设置联系梁或桁架的方式使排架柱方向形成可以抵抗纵向力下变形的钢框架(局部开间或连续开间),具体做法可采用实腹联系梁或格构桁架———根据可设置高度选用,采用门式柱间支撑,可以留出工艺空间,还能对柱平面外予以加强。但我国处于高度使用水泥的情况,环境污染日益严重,从节能减排方面讲,钢排架结构应作为首选,但规范未给具体说明。
2加建工程的现状
我国加建设计起步比较晚,与世界先进国家之间存在着一定的差距。随着社会的不断发展与进步,科学技术水平的不断提高,加建工程得到了很大的发展空间,并且在我国各地都开展了一些旧房挖潜、改造、加建等工程,并且在上海、重庆、广州、贵阳、昆明等地都将旧房改造工程列入到了城市规划项目当中,颁布了相应的文件与规章制度。由此可以看出,我国加建工程得到了很大的发展空间。1)由以往的单个房屋加建发展为成片住宅区的加建工程;2)各种新材料、新工艺应用到了加建工程当中;3)轻钢结构加建技术得到了深入的分析与研究,并且在加建工程中得到了广泛的应用。
3钢结构加建的优缺点
开展钢结构加建工程的时候,具有以下优点:1)节约土地,提高土地面积的使用效率,缩短建设工期;2)因为钢结构的自重比较轻,因此,加建部分的荷载作用对原结构的影响非常小,不需要单独对地基进行加固处理,这样不仅可以减少工作量,还可以缩短工期,节省部分施工成本;3)钢结构具有较强的多样性,在进行加建的时候,可以充分发挥空间的优势,降低对原建筑结构的影响;4)钢结构加建的适用范围比较广,不仅可以对房屋建筑进行加建,还可以对工业建筑进行加建,因此,在建筑加建工程中得到了广泛的应用。当然,其也存在着一些缺点:1)在进行钢结构加建之后,其整体建筑结构就会呈现一种上柔下刚、上轻下重的质量与刚度分布,导致建筑整体性较差,缺乏一定的抗震性能;2)钢结构耐久性较差,在进行加建的时候,需要进行防腐、防火等措施的考虑,这样就会增加一些建筑材料的使用,此时不仅会涉及到原材料的质量问题,还要考虑原材料的成本问题,因此,存在着一定的不足。
4混凝土框架顶层加建钢结构设计
1)楼板设计。在设计楼板的时候,现阶段一般选用的都是现浇灌技术。目前,现浇灌技术是楼板设计中最为常用与有效的方法,在采用此种方式进行钢结构施工的时候,可以有效提高建筑结构整体的稳定性、牢固性与安全性。同时,在钢结构施工中,此种方法可以对出现的问题进行灵活的处理与调整,根据实际情况,提出有效的解决办法,保证楼板设计与施工的顺利进行,确保建筑工程的整体施工质量。2)梁设计。在进行梁设计的时候,一定要结合国际设计标准与实际设计情况,制定合理、科学的钢构设计要求:首先,在进行梁设计的时候,一定要保证其截面宽度不会低于200mm,同时宽度与高度之间的比值不要超过4。其次,在梁设计中必然要使用一些钢筋,对其使用钢筋也要进行一定的规定,保证梁结构具有一定的硬度与抗震性能,进而确保建筑工程整体结构的牢固性与安全性。最后,在设计扁梁的时候,一定要保证梁中线和柱中线重合,采用双向布置结构。同时对扁梁进行严格的计算与设计,保证其结构的合理性与科学性,增强建筑工程整体结构的稳定性。3)柱设计。在进行柱设计的时候,一定要保证其截面符合设计标准:通常情况下,柱截面宽度与高度均不可低于300mm,柱直径一定要超过350mm,截面短边与长边的比值不可以超过3,柱纵向钢筋配比不可以低于0.2%等。在设计柱的时候,一定要严格遵照以上要求,这样才可以保证柱设计的合理性与科学性,同时增强钢结构的稳定性,保证建筑工程施工的顺利完成。4)基础承载重量构件设计。在进行基础承载重量构件设计的时候,一定要综合考虑各方面的因素,结合建筑负荷、结构形式、施工状况等,加强基础设计的合理性与科学性,使其达到建筑工程整体设计要求。针对设计不合理、不符合要求的部分,一定要进行相应的修改,保证其设计的合理性与科学性,这样才可以保证建筑工程整体的施工质量。
2建筑结构混凝土设计的主要原则
2.1把握侧向力在混凝土结构设计过程中,侧向力对建筑物结构的形变、内力有直接影响,同时与建筑项目的工程造价密切相关。侧向力主要是指水平地震作用以及风的作用,不管是高层还是低层建筑,都需要承受自重、雪载等垂直荷载的作用,并且需要承受风力、地震等水平力。对于低层混凝土结构,其在水平荷载的影响下位移以及内力较小,这个时候几乎可以忽略不计。而在多层建筑结构中,由于受到的水平荷载作用逐渐增强,这个时候水平荷载等就成为最重要的影响因素之一,需要作为主要控制点。
2.2要求较好的延性与低层建筑相比,高层建筑的内部结构更为柔和,在地震等水平力的作用下变形更大。建筑物的抗震能力与建筑结构的变形能力以及承载力这两个因素密切相关。在进入塑形阶段后,为了保障建筑物具有较好的变形能力,避免高层建筑在大的地震中倒塌,就需要在符合混凝土结构刚性的前提下,运用科学合理的混凝土设计理念,并通过完善的构造措施,来提高整个建筑结构的变形能力,尤其需要注意建筑物的薄弱部位,保障整个结构有很好的延性。因此,在混凝土结构设计时应该综合考虑多方面的因素,保障设计的科学合理,让其具有良好的强度以及延性。
2.3要求合适的刚度目前高层建筑越来越多,随着高度的增加建筑物的侧向位移也将逐渐增加。因此,在高层建筑的混凝土结构设计过程中,不仅需要保障混凝土结构良好的强度,也应该保障其具有合适的刚度,混凝土结构的自振频率等应该符合要求,在水平力的作用下结构的层位移也应该控制在适宜的范围内。
2.4整体性原则建筑结构混凝土的总体设计原则,就是要求建筑物的每个组成部分形成一个整体,并对整体的结构以及功能等进行全面分析研究,保障整体与部分之间相互制约、相互依存,进而实现建筑结构系统的正常运作。
3建筑结构混凝土设计的关键点
3.1混凝土结构的耐久性设计混凝土自身的质量与混凝土结构的耐久性有直接关系,在设计过程中改变混凝土的密度,并对混凝土的渗透压等进行调节,就可以有效减缓混凝土被侵蚀的速度,同时混凝土的耐久性与混凝土的水灰比、强度等级等因素也有关系。在混凝土的实际应用中,氯离子对其中的钢材具有很强的腐蚀性,因此应该根据工程所处环境的不同,注意控制环境中氯离子的浓度。同时由于混凝土中含有大量碱性骨料,如果建筑工程所处的环境比较潮湿,混凝土结构内部的活性离子与碱会发生反应,这样容易导致混凝土出现裂缝,进而加快混凝土被侵蚀的速度。如果混凝土出现的裂缝较大,在裂缝内部也可能出现腐蚀性物质,并导致混凝土中的钢材被腐蚀。上述这些因素均会导致钢筋的腐蚀速率加快,导致混凝土的保护层裂开并剥落,出现锈蚀后钢筋的接触面积会逐渐减少,这也导致混凝土结构的承载力逐渐降低。另一方面钢筋出现锈蚀后,其抗滑能力会逐渐下降,也给建筑结构埋下了安全隐患。因此,在建筑结构混凝土设计过程中需要综合考虑承载力问题,避免出现混凝土的脆性破坏。由此可见,对混凝土的耐久性进行深入研究尤为重要。
3.2混凝土结构的抗震性设计发生地震后建筑物的两个主体力量间将发生分配,因此在混凝土设计时需要考虑到建筑物主体结构在不同时期刚度的变化情况,对于钢筋混凝土材料,设计时可以选择混凝土剪力墙作为建筑的主体结构,并将钢筋混凝土作为建筑物的一个主要抗侧应力结构。如果出现往复式地震,处于塑性阶段的建筑物会出现墙体裂缝,这个时候结构的刚度将迅速下降,而刚度出现退化会导致框架的剪应力增加。一般来说,建筑物钢筋混凝土框架结构的弹性形变较大,比混凝土墙体的弹性好的多。在遇到较大的地震时,尽管建筑物的抗震能力比塑性阶段低,其中的钢筋混凝土框架会吸收大部分弯矩与水平剪应力。因此,为了保障建筑结构的基本“裂缝”需求,同时把握钢筋混凝土框架的水平部分,有效提高建筑物地基的承载能力,就需要应用相应的工艺措施让混凝土结构具有较高的变形能力,以此保障建筑物具有较好的抗震性。
3.3遵循强柱弱梁的理念在混凝土结构设计时遵循强柱弱梁的理念,在出现地震作用时,如果只是梁被破坏,并不会影响建筑物的整体运作,可能只是部分结构失去工作能力,但如果柱被破坏,那么整个建筑物将会倒塌。因此,柱的作用是十分关键的。近年来,我国发生了多处地震,设计人员应该注意对建筑结构的抗震设计。首先,在设计过程中对柱的轴压比加强控制。根据相关工程的统计数据,柱的轴压比一般需要控制在0.9%以下。同时需要加强柱截面、边柱的强度,并对柱进行加密箍筋设计,保障配筋率在1%以上。
中图分类号:TU37文献标识码:A文章编号:
引言
建筑的功能越来越多样化,使得每个建筑的结构设计都有自己独特的要求及特点,这就要求设计人员不可生搬硬套,应仔细分析,从概念设计做起,选择一个合理的结构方案并进行结构布置,再对结构进行计算分析。切不可一拿到建筑图,就直接上机利用计算程序进行设计,完全相信计算程序。大致而言,钢筋混凝土结构设计应包括下列内容:1)结构方案设计,包括结构选型、构件布置及传力途径;2)作用及作用效应分析;3)结构的极限状态设计;4)结构及构件的构造、连接措施;5)耐久性及施工的要求;6)满足特殊要求结构的专门性能设计。本文就上述6大设计内容分别进行阐述,结合实际结构设计中经常遇到的问题进行叙述,并提出解决方案。
1 结构方案设计及体系的选择
目前,结构设计中常用的结构体系有砌体结构、框架结构、框架—剪力墙结构、剪力墙结构、框架—核心筒结构、筒中筒结构等。
合理经济的结构体系的选择,是一个多因素的复杂的系统工程,应从建筑、结构、施工技术条件、建材、经济、机电等各专业综合考虑。
从结构专业设计的角度出发,主要考虑以下两个方面的问题:
(1)尽可能满足建筑功能要求,一般商场、车站、展览馆、餐厅、停车库等多层房屋用框架结构较多;高层住宅、公寓、宾馆等用剪力墙结构较多;酒店、写字楼、教学楼、科研楼、病房楼等以及综合性公共建筑用框架—剪力墙结构、框架—核心筒结构较多;而超高写字楼或办公建筑也经常采用到筒中筒结构体系。
(2)按结构设计要求,低层、多层建筑可选用砌体结构或钢筋混凝土结构,高层建筑可选用钢筋混凝土结构或混合结构或钢结构。对钢筋混凝土结构,一般多、高层建筑结构可根据房屋高度和高宽比、抗震设防类别、抗震设防烈度、场地类别、结构材料和施工技术条件等因素初步选择结构体系。
无论采用何种结构体系,都应使结构具有合理的刚度和承载能力,避免产生软弱层或薄弱层,保证结构的稳定和抗倾覆能力;应使结构具有多道防线,提高结构和构件的延性,增强其抗震能力。
2 荷载作用及分析
作用是指能使结构产生效应(包括内力、变形、应力、应变、裂缝等)各种原因的总称。其中包括施加在结构的集中力或分布力所引起的直接作用和能够引起结构外加变形或约束变形的间接作用。结构上的作用与结构设计所采用的荷载有相同点也有区别,在这里不再详述,主要对荷载作用进行分类和分析。
荷载在设计上可将其分成三个类别:
(1)永久荷载
在结构使用年限内,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载。例如结构自重、土压力、预应力等。
(2)可变荷载
在结构使用年限内,其值随时间变化,且其变化与平均值相比不可以忽略不计的荷载。例如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载等。
(3)偶然荷载
在结构使用年限内不一定出现,一旦出现其值很大且持续时间很短的荷载。例如爆炸力、撞击力、龙卷风荷载等。
在结构设计中,荷载的正确取值关系到结构的安全性、经济性等问题。在结构复核过程中,经常发现设计人员荷载取值有误或漏输荷载,或人为放大荷载,或在梁柱及基础设计时荷载折减系数取值有误等问题,所以结构设计过程中,应对荷载作用进行分类,正确进行荷载取值才能使建筑结构设计做到安全、经济、合理。
3 结构的极限状态及结构计算与分析中常见问题
混凝土结构的极限状态包括承载能力极限状态和正常使用极限状态。承载能力极限状态计算主要包括:(1)结构构件的承载力计算;(2)直接承受重复荷载的构件应进行疲劳验算;(3)有抗震设防要求时,应进行抗震承载力计算;(4)必要时尚应进行结构的倾覆、滑移、漂浮验算等。正常使用极限状态验算主要包括变形验算、裂缝验算及楼板舒适度验算等。
在结构计算与分析阶段,如何准确、高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。
3.1结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等。但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。
3.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。
3.3振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。
3.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。新《高规》JGJ3-2010第10.6.3-4条明确规定,要求按整体和分塔楼计算模型分别验算整体结构和各塔楼扭转为主的第一周期与平动为主的第一周期的比值应符合规范要求。
4 结构及构件的构造、连接措施
4.1 混凝土结构构件应控制截面尺寸和受力钢筋、箍筋的设置,防止剪切破坏先于弯曲破坏、混凝土的压溃先于钢筋的屈服、钢筋的锚固粘结破坏先于钢筋破坏。
4.2 多、高层的混凝土楼、屋盖宜优先采用现浇混凝土板。
4.3 结构各构件之间的连接,应符合下列要求:
(1)连接部位的承载力应保证被连接构件之间的传力性能;
(2)当混凝土构件与其他材料构件连接时,应采取可靠的措施;
(3)构件节点的破坏,不应先于其连接的破坏;
(4)预埋件的锚固破坏,不应先于连接件。
5 耐久性设计常见问题及处理
目前对混凝土结构耐久性的要求主要有两部规范,分别是《混凝土结构设计规范》(GB50010-2010)和《混凝土结构耐久性设计规范》(GB/T50476-2008),两者规定有一定区别,在结构设计中,经常令设计人员无所适从,不知以何者为准。笔者认为,前者属于国家标准,而后者为国家推荐性标准,故在耐久性设计宜按《混凝土结构设计规范》(GB50010-2010)采用。
6 满足特殊要求结构的专门性能设计
目前我国建筑结构高度越来越高,复杂及不规则程度越来越多,超限性能化设计已越来越普遍。对此,《建筑抗震设计规范》GB50011-2010及《高层建筑混凝土结构技术规程》JGJ3-2010均有相应章节对性能化设计做了较为详细的规定。
在结构设计过程中,选用性能目标成为性能化设计中重点内容,关系到建筑结构达到抗震三水准的设防要求和经济性、合理性。
7 结语
本文中,通过对钢筋混凝土结构设计的要点和常遇问题的分析及处理的阐述,分别指出结构设计特别需要注意的地方,希望有助于读者了解混凝土结构设计的步骤,正确把握规范条文,顺利设计,将建筑结构设计得安全、经济、合理。
参考文献:
[1]中华人民共和国国家标准. 建筑结构荷载规范(GB50009-2012).北京:中国建筑工业出版社,2012
中图分类号:TU375文献标识码:A文章编号:
引言:
随着我国经济的飞速发展,城市面貌日新月异,一栋栋高楼大厦拔地而起。随之建筑功能的不断丰富,新颖的造型,致使工程设计越来越复杂,但目前的设计周期普遍偏短,也使设计文件中普遍存在某些质量问题,应该引起我们的重视。
1.地基与基础设计过程中存在的问题
1.1柱下独立基础带梁板式的地下室底板设计中,地下室底板设计中,容易忽视因建筑物沉降所引起的附加应力的影响。因为实际上整个地下室底板与柱下独立基础在上部荷载作用下,将会一起发生沉降变形,共同受力,如未考虑因此产生的附加应力,对底板而言是偏于不安全的,有可能会导致地下室底板承载能力不足而开裂。尤其对于采用天然地基的情况时,其影响则更为显著。对于总沉降量较小的工程,可考虑在地下室底板与持力层之间采取褥垫处理措施,当然,是否采用,还要综合考虑其他因素。另外,对于地下水位季节性变化较大的地区,应考虑高低两种不同水位对地下室底板的不同影响,求出包络图,再做配筋设计。
1.2天然地基锥体独立基础设计问题,有的基础设计锥体斜面坡度大于1:3,该锥体部分砼很难振捣密实,现场施工往往是砼自然堆上,采用铲子或抹灰刀拍捣成形,其锥体部分的砼很难达到设计强度要求。因此建议优先采用阶梯形独立基础,利于施工,才能更好地保证施工质量。
1.3柱下独立基础之间的拉梁,如同时又是首层维护墙的承重梁的时候,不应该再简单地按拉梁进行设计。而且在考虑荷载时,要考虑梁上皮以上土扩散角之内的土重。
1.4对于有地下室的建筑,当地下水位较高时,在室外地坪之下的结构部分,外轮廓形状应尽量简洁,这样有利于建筑防水的施工。尤其对于柱下承台的形式,更为明显。此时,由于柱下承台的影响,基槽地模形状很复杂,有很多的阴阳角和放坡,即加大了防水施工的难度,有加长了施工时间,都不利于保证质量,并且还增加工程造价。对于这种情况下,我建议大家考虑反承台法,即统一地下室底板和承台的下皮标高相同,承台需要加厚部分向上作,然后地下室内部作滤水层和覆土等地面做法。这种做法的优点是,基槽地模形状很简单,方便施工,利于施工质量得保证,同时也缩短了施工时间。并且,内部的覆土重量也平衡掉了部分作用在底板上的水浮力,减小配筋,这种自相平衡的思路最科学。同时也提高了建筑物的抗倾覆能力。
1.5地下室底板和外墙配筋计算时,往往假设条件与实际情况不符。例如地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理分析,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋砼内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱)之间外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。
2.结构计算与分析
在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。
2.1结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。
2.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。
2.3振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。
2.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。
2.5非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。
3.梁侧纵向钢筋的配置
3.1由于目前电算程序在结构构件分析时尚不能考虑现浇楼板对梁扭转的影响,而是由程序给出一个梁扭距折减系数,合理选用梁扭距折减系数对控制梁的扭距是很重要的,一般情况可取0.4-0.6。
3.2对跨度较大的次梁支承于主梁上时,次梁的支承端会对主梁产生较大的扭距,这时可在电算程序中指定该次梁的端支座为绞接。这种方法对解决梁在受剪扭情况下的超筋超限是非常有效的。
3.3有时虽然做了以上调整,但梁的抗扭纵筋面积仍然较大。此时应将抗扭纵筋面积分摊一部分到梁的四根角筋,其余部分面积按梁侧腰筋设置,梁腰筋直径仍以Φ12~Φ16为宜。
4.混凝土施工方面出现的问题
为满足结构承载的要求,节约工程造价,通常在结构设计中对上、下柱或柱与粱扳的混凝土选择不同强度等级,然而未对结构的点区域的混凝土强度作出明确说明。按施工规范要求,当梁柱的混凝土强度等级不同时,节点处应按强柱弱梁的原则,节点区域的混凝土强度等级应与柱相同。采用强度较高的混凝土,在梁柱交汇处侧面设垂直施工缝是不符合规范要求的,混凝土浇筑时,应按图在梁柱接头周边用钢网或小板定位,并先浇筑梁柱接头的混凝土,随后浇筑梁板混凝土,这样既不便于施工,其质量也得不到保证。因此,在结构设计时应作综合考虑,根据实际情况将柱与梁板选择相同的混凝土强度等级,以方便施工。
5.结语
对于建筑钢筋混凝土框架结构的施工,有关规范虽已有详细规定,但仍有若干问题没有明确具体作法。这些问题在规范条文中没有具体规定,也往往易被忽视,给工程质量留下隐患。
参考文献:
1 前言
20世纪90年代以后,随着我国钢材量的不断提高,钢一混凝土组合结构在建筑行业得到了迅速发展,随着建筑造型和建筑功能要求日趋多样化,无论是工业建筑还是民用建筑,在结构设计中遇到的各种难题也日益增多,因而作为一个结构设计者需要在遵循各种规范下大胆灵活的解决一些结构方案上的难点、重点。
2 框架结构方案构思时应考虑以下几点
2.1 结构的传力路线应简捷明了。在荷载作用下,结构的传力路线越短、越直接,结构的工作效能越高,'所耗费的建材也就越少。
2.2 从力学观点看,在民用和公共建筑的平面布局中,应当尽量使柱网按开间等跨和进深等距(或近似于等距)布置,这样可以相应减少边跨柱距,也可以充分利用连续梁的受力特点以减少结构中的弯距,可以使各跨梁截面趋于一致,而提高结构的整体刚度。
2.3 结构方案还应结合工程地质情况和建筑功能要求综合考虑。
3 应从概念设计上着手注意几个问题
3.1 关于强柱弱梁节点。这是为了实现在罕遇地震作用下,让梁端形成塑形铰,柱端处于非弹性工作状态,而没有屈服,但节点还处于弹性工作阶段。强柱弱梁措施的强弱,也就是相对于梁端截面实际抗弯能力而言柱端截面抗弯能力增强幅度的大小,是决定由强震引起柱端截面屈服后塑性转动能否不超过其塑性转动能力,而且不致形成"层侧移机构",从而使柱不被压溃的关键控制措施。柱强于梁的幅度大小取决于梁端纵筋不可避免的构造超配程度的大小,以及结构在梁、柱端塑性铰逐步形成过程中的塑性内力重分布和动力特征的相应变化。因此,当建筑许可时,尽可能将柱的截面尺寸做得大些,使柱的线刚度与梁的线刚度的比值尽可能大于1,并控制柱的轴压比满足规范要求,以增加延性。验算截面承载力时,人为地将柱的设计弯距按强柱弱梁原则调整放大,加强柱的配筋构造。梁端纵向受拉钢筋的配筋不得过高,以免在罕遇地震中进入屈服阶段不能形成塑性铰或塑性铰转移到立柱上。注意节点构造,让塑性铰向梁跨内移。
3.2 关于"强剪弱弯"措施:强剪弱弯是保证构件延性,防止脆性破坏的重要原则,它要求人为加大各承重构件相对于其抗弯能力的抗剪承载力,使这些部位在结构经历罕遇地震的过程中以足够的保证率不出现脆性剪切失效。对于框架结构中的框架梁应注意抗剪验算和构造,使其满足相关规范要求。
3.3 注意构造措施。
3.3.1 对于大跨度柱网的框架结构,在楼梯间处的框架柱由于楼梯平台梁与其相连,使得楼梯问处的柱可能成为短柱,应对柱箍筋全长加密。这一点,在设计中容易被忽视,应引起重视。
3.3.2 对框架结构外立面为带形窗时,因设置连续的窗过梁,使外框架柱可能成为短柱,应注意加强构造措施。
3.3.3 对于框架结构长度略超过规范限值,建筑功能需要不允许留缝时,为减少有害裂缝(规范规定裂缝宽度小于0.3mm),建议采用补偿混凝土浇筑。采用细而密的双向配筋,构造间距宜小于150mm,对屋面宜设置后浇带,后浇带处按构造措施宜适当加强。
3.3.4其它构造措施限于篇幅,这里不再赘述,请详见新规范。
4 结构计算方面的问题
4.1 计算简图的处理
结构计算中,计算简图选取的正确与否,直接影响到计算结果的准确性,其中比较典型的是基础梁的处理。一般情况下,基础梁设置在基础高度范围内,作为基础的一部分,此时结构的底层计算高度应取基础顶面至一层楼板顶面的高度。基础梁仅考虑承担上部墙体荷载,构造满足普通梁的要求即可。当按规范要求需设置基础拉梁时,其断面和配筋可按构造设计,截面高度取柱中心距的1/12~1/18,纵向受力钢筋取所连接的柱子的最大轴力设计值的10%作为拉力来计算。但是,当基础埋深过大时,为了减少底层的计算高度和底层的位移,设计者往往在±0.000以下的某个适当位置设置基础拉梁。此时,基础拉梁应作为一层输入,底层计算高度应取基础顶面至基础拉梁顶面的高度,二层计算高度应取基础拉梁顶面至一层楼板顶面的高度。拉梁层无楼板,应开洞处理,并采用总刚分析方法进行计算。基础拉梁截面及配筋按实际计算结果采用。若因此造成底层框架柱形成短柱,应采取构造措施予以加强。另一个需要注意的是,当框架结构的电梯井道采用钢筋混凝土井壁时(设计时应尽量避免),计算简图一定要按实际情况输入,否则可能会造成顶部框架柱设计不安全。
4.2 结构计算参数的选取
4.2.1 设计基本地震加速度值
《建筑抗震设计规范》(GB50011一2001)中规定:抗震设防烈度为7度时,设计基本地震加速度值分别为0.1g和0.15g两种,抗震设防烈度为8度时,设计基本地震加速度值分别为0.2g和0.3g两种,这与89规范差别较大。计算中应严格注意地震区的划分,选取正确的设计基本地震加速度值,这一项对地震作用效应的影响极大。
4.2.2 结构周期折减系数
框架结构由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震作用效应偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的。折减系数可根据填充墙的材料及数量选取0.7~0.9。
4.2.3 梁刚度放大系数
SATWE或TAT等计算软件的梁输入模型均为矩形截面,未考虑因存在楼板形成T型截面而引起的刚度增大,造成结构的实际刚度大于计算刚度,算出的地震剪力偏小,使结构偏于不安全。因此计算时应将梁刚度进行放大,放大系数中梁取2.0、边梁取1.5为宜。
4.2.4 活荷载的最不利布置
多层框架,尤其是活荷载较大时,是否进行活荷的最不利布置对计算结果影响较大。即使选用程序中给定的梁设计弯矩放大系数,也不一定能反映出工程的实际受力情况,有可能造成结构不安全或过于保守。考虑目前的计算机计算速度都比较快,作者建议所有工程都应进行活荷载的最不利布置计算。
4.3 独立梁箍筋计算结果需复核
《混凝土结构设计规范》(GB50010-2002)中规定:对集中荷载作用下的独立梁,应按公式进行计算,且集中荷载作用点至支座间的箍筋,应均匀配置。但SATWE软件计算梁箍筋时,未考虑独立梁这一情况,都按公式 进行计算,有时会造成计算结果偏小,设计中若遇到有独立梁存在的情况,应对梁箍筋的计算结果进行手算复核。
5 设计构造方面的问题
5.1 框架节点核芯区箍筋配置应满足要求对于规范中规定的框架柱箍筋加密区的箍筋最小体积配箍率的要求,绝大部分设计人员都能给予足够的重视,但对于《建筑抗震设计规范》(GB50011-2001)中规定的"一、二、三级框架节点核芯区配箍特征值分别不宜小于0.12、0.10、0.08且体积配箍率分别不宜小于0.6%、0.5% ,0.4%。"设计中经常被忽视,尤其是柱轴压比不大时,常常不满足要求。这一规定是保证节点核芯区延性的重要构造措施,应严格遵守。
5.2 底层框架柱箍筋加密区范围应满足要求建筑抗震设计规范》(GB50011-2001)中规定:"底层柱,柱根处箍筋加密区范围为不小于柱净高的1/3"这是新增加的要求,设计中应重点说明
5.3 框架梁的纵向配筋率应注意
《建筑抗震设计规范》(GB50011一2001)中规定:"当框架梁梁端纵向受拉钢筋配筋率大于2%时,梁箍筋最小直径的数值应比表6.3.3中规定的数值增大2mm。"在目前设计中,这一规定常被忽视,造成梁端延性不足。
5.4 框架梁上部纵筋端部水平锚固长度应满足要求
中图分类号:S611 文献标识码:A 文章编号:
一、前言
为了确保我们每天所生活的建筑物的稳定和安全,就需要确保建筑物的主要承重结构构件具有可靠的坚固性以及耐久性,实现安全正常的支撑作用。承重结构构件主要包括垂直构件和水平构件两类,其中垂直构件包括桩、柱、墙等等,水平构件包括如梁、桁架、网架等等。建筑结构设计专业技术人员在进行结构设计时,需要明确具体建筑物的基本功能需求,比选多种结构方案,从中优选最经济合理的方案,然后针对各个结构构件与结构体系,采用结构设计规范规定的安全系数,进行结构分析以及内力计算,准确分析计算各构件之间的连接方式和构造措施。
二、建筑结构设计安全度的定义
衡量建筑物结构是否安全是否可靠,我们需要看其三条性能,安全性、适用性以及耐久性,而这也是建筑结构设计的最终目标。而在建筑结构设计中,用来度量结构这三条性能的指标就叫做安全度。三条性能的具体阐述如下:
第一条,是建筑结构的安全性。最终建成的建筑物,在正常的使用条件下应当完全能够承受可能出现的各种外荷载作用,具体包括其自重、各种机械设施设备、各类家具、各种人流以及自然风雪和气温变化等等,同时,在某些特殊情况下,比如地震、火灾、飓风等等,也仍然能在一定程度的作用下,保持建筑物的整体稳定性,不至于轻易倒塌。
第二条,是建筑结构的适用性。最终建成的建筑物,在正常的使用情况下,应当拥有比较良好的工作性能,可以正常地发挥建筑物内部各组织的使用功能。
第三条,是建筑结构的耐久性。最终建成的建筑物,在正常的使用和维护条件下,应当实现足够长的安全使用寿命,也就是设计使用年限。
三、安全度表示法
建筑结构设计方法不同,相应地,其安全度表示法就有所差异。自上世纪5O年代,我国的建筑结构设计方法历经四个阶段,分别是容许应力设计方法、破坏阶段设计方法、极限状态设计方法以及概率极限状态设计方法。
在结构设计规范中,安全系数表示容许应力法的安全度,分项系数表示破坏阶段法的安全度,可靠指标表示概率极限状态法的安全度。建筑结构安全度即可靠度,与众多因素有关,都需要进行准确分析和计算,包括建筑结构的构造规定,构件荷载标准和材料强度的标准值、结构内力分析的精确度以及构件承载力的计算公式等等,这些数据根据结构设计方法的不同而有所不同。不同的安全度表示方法,有其不同的数据标准。设计时应当根据具体的建筑物选择恰当的设计方法和相对应的合适的安全度表示方法。
建筑结构可靠度理论也叫安全度理论,可有效地对建筑结构安全性进行分析计算。对此,我国已经实施了相关的建筑结构设计统一标准,进行建筑结构设计时,应当严格按照可靠度理论进行相关设计工作。可靠度理论中,是使用失效概率,以进行对结构可靠性的度量,可以将建筑结构自身的抗力和外荷载的各种作用效应互相独立。在此理论中,把随机过程转化成了随机变量,并且将经验数据当作校准点。我国现行的建筑结构设计规范中,这一理论被成功应用其中。不过技术在不断发展,这一理论仍然有待完善之处。在进行具体的建筑结构设计时,设计人员应当切实结合工程项目的实际情况,灵活地应用理论。
四、恰当地确定结构设计安全度
在进行建筑结构设计时,结构设计安全度的确定,也是一项很重要的任务。建筑结构设计安全度的高低,应根据建筑所在地的经济和地理环境所决定。一般来说,安全度的高低,可视为此区域经济、技术等各方面的综合反映,具体包括地区经济和资源状况,以及建筑施工各项技术的水平高低和建筑材料的质量优劣。进行实际确定时,应当根据概率论和统计学理论作为理论基础,参照本区域建筑的成功的经验数据,经过多因素分析和综合的考虑。但现实情况是,结构设计中太多依赖于结构工程师的实践经验,往往从结构选型、施工技术水平和建材的质量优劣等方面着手分析,一般都很少考虑工程项目所在地的经济发展水平以及资源状况,这样很容易造成安全系数确定得偏高或是建筑物造价设计得偏高,最终导致一些经济欠发达地区在财力上很难承受该工程的建设。
我国现阶段,整体上施工技术水平不高,建料质量参差不齐,各地区经济发展不平衡,现行的混凝土结构设计规范中,结构安全度刚刚能适应实际工程的需要,但与国际上通行的工程结构质量标准相比,仍有增长的空间。毕竟,国家经济实力在不断增强,施工技术也在不断提高,新材料新工艺得到了极大的推广应用,而且大跨度大空间结构是越来越多,因此,现行的结构设计安全度应当适当提高。我国混凝土结构设计规范中,与国外相关规范比,结构计算时所采用的荷载标准值和构件之间的构造要求,都低一些。
五、结构构件的耐久性问题
建筑物在其工作年限内必须实现足够的强度,足以经受各种外来荷载的作用,充分发挥其使用功能,即使再恶劣环境因素的强力作用下,也仍然能够继续保持建筑物的强度和整体性。在进行建筑物结构设计时,除了需要合理准确地确定建筑结构设计安全度,还应当重视结构的耐久性,主要是混凝土结构构件的耐久性。我国,现行的相关规范中,对混凝土结构设计和施工规范有明确规定,注重于结构构件在各种荷载作用下的强度要求,但是对于建筑物在恶劣环境因素作用下的结构耐久性,却没有给予足够的关注和重视。
调研报告和数据表明,诸多因素将影响混凝土结构构件的耐久性,可以将这些因素分为内部因素和外部因素两类。
一是,内部因素,主要包括氯离子含量、混凝土的水胶比即水灰比、混凝土的强度等级、水泥用量、骨料中的碱含量和外加剂用量以及混凝土保护层厚度等;外部因素就是混凝土结构构件所处的外部环境,包括地上环境和地下环境、水上环境和水下环境,包括温差、冻融和湿度、某些化学成分的含量、各种腐蚀性化学介质以及含酸碱地下水等等。而这其中,对混凝土结构耐久性的影响最为严重的,则是混凝土碳化、碱骨料反应以及钢筋锈蚀。外部恶劣环境可谓是对混凝土碳化和钢筋锈蚀起直接影响作用的主要因素,需要我们给予足够的关注和重视。
对于建筑工程和港口、桥梁等基础设施工程,其使用寿命和结构耐久性都十分重要。在对港口、桥梁、水利和建筑工程等混凝土结构工程,进行耐久性设计时,应当严格按照国家相关的规范规定,切实满足各项系数要求,确保此类工程在工作年限内的安全使用。
六、结语
建筑结构设计专业技术人员,在进行结构设计的时候,必须根据建筑物的基本功能要求,结合具体实际情况,在多种方案中,进行比选分析,择优选择出最经济、最合理的结构设计方案,然后要针对每个结构构件以及结构体系,进行合理的结构分析和准确的内力计算,最后还需要各构件之间的连接方式和构造措施进行正确分析和精准计算。在设计时,切记采用结构设计规范中所规定的各项安全系数,以切实保证建筑物结构构件和整体建筑能够安全使用。
参考文献:
[1]范涛 试论结构设计安全度 [期刊论文] 《科技信息》 2012
[2]王伟 建筑结构安全度设计思考的探究 [期刊论文] 《价值工程》 2010
[3]熊志军 浅议建筑结构设计安全度 [期刊论文] 《科技信息》 2010
在工业厂房中经常遇见带平台的工业厂房,常见于轻工业厂房及火力发电厂主厂房,此类结构的基本特征为上部为带吊车的排架结构,下部平台为框架结构,常称为框排架结构,其结构基本形式图1,图2所示。论文写作,初参数法。
图1 横向框架布置图
图2 柱网布置图
设计此类结构时,对于结构纵向,结构的基本形式是框架结构,按常规框架计算方法即可实现,而对于结构横向,结构形式为框架和排架两种结构形式的组合,设计时问题就比较复杂,需进行仔细考虑,下文主要就横向框架的计算进行说明。
1.横向框架内力计算
本文按以下简图(图3,图4)进行说明,H1,H2为下部框架的层高,H3为上部排架的下柱的高度,H4为上部排架的上柱高度,本文中把两个边柱称为排架柱,内部柱称为框架柱,实际工程中,有平台梁和排架柱刚接和铰接两种情况,所以给出两种情况下的简图。
图3 计算简图一图4 计算简图二
各种荷载的取值在规范中有比较明确的说明,对于一般设计人员不存在问题,按照弹性方法计算内力,现在的计算机普及,常规设计软件也都可以比较准确的实现。
有了内力计算配筋时,对于排架和框架,梁配筋的计算一致的,而混凝土结构柱的设计现在都基本都习惯再按η-l0法计算,η-l0法在计算时需要设计人员确定各段柱计算长度。混凝土规范明确给出了排架结构和框架结构中柱计算长度的确定方法,两种结构为不同的方法,对于排架和框架组合在一起的结构形式规范则没有给出确定方法,所以计算长度的设计就成为框排架结构设计的关键。论文写作,初参数法。论文写作,初参数法。
2.排架柱计算长度确定
内部框架柱,由于结构形式为规则的框架结构,计算长度按照混凝土结构设计规范《GB50010-2002》的7.3.11条有关框架柱的规定确定取值即可,下面主要说明两边排架柱的计算长度确定,按梁和柱两种不同的连接方式分别进行说明(图3,图4)。论文写作,初参数法。
2.1平台梁与排架柱刚接,简图一(图3)
此时排架柱的H1和H2段,可以认为是底部框架的一部分,可依照混凝土结构设计规范7.3.11条有关框架柱规定进行取值。
混凝土结构可以就地取材,造价低,可塑性强,耐久性好,比较适合我国的国情。解放以前,旧中国经济技术落后,没有自己的标准规范。沿海和大城市中建造的混凝土结构都是直接引用国外规范进行设计、施工。随着我国大规模基本建设的发展以及经济增长模式的转变,各类大型复杂、功能特殊的结构越来越多,同时还面临着既有建筑的结构耐久性、抗灾性等问题。因此规范将不断修订,为修订规范而进行的试验研究也将持续进行,从而混凝土结构理论也将得到发展。
1 钢筋混凝土结构设计方法
钢筋混凝土结构设计方法,从学术上讲可以有多种,施行百家争鸣,然而对实际设计起控制作用的却是国家颁布的钢筋混凝土结构设计规范规定的设计方法。采用以概率理论为基础的极限状态设计方法。对承载能力极限状态,采用分项系数设计表达式。材料标淮强度采用国际标准。其中对混凝土标号做出了更为明确和科学的定义,在极限平衡理论的基础上引进了平截面假定,使基本构件(弯、拉、压)的正截面强度计算模型,建立起有较明确概念的计算体系。增加了钢筋混凝土构件抗震设计内容。其中包括地震作用下构件和韦点的截面强度设计和保证变形要求的配筋构造,以适应广大地震区建筑的需要。进一步完善了构造要求,如从耐久性角度调整了保护层厚度,从变形角度调整了最小配筋率,根据粘结锚固理论与国产钢筋外形,以锚固长度为基淮,调整了不同状态下的钢筋锚固、搭接、延伸长度。钢筋混凝土结构设计规范将为实现钢筋混凝土结构设计方法体系的目标完成重要的基础工作,使我国钢筋混凝土结构设计水平提高到一个新的高度。
2 混凝土结构科研方式的改进
首先要提倡研究的原创性科研的精髓在于其原创性,探索未知领域的研究成果必须具有新意。即对传统认知的突破,甚至否定。不能苛求新的思维尽善尽美,应采取宽容态度允许其逐渐完善。减少无原创性的重复研究,更应杜绝抄袭行为或各种窃取公有知识而垄断专利、标准的不正当行为。其次要减少盲目的低水平重复。目前为解决学位、职称等功利目的而进行的科研及发表的论文数量不少,大多是没有明确目标的,空泛议论或低水平重复。这类研究多凭想象建立不可靠的基本假定。然后进行繁琐的推导,得出似是而非的结论。既无理论上的意义又没有工程价值,浪费了宝贵的科研资源。再就是加强基础理论研究,应充分意识到这种现象可能造成的长期不利影响。应重视基础理论研究,并及时给予充分的经费和人力支持。还要提高工程应用研究水平、提倡深入浅出的成果表达、提倡学术争鸣和讨论。
3 混凝土结构加固技术
混凝土结构加固技术的研究与应用在我国作为一个新兴的学科领域得以迅猛发展仅仅是近十来年的事。混凝土结构加固技术是结构进行检测、评价、维修、加固或改造等技术的总称,包括结构检测技术、结构可靠度评估技术和结构加固方法等方面的内容。本文将着重研究混凝土结构的加固技术方面的问题。我国先后编制适合于混凝土结构加固的相关的标准和规范,这些专业的加固标准和规范初步形成了混凝土结构加固领域的标准体系,对我国该领域的发展和各种最新科研成果的推广应用起到了积极作用。混凝土结构加固技术还存在很多问题,但是经过十几年的快速发展已经初步形成了规模体系,很多混凝土结构加固技术经过了大量的深化研究和工程的实际应用,证明了其加固的安全性和使用性。现阶段混凝土结构加固技术主要是针对结构的承载能力和耐久性的加固处理,己经比较成熟的提高低强度混凝土结构构件承载能力加固的基本方法主要有增大截面法、粘碳纤维和钢板法、外包钢法、置换混凝土加固法等。
4 混凝土结构设计安全度与规范
对于混凝土结构设计规范中的安全度设置水平,最早源于从事高强混凝土结构科研和推广应用工作。由于现行建筑结构设计规范业已采用了可靠度设计理论,其在规范中的计算表达形式又与多安全系数方法相似,在实用上姑且将它理解为多安全系数也并无不可。至于尚未使用的规范宜适当放慢“统一”步伐,实在难以使用的更不宜通过行政手段去统一。可靠度理论还在发展,这方面的学术讨论希望能够深入开展下去。提高结构的安全性能需要从结构选型、结构构造、结构布置、材料选择等多个方面做出努力,以加强结构的整体性、延性和耐久性,提高其抵御不测之灾和防止倒塌、特别是抵抗连续倒塌的能力。也许基于概念设计的这些措施,对于增进结构安全更为有效且更符合经济节约的原则。
我国钢筋混凝土结构设计规范经历了三个不同的发展阶段。
4.1 引进规范的早期应用
旧中国的钢筋混凝土结构设计未有本国自己的设计规范。那时,结构设计方法均属容许应力设计法。解放后,我国在一穷二白的基础上展开了大规模经济建设。在当时的条件和环境下,在结构设计上直接采用苏联的钢筋混凝土结构设计规范。
4.2 规范自主化的最初探索
早于1961年原建工部和原国家建委就已着手组织编制我国钢筋混凝土结构设计规范,由于起步晚,缺乏自己的基础资料和必要的科研工作,这本规范的设计方法仍只能在苏联55年规范的基础上做少量修改和对名词术语做必要推敲。但这次实践,对我国钢筋混凝土结构设计规范的发展是十分有益的,迈出了重要的一步。
4.3 结构理论及规范的逐步完善
提高水平,形成体系的阶段。完善的钢筋混凝土结构设计方法和规范体系的形成,从根本上讲依赖于钢筋混凝土结构科学术技的发展,是把各种环境条件与钢筋混凝土的性能关系以及实践经验上升到规律性认识的过程,这就需要扎实的、系统的科研工作。中国建筑科学研究院结构所连续组织了三批钢筋混凝土规范科研课题。通过这三批科研课题,使建国以来长期处于薄弱或空白状态的量大面广的工程技术问题,得到了解决或初步解决,获得了一大批珍贵的关系到工程结构设计合理性与可靠性的基础数据,大大提高了我国钢筋混凝土结构设计理论水平,同时也增强了引进与消化国外先进设计方法的能力。
5 混凝土结构的发展方向
5.1 试验研究将未来的发展的一个支撑
半个多世纪以来,我国混凝土结构理论及规范标准经历了从无到有,逐步发展完善的历程。随着我国大规模基本建设的发展以及经济增长模式的转变,各类大型复杂、功能特殊的结构越来越多,同时还面临着大量低安全度的既有建筑和结构耐久性、抗灾性等问题。因此规范将不断修订,为修订规范而进行的试验研究也将持续进行,从而混凝土结构理论也将得到发展。
5.2 结构试验方向的调整
传统以单一构件(板、梁、柱、墙等)进行的试验研究,结论有很大的局限性,难以反映由这些构件组成结构体系(楼盖、框架等)的真正受力状态及规律,若以结构组件或结构体系的方式进行试验,则可更真实地反映其受力状态;构件间的连接构造是传统试验研究中比较薄弱的环节,且对结构安全有着重要的影响,应加强这方面的研究;加强结构抗灾性能的试验研究,提高试验研究的分析水平,要提倡先分析后试验,多分析少试验。基本假定应有可靠的依据,机理分析应深入透彻,应充分利用已有的试验资料;应用非线性有限元及概率统计等手段,提高试验和分析水平;通过试验研究开发约束混凝土的巨大潜力,具有实际工程意义。
6 结语
混凝土结构加固技术的研究与应用在我国作为一个新兴的学科领域得以迅猛发展仅仅是近十来年的事。随着该领域技术应用和研究工作的深入发展,我国先后编制适合于混凝土结构加固的相关的标准和规范,这些专业的加固标准和规范初步形成了混凝土结构加固领域的标准体系,对我国该领域的发展和各种最新科研成果的推广应用起到了积极作用,大大促进了我国在该领域的发展。我国混凝土结构理论及规范从无到有,逐渐丰富和完善,完全依靠独立自主的科研试及工程实践积累。目前我国大规模基建极需结构理论及标准规范的持续发展,转变科研形式,调整研究方向极为重要。
参考文献:
建筑结构论文参考文献:
[1]刘烽锋.对建筑结构设计中的思路优化探讨[J].建筑工程技术与设计,2015,(9):497-497.
[2]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):283-283,286.
[3]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):313-314.
[4]周翱.房屋结构设计中建筑结构设计优化方法的应用探讨[J].建筑工程技术与设计,2014,(22):710-710.
[5]梁辉辉,杨鑫.刍议房屋结构设计中建筑结构设计优化方法的应用[J].建筑工程技术与设计,2015,(14):390-390.
[6]伍后胜,庞宇.建筑结构设计优化技术在房屋结构设计中的实际应用[J].房地产导刊,2014,(18):114-114.
[7]朴洪立.建筑结构设计中优化方法研究[J].民营科技,2014,(7):145.
[8]刘立伟.建筑结构设计优化方法在房屋结构设计中的应用探究[J].商品与质量·理论研究,2014,(7):208-208.
建筑结构论文参考文献:
[1]张世廉,董勇,潘承仕.建筑安全管理[M].2005
[2]陈肇元,土建结构工程与耐久性[M].2003
[3]杨云峰.浅谈建筑结构抗震概念设计[j].科技创新导报.2009(11)
[4]王建军.土建结构工程的安全性与耐久性[N].伊犁日报(汉),2006
[5]董心德,叶丹,张永平,蔡世连.复杂高层建筑结构基于性能的抗震设计概念[j].中国产业.2010(12)
建筑结构论文参考文献:
[1]建筑抗震设计规范(GB50011-2001)
[2]混凝土结构设计规范(GB50010-2002)
[3]建筑结构杂志
[4]高层建筑结构概念设计